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Abstract—The platform of silicon-based spin qubits holds
significant potential for the hardware implementation of quantum
computing. Charge noise, however, notably hinders the perfor-
mance and scalability of silicon-spin-based quantum computing
technologies. Here we computationally investigated correlated
charge noise in silicon spin quantum computing devices by
developing and applying a Green’s transfer function approach.
The approach allows for the systematic simulation and analysis of
both the noise’s auto-correlation and cross-correlation spectrums
in a physics-based manner. We simulate the correlated noise’s
power spectral density (PSD) in silicon spin qubit devices. The
results indicate strong cross-correlation and show phase-flipping
features in neighboring silicon spin qubits, in agreement with a
recent experiment. Given that each spin qubit device is small
and influenced by a limited number of two-level fluctuators
(TLFs), the arrangement of these TLFs plays a crucial role in
the correlation of noise. The simulation study highlights the need
to consider noise correlation and its related spectral features
in developing robust quantum computing technologies based on
silicon spin qubits.

Index Terms—qubit, silicon, quantum computing device, quan-
tum noise, correlation

I. INTRODUCTION

Noise presents a significant barrier in advancing quan-

tum computing technologies [1]. In semiconductor-spin-based

quantum computing [2]–[4], various noise sources, such as

charge noise and nuclear magnetic noise, impact the system’s

performance [5], [6]. Despite notable advances in reducing

noise and enhancing the fidelity of quantum gates [7]–[10],

noise remains a primary challenge in achieving higher fidelity

and scalability in silicon-based quantum systems. Charge noise

in semiconductor spin qubits typically exhibits a 1/f -like

power spectrum, often linked to two-level fluctuators (TLFs)

[5], [11]–[13]. With the miniaturization of semiconductor spin

qubit devices and higher integration densities, noise correla-

tions across adjacent qubits and quantum gates become more

pronounced. Recent studies have focused on examining noise

correlation patterns in silicon spin qubits, revealing phase-

flipping phenomena in the noise correlation spectrum among

neighboring qubits [14]. This highlights the importance and

need of developing physical models and understanding noise

correlations to devise effective noise mitigation strategies,
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which are crucial for improved fidelity and scalability of

quantum computing systems utilizing silicon spin qubits.

This study introduces a method based on Green’s transfer

function to model the noise correlation spectra in silicon-

based spin qubits. This method links the behavior of TLFs,

which are the charge noise sources, with the observed noise

spectra in spin qubit devices via a Green’s transfer function.

The method provides a systematic way to simulate both the

auto-correlation and cross-correlation of noise spectra in these

devices. Through this simulation technique, we investigate the

correlated noise in terms of power spectral density (PSD)

between the precession frequencies and exchange interactions

in neighboring silicon spin qubits. Given the nanoscale dimen-

sions of silicon spin qubit devices, a small number of discrete

TLFs play a determinant role in their noise characteristics.

Our findings indicate a significant presence of noise cross-

correlation within these devices, emphasizing the impact of

random, discrete TLFs on the noise spectrum. Furthermore, the

study offers insights into the experimentally observed phase

flipping in the cross-PSD between neighboring qubits [14].

This work advances modeling methods and understanding of

noise correlation in silicon spin qubit devices, which is an

important step toward developing robust and scalable quantum

computing systems based on silicon electron spins.

II. APPROACH

Figure 1 shows the modeled device structure of a two-

qubit quantum gate between neighboring spin qubits [14].

Experimentally, both a SiGe-Si heterostructure and silicon

metal-oxide-semiconductor (MOS) structure have been used to

fabricate silicon spin qubits [15]. In a SiGe-Si heterostructure,

a thin silicon layer is sandwiched between SiGe layers. In a

MOS structure, electrons are confined vertically by a potential

well at the SiO2-Si interface. The two quantum dots can be

defined by applying gate voltages to the plunger gates (PGs),

which operate the qubit pairs at the (1,1) electron number

regime. The tunnel barriers between the QDs can be modulated

by the barrier gate (BG). A thin oxide layer separates the gates

with the top SiGe layer in the SiGe-Si heterostructure.

Green’s transfer function method: We extend the Green’s

transfer function method, which has been used in noise

analysis of metal-oxide-semiconductor (MOS) FETs [16], to



Fig. 1: Schematic structure of the modeled spin qubit device

in silicon. The QDs are defined by the left and right plunger

gates, PGL and PGR. The tunnel barrier can be modulated

by the barrier gate (BG). A silicon layer is confined between

SiGe in a SiGe-Si heterostructure. The non-uniform magnetic

field, B field is denoted. The randomly distributed TLFs are

shown schematically as stars.

noise analysis of semiconductor qubit devices. Charge fluc-

tuation in TLFs creates a stochastic electric field perturba-

tion to qubits and their exchange interactions. TLFs have

been generally identified as the source of charge noise [13],

although their microscopic physical origins remain an open

question. For noise in a spin qubit system of N qubits,

we define a vector of the physical quantities of interest

P = [¿1, ...¿m, ..., ¿N , ..., Jmn, ...], where ¿m is the precession

frequency of each qubit, Jmn is the exchange interaction

(in a unit of Hertz) between a pair of qubit (m,n). The

autocorrelation function between the ith and jth elements

of P , Rij (t) = ïPi(0)Pj(t)ð forms a matrix. Its Fourier

transform is the PSD matrix S (f) = F (R(t)), which can

be computed from the PSD of the noise source K(f),

S (f) = G(f)K(f)G(f)
+
, (1)

where G(f) is the Green’s transfer function matrix. At the low-

frequency noise region, G(f) can be treated quasi-statically

and is frequency-independent. The diagonal element of S (f)
gives the noise PSD of the physical quantities of interest. The

off-diagonal elements compute the noise correlation between

the ith and jth physical quantity of interest,

Cij(f) = Sij(f)/
√

Sii(f)Sjj(f). (2)

Model TLFs: TLFs have been widely considered an im-

portant noise source in various quantum computing hardware

platforms [13], [17]–[19]. In superconductor qubits, TLFs are

known to be approximately uniformly distributed across a

wide range of frequencies. They possess both elastic and

electric dipole moments, enabling them to interact with both

mechanical deformation and electrical fields [17], [18]. In

semiconductor qubits, the dynamics of TLFs have been char-

acterized and modeled [13], [19]. Nonetheless, what these

TLFs microscopically are and where exactly they are located

are still open questions. In a simplified model, charge noise

in semiconductors can be due to TLF defects capable of

capturing and emitting charges [20], [21]. The TLFs do not

exchange charge with the QDs but can exchange charge

with their environment, inducing carrier reservoirs of elec-

trodes, and nearby two-dimensional electron gas [13]. TLFs

are not only limited to a whole electron charge fluctuation,

in which a carrier is trapped and emitted but also include

dipolar fluctuations where a charge fluctuates between two

positions within a double-well setup [22], [23]. The TLFs are

assumed to follow the dynamics of random telegraph noise

(RTN) with a characteristic transition time of ÄTk [11], [20].

The Fourier transform of its autocorrelation function of the

TLF charge gives its power spectral density (PSD) in the

form of a Lorentzian function with a corner frequency of

fTk = 1/(2ÃÄTk) The matrix elements of the noise source

of the correlation has a Debue-Lorentzian spectrum [24],

Kkl (f) =
1

2

ÄTk

1 + (2ÃfÄTk)
2 ¶kl (3)

where ¶kl is the Kronecker delta, and ÄTk is the transition time

of the kth TLF. As shown in Fig. 1, the experimental character-

ization and modeling of the transition rate of TLFs have been

conducted [13]. However, the microscopic origins of TLFs

remain an open question, leading to a lack of detailed physical

understanding regarding their transition time. It is assumed that

TLFs do not exchange charge with the QDs. Consequently,

the transition time appears to be primarily influenced by the

interactions among TLFs themselves and their surrounding

environment, rather than by interactions with the QDs [23].

The transition rates of TLFs have shown ranges of distributions

and dependence on gate voltages and temperatures, which are

still not fully understood [13], [22], Here, we use a random

log-uniform distribution of the transition time of TLFs in a

given transition time range [23].

Model Green’s transfer function: TLFs result in a Coulom-

bic field. A silicon spin qubit device has a nanoscale dimen-

sion. Only a small number of TLFs are involved for each

device. For the kth TLF located at an in-plane position of

(XTk,YTk), and a depth of dTk from the interface, by using

the Thomas-Fermi (TF) approximation, the screened potential

can be expressed as [25], [26],

UTk (r) =
1

(2Ã)2

∫

∞

0

qdq

∫ 2π

0

d¹ Vscr(q) e
iqrcos(θ) (4)

where

Vscr(q) =
e2

2εsi

e−qd

q + qTF

, (5)

r(x, y) =

√

(x−XTk)
2
+ (y − YTk)

2
, e is the elementary

electron charge, εsi is the silicon dielectric constant, qTF ≈
2/(3nm) is the TF screening wave vector [26]. The in-plane

electrostatic force is computed as F⃗Tk(x, y) = −∇UTk(x, y).
The potential at the ith QD dot can be evaluated as Uik =
ïÈi(x, y) |UTK (x, y)|Èi(x, y)ð, and the force is computed as

F⃗ik =
〈

Èi(x, y)
∣

∣

∣
F⃗Tk(x, y)

∣

∣

∣
Èi(x, y)

〉

. where Èi(x, y) is the



confined electron wave function. The wavefunction takes a

Gaussian form [27] with a quadratic QD confinement potential

Vconf (x, y) =
1
2m

∗É2((x− xc)
2 + (y − yc)

2), where the QD

center is at (xc, yc), m
∗ = 0.19m0 is the in-plane effective

mass of the silicon layer and m0 is the free electron mass, and

a value of ℏÉ = 5meV is used in this study, which results

in a Gaussian form of the wave function with a characteristic

radial length of lQD =
√

ℏ/(m∗É)) ≈ 9.0nm. The values

are nominal and typical for a semiconductor QD, and varying

the values does not change the qualitative conclusions. We

consider randomly realized configurations with TLFs being

> 1.5lQD away from the centers of the QDs, which results in

a relatively weak perturbation. The transfer Green’s function

can be treated approximately in a linear response manner.

We first model the transfer function term from the charge

noise to a precession frequency. The electric field results in a

displacement of the charge centroid of the confined electron.

In the presence of a magnetic field gradient, it results in a

fluctuation of the magnetic field. The in-plane displacement

can be computed from the in-plane force [23],

¶r⃗ik = ¶xikx̂+ ¶yikŷ =
F⃗ik

m∗É2
. (6)

In a device set up with the x-gradient of the magnetic field

at the ith qubit dominates, ∂Bi

∂x
>> ∂Bi

∂y
[14], the magnetic

field variation due to position variation caused by the kth TLF

charge is,

¶Bik ≈
∂Bi

∂x
¶xik (7)

In this study, we use a magnetic field gradient value of
∂Bi

∂x
= 0.1mT/nm , in the order of typical experimental value

[6]. The charge noise of interest is low-frequency compared

to the electrostatic response time. The Green’s transfer func-

tion is treated as frequency-independent. Its element between

fluctuation of the ith qubit precession frequency ¶¿i and kth

TLF is determined by

Gik =
giµB

h
¶Bik, (8)

where gi is the g-factor and µB is the Bohr magneton, and

¶Bik is computed with Eq. (7).

After obtaining the transfer function for single qubit terms,

we derive the transfer function term from the charge noise

to the exchange coupling between neighboring qubits. The

exchange part of the effective Hamiltonian between a neigh-

boring pair of qubits (i, j) is Hex = Jij
(

Si · Sj −
1
4

)

[28],

[29], where Si or j is the spin operator, and the exchange

interaction Jij can be expressed as,

Jij =
2t2c,ij

UHi −∆ij

+
2t2c,ij

UHj +∆ij

=
2t2c,ij (UHi + UHj)

(UHi −∆ij) (UHj +∆ij)
,

(9)

where tc,ij is the tunnel coupling, ∆ij is the detuning, and

the Hubbard on-site double-occupancy potential values are

assumed to be equal UHi = UHj = UH , which is insensitive

to the TLF charge. For a two-qubit quantum gate as shown in

Fig. 1, there is only one exchange term between left and right

QDs. The expression simplifies to

Jij =
4t2c,ijUH

U2
H −∆2

ij

(10)

The electric field by the TLF perturbs both the tunnel

coupling tc,ij and detuning ∆ [30]. Biasing the DQD structure

at the sweet spot in which ∆ j UH helps to reduce the impact

of charge noise [31]. At this bias condition, the tunnel noise

dominates [30]

¶Jij ≈
2Jij¶tc,ij
tc,ij

(11)

The tunnel coupling tc,ij depends on the tunnel barrier

height and thickness between neighboring qubits. The tunnel

coupling between two neighboring qubits can be numeri-

cally computed with a Schrödinger-Poisson solver [32]. The

numerically computed tunnel coupling value can be well

described by an analytical expression in the form of the WKB

approximation, which is expressed as [30], [32],

tc,ij = tc0exp

(

−

√

2qm∗Eb,ij

ℏ
Ls,ij

)

, (12)

where Eb,ij is the barrier height and Ls,ij is the spacing

between the double quantum dots, and tc0 is a tunnel coupling

parameter independent of Eb,ij and Ls,ij . The tunnel coupling

parameter can be obtained by fitting Eq. (12) to the numerical

simulation results of the tunnel coupling values at different QD

spacings and barrier heights [32]. The extracted pre-coefficient

tc0 depends on the semiconductor material and carrier type.

For silicon electrons, its value is in the order of tc0 ≈ 10meV
[32]. The perturbations of the barrier height and thickness due

to a TLF with an in-plane distance of > 10nm away from the

quantum dot centers are orders of magnitude smaller than the

barrier height and thickness themselves, and the fluctuation of

the tunnel coupling can be approximately expressed as,

¶tc,ij
tc,ij

≈

(

−

√

2qm∗Eb,ij

ℏ
Ls,ij

)

(

¶Ls,ij

Ls,ij

+
¶Eb,ij

2Eb,ij

)

(13)

The kthe TLF perturbs the interdot spacing and the tunnel

spacing,

¶Ls,ij = ¶xik − ¶xjk =
Fx,ik

mÉ2
i

−
Fx,jk

mÉ2
j

(14)

where Fx is the x-component of the electrostatic force. The

change of the barrier height due to the TLF charge is computed

by averaging over the tunneling path,

¶Eb,ij =

∫ xj

xi
VTLF (x, y = 0) dx

xj − xi
(15)

The matrix element of Green’s transfer function between an

exchange interaction term ¶Jij and the kth TLF is obtained

by substituting Eq. (13) to Eq. (11)



GJij ,k = 2Jij

(

−

√

2qm∗Eb,ij

ℏ
Ls,ij

)

(

δLs,ij

Ls,ij

+
δEb,ij

2Eb, ij

)

,

(16)

where ¶Ls,ij is computed by Eq. (14) and ¶Eb,ij is computed

from Eq. (15).

III. RESULTS

As an example, the simulation framework above is applied

to a two-qubit quantum gate device as shown in Fig. 1. The

spacing between the two QD centers is LS=40nm. Both the Si

layer and SiGe layer are assumed to have a thickness of 10nm.

We examine the noise auto-correlation and cross-correlation

of the precession rates of the left and right qubits, ¿L and ¿R
respectively, and the exchange interaction between the qubits,

J . For the device, the vector of physical quantities of interest

is P = [¿L, ¿R, J ]. The auto-PSD values are derived from the

diagonal elements of the matrix S(f) in Eq. (1), labeled as

SL, SR, and SJ corresponding to ¿L, ¿R, and J , respectively.

Cross-correlation values are computed using Eq. (2) and are

represented by the symbol C with appropriate subscripts.

The charge noise dominates in an isotopically purified Si28.

The nuclear magnetic mechanism is weak, which can lead

to a corresponding dephasing time Tnu
2 > 100µS. Spin-

orbit-coupling is also weak in silicon [2]. We first focus on

the case with charge noise only. The distribution of TLFs is

randomly generated. To explore the statistical average values.

We stochastically generate the TLF configurations with a

density of NT = 4 × 1011/cm2 uniformly distributed in the

capping SiGe layer.

To explore the statistical average over random realizations

of TLF configurations, we realize Nconfig =8000 configura-

tions of the TLFs stochastically and compute the expectation

values of noise correlation spectrums by averaging over these

configurations. Fig. 2a shows that the expected auto-PSDs

of the precession frequencies of two qubits are essentially

equal, and show a 1/f noise scaling behavior. Each individual

TLF produces a Lorentzian power spectrum. In calculating the

expectation over a larger number of random TLF realizations,

summing and averaging over Lorentzian with different corner

frequency values leads to a 1/f scaling behavior of the

expectation value. Similarly, the expectation value of the auto-

PSD of the exchange interaction shows a clear 1/f scaling

behavior. Fig. 2b shows the cross-PSD of the precession

frequencies of two QDs. Both the expectation values of the

amplitude and phase are nearly independent of the frequency.

The expected amplitude is Ā ≈ 0.5 and the expected phase

is ϕ̄ ≈ Ã/2. For each configuration at a given frequency, the

cross-correlation can be either in-phase (ϕ = 0) or out-of-

phase ϕ = Ã. The phase expectation value is the statistical

average of in-phase and out-of-phase correlations in random

TLF realization. The results indicate a strong cross-correlation

of the precession frequency noise between neighboring qubits.

Next, we examine the noise correlation of one randomly

realized configuration of TLFs in the silicon spin qubit device.

(a)

(b)

Fig. 2: (a) The expectation value of the auto-PSDs of the

precession frequencies, SL (blue solid) and SR (green dotted),

and the exchange interaction SJ (red dashed), over random

TLF distributions. A reference line of 1/f scaling is also

shown (black). (b) The amplitude (top) and phase (bottom)

of the expectation value of the cross-PSD, CLR between the

precession frequencies of two qubits. The expectation values

are computed by using 8000 random realizations of the TLF

distributions.

Fig. 3a shows the noise auto-PSD SL of the precession

frequency of the left qubit. Fig. 3b shows the top view of the

TLF distribution and the electron probability density of two

spin qubits. We also simulated the PSD due to an individual

TLF only as shown by the dotted line for TLF 1 and the dash-

dot line for TLF 2 in Fig. 3a. The results show that the total

PSD can be well described by the sum of the PSDs from these

two contributors. Each TLF charge results in a Lorentzian

PSD, which is nearly constant at a frequency lower than its

corner frequency and scales as 1/f2 at high frequencies. The

sum of the contributions by TLFs 1 and 2 results in a 1/f
scaling of their values at the corner frequencies, as shown

by the slope of the black dashed line in Fig. 3a. These two

charges have a dominant contribution because they have corner

frequencies in the frequency range of interest and they are

close to the left QD as shown in Fig. 3b.

The investigation of noise correlation between neighboring

qubits has been conducted experimentally [14]. The study re-

veals pronounced cross-correlation and a phase-flipping char-



(a)

(b)

Fig. 3: (a) Noise auto-PSD of the spin qubit precession

frequency at the left QD SL (Solid) for the TLF configuration

in (b). The auto-PSDs due to charge in TLF 1 and TLF 2 as

denoted in (b) are shown by the green dotted and red dash-

dot lines, respectively. 1/f and 1/f2 scaling lines are also

shown. (b) A randomly realized TLF configuration and the

pseudo-color plot of the electron probability density. All TLF

charges are shown by scattered symbols. Two TLF charges

with dominant contributions to the noise correlations in the

frequency range of interest are denoted as the white diamond

(TLF 1) and the red circle (TLF 2), and the rest TLF charges

are denoted as yellow stars. The modeled device structure is

shown in Fig. 1. The QD spacing is LS=40nm with the QD

centers located at (±20nm,0).

acteristic, transitioning from out-of-phase to in-phase within

the explored frequency range. We next investigate the cross-

correlation of noise between two qubits. The cross-PSD CLR

between ¿L and ¿R is shown in Fig. 4. The results show a

qualitative feature drastically different from the expectation

value as shown in Fig. 2b, which highlights the importance of

a small number of random discrete TLF charges. The cross-

PSD flips from out-phase with ϕ = Ã at lower frequencies to

in-phase with ϕ = 0 at higher frequencies. The amplitude indi-

cates strong cross-correlation, with the peak value approaching

the maximum correlation value of 1.

The reason for the out-phase to in-phase transition is

explained as follows. As discussed before, TLFs 1 and 2

as shown in Fig. 3b have dominant contributions. TLF 1 is

Fig. 4: The amplitude (top) and phase(bottom) of the cross-

PSD CLR between the precession frequencies of two qubits.

The modeled device structure is the same as Fig. 3.

located at a x position between the charge centroids of the

left and right qubit charge. Charge of the TLF 1 results in

electrostatic forces that move two qubits charges along the

opposite x directions. In contrast, TLF 2 is located to the

left of both QDs. Its charge results in electrostatic forces that

move both qubit charges along the same x direction. In the

presence of a magnetic field gradient along x direction, the

cross-PSD due to TLF 1 is out-phase, and that due to TLF 2

is in-phase. As shown in Fig. 3a, TLF 1 has a lower corner

frequency and is more dominant at lower frequencies, and TLF

2 is more dominant at higher frequencies. As the frequency

increases, the cross-PSD encounters a phase flip. Although

a quantitative comparison between theory and experiment

is hindered by random spatial and temporal distribution of

TLFs, the simulation results share the same feature of phase-

flipping as observed in experiments [6]. The results indicate

the importance of discrete TLFs on noise correlation spectrums

in a silicon spin qubit system.

IV. CONCLUSION

Noise presents a significant obstacle in improving fidelity

and scalability for semiconductor-based quantum computing.

In this work, we develop Green’s transfer function method

to analyze noise power spectral density and correlations in a

silicon spin qubit system. This method involves mapping the

behavior of charge noise sources of TLFs to the correlated

noise PSDs of precession frequencies and exchange inter-

actions in silicon spin qubit devices. Our findings highlight

pronounced cross-correlations of noise. The impact of a small

number of TLFs is notably significant due to the small

scale of these devices, emphasizing the importance of their

discrete and stochastic nature in silicon spin qubit operations.

Simulations show that the noise correlation PSDs for a given

TLF configuration can vary significantly from what statistical

averages suggest. Additionally, our results shed light on the

phase-flipping behavior observed in the cross-PSD noise of

silicon spin qubit devices. The developed modeling technique



is valuable for assessing and understanding noise correlations

in semiconductor spin qubit systems, paving the way for future

strategies to reduce the effects of correlated quantum noise.
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