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Abstract—The platform of silicon-based spin qubits holds
significant potential for the hardware implementation of quantum
computing. Charge noise, however, notably hinders the perfor-
mance and scalability of silicon-spin-based quantum computing
technologies. Here we computationally investigated correlated
charge noise in silicon spin quantum computing devices by
developing and applying a Green’s transfer function approach.
The approach allows for the systematic simulation and analysis of
both the noise’s auto-correlation and cross-correlation spectrums
in a physics-based manner. We simulate the correlated noise’s
power spectral density (PSD) in silicon spin qubit devices. The
results indicate strong cross-correlation and show phase-flipping
features in neighboring silicon spin qubits, in agreement with a
recent experiment. Given that each spin qubit device is small
and influenced by a limited number of two-level fluctuators
(TLFs), the arrangement of these TLFs plays a crucial role in
the correlation of noise. The simulation study highlights the need
to consider noise correlation and its related spectral features
in developing robust quantum computing technologies based on
silicon spin qubits.

Index Terms—qubit, silicon, quantum computing device, quan-
tum noise, correlation

I. INTRODUCTION

Noise presents a significant barrier in advancing quan-
tum computing technologies [1]. In semiconductor-spin-based
quantum computing [2]-[4], various noise sources, such as
charge noise and nuclear magnetic noise, impact the system’s
performance [5], [6]. Despite notable advances in reducing
noise and enhancing the fidelity of quantum gates [7]-[10],
noise remains a primary challenge in achieving higher fidelity
and scalability in silicon-based quantum systems. Charge noise
in semiconductor spin qubits typically exhibits a 1/f-like
power spectrum, often linked to two-level fluctuators (TLFs)
[5], [11]-[13]. With the miniaturization of semiconductor spin
qubit devices and higher integration densities, noise correla-
tions across adjacent qubits and quantum gates become more
pronounced. Recent studies have focused on examining noise
correlation patterns in silicon spin qubits, revealing phase-
flipping phenomena in the noise correlation spectrum among
neighboring qubits [14]. This highlights the importance and
need of developing physical models and understanding noise
correlations to devise effective noise mitigation strategies,
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which are crucial for improved fidelity and scalability of
quantum computing systems utilizing silicon spin qubits.
This study introduces a method based on Green’s transfer
function to model the noise correlation spectra in silicon-
based spin qubits. This method links the behavior of TLFs,
which are the charge noise sources, with the observed noise
spectra in spin qubit devices via a Green’s transfer function.
The method provides a systematic way to simulate both the
auto-correlation and cross-correlation of noise spectra in these
devices. Through this simulation technique, we investigate the
correlated noise in terms of power spectral density (PSD)
between the precession frequencies and exchange interactions
in neighboring silicon spin qubits. Given the nanoscale dimen-
sions of silicon spin qubit devices, a small number of discrete
TLFs play a determinant role in their noise characteristics.
Our findings indicate a significant presence of noise cross-
correlation within these devices, emphasizing the impact of
random, discrete TLFs on the noise spectrum. Furthermore, the
study offers insights into the experimentally observed phase
flipping in the cross-PSD between neighboring qubits [14].
This work advances modeling methods and understanding of
noise correlation in silicon spin qubit devices, which is an
important step toward developing robust and scalable quantum
computing systems based on silicon electron spins.

II. APPROACH

Figure 1 shows the modeled device structure of a two-
qubit quantum gate between neighboring spin qubits [14].
Experimentally, both a SiGe-Si heterostructure and silicon
metal-oxide-semiconductor (MOS) structure have been used to
fabricate silicon spin qubits [15]. In a SiGe-Si heterostructure,
a thin silicon layer is sandwiched between SiGe layers. In a
MOS structure, electrons are confined vertically by a potential
well at the SiO,-Si interface. The two quantum dots can be
defined by applying gate voltages to the plunger gates (PGs),
which operate the qubit pairs at the (1,1) electron number
regime. The tunnel barriers between the QDs can be modulated
by the barrier gate (BG). A thin oxide layer separates the gates
with the top SiGe layer in the SiGe-Si heterostructure.

Green’s transfer function method: We extend the Green’s
transfer function method, which has been used in noise
analysis of metal-oxide-semiconductor (MOS) FETs [16], to



Fig. 1: Schematic structure of the modeled spin qubit device
in silicon. The QDs are defined by the left and right plunger
gates, PGy and PGpg. The tunnel barrier can be modulated
by the barrier gate (BG). A silicon layer is confined between
SiGe in a SiGe-Si heterostructure. The non-uniform magnetic
field, B field is denoted. The randomly distributed TLFs are
shown schematically as stars.

noise analysis of semiconductor qubit devices. Charge fluc-
tuation in TLFs creates a stochastic electric field perturba-
tion to qubits and their exchange interactions. TLFs have
been generally identified as the source of charge noise [13],
although their microscopic physical origins remain an open
question. For noise in a spin qubit system of N qubits,
we define a vector of the physical quantities of interest
P=[v1,..Vmy s UN, ooty i, -..], Where vy, is the precession
frequency of each qubit, J,,, is the exchange interaction
(in a unit of Hertz) between a pair of qubit (m,n). The
autocorrelation function between the i;;, and js, elements
of P, R;; (t) = (P;(0)P;(t)) forms a matrix. Its Fourier
transform is the PSD matrix S (f) = F (R(t)), which can
be computed from the PSD of the noise source K (f),

S(f)=GHKNGHT, (1)

where G(f) is the Green’s transfer function matrix. At the low-
frequency noise region, G(f) can be treated quasi-statically
and is frequency-independent. The diagonal element of S (f)
gives the noise PSD of the physical quantities of interest. The
off-diagonal elements compute the noise correlation between
the ith and jth physical quantity of interest,

Cij(f) = Sij(f)/\/) Sii()Ss;(f)- (2)

Model TLFs: TLFs have been widely considered an im-
portant noise source in various quantum computing hardware
platforms [13], [17]-[19]. In superconductor qubits, TLFs are
known to be approximately uniformly distributed across a
wide range of frequencies. They possess both elastic and
electric dipole moments, enabling them to interact with both
mechanical deformation and electrical fields [17], [18]. In
semiconductor qubits, the dynamics of TLFs have been char-
acterized and modeled [13], [19]. Nonetheless, what these
TLFs microscopically are and where exactly they are located
are still open questions. In a simplified model, charge noise

in semiconductors can be due to TLF defects capable of
capturing and emitting charges [20], [21]. The TLFs do not
exchange charge with the QDs but can exchange charge
with their environment, inducing carrier reservoirs of elec-
trodes, and nearby two-dimensional electron gas [13]. TLFs
are not only limited to a whole electron charge fluctuation,
in which a carrier is trapped and emitted but also include
dipolar fluctuations where a charge fluctuates between two
positions within a double-well setup [22], [23]. The TLFs are
assumed to follow the dynamics of random telegraph noise
(RTN) with a characteristic transition time of 7, [11], [20].
The Fourier transform of its autocorrelation function of the
TLF charge gives its power spectral density (PSD) in the
form of a Lorentzian function with a corner frequency of
fre = 1/(2n7ri) The matrix elements of the noise source
of the correlation has a Debue-Lorentzian spectrum [24],

K (f)

- 1 TTk
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where ¢y is the Kronecker delta, and 77 is the transition time
of the kth TLF. As shown in Fig. 1, the experimental character-
ization and modeling of the transition rate of TLFs have been
conducted [13]. However, the microscopic origins of TLFs
remain an open question, leading to a lack of detailed physical
understanding regarding their transition time. It is assumed that
TLFs do not exchange charge with the QDs. Consequently,
the transition time appears to be primarily influenced by the
interactions among TLFs themselves and their surrounding
environment, rather than by interactions with the QDs [23].
The transition rates of TLFs have shown ranges of distributions
and dependence on gate voltages and temperatures, which are
still not fully understood [13], [22], Here, we use a random
log-uniform distribution of the transition time of TLFs in a
given transition time range [23].

Okl 3)

Model Green’s transfer function: TLFs result in a Coulom-
bic field. A silicon spin qubit device has a nanoscale dimen-
sion. Only a small number of TLFs are involved for each
device. For the kth TLF located at an in-plane position of
(X7, YTE), and a depth of dpj from the interface, by using
the Thomas-Fermi (TF) approximation, the screened potential
can be expressed as [25], [26],

1 =) 27 )
Uri () = 3 /0 adq /0 d) Vier(q) €77 (4)
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r(z,y) = \/(x — X1)? + (y — Yri)®, e is the elementary
electron charge, ¢,; is the silicon dielectric constant, grp ~
2/(3nm) is the TF screening wave vector [26]. The in-plane
electrostatic force is computed as ﬁTk(x, y) = =VUrg(z,y).
The potential at the ¢th QD dot can be evaluated as U;;, =
(wi(x,yg |Urk (z,y)|i(x,y)), and the force is computed as

Fy, = (bi(z,y) ’ka(Ly)’ Yi(z,y) ). where ¥;(x,y) is the



confined electron wave function. The wavefunction takes a
Gaussian form [27] with a quadratic QD confinement potential
Veonf(@,y) = %m*oﬂ((aj —xc)® 4+ (Y — ye)?), where the QD
center is at (z¢,y.), m* = 0.19mq is the in-plane effective
mass of the silicon layer and my is the free electron mass, and
a value of hw = 5meV is used in this study, which results
in a Gaussian form of the wave function with a characteristic
radial length of lgp = /A/(m*w)) ~ 9.0nm. The values
are nominal and typical for a semiconductor QD, and varying
the values does not change the qualitative conclusions. We
consider randomly realized configurations with TLFs being
> 1.5lgp away from the centers of the QDs, which results in
a relatively weak perturbation. The transfer Green’s function
can be treated approximately in a linear response manner.

We first model the transfer function term from the charge
noise to a precession frequency. The electric field results in a
displacement of the charge centroid of the confined electron.
In the presence of a magnetic field gradient, it results in a
fluctuation of the magnetic field. The in-plane displacement
can be computed from the in-plane force [23],

—

(6)

In a device set up with the x-gradient of the magnetic field
at the ith qubit dominates, aaji Lo>> 88—% [14], the magnetic
field variation due to position variation caused by the kth TLF

charge is,

0Tt = 0z ® + 0yan) = ——-
m*w

0B;
B, ~ —x;
d ik o 5371]@

In this study, we use a magnetic field gradient value of
% = 0.1mT/nm , in the order of typical experimental value
[6]. The charge noise of interest is low-frequency compared
to the electrostatic response time. The Green’s transfer func-
tion is treated as frequency-independent. Its element between
fluctuation of the ith qubit precession frequency dv; and kth

TLF is determined by

(N

gz}/jB 5 Bir,
where g; is the g-factor and pp is the Bohr magneton, and
0By, is computed with Eq. (7).

After obtaining the transfer function for single qubit terms,
we derive the transfer function term from the charge noise
to the exchange coupling between neighboring qubits. The
exchange part of the effective Hamiltonian between a neigh-
boring pair of qubits (i, j) is Hep = Ji; (S; - S; — 1) [28],
[29], where S; or ; is the spin operator, and the exchange
interaction .J;; can be expressed as,

G, = (®)

Ui —Aij - Unj+ 2 (Ui — Ayj) (Uny + Ayj)’

€))

where ¢.;; is the tunnel coupling, A;; is the detuning, and
the Hubbard on-site double-occupancy potential values are
assumed to be equal Uy; = Uy; = Uy, which is insensitive

to the TLF charge. For a two-qubit quantum gate as shown in
Fig. 1, there is only one exchange term between left and right
QDs. The expression simplifies to

4tz}ij Uy

e 1
9= AT (10)

The electric field by the TLF perturbs both the tunnel
coupling t. ;; and detuning A [30]. Biasing the DQD structure
at the sweet spot in which A < Uy helps to reduce the impact
of charge noise [31]. At this bias condition, the tunnel noise
dominates [30]

2Jij5tc,ij

5]; P
+ te,ij

(1D
The tunnel coupling t.;; depends on the tunnel barrier
height and thickness between neighboring qubits. The tunnel
coupling between two neighboring qubits can be numeri-
cally computed with a Schrédinger-Poisson solver [32]. The
numerically computed tunnel coupling value can be well
described by an analytical expression in the form of the WKB
approximation, which is expressed as [30], [32],

\/2qm*Eb7ij I >
- £  Lsiag )

te,ij = teoexTp <— 7

where Ej ;; is the barrier height and L, ;; is the spacing
between the double quantum dots, and ¢ is a tunnel coupling
parameter independent of Ej ;; and L ;;. The tunnel coupling
parameter can be obtained by fitting Eq. (12) to the numerical
simulation results of the tunnel coupling values at different QD
spacings and barrier heights [32]. The extracted pre-coefficient
t.o depends on the semiconductor material and carrier type.
For silicon electrons, its value is in the order of t.qg ~ 10meV
[32]. The perturbations of the barrier height and thickness due
to a TLF with an in-plane distance of > 10nm away from the
quantum dot centers are orders of magnitude smaller than the
barrier height and thickness themselves, and the fluctuation of
the tunnel coupling can be approximately expressed as,

( \/2qm*Eb,ij ><§Ls,ij
~ T n Ly i;

12)

(5tcy7;j )2
+
Le,ij Ly i ij

The kthe TLF perturbs the interdot spacing and the tunnel
spacing,

Fm ik Fa:, ik
(SLS,Z‘J‘ = (5{1,‘1‘]C - (5l‘jk = m(:L)Q - mujz (14)
i J

where F is the x-component of the electrostatic force. The
change of the barrier height due to the TLF charge is computed
by averaging over the tunneling path,

Iy z,y =0)dz
0Ey;j = fw rer 6y =0)

(15)
Tj — Ty

The matrix element of Green’s transfer function between an
exchange interaction term d.J;; and the kth TLF is obtained

by substituting Eq. (13) to Eq. (11)
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where 0L, ;; is computed by Eq. (14) and 0E} ;; is computed
from Eq. (15).

0Fy.i5
2,17 )

(16)

III. RESULTS

As an example, the simulation framework above is applied
to a two-qubit quantum gate device as shown in Fig. 1. The
spacing between the two QD centers is Lg=40nm. Both the Si
layer and SiGe layer are assumed to have a thickness of 10nm.
We examine the noise auto-correlation and cross-correlation
of the precession rates of the left and right qubits, v, and vg
respectively, and the exchange interaction between the qubits,
J. For the device, the vector of physical quantities of interest
is P = [vp, v, J]. The auto-PSD values are derived from the
diagonal elements of the matrix S(f) in Eq. (1), labeled as
SL, Sgr, and Sy corresponding to vy, Vg, and J, respectively.
Cross-correlation values are computed using Eq. (2) and are
represented by the symbol C' with appropriate subscripts.

The charge noise dominates in an isotopically purified Si%®.
The nuclear magnetic mechanism is weak, which can lead
to a corresponding dephasing time 75 > 100uS. Spin-
orbit-coupling is also weak in silicon [2]. We first focus on
the case with charge noise only. The distribution of TLFs is
randomly generated. To explore the statistical average values.
We stochastically generate the TLF configurations with a
density of Ny = 4 x 10! /em? uniformly distributed in the
capping SiGe layer.

To explore the statistical average over random realizations
of TLF configurations, we realize Nconfig =8000 configura-
tions of the TLFs stochastically and compute the expectation
values of noise correlation spectrums by averaging over these
configurations. Fig. 2a shows that the expected auto-PSDs
of the precession frequencies of two qubits are essentially
equal, and show a 1/ f noise scaling behavior. Each individual
TLF produces a Lorentzian power spectrum. In calculating the
expectation over a larger number of random TLF realizations,
summing and averaging over Lorentzian with different corner
frequency values leads to a 1/f scaling behavior of the
expectation value. Similarly, the expectation value of the auto-
PSD of the exchange interaction shows a clear 1/f scaling
behavior. Fig. 2b shows the cross-PSD of the precession
frequencies of two QDs. Both the expectation values of the
amplitude and phase are nearly independent of the frequency.
The expected amplitude is A =~ 0.5 and the expected phase
is ¢ ~ /2. For each configuration at a given frequency, the
cross-correlation can be either in-phase (¢ = 0) or out-of-
phase ¢ = m. The phase expectation value is the statistical
average of in-phase and out-of-phase correlations in random
TLF realization. The results indicate a strong cross-correlation
of the precession frequency noise between neighboring qubits.

Next, we examine the noise correlation of one randomly
realized configuration of TLFs in the silicon spin qubit device.
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Fig. 2: (a) The expectation value of the auto-PSDs of the
precession frequencies, Sz, (blue solid) and Sk (green dotted),
and the exchange interaction S; (red dashed), over random
TLF distributions. A reference line of 1/f scaling is also
shown (black). (b) The amplitude (top) and phase (bottom)
of the expectation value of the cross-PSD, Cr between the
precession frequencies of two qubits. The expectation values
are computed by using 8000 random realizations of the TLF
distributions.

Fig. 3a shows the noise auto-PSD S; of the precession
frequency of the left qubit. Fig. 3b shows the top view of the
TLF distribution and the electron probability density of two
spin qubits. We also simulated the PSD due to an individual
TLF only as shown by the dotted line for TLF 1 and the dash-
dot line for TLF 2 in Fig. 3a. The results show that the total
PSD can be well described by the sum of the PSDs from these
two contributors. Each TLF charge results in a Lorentzian
PSD, which is nearly constant at a frequency lower than its
corner frequency and scales as 1/f2 at high frequencies. The
sum of the contributions by TLFs 1 and 2 results in a 1/f
scaling of their values at the corner frequencies, as shown
by the slope of the black dashed line in Fig. 3a. These two
charges have a dominant contribution because they have corner
frequencies in the frequency range of interest and they are
close to the left QD as shown in Fig. 3b.

The investigation of noise correlation between neighboring
qubits has been conducted experimentally [14]. The study re-
veals pronounced cross-correlation and a phase-flipping char-



~ o
~~
~
~
~
~
~ .
~ .
~ .
~ .
- .
~
~
~
~
~
~
~
~J

| == Total

PSD [kHZz?/Hz]

= TLF1 .,
—-- TLF2 ¥
102' —_—— l/f t...
ol 1/f2 '...
0= 162 15t 10° 10!
0.003
£ 0.002
=)
>
0.001
0.000
-40-20 0 20 40
X [nm]

(b)

Fig. 3: (a) Noise auto-PSD of the spin qubit precession
frequency at the left QD Sy, (Solid) for the TLF configuration
in (b). The auto-PSDs due to charge in TLF 1 and TLF 2 as
denoted in (b) are shown by the green dotted and red dash-
dot lines, respectively. 1/f and 1/f? scaling lines are also
shown. (b) A randomly realized TLF configuration and the
pseudo-color plot of the electron probability density. All TLF
charges are shown by scattered symbols. Two TLF charges
with dominant contributions to the noise correlations in the
frequency range of interest are denoted as the white diamond
(TLF 1) and the red circle (TLF 2), and the rest TLF charges
are denoted as yellow stars. The modeled device structure is
shown in Fig. 1. The QD spacing is Lg=40nm with the QD
centers located at (+20nm,0).

acteristic, transitioning from out-of-phase to in-phase within
the explored frequency range. We next investigate the cross-
correlation of noise between two qubits. The cross-PSD Crr
between vy and vg is shown in Fig. 4. The results show a
qualitative feature drastically different from the expectation
value as shown in Fig. 2b, which highlights the importance of
a small number of random discrete TLF charges. The cross-
PSD flips from out-phase with ¢ = 7 at lower frequencies to
in-phase with ¢ = 0 at higher frequencies. The amplitude indi-
cates strong cross-correlation, with the peak value approaching
the maximum correlation value of 1.

The reason for the out-phase to in-phase transition is
explained as follows. As discussed before, TLFs 1 and 2
as shown in Fig. 3b have dominant contributions. TLF 1 is
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Fig. 4: The amplitude (top) and phase(bottom) of the cross-
PSD Cprr between the precession frequencies of two qubits.
The modeled device structure is the same as Fig. 3.

located at a x position between the charge centroids of the
left and right qubit charge. Charge of the TLF 1 results in
electrostatic forces that move two qubits charges along the
opposite z directions. In contrast, TLF 2 is located to the
left of both QDs. Its charge results in electrostatic forces that
move both qubit charges along the same x direction. In the
presence of a magnetic field gradient along z direction, the
cross-PSD due to TLF 1 is out-phase, and that due to TLF 2
is in-phase. As shown in Fig. 3a, TLF 1 has a lower corner
frequency and is more dominant at lower frequencies, and TLF
2 is more dominant at higher frequencies. As the frequency
increases, the cross-PSD encounters a phase flip. Although
a quantitative comparison between theory and experiment
is hindered by random spatial and temporal distribution of
TLFs, the simulation results share the same feature of phase-
flipping as observed in experiments [6]. The results indicate
the importance of discrete TLFs on noise correlation spectrums
in a silicon spin qubit system.

IV. CONCLUSION

Noise presents a significant obstacle in improving fidelity
and scalability for semiconductor-based quantum computing.
In this work, we develop Green’s transfer function method
to analyze noise power spectral density and correlations in a
silicon spin qubit system. This method involves mapping the
behavior of charge noise sources of TLFs to the correlated
noise PSDs of precession frequencies and exchange inter-
actions in silicon spin qubit devices. Our findings highlight
pronounced cross-correlations of noise. The impact of a small
number of TLFs is notably significant due to the small
scale of these devices, emphasizing the importance of their
discrete and stochastic nature in silicon spin qubit operations.
Simulations show that the noise correlation PSDs for a given
TLF configuration can vary significantly from what statistical
averages suggest. Additionally, our results shed light on the
phase-flipping behavior observed in the cross-PSD noise of
silicon spin qubit devices. The developed modeling technique



is valuable for assessing and understanding noise correlations
in semiconductor spin qubit systems, paving the way for future
strategies to reduce the effects of correlated quantum noise.
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