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A DIAMETER GAP FOR QUOTIENTS OF THE UNIT SPHERE

CLAUDIO GORODSKI, CHRISTIAN LANGE, ALEXANDER LYTCHAK,

AND RICARDO A. E. MENDES

Abstract. We prove that for any isometric action of a group on a unit sphere

of dimension larger than one, the quotient space has diameter zero or larger

than a universal dimension-independent positive constant.

1. Introduction

1.1. Main result. We prove the following gap theorem, answering a question going
back to Karsten Grove and investigated in [McG93] and [Gre00].

Main Theorem. There exists some ë > 0 such that for any n g 2 and any group
G acting by isometries on the unit n-dimensional sphere Sn the quotient space Sn/G
either has diameter 0 or at least ë.

Note that the diameter of the quotient space does not change if the group G is
replaced by its closure Ḡ and that for a closed group G = Ḡ the quotient space
Sn/G is an Alexandrov space of curvature bounded below by one. The diameter of
Sn/G is 0 if and only if any orbit of G is dense in Sn, thus if the closure Ḡ of G in
O(n) acts transitively on Sn.

The case n = 1 needs to be excluded, since quotients of S1 by the action of cyclic
groups can have arbitrary small diameter.

The existence of a dimension-dependent bound ë(n) has been proved in [Gre00].
There, earlier in [McG93] and later in [MS05] and [DGMS09] explicit lower bounds
on the diameter have been found for some special classes of actions. Most notably,
a lower bound ³ > 1

4 has been verified by explicit calculation for free actions, for
finite Coxeter groups and for actions with quotients of dimension f 2. Recently in
an independent preprint the existence of such a lower bound was proved for unitary
actions of connected Lie groups with the exception of spin representations [GR21].
We refer the reader to [GR21] for the relevance of this problem to Control Theory.
After finishing this paper we have learned from Ben Green about his recent work
[Gre20], in which a very strong version of our main theorem was verified for finite
groups G. In particular, he proved for such groups that ë(n) converges to Ã/2 if n
converges to infinity.

Unlike the existence of a dimension-dependent constant ë(n) from [Gre00], our
dimension-independent bound cannot be derived by a limiting argument. A related
fact is that no such lower bound exists for isometric actions on the unit sphere in
an infinite-dimensional Hilbert space [Wea]. While we have not tried to determine
our constant explicitly, the proof indeed provides some explicit bound on ë in the
Main Theorem. In a future work, we hope to bring this explicit bound in a range
comparable with the existing examples, see [DGMS09] for some conjectures about
the optimal value of ë, resolved and improved for finite groups in [Gre20].
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1.2. Related questions. We start with a generalization of Greenwald’s dimension-
dependent bound [Gre00] and characterize compact Riemannian manifolds for which
such a bound exists. The proof relies on a limiting argument similar to the one
employed by Greenwald.

Theorem 1. Let M be a compact homogeneous Riemannian manifold. Then
Ã1(M) is finite if and only if there exists ëM > 0 such that, for every subgroup
G ¢ Isom(M), either diam(M/G) = 0 or diam(M/G) > ëM .

Unlike the Main Theorem, the bound in Theorem 1 above cannot be made inde-
pendent of the space M , even after the metric is rescaled to have a fixed diameter.
A counter-example is given by the groups SO(n), see Example 32. Nevertheless,
the following problem is likely to have an affirmative answer:

Question 2. Does there exist a lower bound for the diameter of quotients of simply-
connected compact symmetric spaces depending only on the rank?

Note that the rank one case follows from the Main Theorem and Theorem 1.
Every Riemannian orbifold with constant curvature one is a good orbifold and

therefore a quotient of the unit sphere. Therefore, a special case of the Main
Theorem is the existence of a universal lower bound on the diameter of Riemannian
orbifolds with constant curvature one (in the case of manifolds this is the main result
in [McG93]). Considering curvature negative one instead of one yields the following
natural question, which seems to be open:

Question 3. Is there a universal lower bound for the diameter of hyperbolic man-
ifolds (resp. orbifolds)?

Note that the existence of a dimension-dependent bound follows from Margulis’
Lemma, see e.g. [Rat06, Cor. 1, §12.7].

While our proof of the Main Theorem uses several geometric arguments, it heav-
ily relies on the structure and classification of compact Lie groups and their rep-
resentations. Even in the connected case it seems to be a difficult task to remove
the representation-theoretic arguments from the proof and obtain an affirmative
answer to the following:

Question 4. Does there exist a universal constant ë such that for any non-trivial
singular Riemannian foliation F on a unit sphere Sn, the quotient Sn/F has diam-
eter at least ë?

We refer to [Mol88], [Rad] for the theory of singular Riemannian foliations,
being a group-free generalization of isometric group actions and to [LR18], [MR20]
for algebraic properties of singular Riemannian foliations on spheres. While in
codimension one a positive answer to the above problem is a famous theorem of
Münzner [Mün81], nothing is known in higher codimensions. Even the existence of
a dimension-dependent bound ë(n) is presently not known. Nevertheless, we note
that Question 4 has an affirmative answer for all currently known examples, because
these are all constructed starting from a homogeneous foliation, and repeatedly
composing it with Clifford foliations, see [Rad14].

1.3. The proof of the Main Theorem. We are going to explain the main steps
involved in the proof of the Main Theorem now.

First, we may replace G by the closure of its image in O(n + 1), thus we may
assume G to be compact.
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If the representation of G on V = Rn+1 is reducible then the quotient Sn/G has
diameter π

2 or Ã, see Lemma 7. Using a slightly more refined argument, we deduce
that the existence of a normal subgroup N of G acting reducibly on V implies that
N acts as (real, complex, or quaternionic) scalars or that the diameter of Sn/G is
at least π

4 , see Lemma 13.
Replacing G by a larger group can only decrease diameter. Combining this with

the previous observation and ruling out 4 special classes of examples by hand, we
reduce the task to the following two main cases.

I) The group G is a (uniformly) finite extension of G0×G1 where G0 is the group
of F -scalars (with F = R,C,H) andG1 is a simple, simply connected compact group
acting on V irreducibly.

II) The connected component G0 of G acts as F -scalars on V , thus, G is finite
up to scalars.

In case (I), we invoke the algebraic result proved in [GS19], saying that the
orbit G · p of G through the highest weight vector has a focal radius bounded from
below by a universal constant. Then we combine this with a quotient version of the
Klingenberg injectivity radius estimate (Proposition 26) to finish the proof.

The technically more involved case (II) can be deduced from the technically
much more complicated paper [Gre20]. Following this path one could dispose of
Section 4 and of Appendix A below. We have decided to keep our proof of this
result whose simple geometric idea we are going to explain now. The reader can
very well dispose of this idea and take the shortcut explained in Remark 5 below.

We only explain the main idea of the proof of case (II), neglecting all difficulties
arising from the presence of scalars, which force us to work with projective repre-
sentations rather than actual representations. Thus we assume that G is a finite
group and that it is a maximal subgroup of O(n), in particular, the representation
is of real type.

We compare the diameter and the volume of the quotient Sn/G. The volume
equals vol(Sn)/|G|. On the other hand, by the theorem of Bishop–Gromov, the
volume of Sn/|G| is bounded from above by c · rn · vol(Sn), where c is a universal
constant and r is the diameter of Sn/G. Thus, in order to obtain the conclusion,
we only need to verify that log(|G|)/n has a universal upper bound (for all repre-
sentations that we cannot rule out by other means).

If the group G is a finite simple group, then the classification of such groups and
existing lower bounds on the dimension of their representations provide us with
the needed bound (with the only exception of the minimal representation of the
alternating group, for which we already have the bound of π

4 , [Gre00]). If the group
G is not simple, we consider a minimal normal subgroup N of G, use the fact that
this normal subgroup must act irreducibly and that G/N (again up to scalars)
embeds into the group of outer automorphisms of N . Since N must be a power of
a simple group, we again apply the classification of finite simple groups and obtain
the required bound on log(|G|)/n.

Remark 5. We are going to explain how case II follows directly from [Gre20]. If
G0 = {1}, then G is finite and the main result of [Gre20] states that the diameter
of Sn/G is at least ëfinite(n) with limn³> ëfinite(n) = Ã/2.

If G0 = U(1), then approximating U(1) by finite cyclic subgroups, we obtain an
approximation of G by finite subgroups. Therefore, also in this case we get from
[Gre20] that the diameter of Sn/G is at least ëfinite(n) with ëfinite(n) as above.
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Finally, if G0 is Sp(1) acting as quaternionic scalars, we can write G = G0 · Γ,
where the finite group Γ is the centralizer of G0 in G. Then we consider a fixed finite
subgroupH of Sp(1) which acts irreducibly on S3, for instance the binary icosaedral
group. The main theorem of [Gre20] implies that the diameter of Sn/(H · Γ) is
bounded from below by ëfinite(n) as above. However, in any G0-orbit, which is
a round sphere S3, the corresponding H-orbit is s-dense, where s < Ã/2 is the
diameter of S3/H . Then, we get ëfinite(n)2 s as a lower bound for the diameter of
Sn/G. By [Gre20] this number is bounded away from 0 for n large enough.

Remark 6. If one is interested in the case of connected Lie groups only, the proof
can be considerably shortened. Indeed, by passing to a maximal non-transitive
connected closed group and using Theorem 10 to discard polar actions (see sec-
tion 3 for this concept) we directly arrive at one of first three cases in Lemma 23.
Subsections 5.2 and 5.3 cover these cases and we obtain as a lower bound for ë half
the focal radius of the orbit through the special point, hence j 1

30 according to
[GS19].

Understanding the diameter of quotients of unit spheres also has a bearing on the
global structure and classification of compact positively and non-negatively curved
manifolds (compare [Gro02]). Indeed, the orbit space of such a manifold under
the action of a compact Lie group of isometries is an Alexandrov space of positive
(resp. non-negative) curvature, whose local geometry is controlled by its tangent
cones which, in turn, are determined by the associated isotropy representations.
In this sense, the Main Theorem says that “Riemannian orbit spaces cannot be
arbitrarily singular”.

1.4. Organization. In Section 2 we recall a couple of basic facts and definitions
about real, complex and quaternionic representations, which are used throughout
this article, as well as some known facts about diameter of quotients which we will
use later. Section 3 concerns normal subgroups and reduces the proof of the Main
Theorem to two cases, according to whether the identity component G0 of the given
group G acts irreducibly, or as scalar multiplication. Section 4 finishes the proof
when G0 acts as scalar multiplication, that is, when G is essentially a finite group,
while Section 5 deals with the case where G0 acts irreducibly. Section 6 is devoted
to the proof of Theorem 1.

Finally, Appendices A and B contain proofs of two technical but essentially
known Lemmas needed in Sections 4 and 5, respectively.
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2. Preliminaries

2.1. Representations of real, complex, and quaternionic types. In this
section we briefly collect a few definitions and basic facts about representations
over R,C,H, of real, complex and quaternionic types that are used throughout the
present article. A thorough treatment can be found in [BtD85, Section 2.6].

Let G be a compact group. A real representation of G is a group homomorphism
G ³ GL(U), where U is a real vector space. It is called irreducible when the only
G-invariant real subspaces are {0} and U . In this case, Schur’s lemma implies that
the algebra of all G-equivariant endomorphisms of U is a real associative division
algebra, which, by Frobenius’ Theorem, must be isomorphic to R, C, or H. This
representation is then called of real, complex, or quaternionic type, respectively.

A complex representation of G is a group homomorphism G ³ GL(V ), where V
is a complex vector space, and it is called irreducible when the only G-invariant
complex subspaces of V are {0}, V . In this case, it is called of real type (resp.
quaternionic type) when it admits a real structure (resp. quaternionic structure),
that is, a G-equivariant conjugate-linear map ë : V ³ V with ë2 = 1 (resp. ë2 =
21). The representation V is called of complex type when it admits neither a
real nor a quaternionic structure, or equivalently, when V is not isomorphic to the
complex-conjugate representation V̄ .

If U is a real irreducible representation of real type, then its complexification
V = C·R U (that is, the G-module obtained by extension of scalars) is a complex
irreducible representation of real type. Conversely, given a complex irreducible
representation of real type V , with real structure ë, then the fixed-point set U of ë
is a real irreducible representation of real type, called the real form of V .

On the other hand, if U is a real irreducible representation of complex (resp.
quaternionic) type, then it is the realification of an irreducible complex represen-
tation V of complex (resp. quaternionic) type, that is, it is obtained from V by
restriction of scalars (from C to R).

2.2. Diameter of quotients. Here we collect some basic facts about the diameter
of quotients. We start with a well-known result, whose proof can be found, for
instance, in [GL14, pages 75–76].

Lemma 7. Let G ¢ O(n). Then the diameter of Sn21/G is equal to Ã if and only
G fixes some non-zero vector. Otherwise the diameter is less than or equal to Ã/2,
with equality precisely when the representation of G on Rn is reducible.

Next we turn to the behaviour of the diameter of the quotient with respect to
inclusion of groups K ¢ G ¢ O(n). A simple fact we will use frequently is that
diam(Sn21/K) g diam(Sn21/G). In the opposite direction, there is the following
result, which appears as Lemma 3.13 in [Gre00], and allows one to replace a group
with a finite index subgroup, as long as the index is controlled:

Lemma 8. Let K ¢ G ¢ O(n) be closed subgroups, and assume G/K is finite,
with k elements. Then

diam(Sn21/G) g diam(Sn21/K)

2(k 2 1)
.

The existence of a dimension-dependent lower bound on the diameter of the orbit
space was established in [Gre00, Theorem 4.3]:
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Theorem 9 (Greenwald). For each n g 3, there exists ë(n) > 0 such that, for all
G < O(n) compact and non-transitive, diam(Sn21/G) g ë(n).

See Theorem 1 for a generalization of Theorem 9, with similar proof.
Another result of Greenwald useful to us can be found in [Gre00, Theorem 3.15]

and [Gre00, Table 1]:

Theorem 10 (Greenwald). If n g 3 and G < O(n) is a finite group generated by
reflections, then diam(Sn21/G) g π

8.1 . Moreover, if G is of classical type, that is,

types A, B, C or D, then diam(Sn21/G) g π
4 .

3. Controlling normal subgroups via polar representations

We will need the following technical observation:

Lemma 11. Let N0 ¢ O(l) (respectively U(l), Sp(l)) be irreducible of real (respec-
tively complex, quaternionic) type, and let N = ∆N0 ¢ O(kl) (respectively U(kl),
Sp(kl)) be the diagonal group, seen as acting by left multiplication on the vector
space V of l × k matrices with entries in R (respectively C, H). Let O(k) (respec-
tively U(k), Sp(k)) act by right multiplication, and denote by K the image in O(V )
of O(k) × O(l) (respectively of the group generated by U(k) × U(l) and complex
conjugation, Sp(k)× Sp(l)). Then the normalizer NO(V )(N) is contained in K.

Proof. Let g * NO(V )(N). Since g normalizes N , it also normalizes the central-
izer CO(V )(N) of N , which, by Schur’s lemma, equals O(k) (respectively U(k),
Sp(k)). Therefore g also normalizes SO(k) (respectively SU(k)). But every au-
tomorphism of SO(k) is given by conjugation with some element of O(k), every
automorphism of SU(k) is inner, or inner composed with complex conjugation, and
every automorphism of Sp(k) is inner. Therefore there exists g2 * O(k) (respec-
tively SU(k) * c SU(k), Sp(k), where c denotes complex conjugation) such that
conjugation by g and g2 coincide on SO(k) (respectively SU(k), Sp(k)). In other
words, g21g2 centralizes SO(k) (respectively SU(k), Sp(k)). By Schur’s Lemma,
g21g2 belongs to O(l) (respectively U(l), Sp(l)), and therefore g * K. �

The next lemma is analogous to Lemma 7 in that it provides algebraic informa-
tion about a representation when the diameter of the quotient is assumed to be
small. In the proof we use the concept of a polar representation, which is defined as
a representation admitting a section, that is a vector subspace which meets all of
the orbits orthogonally. The quotient space of the representation is isometric to the
quotient of any section by its so-called generalized Weyl group (polar group). The
latter is defined as the quotient of the subgroup which leaves the section invariant
by the subgroup which fixes the section pointwise, and it is always finite. Moreover,
the generalized Weyl group of a polar representation of a compact connected group
is a finite reflection group. For a detailed account on polar representations and
their generalized Weyl groups we refer to [PT87].

In order to make the statement of the lemma more convenient, we make the fol-
lowing definition, which corresponds to the case l = 1 in the notation of Lemma 11.

Definition 12. We will call a subgroup N ¢ O(V ) super-reducible if, as an N -
representation, V = W k, whereW is irreducible with dimF W = 1, where F = R,C,
or H is the type of W .

In the following we denote the symmetric group on k letters by Σk.
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Lemma 13. Let G ¢ O(n) be a closed subgroup, and assume diam(Sn21/G) < Ã/4.
Then, every normal subgroup N ¢ G is either irreducible or super-reducible.

Proof. First we claim that, as an N -representation, Rn has one isotypical compo-
nent. Let Rn = V1·· · ··Vk be the decomposition into isotypical components, and
assume to the contrary that k > 1. Since N is normal in G, any g * G takes N -
invariant subspaces to N -invariant subspaces, and hence N -irreducible subspaces
to N -irreducible subspaces. But any N -irreducible subspace W must be contained
in some Vi, by Schur’s lemma. Thus, if W ¢ Vi is N -irreducible, and g * G, there
exists j such that gW ¢ Vj . Moreover, the set of N -irreducible subspaces of Vi is
connected, so that j does not depend on the choice of W ¢ Vi. So gVi ¢ Vj , and,
applying the same argument to g21, it follows that gVi = Vj . Thus we obtain a
group homomorphism Ç : G ³ Σk such that gVi = Vφ(g)(i) for all i. Since G is
irreducible, this action of G on {1, . . . , k} is transitive, and, in particular, all Vi

have the same dimension d. Therefore G ¢ Σk ë O(d)k. The group Σk ë O(d)k

is polar and the quotient S
n21/(Σk ë O(d)k) is isometric to the quotient of Sk21

by the Weyl group Σk ë {±1}k, which, by Theorem 10, has diameter at least Ã/4.
Thus diam(Sn21/G) g Ã/4, contradicting our hypothesis, and finishing the proof
that Rn has only one N -isotypical component.

This puts us in the situation of Lemma 11, and, following the notation there, G is
contained in K, which is the image in O(n) of O(k)×O(l) (respectively of the group
generated by U(k)×U(l) and complex conjugation, Sp(k)× Sp(l)). If both k, l are
larger than one, the group K is polar, non-transitive, and by direct computations
the associated generalized Weyl group is a finite reflection group of classical type.
Thus Theorem 10 yields diam(Sn21/G) g Ã/4, a contradiction. Therefore, either
k = 1, that is, N is irreducible, or l = 1, that is, N is super-reducible. �

Let G ¢ O(n) be a compact subgroup with identity component G0, and assume
diam(Sn21/G) < Ã/4. Since G0 is a normal subgroup of G, we may apply Lemma
13 above to conclude that G0 is either super-reducible, or irreducible. Thus the
proof of the Main Theorem reduces to these two cases, which we will deal with
separately in the next two sections.

4. Case where G0 is super-reducible

4.1. Finite simple groups and projective representations. In this subsection
we collect some facts about the projective representations and the automorphism
groups of powers Sr of a finite simple group S. For more details on projective
representations of finite groups we refer to [Kar85].

Recall that an n-dimensional (complex) projective representation of a group G
is a group homomorphism G ³ PGL(n,C). If this homomorphism can be lifted to
a group homomorphism Ã : G ³ GL(n,C), the representation is called linear. In
general, it can be lifted to a map Ã : G ³ GL(n,C) which is a group homomorphism
only up to scalar multiplication. In other words, there is a map ³ : G × G ³ C×

such that Ã(1) = 1, and Ã(xy) = ³(x, y)Ã(x)Ã(y) for all x, y * G. Such a map
Ã is called an ³-representation. The group axioms imply that ³ is a cocycle (or
Schur multiplier), that is, it satisfies ³(x, 1) = ³(1, x) = 1 and ³(x, y)³(xy, z) =
³(y, z)³(x, yz), for all x, y, z * G. The set of all cocycles is called Z2(G,C×), and it
forms an Abelian group under pointwise multiplication. Moreover, one defines the
subgroup B2(G,C×) of coboundaries, and the cohomology group H2(G,C×) as the
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quotient. Two lifts of the same projective representation have cohomologous Schur
multipliers, and a projective representation is linear if and only if the associated
cohomology class vanishes. Let l(G) denote the smallest dimension of a faithful
irreducible projective representation of G (if they exist, which is the case for a
non-Abelian, simple group G).

Lemma 14. There exists a constant c such that, for every finite simple group S
that is not cyclic or alternating, one has

log |S|
l(S)

f c.

See Appendix A for the proof, which consist of a case-by-case verification fol-
lowing the classification of the finite simple groups and their representations.

Lemma 15. Let An denote the alternating group in n letters. Then, for n g 12, the
smallest dimension l(An) of an irreducible faithful projective complex representation
is n 2 1, uniquely achieved by the standard permutation representation on Cn21,
and the second smallest dimension is at least n(n2 3)/4.

Proof. Since An is simple, every non-trivial representation is faithful. An has ex-
actly two cohomology classes of Schur multipliers [Sch11]. Denoting by ³ the non-
trivial Schur multiplier, the smallest dimension of an irreducible ³-representation
is 2+(n22)/2+, see [KT12, page 1774]. Since n g 12, this is larger than n(n 2 3)/4,
so it suffices to consider linear representations.

Every irreducible (linear) representation of An is either the restriction of an
irreducible representation of Σn, or a summand, with half the dimension, of such a
restriction — see [FH91, page 64, Prop. 5.1]. By [Ras77, Result 2], when n g 9, the
third smallest dimension of an irreducible representation of Σn (after 1 and n2 1)
is n(n2 3)/2, completing the proof. �

Lemma 16. Let S be a finite simple group. If S is non-Abelian, then l(Sr) = l(S)r.
If S is Abelian, that is, S c Z/p for a prime p, then l(Sr) = pr/2 if r is even, and
Sr has no complex projective faithful irreducible representations if r is odd.

Proof. Assume S non-Abelian. Then, by [Kar85, page 132, Prop. 4.1.2], the Schur
multiplier M(Sr) (that is, the cohomology group H2(Sr,C×)) is equal to M(S)r,
because of the definition of tensor product of groups in [Kar85, page 58]. That is,
every Schur multiplier of Sr is cohomologous to a product of r Schur multipliers
of S, which, by [Kar85, page 198, Corollary 5.1.3], implies that every irreducible
projective representation of Sr is an outer tensor product of irreducible projective
representations of S. Moreover, such an outer tensor product is faithful if and only
if each factor is faithful, thus concluding the proof that l(Sr) = l(S)r.

Next assume S Abelian, that is, S = Z/p, for a prime p, and that Sr has
a (complex) faithful irreducible ³-representation for some Schur multiplier ³ *
Z2(Sr,C×). Then, by [Kar85, page 578, Lemma 10.4.3], the identity is the only
element of Sr that is ³-regular. Recall that, since Sr is Abelian, an element g is
³-regular if and only if ³(g, x) = ³(x, g) for all x * Sr (see [Kar85, page 107],
or [Hig01, Definition 1.2] for the general definition of ³-regularity). Therefore, by
[Hig01, Lemma 2.2(1)], Sr is of symmetric type, which, in our case, simply means
that r is even; and moreover every irreducible projective ³-representation of Sr has
degree

√

|Sr| = pr/2. �
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The outer automorphism groups of the finite simple groups are small. For our
purposes, the very rough estimate below will suffice:

Lemma 17. Let S be a finite simple group, and r g 1. If S is non-Abelian, then
|Out(S)| f |S|, |Aut(S)| f |S|2, and |Aut(Sr)| f r!|S|2r. If S is Abelian, S = Z/p

for a prime p, then |Aut(Sr)| f pr
2

.

Proof. Assume S non-Abelian. Using the classification of finite simple groups, it
has been proved in [Qui04, Lemma 2.2] that |Out(S)| f |S|/30. Since Inn(S) c S,
it follows that |Aut(S)| f |S|2. Moreover, Aut(Sr) is isomorphic to the semi-direct
product between the permutation group in r letters, and Aut(S)r. Indeed, any
group homomorphism Ç : Sr ³ Sr can be written as

Ç(g1, . . . , gr) =

û

ý

∏

j

Ç1j(gj),
∏

j

Ç2j(gj), . . . ,
∏

j

Çrj(gj)

þ

ø

where Çij : S ³ S are group homomorphisms such that, for all i, and all (g1, . . . , gr) *
Sr, {Çij(gj)}rj=1 commute. Since S is simple non-Abelian, this implies that for each

i, there is at most one value of j, such that Çij is non-trivial (and hence an auto-
morphism). Assuming further that Ç is an automorphism, there must in fact be a
permutation Ã * Σr such that Çij is non-trivial if and only if Ã(i) = j.

In the Abelian case, an automorphism of Sr is represented by an r × r matrix

with entries in Z/p, and thus |Aut(Sr)| f pr
2

. �

4.2. Volume, diameter and dimension. We will need a rough estimate for the
volume of the compact rank one-symmetric spaces (which is actually known ex-
plicitly). Denote by Bn the unit Euclidean ball and by CPn = S2n+1/U(1) and
HPn = S4n+3/ Sp(1) the complex and the quaternionic projective spaces, respec-
tively. Note that CPn and HPn equipped with their canonical, quotient metrics
have sectional curvatures bounded above by 4.

Lemma 18. Let M be an n-dimensional compact, simply connected rank one sym-
metric space with curvature bounded above by 4. Then

vol(M) >
1

2n
vol(Bn) .

Proof. The injectivity radius of the symmetric space M is at least equal to the
injectivity radius of the sphere 1

2S
n of constant curvature 4. By the Bishop–Gromov

volume comparison, we have

vol(M) g vol(
1

2
S
n) .

Considering the orthogonal projection, the volume of 1
2S

n is larger than the volume

of the unit n-dimensional Euclidean ball of radius 1
2 . This implies the claim. �

As an application we deduce:

Lemma 19. Let M be an n-dimensional compact, simply connected rank one sym-
metric space with curvature bounded above by 4. Let G be a finite group acting by
isometries on M . Then

diam(M/G) g 1

2
n

√

1/|G| .
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Proof. Let d denote the diameter of the quotient. Then a fundamental domain for
the action is contained in a ball in M of radius d. Since M is positively curved,
by the Bishop–Gromov Theorem, the volume of the quotient satisfies dn vol(Bn) g
vol(Mn/G). On the other hand, vol(M/G) g vol(M)/|G| (with equality if the
action is effective). The result now follows from the previous Lemma. �

4.3. Proof of Main Theorem — super-reducibly case. We can now prove
the Main Theorem under the assumption that the connected component G0 of G
acts as scalars, i.e. super-reducibly in terms of Definition 12).

Theorem 20. There exists ë > 0 such that diam(Sn21/G) > ë for every group
G ¢ O(n), for which the connected component G0 ¢ O(n) is super-reducible.

We start with a few reductions:

Lemma 21. To prove Theorem 20, one may assume that diam(Sn21/G) < Ã/4
and n > 16. Moreover, we may assume that one of the following three cases occurs:

(1) The group G is finite, O(1) = {±1} ¢ G and {±1} is maximal among
super-reducible normal subgroups of G.

(2) We have G = H · Sp(1). The group Sp(1) = G0 is maximal among super-
reducible normal subgroups of G. The group H is finite and contains the
center Z of Sp(n/4).

(3) We have G = H · Sp(1). The group U(1) = G0 is maximal among super-
reducible normal subgroups of G. The group H is finite and contains the
center Z of SU(n/2).

Proof. The first statement is clear. By Theorem 9 we may assume n > 16.
Consider a subgroup L of O(n) which is maximal among subgroups that are

super-reducible, contain G0 and are normalized by G. Replacing G by G · L and
observing that the connected component of G · L is the super-reducible group L0,
we may assume that G = G · L, hence L ¢ G.

Clearly, ±1 * L. If L = {±1} we are in case (1).
Otherwise, L is of complex or quaternionic type. Assume that L is of quater-

nionic type, hence L ¢ Sp(1). By Lemma 11, the group G is contained in Sp(1) ·
Sp(n/4). Hence Sp(1) is normalized by G, thus L = Sp(1), by maximality of L.
We can now take H to be the intersection of G with Sp(n/4).

Similarly, if L is of complex type then applying Lemma 11 and the maximality
of L we obtain L = U(1) and G is contained in the extension of U(n/2) by the
complex-conjugation. Replacing G by an index two subgroup, which is possible by
Lemma 8, we may assume that G ¢ U(n). Again, we obtain H as the intersection
of G with SU(n/2). �

Proof of Theorem 20. We make the assumptions listed in Lemma 21. If G is finite,
we set H = G to make the notation more uniform. We denote by Z the center of
O(n) (resp. SU(n/2), Sp(n/4)), so Z is cyclic of order 2 (resp. n/2, 2). Let N̄ be
a minimal normal subgroup of H/Z. Since N̄ is minimal normal, it is characteris-
tically simple, hence isomorphic to Sr, for some finite simple group S (see [Wil09,
Lemmas 2.7 and 2.8]).

We will show that log(|H/Z|)/n is uniformly bounded from above by providing
appropriate bounds on n and on |H/Z|. This will conclude the proof via an applica-
tion of Lemma 19, because Sn21/G = CP (n22)/2/(H/Z) (resp. HP (n24)/4/(H/Z)).
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Let N be the inverse image of N̄ in H . We claim that N ¢ O(n) is irreducible.
Indeed, N · {±1} (resp. N · U(1), N · Sp(1)) must be irreducible, because it is
normal in G, and strictly contains {±1} (resp. U(1), Sp(1)), which is maximal
super-reducible by assumption. This implies that, as an N -representation, Rn

breaks into at most 1 (resp. 2, 4) irreducible factors. Since n > 16, N cannot be
super-reducible, and since it is normal in G, it must be irreducible.

Next, we claim that the centralizer CH(N) of N in H is Z, so that, in particular,
Z is the center of N . Indeed, since N is irreducible, CH(N) is super-reducible. This
implies that CH(N) (resp. CH(N) ·U(1), CH(N) ·Sp(1)) is not irreducible, because
n > 16. Thus, being normal in G, it must be super-reducible. By maximality of
{±1} (resp. U(1), Sp(1)) among super-reducible normal subgroups of G, we must
have CH(N) = {±1} (resp. CH(N) · U(1) = U(1), CH(N) · Sp(1) = Sp(1)), which
implies CH(N) = Z.

Bounding |H/Z| from above. H acts by conjugation on N , so we have a
group homomorphism · : H ³ Aut(N), whose kernel is CH(N) = Z. Thus
|H | f |Z| · | image(·)|. But

image(·) ¢ AutZ(N) = {Ç * Aut(N) | Ç(z) = z "z * Z}
and each element of AutZ(N) induces an automorphism of N̄ = N/Z. Thus,
denoting Aut0(N) = {Ç * AutZ(N) | Ç induces the trivial automorphism of N̄},
we have a short exact sequence

1 ³ Aut0(N) ³ AutZ(N) ³ Aut(N̄) ³ 1.

Moreover, the map that sends Ç * Aut0(N) to ³ : N̄ ³ Z defined by ³(x) =
Ç(x)x21 establishes an isomorphism Aut0(N) c Hom(N̄ , Z). If S is non-Abelian,
Hom(N̄ , Z) is trivial, and if S is Abelian, we have |Hom(N̄ , Z)| f |Z|r. Therefore,
we may use Lemma 17 to obtain the bound

(1) |H/Z| f
{

r!|S|2r if S is non-Abelian

nrpr
2

if S = Z/p

Bounding n from below. Consider the representation ofN on R
n. It is faithful

and irreducible. If it is of complex or quaternionic type (that is, if it commutes
with some complex structure) then U = Rn = Cn/2 is a faithful irreducible complex
representation of N . Otherwise, the representation of N on R

n is of real type, so
that its complexification U = Cn is a faithful irreducible complex N -representation.

The projectivization of U has kernel which must be equal to Z, because Z is the
center of N . Thus we have obtained a projective faithful irreducible representation
of N̄ = Sr of dimension n or n/2, and thus, via Lemma 16, the bound

(2) n g
{

l(Sr) = l(S)r if S is non-Abelian

pr/2 if S = Z/p.

To show that log |H/Z|/n is uniformly bounded and conclude the proof, we divide
into three cases: S Abelian, S non-Abelian and non-alternating, and S alternating
and non-Abelian.

If S is Abelian, isomorphic to Z/p, then from (1) and (2) we obtain

(3)
log |H/Z|

n
f r logn+ r2 log p

n
f r

pr/4
.
log(n):

n
+

r2

pr/4
.
log p

pr/4

which is bounded from above.
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If S is non-Abelian, then (1) and (2) yield

(4)
log |H/Z|

n
f log(r!) + 2r log |S|

n
f log(r!)

l(S)r
+

2r log |S|
l(S)r

Since l(S) g 2, the term log(r!)
l(S)r is bounded. When S is non-alternating, the last

term 2r log |S|
l(S)r is bounded, because, by Lemma 14, the quantity log |S|

l(S) is bounded.

From now on assume S is the alternating group Ad. If r g 2 and d g 12, then
using Lemma 15 we see that the last term in (4) is again bounded:

(5)
2r log |S|
l(S)r

f 2r log(d!/2)

(d2 1)r
f 2r

(d2 1)r23/2
.

d log d

(d2 1)3/2
.

If r g 2 and 5 f d < 12 then

(6)
2r log |S|
l(S)r

f 2r log(12!/2)

2r

which is bounded. Thus we may assume r = 1. If the faithful irreducible projective
representation of S = Ad constructed above is not the standard permutation rep-

resentation, then by Lemma 15 its dimension is at least d(d2 3)/4, so that 2r log |S|
n

is again bounded.
Therefore we have reduced to the case where S = Ad and the projective repre-

sentation U of N̄ = S = Ad constructed above is the standard representation on
Cd21. Since this projective representation Ad = N̄ ³ PGL(U) lifts to the linear
representation Ad ³ GL(U), the short exact sequence 1 ³ Z ³ N ³ N̄ ³ 1
splits, which implies that N c Ad × Z (because Z is the center of N). Thus Ad is
a normal subgroup of G, and it acts in the standard way on U = Cd21. Recall that
U = Cd21 was isomorphic to either Rn, or its complexification. The first case is
precluded by our hypotheses, since then the restriction of the G-representation Rn

to Ad would be neither irreducible nor super-reducible. Therefore the subgroup Ad

acts on Rn = Rd21 in the standard way. Since this representation is of real type,
that is, it does not leave any complex structure invariant, we are in the case where
G = H is finite, so, in particular, Z = ±1. Since the automorphism group of Ad

is isomorphic to Σd (because d g 7, see [Wil09, Theorem 2.3]), the index of Ad in
G is at most four, and the desired diameter bound follows from Theorem 10 and
Lemma 8. �

5. Case where G0 is irreducible

As noted at the end of Section 3, Lemma 13 reduces the proof of the Main
Theorem to two cases, according to whether the identity component G0 acts as
scalar multiplication or irreducibly. We have dealt with the former in Section 4,
and this section is devoted to the latter.

For convenience in this section we will consider almost faithful representations
Ã : G ³ O(V ). We first lift Ã to a representation of a semidirect product. By [Wil99,
Lemma 7.5], there is a finite subgroup Γ meeting all connected components of G.
Since the identity componentG0 is a normal subgroup of G, we can write G = G0 ·Γ.
Now there is a finite coveringG0êΓ ³ G and we can lift Ã to the semidirect product.
Therefore from now on we assume G splits as G0 ê Γ.

Furthermore, by passing to a finite cover we may also assume thatG0 is a product
of simply connected simple Lie groups, and a torus. Altogether, we have reduced
to proving the following:
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Theorem 22. There exists ë > 0 with the following property. Let G0 be a product
of a torus with finitely many simply-connected compact connected simple Lie groups,
let Γ be a finite group acting on G0 by automorphisms, and set G = G0 ê Γ. Let
Ã : G ³ O(V ) be an almost faithful representation whose restriction to G0 is
irreducible but not transitive. Then diam(S(V )/G) > ë.

Our strategy to prove Theorem 22 is the following reduction:

Lemma 23. To prove Theorem 22, it suffices to find a common lower diameter
bound for all non-transitive representations of the following types:

(i) G = G2 is a simply-connected compact connected simple Lie group, V = V 2

is of real type.
(ii) G = U(1)×G2, V = C·C V 2, G2 is a simply-connected compact connected

simple Lie group and V 2 is of complex type.
(iii) G = Sp(1)×G2, V = H·H V 2, G2 is a simply-connected compact connected

simple Lie group and V 2 is of quaternionic type.
(iv) G = Σk ë SO(n)k, V = ·kRn, where n g 3 and k > 2.
(v) G = U(1)× Σk ë SU(n)k, V = C·C ·kCn, where n g 3 and k > 2.
(vi) G = Σk ë Sp(n)k, V = ·kHn, where n g 1 and k g 4 is even.
(vii) G = Sp(1)×Σk ë Sp(n)k, V = H·H ·kHn, where n g 1 and k g 3 is odd.

(in the last four cases, the permutation group Σk acts by permuting the factors of
the tensor product)

Remark 24. Some explanation about quaternionic tensor products is in order for
cases (vi) and (vii) above. The complex representation of Sp(n) on Hn = C2n is of
quaternionic type, and thus W = ·k

C
(Hn) is a complex irreducible representation

of Sp(n)k, which is of real type when k is even, and of quaternionic type when k
is odd. Denoting by ëi : H

n ³ Hn the standard quaternionic structure on the ith
factor of this tensor product, ë = ë1 · · · · · ëk is a real (if k even) or quaternionic
(if k odd) structure on W . In case (vi) we take V to be a real form of W , that
is, the fixed point set of ë : W ³ W . In case (vii) we take V to be the real form
of C2 ·C W relative to ë0 · ë, where ë0 is the standard quaternionic structure on
H = C2. In both cases the permutation group Σk acts on W by permuting the
factors, and this action commutes with ë, so that it induces an action on V .

The proof of Lemma 23 is obtained by analysing the action by G0 using Lemmas
11 and 13, and is relegated to Appendix B (alternatively, one may also note that
every maximal closed non-transitive subgroup of O(n) (up to taking subgroup of
small index) is either a maximal closed subgroup of O(n), or U(1) times a maximal
closed subgroup of SU(n), or Sp(1) times a maximal closed subgroup of Sp(n), and
then use the classification of infinite, non-simple maximal closed subgroups of the
classical groups obtained in [AFG12]). In the remaining of this section, we run
through the cases of Lemma 23.

5.1. The tensor power representations. The goal of this subsection is to show
the existence of a universal lower bound on diamS(V )/G, where (V,G) is one of
the representations listed in cases (iv)-(vii) of Lemma 23.

For an arbitrary metric space X , define the radius at x * X to be rx = inf{r >
0 : X ¢ B(x, r)}. It is immediate from the triangle inequality that it compares to
the diameter of X as follows:

(7) rx f diam X f 2rx.
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Lemma 25. Let G be a locally compact topological group acting continuously, prop-
erly and isometrically on a metric space X. Assume the fixed point set of G on X
is non-empty. Then diam X/G g 1

2 diam X.

Proof. Let x0 * X be a fixed point of G and denote by Ã : X ³ X/G the natural
projection. For every x * X , the distance from x0 to Gx is constant. It follows
that the distances d(x, x0) = d(Ã(x), Ã(x0)) and hence the radii rx0

= rπ(x0). The
desired result now follows from (7). �

Next consider a representation Ã : G ³ O(V ) as in the last four cases of Lemma
23. Then G and G0 share a common orbit in V , namely, that one consisting
of “pure tensors”. Indeed, following the notation in Remark 24, it is the orbit
through p = v1 · · · · · vk * ·kRn in case (iv), p = v1 · · · · · vk * ·kCn in
case (v), p = v1 · · · · · vk + ë1v1 · · · · · ëkvk * ·k

C
2n in case (vi) and p =

v0 · · · · · vk + ë0v0 · · · · · ëkvk * C2 ·C ·kC2n in case (vii).
Denoting X = S(V )/G and X0 = S(V )/G0, we conclude that G/G0 acts on X0

with a fixed point and X = X0/Γ, so we can apply Lemma 25 and Lemma 13 to
deduce that diamX g 1

2 diamX0 g Ã/8.

5.2. Normal injectivity radius and focal radius. This subsection is devoted
to proving a version of the injectivity radius estimate of Klingenberg for quotients
S(V )/G, that is, to give a lower bound for the normal injectivity radius of a G-
orbit in terms of the focal radius. In the next section this will be combined with a
universal lower bound (found in [GS19]) for the focal radius for a special G-orbit
to finish the proof of Theorem 22.

Let N be a properly embedded submanifold of a complete Riemannian manifold
M . Consider the normal bundle ¿N in M and the normal exponential map exp§ :
¿N ³ M . Denote the open ball bundle of radius r in ¿N by ¿rN . The normal
injectivity radius »N of N is the the supremum of the numbers r such that exp§

is an embedding on ¿rN , and the image of ¿ιNN is called the maximal tubular
neighborhood of N . If N is compact, »N > 0. On the other hand, a focal point of
N relative to p * N is a critical value of exp§ : ¿N ³ M such that exp§(v) = q
for some v * ¿pN . In this case, the focal distance associated to q is the length |v|
of the normal geodesic from p to q. The focal radius fN of N is the infimum of all
focal distances to N along normal geodesics. It is clear that »N f fN .

Proposition 26. Let G be a compact Lie group acting isometrically on a compact
Riemannian manifold M . Let p * M and consider the orbit N = Gp. Assume
the fixed point set of the identity component (Gp)

0 of the isotropy group at p in
the closure of the maximal tubular neighborhood of N is contained in N . Then
fN/2 f »N . In particular, the diameter of M/G is bounded below by fN/2.

Proof. If »N < fN , we argue as in Klingenberg’s Lemma [dC92, Chap. 13 Propo-
sition 2.12] (see also [CE08, Lemma 5.6]) to deduce the existence of a horizontal
geodesic segment ³ of length 2»N , entirely contained in the closure of the maxi-
mal tubular neighborhood of N , that starts at p and ends at a point q * N . By
assumption, gp is not contained in gγ(t) for all small t > 0. Therefore there is a
non-trivial variation of ³ through horizontal geodesics fixing p, and ending on N ,
and hence p is a focal point of N . It follows that the length of ³ is at least fN , as
desired. Finally, any point in M outside the maximal tubular neighborhood of N
has distance at least »N to N , which proves the last statement. �
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5.3. The case of simple Lie groups and their extensions by scalars. Having
dealt with cases (iv)–(vii) of Lemma 23 in Subsection 5.1, it remains to treat cases
(i)–(iii) to finish the proof of Theorem 22, and hence of the Main Theorem. The
strategy to prove the existence of a lower diameter bound for S(V )/G for the repre-
sentations listed in cases (i)–(iii) of Lemma 23 is to use the universal lower bound
for the focal radius of a special orbit [GS19] in combination with the Klingenberg-
type Proposition 26. In fact, this subsection is devoted to showing that, in these
cases, the hypothesis in Proposition 26 concerning the fixed point set is satisfied.

Fix a maximal torus of G, consider the corresponding root system and fix an
ordering of the roots. In view of Theorem 10, we may assume that the representation
of G is not polar. Since it is also irreducible and non-transitive on the unit sphere,
we may apply the main result of [GS19] to deduce there exists · > 0 such that
the focal radius fN of the orbit N = Gp is bigger than ·, where p = vλ or p =
1:
2
(vλ+ë(vλ)), and vλ is a unit highest weight vector of V or its complexification V c,

according to whether Ã admits an invariant complex structure or not; in the latter
case it admits a real structure ë. Note that Ã admits an invariant complex structure
in case (ii) and it does not in cases (i) and (iii).

In case (ii), we have vλ = vλ2 is also a unit highest weight vector of V 2. In case
(iii), V 2 admits an invariant complex structure and it is easier to do the computa-
tions in V 2; let vλ2 be a unit highest weight vector. The G2-action on V 2 admits
an extension to a G-action. We have V = H ·H V 2 is a real form of C2 ·C V 2 and
there is a G-equivariant isometry V 2 ³ V mapping vλ2 to 1:

2
(vλ + v2λ), where vλ

is the highest weight vector of V and v2λ = ë(vλ), where ë is the real structure on
C2 ·C V 2.

5.3.1. The complex and quaternionic cases. In this section, we check the hypothesis
of Proposition 26 in cases (ii) and (iii).

Lemma 27. Let p = vλ2 in cases (ii) and (iii). Then the fixed point set of G0
p in

S(V 2) is contained in Gp.

Proof. The proof is the same in both cases. The Lie algebra of the maximal torus
of G has the form t2 · u(1) where t2 is the Lie algebra of the maximal torus of G2.
The isotropy algebra gp contains the kernel of » in t2 and an element of the form
h1 2 h0, where h1 * t2 satisfies »(h1) = i and h0 * u(1) acts as multiplication by
i on V . Write an arbitrary element of S(V 2) as v =

∑

µ cµvµ, where the sum runs

through the different weights of V 2, cµ * C and vµ is a weight vector of weight µ.
Then ker»|t2 ·v = 0 implies cµ = 0 unless µ is a multiple of »2. Moreover, if µ = c»2

then (h1 2 h0) · vµ = (ci 2 i)vµ can be zero only if c = 1. It follows that gp · v = 0
implies v = cλ2vλ2 with |cλ2 | = 1, so v * Gp. �

5.3.2. The real case. It remains to tackle case (i) from Lemma 23. We claim that we
may also assume that gp is a maximal isotropy algebra, up to conjugation. Indeed,
let q * S(V ) \ {2p} be arbitrary, consider the minimal geodesic segment ³ in S(V )
from p to the orbit Gq and let q1 * Gq be its endpoint. Of course, gq1 and gq are
AdG-conjugate. If gq1 is not contained in gp, an element in gq1 \ gp produces a
non-trivial variation of ³ through horizontal geodesics fixing q1, which implies that
q1 is a focal point of Gp. We deduce that diam X g 3 g fN > ·, where 3 is the
length of ³ and N = Gp.
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So in the sequel we may assume gp is a maximal isotropy algebra, up to con-
jugation. We will show that this implies that rk g g 2 and V c is a minuscule
representation, that is, all weights comprise a single Weyl orbit.

Lemma 28. rk gp = rk g2 1.

Proof. Denote the Lie algebra of the maximal torus of G by t, and the corresponding
system of roots by ∆, where we have already chosen an ordering of the roots.
Consider the root space decomposition

g = t+ t§, t§ =
∑

α*∆+

(gCα + gC2α) + g

It is clear that gp = gp + t+ gp + t§, where gp + t = ker». Suppose, to the contrary,
that rk gp = rk g. Then ker» can be enlarged to a Cartan subalgebra of gp by

adding an element u of t§. It follows from [ker», u] = 0 that u = xα + ëxα for
some ³ * ∆+, where xα * gCα, and » is a multiple of ³. Since 0 = u · (vλ + v2λ),
we deduce that 2» + ³ = » 2 ³ and thus » = ³. The only dominant roots are
the highest root or the highest short root. In the first case, our representation
is the adjoint representation and hence polar. The remaining cases that need to
be analyzed occur only for simple groups of type Bn, Cn, F4, G2, in which our
representation is respectively the isotropy representation of the symmetric space
S2n+1, SU(2n)/ Sp(n), E6 /F4 or the 7-dimensional representation of G2, again all
polar. In any case, we reach a contradiction to our previous assumption. �

Lemma 29. rkg g 2 and V c is minuscule.

Proof. It follows from Lemma 28 that zero cannot be a weight, because the isotropy
algebra of a real zero-weight vector would have full rank in g, bigger than rk gp.
This already rules out representations of real type of a rank one group, since the
odd dimensional representations of SO(3) always have zero as a weight.

Take q = 1:
2
(vµ + v2µ) where µ is an arbitrary nonzero weight µ of V c. Then

kerµ ¢ gq and rk gq f rk gp. Again Lemma 28 implies that rk gq = rk gp and
kerµ, ker», viewed as subspaces of t, are Ad-conjugate. Since two maximal tori
of a compact connected Lie group are Ad-conjugate by a transformation that fixes
pointwise their intersection, we deduce that kerµ, ker» are conjugate under the
Weyl group W . Now µ is W -conjugate to a multiple of », say c · » with 0 < c f 1.

Since rk g g 2, we can find a simple root ³ of g which is neither proportional

nor orthogonal to ». Then sα» := » 2 2 〈λ,α〉
||α||2³ is a weight of V c and so are »,

» 2 ³, . . . , » 2 q³ where q = 2 〈λ,α〉
||α||2 is a positive integer. These weights are all

W -conjugate to a multiple of » by what we have seen above, and they all lie in the
union of two closed chambers because ³ is simple. Since W acts transitively on the
set of chambers, we deduce that q = 1. In particular, there can be no weights of
V c of the form c ·», 0 < c < 1. We have proved that all non-zero weights of V c are
W -conjugate. Therefore, V c is minuscule. �

We finally check the hypothesis of Proposition 26.

Lemma 30. Let p = 1:
2
(vλ + v2λ). Then the fixed point set of G0

p in S(V ) is

{±p}.
Proof. Recall zero is not a weight of V c. Write an arbitrary element of S(V ) as
v =

∑

µ cµ(vµ + v2µ), where cµ * R, v±µ are weight vectors and µ runs through
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the “positive” weights of V c. If v is killed by ker», then cµ = 0 unless µ is a
positive multiple of ». Since V c is minuscule, we deduce that gp · v = 0 implies
v = cλ(vλ + v2λ) = ±p. �

6. Non-spherical quotients

We start with the characterization of compact Riemannian manifolds M ad-
mitting a positive lower bound on the diameter of quotients by isometric actions.
The first obvious observation is that if M is non-homogeneous, then such a bound
exists, namely diam(M/ Iso(M)). The homogeneous case is Theorem 1 from the
Introduction. To prove it we need the following lemma:

Lemma 31. Let G be a compact Lie group acting transitively on a compact con-
nected smooth manifold M . Let G2 = [G0, G0] be the semi-simple part of G. Then
Ã1(M) is finite if and only if G2 acts transitively on M .

Proof. If Ã1(M) is finite, then G2 acts transitively by [Oni94, Proposition 4.9, page
94]. Conversely, if G2 acts transitively, we choose any x * M , and the long exact
sequence of homotopy groups associated to G2

x ³ G2 ³ M implies that Ã1(M) is
finite, because Ã1(G

2) is finite and G2
x has finitely many connected components.

�

Proof of Theorem 1. Recall Isom(M) is a compact Lie group and assume first
Ã1(M) is finite. Suppose to the contrary that no such ë exists. Then there ex-
ists a sequence of compact non-transitive subgroups Gi of the isometry group of
M such that lim diam(M/Gi) = 0. By compactness of the Hausdorff metric, we
may assume, after passing to a subsequence, that Gi converges to a compact subset
G> ¢ Isom(M). Then G> is a group, and diam(M/G>) = 0, that is, G> acts
transitively on M . By [MZ42], the groups Gi are eventually conjugate to subgroups
of G>, so we may assume that Gi ¢ G> for all i.

Since M has finite fundamental group, we may apply Lemma 31 to conclude that
the semi-simple part G2

> = [G0
>, G0

>] also acts transitively on M . The semi-simple
parts G2

i, being subgroups of Gi, also act non-transitively, and thus form a sequence
of proper subgroups of G2

> that converges to G2
>. This contradicts [tD87, Chapter

IV, Proposition 3.7], which says that a compact Lie group is a limit of proper
subgroups if and only if it is not semi-simple. Therefore an ë > 0 satisfying the
statement of the theorem must exist.

For the converse, assume that Ã1(M) is infinite. Let G be a finite cover of
Isom(M) of the form G2×T k, where G2 is semi-simple. By Lemma 31, G2 does not
act transitively on M . Therefore neither does any group of the form G2 × Γ, for Γ
a finite subgroup of the torus T k. Taking a sequence of finite subgroups Γi ¢ T k

converging to T k, we obtain a sequence of non-transitive subgroups Gi = G2 × Γi

of G such that limi³> diam(M/Gi) = 0. �

In light of Theorem 1, one might suspect that the Main Theorem also generalizes
to the class of all compact homogeneous spaces with finite fundamental group (nor-
malized to have a fixed diameter). This turns out to be false, as the next example
shows:

Example 32. Endow SO(n) ¢ Rn2

with the Riemannian metric g induced by the

inner product 〈A,B〉 = tr(ABt)/2 on Rn2

. A straight-forward computation shows
that the natural quotient map SO(n) ³ SO(n)/ SO(n2 1) = S

n21 is a Riemannian
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submersion, where Sn21 is endowed with the standard metric. The diameter of
(SO(n), g) goes to infinity as n ³ >, because it is bounded from below by the

extrinsic diameter as a subset of Rn2

. Indeed,

diam(SO(n), g) g dg(I,2I) g d
Rn2 (I,2I) =

:
2n

when n is even, and similarly for n odd.

Appendix A. Proof of Lemma 14

Here we prove Lemma 14, which states: There exists a constant c such that, for
every finite simple group S that is not cyclic or alternating, one has

log |S|
l(S)

f C.

We use the classification of finite simple groups, see e.g. [GLS94, Wil09]. We
may discard the sporadic groups, as there are only finitely many of them. The
remaining groups are the finite simple groups of Lie type, and come in 16 families,
each parametrized by a prime power q, and possibly a natural number n. In [LS74],
one finds lower bounds for l(S, q) for all S of Lie type, where l(S, q) is defined as the
smallest dimension of a projective representation of G over a field of characteristic
not dividing q. In each family there is a finite number of exceptions to this bound
(listed in the third column of the table in [LS74, page 419]), which we may and will
ignore. Since l(S) g l(S, q), it suffices to show that, in each family, the quotient of
log |S| by the bound provided in [LS74] is bounded from above. We proceed case
by case, following Table 1 from [GLS94, page 8], and giving first the name as in
[GLS94], followed by the name used in [LS74] (if different). In each case we find an
upper bound for the order |S| (whose exact value can be found in [GLS94, Table
1, page 8]), and a lower bound for the lower bound for l(S, q) found in the table in
[LS74, page 419].

(1) An(q) = PSL(n + 1, q), n g 1. Then |S| f qn
2+n21 and l(S) g (qn21 2

1)/2 g qn21/4, so that

log |S|
l(S)

f 4(n+ 1)2 log(q)

qn21

goes to zero.

(2) 2An(q) = PSU(n + 1, q), n g 2. Then |S| f 2qn
2+n21 and l(S) g (qn 2

q)/(q + 1) g qn/4, so that

log |S|
l(S)

f 4(n+ 1)2 log(q)

qn

goes to zero.

(3) Bn(q) = PSO(2n + 1, q), n g 3. Then |S| f q2n
2+n and l(S) g q2(n21) 2

q(n21) g q2(n21)/4, so that

log |S|
l(S)

f 4(2n2 + n) log(q)

q2(n21)

goes to zero.
(4) 2B2(q) = Sz(q). Then |S| f q5 and l(S) g

√

q/2(q 2 1) g q/4, so that

log |S|
l(S)

f 20 log(q)

q
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goes to zero.

(5) Cn(q) = PSp(2n, q), n g 2.Then |S| f q2n
2+n and l(S) g min{qn 2

1, qn21(qn21 2 1)(q 2 1)}/2 g qn/4, so that

log |S|
l(S)

f 4(2n2 + n) log(q)

qn

goes to zero.

(6) Dn(q) = PSO+(2n, q), n g 4. Then |S| f q(2n
22n) and l(S) g q2n23/2, so

that
log |S|
l(S)

f 2(2n)2 log(q)

q2n23

goes to zero.

(7) 2Dn(q) = PSO2(2n, q), n g 4. Then |S| f 2q2n
22n and l(S) g q2n23/2, so

that
log |S|
l(S)

f 2((2n2 2 n) log(q) + log(2))

q2n23

goes to zero.
(8) 3D4(q). Then |S| f 2q28 and l(S) g q3(q2 2 1) g q5/2, so that

log |S|
l(S)

f 2(28 log(q) + log(2))

q5

goes to zero.
(9) G2(q). Then |S| f q14 and l(S) g q(q2 2 1) g q3/2, so that

log |S|
l(S)

f 28 log(q)

q3

goes to zero.
(10) 2G2(q). Then |S| f q7 and l(S) g q(q 2 1) g q2/2, so that

log |S|
l(S)

f 14 log(q)

q2

goes to zero.
(11) F4(q). Then |S| f q52 and l(S) g q10/4, so that

log |S|
l(S)

f 208 log(q)

q10

goes to zero.
(12) 2F4(q). Then |S| f q26 and l(S) g q5/2, so that

log |S|
l(S)

f 52 log(q)

q10

goes to zero.
(13) E6(q). Then |S| f q78 and l(S) g q11/2, so that

log |S|
l(S)

f 156 log(q)

q11

goes to zero.
(14) 2E6(q). Then |S| f q78 and l(S) g q15, so that

log |S|
l(S)

f 78 log(q)

q15

goes to zero.
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(15) E7(q). Then |S| f q133 and l(S) g q17/2, so that

log |S|
l(S)

f 266 log(q)

q17

goes to zero.
(16) E8(q). Then |S| f q248 and l(S) g q29/2, so that

log |S|
l(S)

f 496 log(q)

q29

goes to zero.

Appendix B. Proof of Lemma 23 – Analysing the representation of G0

As in the statement of Theorem 22, let G0 be a product of a torus with finitely
many simply-connected compact connected simple Lie groups, Γ a finite group
acting on G0 by automorphisms, and G = G0 êΓ. Let Ã : G ³ O(V ) be an almost
faithful representation whose restriction Ã0 := Ã|G0 to G0 is irreducible, and such
that diam S(V )/G is small (but positive). The strategy to prove Lemma 23 is to
show that, up to taking a subgroup of index at most 12, G is contained in one of
the groups listed in Lemma 23, so that the statement will follow from Lemma 8.
To achieve this, we will use Lemmas 11 and 13 to show that the normalizer of G0

in O(V ) is, up to small index, one of the groups listed in Lemma 23.
The proof will consist of a case-by-case analysis, with the division into cases as

follows. First, G0 is either semisimple, of the form G0 = G1 × · · · ×Gk where the
Gi are simply-connected compact connected simple Lie groups and k g 1; or G0

not semisimple, of the form G0 = U(1) ×G1 × · · · ×Gk where the Gi are simply-
connected compact connected simple Lie groups and k g 1. In the latter case, the
torus is one-dimensional because the irreducibility of Ã0 implies that the center of
G is one-dimensional. As we will see below, k = 1 will lead to cases (i)–(iii) in the
statement of Lemma 23, while k g 2 will lead to cases (iv)–(vii).

Second, the action of Γ on the simple factors may be transitive or not. And third,
there is a complex irreducible representation Ã : G0 ³ U(W ) such that either one
of two cases happen: (i) Ã0 is the real form of Ã; or (ii) Ã0 is the realification of Ã.
Thus there are in principle 8 cases, but as we will see below, only 4 may actually
occur.

B.1. G0 semisimple, Γ-action transitive. We can write W = W1 ·C · · · ·C

Wk. where Ãi : Gi ³ U(Wi) is a complex irreducible representation. Since the
action of Γ on the set of factors of G0 is transitive, all factors are isomorphic. Fix
isomorphisms once and for all. Now any two Ãi, Ãj differ by an automorphism
of Gi = Gj . By composing Ãi with an automorphism of Gi, we change Ã0 to an
orbit-equivalent representation and may assume all Ãi equivalent representations.

Type (i): Ã0 is a real form of Ã. If k = 1, then G0 is simple, and hence
its outer automorphism group has order at most 6. Since Ã0 is of real type, its
centralizer in O(V ) is {±1}. Together these imply that the index of G0 in its
normalizer in O(V ) is at most 12. Now G0 is as in case (i) of Lemma 23, and the
desired lower bound on diam S(V )/G is obtained from Lemma 8.

Assume k g 2. Let ³ * NO(V )(G
0). Then ³(Gi) = Gσ(i) for all i and a

permutation Ã * Σk. View ³ * NU(W )(G
0) such that ³ centralizes the real structure
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ë, which we take ë = ë1 · · · · · ëk, where ëi are “the same”. Define the complex
endomorphism ³0 of W by

³0(w1 · · · · · wk) = wσ(1) · · · · · wσ(k).

Then ³0 centralizes ë and normalizes G0 by a simple calculation. It follows that
³̃ := ³³21

0 defines a real endomorphism of V that normalizes Gi for all i.
Next we distinguish two cases:

(a) The Ãi are of real type. Here V = V1 ·R · · · ·R Vk where Ãi : Gi ³ O(Vi) is a
real form of Ãi.

We have Ã|G1
= (dimR V1)

k21Ã1. Lemma 11 (real case) now implies that
³̃ * O(V1)×O(V 2), where V 2 = V2 ·R · · · ·R Vk. Proceeding by induction, we
see that ³̃ * O(V1)×O(V2)×· · ·×O(Vk). Therefore, up to an index 2 subgroup,
we have NO(V )(G

0) ¢ Σk ë SO(n)k, which appears as case (iv) in Lemma 23.
Here we may assume k > 2, because in case k = 2 the representation is polar
and a lower bound on the diameter of the quotient follows from Theorem 10.

(b) The Ãi are of quaternionic type and k is even. Here Ã1 · Ã2 and Ã3 · · · · · Ãk

are of real type.

We have Ã|G1×G2
= (dimH W1 ·H W2)

k

2
21[Ã1 · Ã2]R where [ ]R denotes a

real form. Lemma 11 (real case) now implies that ³̃ * O(W1 ·H W2)×O(V 2),
where V 2 is a real form of W3 ·C · · · ·C Wk, with components ³̃12 and ³̃3···k.
Applying Lemma 11 (quaternionic case) to ³̃12 and proceeding by induction
with ³̃3···k, we see that ³̃ * Sp(W1) × · · · × Sp(Wk). Therefore, NO(V )(G

0) is
contained in the group listed in part (vi) of Lemma 23. We may assume k g 4
because in case k = 2 the representation is polar.

Type (ii): Ã0 is the realification of Ã.
If k = 1, then the identity component of the normalizer of G0 falls into case (ii)

or (iii) of Lemma 23, according to whether Ã0 is of complex or quaternionic type.
Moreover, the outer automorphism group of the simple group G0 has order at most
6. Therefore the index of G0 in G is bounded by 6 and the desired lower bound on
diamS(V )/G is obtained from Lemma 8.

Assume k g 2. Let ³ * NO(V )(G
0). We have ³(Gi) = Gσ(i) for all i and a

permutation Ã * Σk. Define the complex endomorphism ³0 of W by

³0(w1 · · · · · wk) = wσ(1) · · · · · wσ(k).

Then ³0 normalizes G0. Next we distinguish two cases:

(a) The Ãi are of complex type. Here Ã is of complex type. The element ³ nor-
malizes the centralizer of G0, which is to say that ³ is a complex linear or
conjugate linear endomophism of W . By composing with complex conjugation,
we may assume ³ is complex linear. It follows that ³̃ := ³³21

0 is a complex
endomorphism of W that normalizes Gi for all i.

We have Ã|G1
= (dimC W1)

k21Ã1. Lemma 11 (complex case) says ³̃ *
U(W1) ×U(W 2), where W 2 = W2 ·C · · · · ·C Wk (recall ³̃ is complex linear).
Proceeding by induction, we see that ³̃ * U(W1)× · · · ×U(Wk). Therefore, up
to a subgroup of index 2, NO(V )(G

0) is contained in the group listed in part (v)
of Lemma 23. We may assume k > 2, since in case k = 2 the representation is
polar.

(b) The Ãi are of quaternionic type and k is odd.
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Here Ã is of quaternionic type and Sp(1) = ZO(V )(G
0). The element ³

normalizes Sp(1), and since this group has no outer automorphisms, we may
assume ³ centralizes it, which is to say that ³ is quaternionic linear. Also ³0
is quaternionic linear, so ³̃ := ³³21

0 defines a quaternionic endomorphism of V
that normalizes Gi for all i.

Write V = W r
1 ·R V 2, where W r

1 denotes the realification of W1, and V 2 is a
real form of W2·C· · · ··CWk. Then Ã|G1

= (dimR V 2)Ãr
1 and Lemma 11 (real

case) says that ³̃ * O(W r
1 )×O(V 2), with components ³̃1 and ³̃2. Now we recall

that ³̃ is quaternionic and ³̃2 is real to note that indeed ³̃1 = ³̃³̃221 * Sp(W1),
and we apply case (i)(b) to ³̃2 to deduce that ³̃ * Sp(W1) × · · · × Sp(Wk).
Therefore we are in case (vii) of Lemma 23, and we note that in case k = 1 the
representation is polar.

B.2. G0 semi-simple, Γ-action non-transitive. As above, we can write W =
W1 ·C · · · ·C Wk, where Ãi : Gi ³ U(Wi) is a complex irreducible representation.
If the action of Γ on the set of factors of G0 is non-transitive, then k g 2 and each
orbit produces a connected normal subgroup of G. We shall shortly see that here
we are dealing with Type (i), that is, V is a real form of W .

Write G0 = Ga × Gb, where Ga and Gb are non-trivial Γ-invariant subgroups,
and write V = Va ·F Vb accordingly. Since we are assuming diam S(V )/G small,
Lemma 13 says that the action of any normal subgroup of G is either irreducible
or super-reducible. It follows that Ga acts by scalars and V |Gb

is irreducible, up
to interchanging a and b. Since G0 is connected and semisimple, this says that
Ga = Sp(1), Va = H, F = H and Vb is of quaternionic type. Note that Γ must
act transitively on the factors of Gb, for otherwise Gb = Sp(1)×Gc is a non-trivial
Γ-invariant decomposition and Sp(1) Sp(1) = SO(4) neither acts by quaternionic
scalars nor is irreducible on V .

Now we can write G1 = Sp(1) and W1 = C2, G2 = · · · = Gk, Ã2 = · · · = Ãk are
of quaternionic type with respective quaternionic structures ë1 = · · · = ëk and k is
even.

Let ³ * NO(V )(G
0). Then ³ * NO(V 2)(G

2) where G2 = G2 × · · · × Gk and V 2

is the realification of W2 ·C · · · ·C Wk. By multiplying by an element of Sp(1),
we may assume ³ centralizes Sp(1). Now we apply case (ii)(b) to deduce that
³ * Σk21ëSp(W2)×· · ·×Sp(Wk). Thus G is a subgroup of the group in case (vii)
of Lemma 23 (note the different meanings of k here and there). Note also that the
case G0 = Sp(1)× Sp(n) is transitive on the unit sphere.

B.3. G0 non-semisimple. As discussed above, G0 = U(1) ×G1 × · · · ×Gk. The
representation Ã0 is necessarily of complex type, so it is the realification of Ã : G0 ³
U(W ). Write W = C ·C ·W1 ·C · · · ·C Wk. where U(1) acts on C by complex
scalar multiplication and Ãi : Gi ³ U(Wi) is a complex irreducible representation.

An argument using Lemma 13 similar to that in subsection B.2 shows that the
action of Γ on set of the factors of G0/U(1) is transitive. Let ³ * NO(V )(G

0). Then
³ * NO(V 2)(G/U(1)) and we apply case (ii)(a) to see that

³ * Z2 · Σk ëU(W1)× · · · ×U(Wk)

where Z2 acts on V as complex conjugation. Therefore up to taking a subgroup
of index 2, G is a subgroup of the group in case (v) of Lemma 23. Note that case
k = 1 is transitive on the unit sphere and case k = 2 is polar.
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