
Machine Learning Techniques for Pre-CTS
Identification of Timing Critical Flip-Flops

Chunkai Fu∗, Ben Trombley†, Hua Xiang†, Gi-Joon Nam†, Jiang Hu‡∗
∗Department of Computer Science and Engineering, Texas A&M University

†IBM T. J. Watson Research Center
‡Department of Electrical and Computer Engineering, Texas A&M University

Abstract—The timing criticality of flip-flops is a key factor
for combinational circuit timing optimization and clock network
power reduction, both of which are often performed prior to CTS
(Clock Tree Synthesis) and routing. However, timing criticality
is often changed by CTS/routing and therefore optimizations
according to pre-CTS criticality may deviate from the correct di-
rections. This work investigates machine learning techniques for
pre-CTS identification of post-routing timing critical flip-flops.
Experimental results show that the ML-based early identification
can achieve 99.7% accuracy and 0.98 area under ROC (Receiver
Operating Characteristic) curve, and is 62000× to 73000× faster
than the estimate with CTS and routing flow on average. Our
method is almost 8× faster than a state-of-the-art approach of
ML-based timing prediction.

I. INTRODUCTION

Although the pace of Moore’s law slows down, chip design
complexity continues to grow. For example, the transistor
count of Apple’s A-series processors increases from 7 billion
for A12 in 2018 to 15 billion for A15 in 2021. Such growth
generally entails increased design iterations and turn-around
time. Reliable yet fast design predictions help steer early op-
timization steps in the right direction, reduce design iterations
and thereby mitigate the challenge of design turn-around time
increase.

This work is focused on the early prediction of timing
critical flip-flops, which are end-points of timing critical paths.
Although flip-flops are not the largest body of circuit elements,
they are structurally located at a place of strategic importance –
the boundary between combinational logic circuits and clock
distribution networks. As such, optimizations involving flip-
flops affect both the timing slack of combinational logic paths
and clock network power. As chip timing is mostly decided
by critical path slack and the clock network is a major chip
power consumer, flip-flop optimizations play a critical role in
deciding chip timing and power.

A common optimization technique for flip-flops is their
placement, which has been employed in industrial timing-
driven physical synthesis flows [1]. Flip-flop placement can
also be integrated with cloning for further timing improve-
ment [2]. In [3], [4], flip-flop clustering is studied for simulta-
neous timing optimization and clock network power reduction.
Evidently, these techniques need to know which flip-flops are
timing-critical a priori. While these optimizations are typically
performed before routing or even before CTS (Clock Tree
Synthesis), the timing criticality of flip-flops is often changed
after CTS/routing. Figure 1 depicts pre-CTS slack estimate

versus post-routing slack estimate for 1867 flip-flops in a
design of 45nm technology, where a dot corresponds to one
flip-flop, and the slack values are obtained from a commercial
tool. One can see that the correlation between the pre-CTS
slack estimate and post-routing slack estimate is quite limited.
Also, the pre-CTS slack estimate tends to be very pessimistic
due to the use of guard-band. This is consistent with the
observation in [5]. As such, flip-flop optimizations guided by
the pre-CTS timing estimate may result in over-design and
cause unnecessarily more design iterations.

Fig. 1: Pre-CTS vs. post-routing timing slack estimate for flip-
flops.

Estimating post-routing timing criticality by going through
an entire CTS/routing process is unaffordably expensive for
pre-CTS/routing optimizations. Recently, machine learning-
based pre-routing timing prediction techniques are devel-
oped [5], [6], [7], [8]. The models suggested in [5] are
for delay estimates of individual nets and timing slacks are
obtained through propagating delays in PERT traversals. As
such, its computation runtime is 3× of pre-routing timing
analysis by the commercial tool. The machine learning models
of [7] rely on post-CTS features. In general, CTS is performed
after placement and before routing. Post-CTS timing usually
correlates with post-routing timing remarkably better than
pre-CTS timing. Hence, predicting post-routing timing using
post-CTS features is a relatively easy problem. However,
performing CTS entails significant runtime overhead. Both
[6] and [8] are regression models using complicated Graph
Neural Networks (GNN) or transformer techniques. In [6], it
takes more than two seconds for inference on a circuit with

979-8-3503-2769-4/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 C
om

pu
te

r S
oc

ie
ty

 A
nn

ua
l S

ym
po

si
um

 o
n

V
LS

I (
IS

V
LS

I)
 |

97
9-

8-
35

03
-2

76
9-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

V
LS

I5
94

64
.2

02
3.

10
23

86
58

Authorized licensed use limited to: Texas A M University. Downloaded on September 28,2024 at 16:14:24 UTC from IEEE Xplore. Restrictions apply.

234K cells, which is not a large one from an industrial design
point of view. Such runtime is not fast enough for frequent
use in optimizations at the placement stage. The largest test
case (excluding training cases) in [8] has 168K cells and is
even smaller.

Although an ML-based timing prediction result can be ap-
plied to identify critical flip-flops, there are several important
differences:

• It is very difficult, if not impossible, for timing prediction
to handle netlist changes caused by circuit optimizations
such as buffer insertion and logic reconstruction. For
example, the work of [5] predicts the timing of indi-
vidual nets for a placement solution. However, the nets
being predicted may disappear after logic reconstruction.
Similarly, the latest work [8] needs to trace graph struc-
tures from fixed netlists. By contrast, combinational logic
netlist changes do not cause any hindrance to critical flip-
flop prediction.

• Timing predictions are generally regression inference,
and therefore intrinsically more expensive than critical
flip-flop predictions, which are classification inference.
We indeed observed that critical flip-flop prediction is
near 8× faster than timing prediction.

• The state-of-the-art timing prediction [8] is based on
graph neural network models, whose training time is three
orders of magnitude higher than those for critical flip-
flop predictions. When ML models need to be retrained
due to technology changes, this huge computational cost
difference matters.

• Timing prediction and critical flip-flop prediction are
prepared for different application scenarios. For instance,
timing prediction is useful for timing-driven cell place-
ment that does not involve netlist changes. For design
stages where there are still changes in combinational
circuits, critical flip-flop prediction facilitates better flip-
flop placement and clustering solutions.

This work investigates multiple machine learning techniques
for predicting post-routing timing critical flip-flops before
CTS. These techniques include logistic regression, neural
networks, graph neural network models, and decision tree-
based models. The results on several test cases with up to
780K cells show that the best ML technique can achieve an
area under ROC (Receiver Operating Characteristic) curve of
0.98 and an accuracy of 99.7%. The contributions of this work
are as follows.

• This is the first study on fast early identification of post-
routing timing critical flip-flops according to our best
knowledge.

• Accurate yet fast identification techniques are found and
form a foundation that enables efficient flip-flop optimiza-
tions.

• Ablation study is performed to understand the importance
of different ML features and model sensitivity to different
criticality thresholds.

II. PROBLEM FORMULATION

We investigate techniques for constructing machine learning
models that can predict post-routing timing critical flip-flops
prior to CTS. Given a placement solution for a digital circuit
design and a slack threshold θ, one such model is expected
to identify all and only those flip-flops that have post-routing
slacks less than θ. The models perform classification inference,
i.e., classifying each flip-flop as either timing critical or not
timing critical.

We briefly describe the metrics for evaluating the classifi-
cation performance of a machine learning model. Inference
results can be categorized into TP (True Positive), FP (False
Positive), TN (True Negative), and FN (False Negative). We
overload these acronyms to be their corresponding numbers
of samples, e.g., TP means the number of True Positive
samples. Common classification performance metrics include
the following.

• Recall, a.k.a. TPR (True Positive Rate): TP
TP+FN

• FPR (False Positive Rate): FP
FP+TN

• Accuracy: TP+TN
TP+TN+FP+FN

• Precision: TP
TP+FP

• AUROC: Area Under ROC (Receiver Operation Charac-
teristic) curve

Among all ML classification performance metrics, we em-
phasize AUROC (Area Under ROC curve) and recall. Accu-
racy, precision, and F1 score results depend on the balance
between positive and negative samples in data. For example,
if the number of negative samples is much greater than the
positive samples, even a low FPR can imply a large FP, which
makes precision/accuracy very low. Recall, a.k.a. true positive
rate (TPR), must be considered along with a certain false
positive rate (FPR). AUROC is not sensitive to data imbalance
and reflects the entire TPR-FPR tradeoff. Our goal is to find
a technique with a large AUROC and fast inference.

In evaluating the ML model performance, we make sure
that testing data are unseen in training. The “unseen” has two
different scenarios:

• Relaxed split between training and testing data. Each
testing sample is unseen in training data but may share
the same Verilog description. For example, a placement
solution of a JPEG decoder is a testing sample and not
included in the training data. However, another logic
synthesis and placement solution of the same JPEG
Verilog description may exist in the training set.

• Strict split between training and testing data. If the
placement solution of JPEG decoder is used as a testing
sample, then there is no JPEG decoder at all in the
training set.

III. MACHINE LEARNING ENGINES

In this work, we investigate four types of 6 different
machine learning engines for the timing critical flip-flop
prediction task.

Authorized licensed use limited to: Texas A M University. Downloaded on September 28,2024 at 16:14:24 UTC from IEEE Xplore. Restrictions apply.

A. Logistic Regression

Logistic regression [9] is a statistically supervised learning
technique for estimating the probability that a data sample
belongs to a class or not.

B. MLP (Multi-Layer Perceptron)

This is also known as artificial neural network [10]. In
this work, binary cross-entropy is employed for MLP model
training.

C. Decision Tree-Based Techniques

There are two popular decision tree-based techniques, ran-
dom forest [11] and XGBoost [12]. Compared to neural
network-based techniques, they are generally lightweight in
terms of training and inference, and generally more inter-
pretable.

1) Random Forest: A random forest consists of multiple
decision trees, which are independently constructed with cer-
tain randomness. The final classification result is an assembled,
e.g., voting, among these trees.

2) XGBoost: The XGBoost algorithm is implemented
within the Gradient Boosting framework and provides a par-
allel tree boosting that is capable of fast and accurate training
and inference for prediction tasks, and also curbs over-fitting
by branch pruning.

D. Graph Neural Network

When GNNs are applied for classifications, there are two
formulations. One is graph classification, which is to tell if
an entire graph belongs to a class or not. The other is node
classification, which decides if each node belongs to a class
or not. For critical flip-flop prediction, each node represents
a flip-flop and an edge implies combinational logic between
two flip-flops. Evidently, the critical flip-flop prediction is node
classification. We study two state-of-the-art GNN techniques:
GraphSAGE [13] and Graph Attention Network [14].

1) GraphSAGE: Graph-based engines such as GraphSAGE
([13]) integrate the features of their neighbors encoded as
embedding layers which is accomplished through the message-
passing function and the aggregator function.

2) Graph Attention Network: Unlike GraphSAGE, which
performs a simple formulation of the GNN layer and each
neighbor contributes equally to the final representation of the
target node, the Graph Attention Network ([14]) learns and
assigns different importance to each neighbor’s contribution.

IV. MACHINE LEARNING MODEL FEATURES

The machine learning model features used in our method
are described as follows.

• Layout features. There are two main layout features for
our machine learning models. The first one is the longest
fanin path length for each flip-flop. A path length is the
total HPWL (Half Perimeter Wire Length) for all nets
along a combinational logic path. The maximum HPWL
of different timing paths is used, which is termed as (max
distance) in the feature set. The other layout feature is the

pin density (density) in a small region centered around
the flip-flop to be classified.

• Timing features. These features are obtained from the
cell library and post-placement (pre-CTS) timing report.
Since it takes non-trivial time to obtain the timing report,
the timing report-related features are optional and we
evaluate models with and without them.

– Setup time constraints. They vary for different flip-
flop types.

– Post-placement timing slack.
– Flip-flop input slew rate.
– The clock-to-output delay for a flip-flop.
– Clock skew.

• Structural features. These are the fanout size (fanout),
the maximum fanin logic depth (max logic depth), and
the average fanin logic depth (avg logic depth) for the
flip-flops to be classified.

• Electrical feature. This is the total capacitive load for
each flip-flop to be classified.

For non-GNN engines, each data sample has one flip-flop
with the specified feature set. For GNN techniques, an entire
placement solution is abstracted to a graph, where each node
corresponds to a flip-flop and edges indicate combinational
paths among the flip-flops.

V. DATA PREPARATION

Data plays a critical role in almost any machine learning
approach. Data preparation includes data extraction, data pro-
cessing, and splitting train and test cases. The work flow for
data extraction is shown in Figure 2, which shows the major
stages of a typical VLSI process with annotations on where the
features and labels were extracted for this study. Preferably,
we could evaluate timing feedback on flipflops as early as
possible, and in this case, we chose to extract the features
after the placement stage, and we used the slack obtained in
the post-routing stage to generate the labels for each flipflop.
The optimization step covers gate sizing and buffer insertion.

Fig. 2: Design flow for data preparation.

VI. EXPERIMENT

A. Experiment Setup

The benchmark designs with cell count and design run-
time are summarized in Table I. Note that the number of
combinational logic cells may change after the optimization.
The “synthesis” here means CTS, optimization plus routing.
There are 28 RTL designs. Each RTL design leads to multiple

Authorized licensed use limited to: Texas A M University. Downloaded on September 28,2024 at 16:14:24 UTC from IEEE Xplore. Restrictions apply.

placement solutions, each of which is performed with CTS,
optimization, and routing. Overall, 148 routed designs are
obtained. In the relaxed split scenario, these 148 routed designs
are randomly divided into two sets, 106 samples (70% of total
samples) for the training set and 42 samples for the testing set.
The 106 training samples and 42 testing samples may share the
same RTL designs. However, in the strict splitting scenario,
106 samples are used for training and 42 are used for testing,
but the training and testing set in the strict splitting do not
have overlapped RTL designs.

TABLE I: Benchmark circuits and their synthesis runtime

Design Number of
flip-flops

Total
cell count

CTS
(s)

Optimization
(s)

Routing
(s)

Total
Synthesis (s)

jpegencode 39586 672641 3680 15310 4140 23130
tau17 leon2 iccad 149381 780456 12080 22438 16294 50812

gfx 49211 323269 3087 28876 3561 35524
scdma viterbi 68393 316537 2977 2626 3992 9595

fft 256 42708 212402 2174 4198 2348 8720
fft 128 33461 172598 1595 11221 1722 14538
fft 64 16004 88129 830 6664 871 8365

ac97 ctrl 2199 4716 106 3487 126 3719
tate pairing 911 86196 593296 9315 12539 12697 34551
tate pairing 697 73144 512427 8045 10768 10966 29779

tate pairing 31416 227656 3574 4784 4872 13230
des3 perf 8808 62247 977 1366 1332 3676
ethernet 10544 48616 763 1174 1040 2978

fpu 663 45854 720 962 981 2663
sd card controller 2646 12344 194 422 264 880

aes core 530 11560 181 374 247 803
usb funct 1744 11101 174 318 238 730

pci 2471 10516 165 381 225 771
trigonometric functions 544 8218 129 210 176 515

systemcaes 670 5971 94 202 128 424
mem ctrl 1065 5286 83 160 113 356

tv80 359 4382 69 125 94 287
pid controller 396 3623 57 106 78 240

wb dma 523 2904 46 103 62 211
des3 area 128 2546 40 138 54 233

spi 229 1773 28 98 38 164
systemcdes 190 1691 27 53 36 116

pwm 145 1372 22 121 29 172

The designs are based on 45nm Nangate OpenCell Library
[15]. Placement solutions are obtained using Synopsys Design
Compiler version S-2021.06-SP1. Clock Tree Synthesis and
Routing are performed using Cadence Innovus version 191.
The synthesis flow was run on a server with Intel(R) Xeon(R)
CPU E5-2680 v2 @ 2.80GHz, 252GB RAM, CentOS Linux
7. Model training and inference are performed on Intel(R)
Core(TM) i7-9850H @ 2.60GHz, 32GB RAM, Windows10
mobile workstation.

Random forest models are built with scikit-learn [16]. MLP
is implemented with Keras [17]. XGBoost is implemented
with the XGBoost python package [12]. StellarGraph [18] is
used for graph representation for GraphSage with Tensorflow
for the model pipeline. NetworkX [19] is used for graph
representation for GAT with PyTorch used for the model
pipeline. GraphSAGE uses BinaryCrossentropy as the loss
function and GAT uses SigmoidCrossEntropy while both use
the Adam optimizer.

The classification performance result for each RTL design
is the average among all samples of the same RTL design.

B. Classification Performance

The average performance metrics and runtime among all
test samples are summarized in Table II for all the machine
learning engines evaluated in this work. One can see that
XGBoost leads to the best AUC ROC (Area Under Curve of

ROC) and recall. Although GAT obtains the best accuracy,
its AUC ROC and recall values are inferior. Graph-based
approaches also tend to incur large training and inference
runtime. One main reason for the relatively low performance
of GNN models is that the criticality of a flip-flop (or a
graph node) only depends on its immediate incident edges,
which correspond to the fanin and fanout combinational logic.
As such, graph convolution among neighboring nodes (flip-
flops) provides little help in the graph node classification. Our
subsequent experimental results will be focused on XGBoost.

TABLE II: Classification performance of different ML engines

ML engines AUC
ROC Accuracy Recall

FPR 5%
Training
time (s)

Inference
time (s)

Random Forest 0.96 99.6% 82.5% 2.1 0.03
XGBoost 0.98 99.7% 94.4% 5 0.31

MLP 0.94 99.6% 82.2% 105 0.08
Logistic Regression 0.88 99.6% 77.9% 27.1 0.01

GAT 0.88 99.9% 75.0% 5,820 5.23
GraphSage 0.87 88.0% 67.5% 11,502 50.42

The classification performance and runtime of of our
XGBoost-based models are shown in Table III for individual
designs. The Average speedup is the ratio of the average total
synthesis time to the average model inference time. Compared
to running a synthesis flow of CTS, optimization, and routing,
our models achieve a speedup of more than 62K×. We further
compare the ROC curves of our XGBoost-based and MLP-
based models in Figure 3, where the advantage of XGBoost
is evident.

Fig. 3: ROC curves for our XGBoost and MLP models

C. Comparison with Previous Work
To the best of our knowledge, our work is the first one

on critical flip-flop prediction. We compare with the state-of-
the-art timing prediction work [8], which can be applied for
critical flip-flop prediction with the assumption that there is no
optimization performed with netlist change. We find a few de-
signs where this assumption can be satisfied and compare our
XGBoost-based method with [8] on these designs. The results
are summarized in Table IV. The classification performance of
our model is similar to [8], with better accuracy and slightly
worse recall/FPR. Our inference time is nearly 8× faster than
[8].

Authorized licensed use limited to: Texas A M University. Downloaded on September 28,2024 at 16:14:24 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Performance and runtime of our XGBoost-based model with full feature set

Design AUROC Accuracy Recall (FPR = 5%) Inference time (s) Speedup vs
total synthesis

ac97 ctrl 0.9 99.0% 100% 0.031 119,009×
fft 64 1 99.4% 100% 0.141 59,465×
fft 128 1 99.9% 100% 0.218 66,622×
fft 256 0.98 99.9% 93.2% 0.304 28,689×
gfx 1 99.9% 100% 0.322 110,471×
scdma viterbi 0.99 99.6% 100% 0.250 38,420×
jpegencode 0.96 99.9% 83.0% 0.273 84,664×
tau17 leon2 iccad 0.98 99.9% 79.0% 0.937 54,200×

Average 0.98 99.7% 94.4% 0.310 62,358×

TABLE IV: Comparison between our XGBoost-based model and [8]

Design
Accuracy Recall FPR Inference time(s) Speedup

vs [8]Our XGBoost [8] Our XGBoost [8] Our XGBoost [8] Our XGBoost [8]

fft 128 99.9% 94.4% 91.1% 95.7% 5.0% 3.5% 0.229 2.201 9.6×
fft 256 99.9% 94.9% 89.0% 95.3% 5.0% 2.9% 0.314 2.214 7.1×

jpegencode 99.9% 95.5% 90.0% 95.8% 5.0% 2.6% 0.281 1.932 6.9×

Average 99.9% 94.9% 90.0% 95.6% 5.0% 3.0% 0.275 2.116 7.8×

D. Relaxed and Strict Split between Training and Test Data

According to the splitting schemes described in Section II,
the performance of our XGBoost-based models shown in Ta-
ble V suggests that our XGBoost models work pretty well even
under the strict split, where the test designs are completely
unseen in the training.

TABLE V: Comparison between different training/test split
schemes

Design
AUROC Accuracy Recall (FPR = 5%)

Relaxed Strict Relaxed Strict Relaxed Strict

fft 128 1 0.97 99.9% 99.9% 100.0% 91.1%
fft 256 0.98 0.95 99.9% 99.9% 93.2% 89.0%

jpegencode 0.96 0.96 99.9% 99.9% 83.0% 90.0%

Average 0.98 0.96 99.9% 99.9% 92.1% 90.0%

E. Impact of Slack Thresholds

The timing criticality of a flip-flop depends on a user-
specified threshold. One can choose the threshold to be 0
slack, which means flip-flops with negative slacks are critical.
Alternatively, one can choose a higher threshold, e.g., 20ps,
which implies that all flip-flops with slacks below 20ps are
treated as critical. In Table VI, we show the results of our
XGBoost model on the same test cases as Table III for
different threshold values. The AUC ROC and accuracy of
our models are not sensitive to threshold changes. Since recall
values are associated with specific FPR, i.e., specific points on
a ROC curve, they are subject to local variations.

F. Impact of Feature Selections

The full feature set described in Section IV has 17 features
and includes those from post-placement (pre-CTS) timing
analysis. Since the timing analysis time is non-trivial, we

TABLE VI: Classification performance under different slack
thresholds

Threshold (ns) AUROC Accuracy Recall

0 0.97 99.2% 87.2%
0.01 0.98 99.7% 94.4%
0.02 0.96 99.8% 88.8%
0.03 0.97 99.7% 90.2%
0.04 0.95 98.4% 91.4%

Fig. 4: Feature importance ranking for the full feature set.

consider a reduced feature set, where the timing analysis-
related features are removed and the other 12 features remain.
The classification performance and runtime of our XGBoost
models with the reduced feature set are evaluated and the re-
sults are shown in Table VII. Comparing with results from the
full feature set in Table III, one can see that the classification
performance is similar while the inference time is shorter.

To further study the impact of individual features, we obtain
the feature importance rankings for the full set and the reduced

Authorized licensed use limited to: Texas A M University. Downloaded on September 28,2024 at 16:14:24 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: Classification performance and inference time of our XGBoost models with a reduced feature set

Design AUROC Accuracy Recall (FPR=5%) Inference time (s) Speedup vs
total synthesis

ac97 ctrl 0.98 99.8% 100% 0.016 238,397×
fft 64 0.95 98.9% 95.6% 0.078 107,244×
fft 128 0.97 99.9% 92.2% 0.156 93,192×
fft 256 0.98 99.9% 86.5% 0.156 55,897×
gfx 0.97 99.8% 100% 0.208 170,788×
scdma viterbi 0.99 99.6% 100% 0.389 24,666×
jpegencode 0.96 99.7% 85.3% 0.179 129,218×
tau17 leon2 iccad 0.93 99.6% 69.5% 0.921 55,170×

Average 0.97 99.7% 91.1% 0.263 73,434×

Fig. 5: Feature importance ranking for the reduced feature set.

set, which are depicted in Figures 4 and 5, respectively. These
two figures show only the features of top importance. There
is a large overlap between the two figures and this tells that
our method has little dependence on the timing analysis-based
features.

VII. CONCLUSION

This paper explored how machine learning can be used
to predict timing critical flip-flops in the context of post-
placement. The major work accomplished in this study include
proposing a machine learning flow based on the XGBoost
technique, identification of top features that are correlated
with flip-flop timing criticality, and construction of a dataset
based on 28 benchmarks for training and testing. Results show
that the machine learning flow is useful for obtaining high
prediction accuracy and recall while being general enough to
be used on new test designs. Future work may integrate the
flow to assist timing-driven placement.

ACKNOWLEDGMENT

This work is partially supported by Semiconductor Research
Corporation GRC-CADT 3103.001/3104.001 and National
Science Foundation CCF-2106725/2106828.

REFERENCES

[1] D. A. Papa, T. Luo, M. D. Moffitt, C. N. Sze, Z. Li, G.-J. Nam,
C. J. Alpert, and I. L. Markov, “Rumble: an incremental, timing-driven,
physical-synthesis optimization algorithm,” Proceedings of the 2008
international symposium on Physical design, pp. 2–9, 2008.

[2] J. Jung, G.-J. Nam, W. Chung, and Y. Shin, “Integrated latch placement
and cloning for timing optimization,” ACM Transactions on Design
Automation of Electronic Systems, vol. 24, no. 2, pp. 1–17, 2019.

[3] C.-C. Huang, G. Tellez, G.-J. Nam, and Y.-W. Chang, “Latch clustering
for timing-power co-optimization,” Proceedings of the 57th ACM/IEEE
Design Automation Conference, pp. 1–6, 2020.

[4] D. Mangiras, A. Stefanidis, I. Seitanidis, C. Nicopoulos, and
G. Dimitrakopoulos, “Timing-driven placement optimization facilitated
by timing-compatibility flip-flop clustering,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 10, pp. 2835–2848, 2019.

[5] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” Proceedings of
the 56th ACM/IEEE Design Automation Conference, pp. 1–6, 2019.

[6] T. Yang, G. He, and P. Cao, “Pre-routing path delay estimation based
on transformer and residual framework,” Proceedings of the 27th Asia
and South Pacific Design Automation Conference, pp. 184–189, 2022.

[7] L.-W. Chen, Y.-N. Sui, T.-C. Lee, Y.-L. Li, M. C.-T. Chao, I.-C. Tsai,
T.-W. Kung, E.-C. Liu, and Y.-C. Chang, “Path-based pre-routing timing
prediction for modern very large-scale integration designs,” Proceedings
of the 23rd IEEE International Symposium on Quality Electronic Design,
pp. 1–6, 2022.

[8] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,”
Proceedings of the 59th ACM/IEEE Design Automation Conference, pp.
1207–1212, 2022.

[9] L. Connelly, “Logistic regression,” Medsurg Nursing, vol. 29, no. 5, pp.
353–354, 2020.

[10] S.-C. Wang, “Artificial neural network,” Interdisciplinary Computing in
Java Programming, pp. 81–100, 2003.

[11] J. L. Speiser, M. E. Miller, J. Tooze, and E. Ip, “A comparison of random
forest variable selection methods for classification prediction modeling,”
Expert Systems with Applications, vol. 134, pp. 93–101, 2019.

[12] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 785–794, 2016.

[13] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Proceedings of the 31st Conference on Neural
Information Processing Systems, vol. 30, 2017.

[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” arXiv, 2017.

[15] Silvaco, “45nm open cell library.”
[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[17] F. Chollet et al., “Keras,” https://keras.io, 2015.
[18] C. Data61, “Stellargraph machine learning library,”

https://github.com/stellargraph/stellargraph, 2018.
[19] D. A. S. Aric A. Hagberg and P. J. Swart, “Exploring network structure,

dynamics, and function using networkx,” Proceedings of the 7th Python
in Science Conference, pp. 11–15, 2008.

Authorized licensed use limited to: Texas A M University. Downloaded on September 28,2024 at 16:14:24 UTC from IEEE Xplore. Restrictions apply.

