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Abstract. Several results concerning pairs of polynomially con-
vex sets whose union is not even rationally convex are given. It
is shown that there is no restriction on how two spaces can be
embedded in some CN so as to be polynomially convex but have
nonrationally convex union. It is shown that there exist two dis-
joint polynomially convex Cantor sets in C3 whose union is not
rationally convex. The analogous assertion for arcs is also estab-
lished. As an application, it is shown that every simple closed
curve in CN , N ≥ 3, can be approximated uniformly by locally
polynomially convex simple closed curves that are not rationally
convex.

Dedicated to the memory of Peter Duren

1. Introduction

The motivation for the work presented here is a recent result of the
author and Lee Stout [10, Theorem 3.1]: Given an arbitrary polynomi-
ally convex simple closed curve γ, every rectifiable simple closed curve
σ sufficiently close to γ in the uniform metric is also polynomially con-
vex. Note that although there is no regularity hypothesis on the curve
γ, the curve σ is required to be rectifiable. In fact, it follows from the
existence of nonpolynomially convex arcs that the statement becomes
false without the rectifiability hypothesis; one can obtain a nonpoly-
nomially convex simple closed curve arbitrarily close to γ by choosing
a nonpolynomially convex arc contained in a small neighborhood of
some point of γ and modifying γ so as to contain that nonpolynomi-
ally convex arc. (The existence of a nonpolynomially convex arc was
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first proved by John Wermer [18] and can be found in standard texts,
e.g., [1, pp. 222-223], [3, pp. 29 and 70], and [17, pp. 53–54].) However,
every rectifiable arc is polynomially convex, and hence every rectifiable

simple closed curve is locally polynomially convex. One might, there-
fore, conjecture that the above result of the author and Stout could
be generalized to assert that every locally polynomially convex simple
closed curve sufficiently near a polynomially convex simple closed curve
is itself polynomially convex. One of the main goals of the present pa-
per is to show that, on the contrary, every simple closed curve γ in
CN , N ≥ 3, can be approximated uniformly by a locally polynomi-
ally convex, nonpolynomially convex simple closed curve. In fact, the
approximating simple closed curve σ can be taken to be the union of
two polynomially convex arcs whose interiors cover σ (and such that,
in fact, σ is not even rationally convex) (Theorem 4.1). Whether the
same holds in C2 remains open.

One possible approach to trying to prove the assertion just made
regarding curves in CN , N ≥ 3, is to attempt to construct two disjoint
arcs near γ each of which is polynomially convex but whose union is not
polynomially (or rationally) convex, and then to attach to these two
disjoint arcs additional arcs to form a simple closed curve. We are thus
led to the question of whether there exist two disjoint polynomially
convex arcs whose union is not polynomially convex. More generally,
the question arises as to what disjoint polynomially convex sets can
have nonpolynomially convex union. A fundamental question here is
whether there exist two disjoint polynomially convex Cantor sets whose
union is not polynomially convex.

We will establish quite general results regarding the issue of pairs
of polynomially convex sets whose union is not polynomially convex.
Roughly, we will show that there is no restriction on how two spaces
can be embedded in some CN so as to be polynomially convex but
have nonpolynomially convex union, and even nonrationally convex
union (Theorem 3.13 and Corollary 3.14) . We will also obtain several
results about embedding particular spaces in CN for particular values
of N . In particular, we will show that there exist two disjoint polyno-
mially convex Cantor sets in C3 whose union is not rationally convex
(Corollary 3.5). The same holds for arcs in place of Cantor sets (Corol-
lary 3.6). We will also obtain two polynomially convex Cantor sets in
C2 whose union is not rationally convex (Theorem 3.11); however, in
that setting we do not know whether the polynomially convex Cantor
sets can be taken to be disjoint.

An interesting related question is whether there exists a minimal
nonpolynomially convex Cantor set in some CN , that is, whether there
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is a nonpolynomially convex (or nonrationally convex) Cantor set every
closed subset of which is polynomially convex. This question remains
open for sets in a finite-dimensional CN . However, a theorem of Ken-
neth Hoffman and Isadore Singer [4, pp. 222–223], later generalized
by I. Netuka, A. G. O’Farrell, and M. A. Sanabria-Garćıa [13, Theo-
rem 4.1], shows that the question has an affirmative answer in a more
general abstract uniform algebra setting. We will give a proof, differ-
ent from those of Hoffman and Singer and of Netuka, O’Farrell, and
Sanabria-Garćıa, of a special case of the result of Netuka, O’Farrell,
and Sanabria-Garćıa that contains the result of Hoffman and Singer.
This proof motivates the proof of Theorem 3.3.

Stout raised the question of whether the union of the closed unit
ball in CN and a polynomially convex arc that meets the ball precisely
in a single end point must be polynomially convex. When the arc is
rectifiable, polynomial convexity of the union is a consequence of a
standard result [17, Theorem 3.1.1]. As noted by Stout, applying [11,
Theorem 1.6] shows that polynomial convexity of the union holds more
generally whenever the interior of the arc is locally rectifiable (Theo-
rem 5.1). We will show that nevertheless, in general, the union of the
closed unit ball and a polynomially convex arc that meets the ball in
precisely a single end point need not be even rationally convex (Corol-
lary 5.4). We will also give an example of a polynomially convex arc
disjoint from the closed unit ball such that the union is not rationally
convex.

It was once conjectured that whenever the polynomial hull X̂ of a
compact set X in CN is strictly larger than X, the complementary set

X̂ \X must contain an analytic disc. This conjecture was disproved by
Gabriel Stolzenberg [16]. There are now many known counterexamples
due to several mathematicians. By combining our results on pairs
of polynomially convex sets whose union has nontrivial hull with a
construction of nontrivial hulls without analytic discs in the paper of
the author and Norman Levenberg [9], we will establish results on pairs
of polynomially convex sets whose union has nontrivial hull without
analytic discs (Theorems 6.1 and 6.2 and Corollary 6.3).

All of the examples we will produce rely on the same fundamen-
tal idea originally introduced by Wermer [18] to construct an arc with
nontrivial hull in C3 and developed further by Walter Rudin [15] to
construct in C2 both a Cantor set with nontrivial hull and an arc with
nontrivial hull. In the next section, in addition to defining terminology
and notation (some of which has already been used above) and pre-
senting some preliminary results, we will introduce a certain algebra
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AJ on which these constructions depend and summarize the facts we
will need about AJ .

Our main results concerning pairs of polynomially convex sets whose
union is not rationally convex are treated in Section 3. The approxi-
mation of simple closed curves by locally polynomially convex, nonra-
tionally convex simple closed curves is treated in Section 4. The results
concerning the union of the closed unit ball and a polynomially convex
arc are in Section 5. The results on hulls without analytic discs are in
the concluding Section 6.

It is with a mixture of joy and sorrow that I dedicate this paper to
the memory of Peter Duren. Sorrow, of course, that he is no longer
with us; joy that I had the privilege of knowing him.

2. Preliminaries

By definition an arc is a space homeomorphic to the closed unit in-
terval, and a simple closed curve is a space homeomorphic to the unit
circle. An open arc is a space homeomorphic to the open unit interval,
and a half-open arc is a space homeomorphic to a half-open unit in-
terval. For convenience we will also use the term arc (or simple closed

curve) to refer to a topological embedding whose domain is an interval
(or a circle). Frequently we will use the common abuse of notation
and conflate such an embedding with its image. By a Cantor set we
mean any space that is homeomorphic to the usual middle-thirds Can-
tor set. We will make repeated use of the well-known characterization
of Cantor sets as the compact, totally disconnected, metrizable spaces
without isolated points.

We call a space simply coconnected if its first Čech cohomology group
with integer coefficients is zero. It is well known that a compact set
in the plane is simply coconnected if and only if its complement is
connected.

By the topological dimension of a space we mean the usual Lebesgue
covering dimension.

For X a compact Hausdorff space, we denote by C(X) the algebra
of all continuous complex-valued functions on X with the supremum
norm ∥f∥X = sup{|f(x)| : x ∈ X}. A uniform algebra on X is a closed
subalgebra of C(X) that contains the constant functions and separates
the points of X. The maximal ideal space of a uniform algebra A will
be denoted by MA.



POLYNOMIALLY CONVEX SETS WHOSE UNION HAS HULL 5

For a compact set X in CN , the polynomial hull X̂ of X is defined
by

X̂ = {z ∈ CN : |p(z)| ≤ max
x∈X

|p(x)| for all polynomials p},

and the rational hull hr(X) of X is defined by

hr(X) = {z ∈ CN : p(z) ∈ p(X) for all polynomials p}.

An equivalent formulation of the definition of hr(X) is that hr(X)
consists precisely of those points z ∈ CN such that every polynomial
that vanishes at z also has a zero on X. The set X is said to be
polynomially convex if X̂ = X and rationally convex if hr(X) = X.

We say that a polynomial hull X̂ (or rational hull hr(X)) is nontrivial

if X̂ \X (or hr(X) \X) is nonempty.
We denote by P (X) the uniform closure on X ⊂ CN of the poly-

nomials in the complex coordinate functions z1, . . . , zN , and we denote
by R(X) the uniform closure of the rational functions holomorphic on
(a neighborhood of) X. Both P (X) and R(X) are uniform algebras,
and it is well known that the maximal ideal space of P (X) can be nat-

urally identified with X̂, and the maximal ideal space of R(X) can be
naturally identified with hr(X).

As usual, we denote the Gelfand transform of a uniform algebra
element f by f̂ . Given a uniform algebra A and a compact subset E
of the maximal ideal space MA of A, the A-convex hull of E is the set

Ê = {ϕ ∈ MA : |f̂(ϕ)| ≤ ∥f̂∥E for all f ∈ A}.

The set E is said to be A-convex if Ê = E. The A-convex hull Ê
of E can be naturally identified with the maximal ideal space of the
uniform algebra A|E obtained by restricting the functions in A to the
set E and taking uniform closure. The A-convex hull of a compact set
can be thought of as an abstract polynomial hull. Indeed, when E ⊂ X
are compact sets in CN and A is taken to be P (X), the A-convex hull
of E coincides with the polynomial hull of E.

There is also an analogous abstract rational hull defined as follows.

Definition 2.1. Given a uniform algebra A and a compact subset E of
the maximal ideal space MA of A, we define the A-rational hull hr(E)
of E to be the set

hr(E) = {ϕ ∈ MA : f̂(ϕ) ∈ f̂(E) for all f ∈ A}.

We say that E is A-rationally convex if hr(E) = E.
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An equivalent formulation of the definition of the A-rational hull
hr(E) is that hr(E) consists precisely of those points ϕ ∈ MA such

that if f ∈ A satisfies f̂(ϕ) = 0, then f̂ has a zero on E. When E ⊂ X
are compact sets in CN , and A is taken to be P (X), the A-rational hull
of E coincides with the usual rational hull of E.

For A a uniform algebra on a compact space X, the Shilov boundary

for A is the smallest closed subset Γ of X such that ∥f∥Γ = ∥f∥X for
every function f in A. Thus, the Shilov boundary for A is the smallest
closed subset whose A-convex hull is MA. (For the existence of the
Shilov boundary see [2, pp. 94–95], [3, pp. 9–10], or [17, pp. 15–16].)
By an analytic disc in CN , we mean an injective holomorphic map

from an open disc in the complex plane into CN . By the statement
that a subset S of CN contains no analytic discs, we mean that there
is no analytic disc in CN whose image is contained in S.
The following theorem and its corollaries are useful for proving the

polynomial or rational convexity of certain sets.

Theorem 2.2. Let A be a uniform algebra on a compact space X
with maximal ideal space MA. Suppose MA \ X is homeomorphic to

a subspace of a space that is a finite union of closed subspaces each of

which is a one-dimensional manifold. Then MA = X.

Proof. Assume to get a contradiction that MA \ X is nonempty. By
hypothesis, there exists a space L that contains MA \X and is of the
form L = L1 ∪ · · · ∪ Lk where each Lj is closed in L and is a one
dimensional manifold. We may assume that MA \ X is contained in
the union of no proper subcollection of {L1, . . . , Lk}. Fix a point x of
MA\X that is in L1 but is not in L2∪· · ·∪Lk. Let U be a neighborhood
of x in MA whose closure is contained in MA \ X. By Rossi’s local
maximum modulus principle [3, Theorem III.8.2], if f is a function in

A whose Gelfand transform f̂ vanishes identically on ∂U , then f̂ must
vanish also at x. Since U can be chosen so that its boundary consists
of at most two points, this is a contradiction. □

Corollary 2.3. If the polynomial hull of a compact set E ⊂ CN is

contained in an arc or a simple closed curve or a finite union of such

sets, then E is polynomially convex. The same statement holds with

polynomial convexity replaced by rational convexity.

Proof. Apply the theorem to the uniform algebra P (E) or R(E). □

As an immediate consequence we obtain the following.

Corollary 2.4. Suppose Σ ⊂ CN is an arc or a simple closed curve

or a finite union of such sets. If Σ is polynomially convex, then so is
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every closed subset of Σ. The same statement holds with polynomial

convexity replaced by rational convexity.

When Σ is an arc or a simple closed curve, this corollary is the finitely
generated case of a result of Wilken [20, Lemma 3.1].

Given a compact planar set J , we denote by AJ the algebra of con-
tinuous complex-valued functions on the Riemann sphere S2 that are
holomorphic on S2\J . We summarize here the facts we need about AJ .
More detail can be found in many texts, for instance [3, pp. 28–31] and
[17, pp. 53–54]. In general, AJ need not contain nonconstant functions.
However, whenever AJ does contain a nonconstant function, then there
are three functions in AJ that separate points on S2, and consequently,
AJ is a uniform algebra. Indeed, if g is a nonconstant function in AJ

and a1 and a2 are points in C\J such that g(a1) ̸= g(a2), then, regard-
ing

(
(g − g(aj)

)
/(z − aj), j = 1, 2, as functions in AJ , it is well known

(and easily verified) that the three functions g,
(
(g − g(a1)

)
/(z − a1),

and
(
(g − g(a2)

)
/(z − a2) separate points on S2. The algebra AJ con-

tains a nonconstant function whenever J has positive planar measure,
for then the function g defined by

g(ζ) =

∫∫

J

dx dy

z − ζ

is such a function. By a theorem of Richard Arens, whenever AJ con-
tains a nonconstant function, the maximal ideal space of AJ is S2. See
[3, Theorem II.1.9] for a proof. It is immediate from the maximum
principle that every function in AJ takes its maximum modulus on J ,
so the AJ -convex hull of J is S2. In fact, for every function f ∈ AJ , the
inclusion f(S2) ⊂ f(J) holds, so the AJ -rational hull of J is S2. For a
proof, see [17, p. 54]. It follows immediately that given f1, . . . , fN ∈ AJ

and letting π : S2 → CN be defined by π(z) =
(
f1(z), . . . , fN(z)

)
, the

inclusion π(S2) ⊂ hr(π(J)) holds, and hence π(J) fails to be rationally
convex whenever π(S2) ̸⊂ π(J).

Proposition 2.5. Let J ⊂ C be a compact set such that AJ contains

a nonconstant function, and let Γ denote the Shilov boundary for AJ .

Then AΓ = AJ .

Proof. This is [3, exercise II.1(a)]. □

Proposition 2.6. Let J ⊂ C be a compact set such that AJ contains

a nonconstant function, and let Γ denote the Shilov boundary for AJ .

Then J \ Γ has planar measure zero.
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Proof. Let x0 ∈ J be arbitrary, and suppose that the intersection of
each disc centered at x0 with J has positive measure. We will show
that then x0 is in the Shilov boundary for AJ . The lemma follows.

Let r > 0 be arbitrary, and denote the disc of radius r centered at
x0 by D(x0, r). Choose a compact subset E of J ∩D(x0, r) of positive
measure. Define a function f on S2 by

f(ζ) =

∫∫

E

dx dy

z − ζ
.

It is well known that f is in AE ⊂ AJ and f is nonconstant in the
unbounded component of the complement of E. Thus |f(ζ)| < ∥f∥S2

for every point ζ ∈ S2 \ D(x0, r). Consequently, the Shilov boundary
for AJ must intersect D(x0, r). Since r > 0 was arbitrary, this shows
that x0 is in the Shilov boundary for AJ . □

Corollary 2.7. Let J ⊂ C be a compact set that is locally of positive

planar measure. Then J is the Shilov boundary for AJ .

3. Nonrationally convex unions

In this section we establish several results regarding pairs of poly-
nomially convex sets whose union is not even rationally convex. We
will begin with a previously known result giving, in the abstract uni-
form algebra setting, minimal sets with nontrivial hull. Note that the
condition that a nonrationally convex set Γ is a minimal nonpolyno-
mially convex set is stronger than the condition that Γ is the union
of two polynomially convex sets. We will then give a general result
about pairs of polynomially convex sets in C3 whose union is not ra-
tionally convex from which we will obtain several concrete examples.
After that we will give some examples in C2. We will conclude with a
general result about embedding a pair of spaces in some CN so as to
be polynomially convex but have nonrationally convex union.

The main content of the following result is contained in [13, Theo-
rem 4.1]. We will give a new proof of the result as this proof motivates
the proof of Theorem 3.3. By the complement and interior of a pla-
nar set, we mean its complement and interior relative to the Riemann
sphere.

Theorem 3.1. Let J be a compact planar set such that AJ contains a

nonconstant function and such that J is the boundary of each compo-

nent of the complement of J . Let Γ denote the Shilov boundary for AJ .

Then the AΓ-rational hull of Γ is S2, but every proper closed subset K
of Γ is AΓ-convex and satisfies AΓ|K = C(K).
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Note the analogy with the disc algebra: the polynomial hull of the
unit circle in the plane is the closed unit disc while every proper closed
subset of the circle is polynomially convex and the polynomials are
dense in the continuous functions there. A similar analogy holds with
the big disc algebra. However, in contrast to the situation with the disc
algebra and big disc algebra, Γ has AΓ-rational hull, not just AΓ-convex
hull.

There are examples of the situation in Theorem 3.1 with Γ a Cantor
set or an arc. To see this, simply take J to be a Cantor set or arc that
is locally of positive planar measure. Then Γ = J by Corollary 2.7.
Our proof of Theorem 3.1 will make use of the the following topo-

logical lemma.

Lemma 3.2. Let J be a compact planar set such that J is the boundary

of each component of the complement of J . Let K be a proper closed

subset of J . Then K has empty interior and connected complement.

Proof. Obviously J has empty interior, and hence the same is true of
K. Since J has empty interior, each component of the complement of
K intersects the complement of J and hence contains a component of
the complement of J . Let x be a point of J \ K. Then some disc ∆
centered at x is contained in C \ K. This disc intersects every com-
ponent of the complement of J and hence intersects every component
of the complement of K. Consequently, the disc ∆ is contained in ev-
ery component of the complement of K. Thus the complement of K
consists of a single component. □

Proof of Theorem 3.1. By Proposition 2.5, AΓ = AJ , and as mentioned
just before the proposition, for any compact planar set E for which AE

contains a nonconstant function, the AE-rational hull of E is S2.
Now let K be a proper closed subset of Γ. Since Γ is the Shilov

boundary for AΓ, there is a function f ∈ AΓ such that ∥f∥K < ∥f∥S2 =
∥f∥Γ. Choose a point z0 ∈ Γ \K such that |f(z0)| = ∥f∥S2 . Set ε =
|f(z0)| − ∥f∥K > 0. By [3, Theorem II.1.8], there is a function g ∈ AΓ

such that g is holomorphic in a neighborhood of z0 and ∥f−g∥S2 < ε/2.
Then |g(z0)| > ∥g∥K . In particular, g never takes the value g(z0) on

the AΓ-convex hull K̂ of K. Therefore, the function
(
g − g(z0)

)
|K is

invertible as an element of the uniform algebra AΓ|K.
Since g is holomorphic in a neighborhood of z0, we can regard

(
g −

g(z0)
)
/(z − z0) as a continuous function on S2 that is holomorphic on

S2 \ Γ and thus belongs to AΓ. On K we have
(
g − g(z0)

z − z0

)(
g − g(z0)

)
−1

=
1

z − z0
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so (z − z0)
−1 is in AΓ|K. Since by Lemma 3.2, K has empty interior

and connected complement, Lavrentiev’s theorem [3, Theorem II.8.7]
gives that every continuous function on K can be approximated uni-
formly by polynomials. By Runge’s theorem, every polynomial can be
approximated uniformly on K by rational functions whose only pole is
at z0. Thus AΓ|K = C(K) and, in particular, K is AΓ-convex. □

We turn now to hulls in C3.

Theorem 3.3. Let J be a compact planar set with empty interior such

that AJ contains a nonconstant function. Let K1 and K2 be compact

sets whose union is J neither of which contains the Shilov boundary

for AJ and each of which has connected complement. Then there is

an embedding π of J into C3 such that π(J) has nontrivial rational

hull, but π(K1) and π(K2) are each polynomially convex and satisfy

P (π(Kj)) = C(π(Kj)), j = 1, 2.

This theorem can be reformulated in the following more intrinsic
manner.

Corollary 3.4. Let (J,K1, K2) be a triple with J an uncountable, com-

pact space of topological dimension at most 1 that embeds in the plane

and K1 and K2 closed subspaces of J whose union is J and such that

each of K1 and K2 is simply coconnected and each of J \K1 and J \K2

is uncountable. Then there is an embedding π of J into C3 such that

π(J) has nontrivial rational hull, but π(K1) and π(K2) are each poly-

nomially convex and satisfy P (π(Kj)) = C(π(Kj)), j = 1, 2.

Before proving Theorem 3.3 and Corollary 3.4, we present several
other corollaries. In all these corollaries the polynomially convex sets
can be chosen to be sets on which the polynomials are dense in the
continuous functions. This has been omitted from the statements to
avoid excessive repetitiveness.

Corollary 3.5. There exists a Cantor set in C3 that has nontrivial ra-

tional hull and is the union of two disjoint polynomially convex Cantor

sets.

Proof. Take J to be a Cantor set in the plane that is locally of positive
planar measure, take K1 and K2 to be a separation of J , and apply
Theorem 3.3. □

Taking J in Theorem 3.3 to be an arc that is locally of positive planar
measure we obtain:

Corollary 3.6. There exists an arc in C3 that has nontrivial rational

hull and is the union of two polynomially convex arcs.
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Note that the subarcs can be chosen to have only a point in com-
mon, or alternatively, they can be chosen so as to overlap so that the
nonrationally convex arc is locally polynomially convex.

Corollary 3.7. There exist two disjoint polynomially convex arcs in

C3 whose union is not rationally convex.

Corollary 3.8. There exists a simple closed curve in C3 that has non-

trivial rational hull and is the union of two polynomially convex arcs.

Of course the existence of two polynomially convex arcs whose union
is a nonpolynomially convex simple closed curve is trivial; just take
two arcs in the plane whose union is the unit circle. However, that
the union can fail to be rationally convex as in the above corollary
does not seem to be obvious. Note that the arcs in the corollary can
be chosen so that their interiors cover the nonrationally convex simple
closed curve and hence the nonrationally convex simple closed curve is
locally polynomially convex.

In preparation for the proof of Theorem 3.3 we establish a lemma.
For A a uniform algebra on a compact space X, a point x0 of X is
said to be a peak point for A if there is a function f in A such that
f(x0) = 1 and |f(x)| < 1 for every x ∈ X \ {x0}. Such a function is
said to peak at x0. We denote the real part of a complex number or
function z by ℜz.

Lemma 3.9. Let A be a uniform algebra on a compact space X. Let

x0 ∈ X be a peak point for A, and let K be a compact subset of X that

does not contain x0. Then there is a function f in A such that

(i) f(x0) = 1
(ii) ℜf ≥ 0 everywhere on X
(iii) ℜf ≤ 1/4 on K.

Proof. Choose a function h ∈ A that peaks at x0. Let r = ∥h∥K < 1,
and let α be the real number such that the conformal automorphism
of the disc defined by φα(z) = (z − α)/(1− αz) takes r to −1/2. Then
the function f =

(
1 + (φα ◦ h)

)
/2 has the desired properties. □

Proof of Theorem 3.3. Since neither of K1 and K2 contains the Shilov
boundary for AJ , there exist peak points a1 and a2 for AJ with a1 /∈ K1

and a2 /∈ K2. By Lemma 3.9 there are functions f1 and f2 in AJ such
that for each j = 1, 2, we have

(i) fj(aj) = 1
(ii) ℜfj ≥ 0 everywhere on J
(iii) ℜfj ≤ 1/4 on Kj.
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Set f = f1 − f2. Then

(i) ℜf(a1) ≥ 3/4
(ii) ℜf ≤ 1/4 on K1

(iii) ℜf(a2) ≤ −3/4
(iv) ℜf ≥ −1/4 on K2.

Repeated application of [3, Theorem II.1.8] yields a function g ∈ AJ

such that g is holomorphic in neighborhoods of each of a1 and a2 and
satisfies ∥f − g∥S2 < 1/4. Then

(i) ℜg(a1) > 1/2
(ii) ℜg < 1/2 on K1

(iii) ℜg(a2) < −1/2
(iv) ℜg > −1/2 on K2.

Note that
(
g − g(a1)

)
/(z − a1) and

(
g − g(a2)

)
/(z − a2) can be

regarded as functions in AJ . Let π : S2 → C3 be defined by π(z) =(
g(z), (g(z)− g(a1)

)
/(z − a1), (g(z)− g(a2)

)
/(z − a2)

)
. Then (see the

paragraph preceding Proposition 2.5) π is injective and hence is an
embedding, and π(S2) is contained in the rational hull of π(J), so the
rational hull of π(J) is nontrivial.
Let A denote the uniform algebra on S2 generated by the three func-

tions g,
(
g− g(a1)

)
/(z− a1), and

(
g− g(a2)

)
/(z− a2). Because on K1

we have ℜg < 1/2 < ℜg(a1), the function 1/
(
z−g(a1)

)
can be approxi-

mated uniformly on g(K1) by polynomials. Consequently, the function(
g− g(a1)

)
|K1 is invertible as an element of the uniform algebra A|K1.

(Alternatively, one can obtain this by noting that because on K1 we
have ℜg < 1/2 < ℜg(a1), the function g never takes the value g(a1) on
the A-convex hull of K1.) On K1 we have

(
g − g(a1)

z − a1

)(
g − g(a1)

)
−1

=
1

z − a1

so (z − a1)
−1 is in A|K1. Now exactly as in the proof of Theorem 3.1,

we get that A|K1 = C(K1). It follows that P (π(K1)) = C(π(K1)) and
hence π(K1) is polynomially convex. The proof that the same holds
for K2 is similar. □

The proof of Corollary 3.4 uses the following standard result which
can be found in [12, Chapter 13].

Theorem 3.10. Given Cantor sets E and E∗ in C, there exists a

homeomorphism h : C → C such that h(E) = E∗.

Proof of Corollary 3.4. By hypothesis each of J \K1 and J \K2 is an
uncountable open set of J . Every open set in a metrizable space is a
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countable union of closed subsets of the space. Consequently, each of
J \K1 and J \K2 contains an uncountable closed, and hence compact,
subset of J . Every uncountable compact metrizable space contains a
Cantor set. Thus we can choose Cantor sets G1 and G2 in J \K1 and
J \K2, respectively. Note that then G1 ∪G2 is also a Cantor set.

Choose an embedding g : J → C. Choose a Cantor set L in C

that is locally of positive planar measure. By Theorem 3.10, there is
a homeomorphism h : C → C such that h

(
g(G1 ∪ G2)

)
= L. Let

f : J → C be the embedding given by f = h ◦ g. Then each of f(G1)
and f(G2) is a Cantor set of positive planar measure. Consequently,
each of f(J)\f(K1) and f(J)\f(K2) has positive planar measure and
hence intersects the Shilov boundary for Af(J), by Theorem 2.6.
Since J has topological dimension at most 1, the set f(J) has empty

interior in C. The simple coconnectivity of K1 and K2 implies that
each of f(K1) and f(K2) has connected complement in C.

Now Theorem 3.3 applies to yield the desired conclusion. □

We turn next to examples in C2.

Theorem 3.11. There exists a Cantor set in C2 that has nontrivial

rational hull and is the union of two polynomially convex Cantor sets.

Whether the two polynomially convex Cantor sets in this theorem
can be taken to be disjoint, as was shown in the case of sets in C3,
remains open. Before proving the theorem we present a corollary.

Corollary 3.12. There exist two polynomially convex arcs in C2 whose

union is not rationally convex.

Proof. By the preceding theorem there exist polynomially convex Can-
tor sets K1 and K2 in C2 whose union is not rationally convex. Ev-
ery Cantor set in a Euclidean space is contained in an arc [19, Theo-
rem p. 57]. Therefore, by [7, Corollary 1.2] there are polynomially con-
vex arcs J1 and J2 containing K1 and K2, respectively. Since K1∪K2 is
not rationally convex, Corollary 2.4 shows that J1∪J2 is not rationally
convex either. □

Whether Corollary 3.12 can be strengthened to show that Corollar-
ies 3.6–3.8 hold with C2 in place of C3 remains open.

Proof of Theorem 3.11. Let K1 and K2 be two Cantor sets in C that
are locally of positive planar measure. Define functions f1 and f2 on
S2 by

f1(ζ) =

∫∫

K1

dx dy

z − ζ
and f2(ζ) =

∫∫

K2

dx dy

z − ζ
.
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As noted in Section 2, each fj is in AKj
. Furthermore, f ′

j(∞) =

limζ→∞ ζf(ζ) = −
∫∫

Kj
dx dy ̸= 0. Thus by replacingK2 by a translate

of itself that is sufficiently far away from K1, we can arrange to have
f1 be one-to-one on K2 and f2 be one-to-one on K1. Let J = K1 ∪K2.
Note that of course f1 and f2 belong to AJ .

Define π : J → C2 by π(z) =
(
f1(z), f2(z)

)
. Note that π maps each

Kj homeomorphically onto π(Kj). Consequently, each of π(K1), π(K2),
and π(J) is a Cantor set. Furthermore, because the coordinate function
z2 is one-to-one on π(K1), Lavrentiev’s theorem gives that P (π(K1)) =
C(π(K1)). The same holds with the roles of 1 and 2 reversed. In
particular, each of π(K1) and π(K2) is polynomially convex. As noted
in Section 2, π(S2) is contained in the rational hull of π(J), and hence
the rational hull of π(J) is nontrivial. □

We conclude this section by showing that it follows from the existence
of disjoint polynomially convex Cantor sets whose union has nontrivial
rational hull that any uncountable compact subspace of a Euclidean
space can be embedded in some CN as a nonrationally convex set that
is the union of two polynomially convex sets. First we consider an
abstract form of this result that applies to more general compact spaces.

Theorem 3.13. Let (J,K1, K2) be a triple with J a compact Hausdorff

space and K1 and K2 closed subspaces of J whose union is J and such

that each of J \K1 and J \K2 contains a Cantor set. Then there exists

a uniform algebra A on J such that J has nontrivial A-rational hull,
but each of K1 and K2 is A-convex and A|Kj = C(Kj), j = 1, 2.

Proof. Choose Cantor sets G1 and G2 in J \K1 and J \K2, respectively.
Then Corollary 3.5 yields a uniform algebra B on G1 ∪ G2 such that
G1 ∪ G2 has nontrivial B-rational hull, but G1 and G2 are each B-
convex. Furthermore, B can be chosen so that B|G1 = C(G1) and

B|G2 = C(G2). Let A be the uniform algebra on J defined by A =
{f ∈ C(J) : f |(G1 ∪G2) ∈ B}.

Each of J and MB can be regarded as subsets of MA in standard
ways. Then MB is the A-convex hull of G1 ∪G2 in MA, and it follows
that J ∩MB = G1 ∪G2. Since the B-rational hull of G1 ∪G2 is easily
seen to be contained in the A-rational hull of G1 ∪G2, we obtain that
the A-rational hull of G1 ∪ G2 is not contained in J . Consequently, J
has nontrivial A-rational hull.

Since B|G2 = C(G2), it follows from the Tietze extension theorem
that the functions in C(K1) whose restrictions to G2 lie in B|G2 form a

dense subset of C(K1). Thus to show that A|K1 = C(K1), it suffices to
show that each function f ∈ C(K1) that satisfies f |G2 ∈ B|G2 extends
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to a member of A. To do so, choose g ∈ B ⊂ C(G1 ∪ G2) such that
g|G2 = f |G2, note that the formula

h(x) =

{
f(x), x ∈ K1

g(x), x ∈ G1

yields a well-defined continuous function on K1 ∪ G1, extend h to a
continuous function h̃ on J , and note that then h̃ is in A (because

h̃|(G1 ∪ G2) = g ∈ B) and h̃|K1 = f . Thus A|K1 = C(K1). The

verification thatA|K2 = C(K2) is similar. The equationA|Kj = C(Kj)
implies A-convexity of Kj. □

Corollary 3.14. Let (J,K1, K2) be a triple with J a compact subspace

of RN and K1 and K2 closed subspaces of J whose union is J and such

that each of J \ K1 and J \ K2 is uncountable. Then there exists an

embedding π of J into CN+4 such that π(J) has nontrivial rational hull,
but each of π(K1) and π(K2) is polynomially convex and P (π(Kj)) =
C(π(Kj)), j = 1, 2.

Since every compact metrizable space of topological dimension m
embeds in R2m+1 [5, Theorem V.2], Corollary 3.14 shows, in partic-
ular, that there is a homeomorphic copy of every uncountable such
space in C2m+5 that has nontrivial rational hull but is the union of two
polynomially convex sets. As another immediate consequence of Corol-
lary 3.14, if K1 and K2 are any two uncountable compact subsets of
RN , then there are disjoint polynomially convex sets in CN+4 that are
homeomorphic to K1 and K2 but whose union is not rationally convex.

Proof. As in the proof of Corollary 3.4, we can choose Cantor sets
G1 and G2 in J \ K1 and J \ K2, respectively. As in the proof of
Theorem 3.13, let B be a uniform algebra on G1∪G2 such that G1∪G2

has nontrivial B-rational hull, but G1 and G2 are each B-convex, and
B|Gj = C(Gj), j = 1, 2. By Corollary 3.5, the uniform algebra B can
be chosen so as to be generated by three functions f1, f2, f3.

Set A = {f ∈ C(J) : f |(G1 ∪ G2) ∈ B}. Extend each of f1, f2, f3
to continuous complex-valued functions f̃1, f̃2, f̃3 on J . Let x1, . . . , xN

denote the real coordinate functions of RN . Choose a continuous real-
valued function ρ on J whose zero set is precisely G1 ∪ G2. Then the
N + 4 functions f̃1, f̃2, f̃3, ρ, ρx1, . . . , ρxN generate the uniform algebra
A by [8, Lemma 3.8]. The proof of Theorem 3.13 shows that J has

nontrivial A-rational hull and A|Kj = C(Kj), j = 1, 2. It follows that
the map π : J → CN+4 whose component functions are the functions
f̃1, f̃2, f̃3, ρ, ρx1, . . . , ρxN has the properties asserted in the corollary.

□
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4. Approximation by pathological curves

In this section we prove that every simple closed curve in CN , N ≥ 3,
can be approximated uniformly by a nonrationally convex simple closed
curve that is locally polynomially convex, and is, in fact, covered by
the interiors of two polynomially convex arcs. We will use ∥ · ∥∞ to
denote the supremum norm.

Theorem 4.1. Let γ be a simple closed curve in CN , N ≥ 3. Given

ε > 0, there exists a simple closed curve σ satisfying ∥γ−σ∥∞ < ε that

is not rationally convex but is the union of two polynomially convex

arcs σ1 and σ2 satisfying P (σj) = C(σj), j = 1, 2, and whose interiors

cover σ.

Since every simple closed curve in Euclidean space can be approx-
imated uniformly by a smooth, and hence rectifiable, simple closed
curve, the above theorem is a consequence of the following sharper
result for rectifiable simple closed curves.

Theorem 4.2. Given a rectifiable simple closed curve γ in CN , N ≥ 3,
given ε > 0, and given an open ball B of CN that intersects γ, there is

a simple closed curve γa that satisfies ∥γ−γa∥∞ < ε and γa \B = γ \B
such that γa is not rationally convex but is the union of two polynomially

convex arcs γ1 and γ2 that satisfy P (γj) = C(γj), j = 1, 2, and whose

interiors cover γa.

For the reader’s convenience we quote here two results we will use in
the proof.

Theorem 4.3. [11, Theorem 1.6] Let Y be a compact polynomially

convex subset of CN , and let Γ be a subset of CN such that Y ∪ Γ is

compact and such that for every neighborhood U of Y in CN , the set

Γ \U is contained in a compact connected set of finite length. Suppose

also that the map Ȟ1(Y ∪ Γ;Z) → Ȟ1(Y ;Z) induced by the inclusion

Y ↪→ Y ∪ Γ is a monomorphism. Then Y ∪ Γ is polynomially convex,

and P (Y ∪ Γ) = {f ∈ C(Y ∪ Γ) : f |Y ∈ P (Y )}.

Lemma 4.4. [7, Lemma 2.1] Let λ be a closed set in RN , N ≥ 3, of
topological dimension at most 1, let a and a′ be two points in λ, and
let Ω be a connected open set of RN that contains a and a′. Then there

is an arc J from a to a′ contained in Ω that intersects λ only in the

end points a and a′ of J and is such that the open arc J \ {a, a′} is

C∞-smooth.

The following elementary lemma will also be needed.
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Lemma 4.5. Let X ⊂ CN be a compact set such that P (X) = C(X),
and let x1, . . . , xk be points in CN . Then P (X ∪{x1, . . . , xk}) = C(X ∪
{x1, . . . , xk}).

Proof. By induction it suffices to consider the case k = 1. Assume that
x1 /∈ X since otherwise there is nothing to prove. Since P (X) = C(X),
the set X is polynomially convex, so there exists a polynomial p such
that p(x1) = 1 > ∥p∥X . The function f that is 1 at x1 and identically
0 on X is the uniform limit of the sequence (pn)∞n=1 and hence is in
P (X ∪ {x1}).

Given g ∈ C(X ∪ {x1}), choose a sequence of polynomials (gn) such
that gn → g uniformly on X. Then gn(1− f) + g(x1)f → g uniformly
on X ∪ {x1}, so g is in P (X ∪ {x1}). □

Proof of Theorem 4.2. We may assume without loss of generality that
the diameter of B is less than ε. The simple closed curve γa will be ob-
tained from γ by removing an arc from γ contained in B and replacing
it with a new arc contained in B having the same end points. It is then
immediate that γa \B = γ \B and that under a suitable parametriza-
tion ∥γ− γa∥∞ < ε. We must show that the removal and insertion can
be done in such a way that the other conditions are satisfied.

Remove from γ an open arc lying in B to obtain a rectifiable arc
κ whose end points we will denote by p and q. As noted immediately
after Corollary 3.6, there exists an arc τ , which can be taken to lie in B
and disjoint from κ, such that τ is not rationally convex and such that,
denoting the end points of τ by a and d, there are distinct points b and
c in the interior of τ such that traversing τ from a to d, one encounters
b before c and the arcs ac and bd are polynomially convex and satisfy
P (ac) = C(ac) and P (bd) = C(bd).

The set B \ (κ ∪ τ) is connected (because a connected manifold of
real dimension greater than or equal to three cannot be disconnected
by a subspace of topological dimension one [5, Corollary 1, p. 48]).
Therefore, by repeated application of Lemma 4.4, we can obtain arcs
ℓ1 and ℓ2 in B such that the arc ℓ1 has end points p and a, the arc
ℓ2 has end points q and d, the open arcs ℓ1 \ {p, a} and ℓ2 \ {q, d} are
C∞-smooth, and the set

γa = κ ∪ ℓ1 ∪ τ ∪ ℓ2

is a simple closed curve.
Since τ is not rationally convex, γa is not rationally convex by Corol-

lary 2.4.
Let γ1 = κ∪ℓ1∪ℓ2∪ac and γ2 = κ∪ℓ1∪ℓ2∪bd. Then the interiors of

γ1 and γ2 cover γa. Set Y = ac∪{d, p, q} and Γ = κ∪ℓ1∪ℓ2. Then Y is
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polynomially convex and P (Y ) = C(Y ) by Lemma 4.5, so Theorem 4.3
applies and yields that γ1 is polynomially convex and satisfies P (γ1) =
C(γ1). Similarly, γ2 is polynomially convex and satisfies P (γ2) = C(γ2).

□

Although the nonrationally convex simple closed curve γa constructed
in the above proof is locally polynomially convex, it contains the nonra-
tionally convex, and hence nonpolynomially convex, arc τ . In contrast,
every arc contained in a rectifiable simple closed curve is polynomially
convex. This observation, in conjunction with the theorem of the au-
thor and Stout mentioned at the beginning of the paper, suggests the
following open question.

Question 4.6. Given a polynomially convex simple closed curve γ,
must there exist an ε > 0 such that if σ is a simple closed curve with

the property that every arc contained in σ is polynomially convex and

σ satisfies ∥γ − σ∥∞ < ε, then σ is polynomially convex?

5. A nonrationally convex ball and chain

In this section we construct examples of polynomially convex arcs
whose union with the closed unit ball B is not rationally convex, and in
particular, we answer the question of Stout mentioned in the introduc-
tion. First though we present Stout’s observation regarding polynomial
convexity under a local rectifiability hypothesis.

Theorem 5.1. Let J be an arc in CN that meets B in a single end

point, say a. If the half-open arc J \ {a} is locally rectifiable, then

B ∪ J is polynomially convex.

Note that the hypotheses do not require that J itself be rectifiable.

Proof. The cohomology group Ȟ1(B ∪ J ;Z) is the zero group, so the
natural map Ȟ1(B ∪ J ;Z) → Ȟ1(B;Z) is a monomorphism, whence
application of Theorem 4.3 yields the result. □

Variations on Theorem 5.1 can be proved similarly. For instance, it
is enough to require only that the interior of J be locally rectifiable.
Also the arc J could be taken to be disjoint from B or could intersect
B in an interior point of J with the two half-open arcs making up J \B
each required to be locally rectifiable.

We turn now to the nonrationally convex examples.

Theorem 5.2. There exists in C3 a polynomially convex arc J that is

disjoint from the closed unit ball B such that B ∪ J is not rationally

convex.
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Since there exists an arc in the plane having positive planar measure
(a theorem of Osgood [14]), the above result is a special case of the
following one.

Theorem 5.3. Let Γ be a compact subset of C of positive planar mea-

sure with empty interior and connected complement. There exists in

C3 a polynomially convex set E homeomorphic to Γ and disjoint from

the closed unit ball such that B ∪ E is not rationally convex.

Proof. Set

g(ζ) =

∫∫

Γ

dx dy

z − ζ
.

Then g is a nonconstant, continuous function on the Riemann sphere S2

that is holomorphic off Γ and vanishes at ∞. (See Section 2.) Choose
a point z0 ∈ C \ Γ such that g(z0) ̸= 0. Set

h(z) =
g(z)− g(z0)

z − z0
.

Then h is also a nonconstant, continuous function on the Riemann
sphere S2 that is holomorphic off Γ and vanishes at ∞. Note that
∞ is the only common zero of g and h. In particular, g and h have
no common zero on Γ, so there is a positive constant k such that
|(kg, kh)| > 1 everywhere on Γ, where (kg, kh) denotes the function
z 7→

(
kg(z), kh(z)

)
.

Since (kg, kh)(∞) = 0, we have for sufficiently large R > 0 that
|(kg, kh)| < 1/2 everywhere on the circle {|z| = R}. Fix R > 0 large
enough that, in addition, the circle {|z| = R} encloses the set Γ.
Define F : C → C3 by

F (z) =
(
z/2R, kg(z), kh(z)

)
,

and set E = F (Γ). Then F maps Γ homeomorphically onto E. Fur-
thermore, E is polynomially convex because polynomials in z1 are dense
in C(E), since polynomials in z are dense in C(Γ) by Lavrentiev’s theo-
rem [3, Theorem II.8.7]. In addition, because |(kg, kh)| > 1 everywhere
on Γ, the set E is disjoint from B.

Note that F ({|z| = R}) is contained in B. Thus the connected set
F ({|z| ≤ R}) intersects each of the two disjoint closed sets B and E,
and hence F ({|z| ≤ R}) cannot be contained in the union of B and E.
Thus to show that B ∪ E is not rationally convex, it suffices to show
that F ({|z| ≤ R}) lies in the rational hull of B ∪ E.

Suppose p is a polynomial on C3 having no zeros on B ∪ E. Since
each of B and E is simply coconnected, p has a continuous logarithm
in a neighborhood of B ∪ E. Consequently, p ◦ F has a continuous
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logarithm on a neighborhood of {|z| = R} ∪ Γ in C. By the argument
principle it follows that p ◦ F has no zeros on {|z| ≤ R}. Thus p has
no zeros on F ({|z| ≤ R}). Consequently, F ({|z| ≤ R}) is contained in
the rational hull of B ∪ E. □

Corollary 5.4. There exists a polynomially convex arc J in C3 that

meets the closed unit ball B in a single end point such that B∪J is not

rationally convex.

Proof. By Theorem 5.2 there is a polynomially convex arc E in C3

disjoint from B such that B ∪ E is not rationally convex. One can
construct an arc σ from a point of ∂B to an end point of E such that
the interior of σ is disjoint from B ∪ E and such that σ is smooth
except possibly at the end point where it meets E. The details of the
construction are similar to the proof of [11, Theorem 1.2] so we omit
them; the basic idea is to choose a sequence of points in the complement
of B∪E converging to an end point of E, and then choose smooth arcs
connecting successive points of the sequence and fitting together so as
to form a smooth arc.

Set J = E ∪ σ. Then J is an arc and is polynomially convex by
[11, Theorem 1.7] (a corollary of Theorem 4.3). Of course hr(B ∪ J) ⊃
hr(B ∪ E), and applying Theorem 2.2 to the uniform algebra R(B∪E)
shows that hr(B ∪ E) cannot be contained in (B ∪ E) ∪ σ = B ∪ J .
Thus hr(B ∪ J) \ (B ∪ J) is nonempty. □

6. Unions with hull without analytic discs

In this section we establish the existence of various pairs of polyno-
mially convex sets whose union has nontrivial polynomial hull without
analytic discs.

Theorem 6.1. There exist two polynomially convex Cantor sets K1

and K2 in C3 such that the polynomial hull of K1∪K2 is nontrivial but

contains no analytic discs.

In C4 the two polynomially convex Cantor sets can be taken to be
disjoint.

Theorem 6.2. There exist two disjoint polynomially convex Cantor

sets K1 and K2 in C4 such that the polynomial hull of K1 ∪ K2 is

nontrivial but contains no analytic discs.

In connection with these results, note that the union of two Cantor
sets is itself a Cantor set.

As a corollary of Theorem 6.2 we will prove a general result about
unions with polynomial hull without analytic discs.
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Corollary 6.3. Let (J,K1, K2) be a triple with J a compact subspace

of RN and K1 and K2 closed subspaces of J whose union is J and such

that each of J \ K1 and J \ K2 is uncountable. Then there exists an

embedding π of J into CN+5 such that the polynomial hull of π(J) is

not trivial but contains no analytic discs while each of π(K1) and π(K2)
is polynomially convex and P (π(Kj)) = C(π(Kj)), j = 1, 2.

The proofs of these results are based on a result from the paper of
the author and Norman Levenberg [9] which associates to each compact
set with nontrivial polynomial hull in CN a compact set in CN+1 with
a nontrivial polynomial hull that contains no analytic discs. We quote
the needed result here for the reader’s convenience.

Theorem 6.4 ([9], Theorem 1.1). Let X ⊂ CN be a compact set whose

polynomial hull is nontrivial. Then there exists a compact set Y ⊂

CN+1 such that, letting π denote the restriction to Ŷ of the projection

CN+1 → CN onto the first N coordinates, the following conditions hold:

(i) π(Y ) = X

(ii) π(Ŷ \ Y ) = X̂ \X

(iii) Ŷ contains no analytic discs

(iv) each fiber π−1(z) for z ∈ X̂ is totally disconnected.

We will also need two lemmas concerning perfect subsets. Recall
that a subset of a space is said to be perfect if it is closed and has no
isolated points. Every space contains a unique largest perfect subset
(which can be empty), namely the closure of the union of all perfect
subsets of the space.

Lemma 6.5. Let Y be a polynomially convex set in CN , and let K be

the largest perfect subset of Y . Then K is polynomially convex.

Proof. Note that K̂ ⊂ Ŷ = Y . Thus since K is the largest perfect

subset of Y , if K̂ were strictly larger than K, then K̂ would have an
isolated point, and the isolated point would necessarily be a point of

K̂ \K. But this is impossible, for it follows from the Oka-Weil theorem

that every component of K̂ must intersect K. □

Lemma 6.6. Let Y be a space, and let Y1 and Y2 be closed subspaces of

Y whose union is Y . Let K, K1, and K2 be the largest perfect subsets

of Y , Y1, and Y2, respectively. Then K1 ∪K2 = K.

In case Y1 and Y2 are disjoint, this lemma is essentially obvious. Only
that case is needed for the proof of Theorem 6.2, but the general case
is needed for the proof of Theorem 6.1.
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Proof. The proof is an application of Zorn’s lemma. Let P be the
collection of ordered pairs (Σ1,Σ2) of closed subsets of Y such that
Kj ⊂ Σj ⊂ Yj for j = 1, 2 and Σ1 ∪ Σ2 = K. Note that P is
nonempty since (Y1∩K, Y2∩K) is in P. Partially order P by declaring
(Σ1,Σ2) ≤ (Σ′

1,Σ
′

2) if Σ1 ⊂ Σ′

1 and Σ2 ⊂ Σ′

2. Given a totally ordered
subcollection Q of P, set

Q1 =
⋂

(Γ1,Γ2)∈Q
Γ1 and Q2 =

⋂
(Γ1,Γ2)∈Q

Γ2.

It is easily verified that (Q1, Q2) is a lower bound for Q in P. Thus
by Zorn’s lemma, P has a minimal element (P1, P2). To conclude the
proof, it suffices to show that (P1, P2) = (K1, K2) since then K1∪K2 =
P1 ∪ P2 = K.

Assume to get a contradiction that (P1, P2) ̸= (K1, K2). Then with-
out loss of generality, P1 properly contains K1. Then P1 is not perfect
and hence has an isolated point x. Since K is perfect, and P1∪P2 = K,
it must be that x is a limit point of P2, and hence x is in P2. Conse-
quently, the closed sets P1 \ {x} and P2 have union K. Also since x is
isolated in P1, the point x can not be in K1. Thus K1 ⊂ P1 \ {x}. We
conclude that (P1 \ {x}, P2) is a member of P that is strictly smaller
than (P1, P2), contrary to the minimality of (P1, P2). □

Proof of Theorems 6.1 and 6.2. SetN = 2 for the proof of Theorem 6.1,
or N = 3 for the proof of Theorem 6.2. By Corollary 3.5 and Theo-
rem 3.11 there exist polynomially convex Cantor sets X1 and X2 in
CN such that their union, which we will denote by X, has nontrivial
polynomial hull. Furthermore, when N = 3, we can choose X1 and X2

to be disjoint. Let Y be the set in CN+1 obtained from X by applying

Theorem 6.4. As in Theorem 6.4, let π : Ŷ → CN be the restriction

to Ŷ of the projection CN+1 → CN onto the first N coordinates. Set
Y1 = π−1(X1) and Y2 = π−1(X2). Let K, K1, and K2 be the largest
perfect subsets of Y , Y1, and Y2, respectively. Then K = K1 ∪K2 by

Lemma 6.6. Also K̂ \K ⊃ Ŷ \ Y by [6, Lemma 4.2], so condition (ii)

of Theorem 6.4 gives that K̂ is nontrivial. Since K̂ ⊂ Ŷ , condition (iii)

gives that K̂ contains no analytic discs. It is easily verified that the
polynomial convexity of X1 and X2 implies that Y1 and Y2 are polyno-
mially convex. Consequently, K1 and K2 are polynomially convex by
Lemma 6.5. Finally, conditions (i) and (iv) of Theorem 6.4 imply that
Y is totally disconnected, and hence the same is true of the subsets
K1 and K2. Consequently, K1 and K2 are Cantor sets by the usual
characterization. Note that K1 and K2 are disjoint when N = 3. □
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Proof of Corollary 6.3. As in the proof of Corollary 3.4, we can choose
Cantor sets G1 and G2 in J \K1 and J \K2, respectively. Let f1, . . . , f4
be the components of a homeomorphism of G1 ∪G2 onto the nonpoly-
nomially convex set in Theorem 6.2 that maps G1 onto the first Cantor
set in that theorem and G2 onto the second Cantor set there.

Extend f1, . . . , f4 to continuous complex-valued functions f̃1, . . . , f̃4
on J . Let x1, . . . , xN denote the real coordinate functions of RN .
Choose a continuous real-valued function ρ on J whose zero set is pre-
cisely G1 ∪G2. Let π : J → CN+5 be the mapping whose components
are the functions f̃1, . . . , f̃4, ρ, ρx1, . . . , ρxN .

Because π(J) is contained in C4 × RN+1, the polynomial hull π̂(J)
is the union of the polynomial hulls of the slices π(J) ∩ (C4 × {r}) for
r ∈ RN+1 (by [8, Proposition 3.1] for instance). Each nonempty such
slice is a single point with the exception of the slice given by r = 0.
That slice is the set π(G1 ∪G2), which is exactly the image, under the
canonical embedding of C4 into CN+5, of the set in Theorem 6.2 with
nontrivial hull containing no analytic discs. Consequently, π(J) has
nontrivial hull containing no analytic discs.

Application of the Bishop antisymmetric decomposition ([2, Theo-
rem 2.7.5] or [3, Theorem II.13.1]) shows that P (π(Kj)) = C(π(Kj)),
j = 1, 2, and hence each of π(K1) and π(K2) is polynomially con-
vex. □

Acknowledgment

This research was begun while the author was a visitor at the Uni-
versity of Michigan. He thanks the Department of Mathematics for
its hospitality. He also thanks Lee Stout for inspiring correspondence
related to the paper and Alastair Fletcher for providing a reference for
Theorem 3.10.

References

[1] Herbert Alexander and John Wermer. Several Complex Variables and Banach
Algebras. Springer, New York, 3rd edition, 1998.

[2] Andrew Browder. Introduction to Function Algebras. W. A. Benjamin, Inc.,
New York, 1969.

[3] Theodore W. Gamelin. Uniform Algebras. Chelsea Publishing Company, New
York, 2nd edition, 1984.

[4] K. Hoffman and I. M. Singer. Maximal algebras of continuous functions. Acta
Math., 103:217–241, 1960.

[5] Witold Hurewicz and Henry Wallman. Dimension Theory. Princeton Univer-
sity Press, Princeton, Revised edition, 1948. Princeton Mathematical Series,
v. 4.



24 ALEXANDER J. IZZO

[6] Alexander J. Izzo. Spaces with polynomial hulls that contain no analytic discs.
Math. Ann., 378:829–852, 2020.

[7] Alexander J. Izzo. Polynomial hulls of arcs and curves II. Proc. Amer. Math.
Soc., (accepted).

[8] Alexander J. Izzo, H̊akan Samuelsson Kalm, and Erlend Fornæss Wold. Pres-
ence or absence of analytic structure in maximal ideal spaces. Math. Ann.,
366:459–478, 2016.

[9] Alexander J. Izzo and Norman Levenberg. A Cantor set whose polynomial hull
contains no analytic discs. Ark. Mat., 57:373–379, 2019.

[10] Alexander J. Izzo and Edgar Lee Stout. The convergence of hulls of curves.
Math. Zeit., 301:3071–3086, 2022.

[11] Alexander J. Izzo and Edgar Lee Stout. Polynomially convex arcs in polynomi-
ally convex simple closed curves. Proc. Amer. Math. Soc., 150(4):1591–1599,
2022.

[12] Edwin E. Moise. Geometric Topology in Dimensions 2 and 3. Springer-Verlag,
1977.

[13] I. Netuka, A. G. O’Farrell, and M. A. Sanabria-Garćıa. Pervasive algebras of
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