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Vanishing first cohomology and strong 1-boundedness
for von Neumann algebras

Ben Hayes, David Jekel, and Srivatsav Kunnawalkam Elayavalli

Abstract. We obtain a new proof of Shlyakhtenko’s result which states that if G is a sofic, finitely
presented group with vanishing first £2-Betti number, then L(G) is strongly 1-bounded. Our proof
of this result adapts and simplifies Jung’s technical arguments which showed strong 1-boundedness
under certain conditions on the Fuglede—Kadison determinant of the matrix capturing the relations.
Our proof also features a key idea due to Jung which involves an iterative estimate for the covering
numbers of microstate spaces. We also use the works of Shlyakhtenko and Shalom to give a short
proof that the von Neumann algebras of sofic groups with Property (T) are strongly 1 bounded,
which is a special case of another result by the authors.

1. Introduction

A tracial von Neumann algebra is a pair (M, t) of a finite von Neumann algebra and a
faithful normal tracial state. For every group G, there is an associated tracial von Neumann
algebra, the von Neumann algebra L(G) generated by the left regular representation of G
on £?(G) with the trace given by (., (-)8.), and a major theme of operator algebraic
research has been how the properties of a group (algebraic, analytic, geometric, etc.) are
reflected by its von Neumann algebra.

In particular, one may consider finitary approximations of the group in several senses:
A group is sofic if the group trace can be approximated by almost representations in per-
mutation groups; on the other hand, L(G) is Connes embeddable if the same holds for rep-
resentations in unitary groups, or if the group can be approximated by *-representations
in matrices. Voiculescu’s free entropy dimension was introduced to quantify the amount
of approximations by matrices for a given tuple x in a von Neumann algebra [28, 29].
The standard generators for a free group [, for n > 2 have many approximations, and
Voiculescu used this fact to deduce that the von Neumann algebra has no Cartan subalge-
bras [29]. The free entropy approach has had several other applications to free group von
Neumann algebras (and more generally free products) [10,13,15,18,25]. A related notion
of strong 1-boundedness was introduced by Jung (see [20]); this is a strengthening of the
condition of having free entropy dimension 1, with the useful property that it is indepen-
dent of the choice of generating set. The first author reformulated strong 1-boundedness
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through a numerical invariant %, called the 1-bounded entropy, which is finite if and only
if M is strongly 1-bounded (see [15]).

The work of Jung [19] and Shlyakhtenko [25] investigated strong 1-boundedness in
the context of polynomial relations in a *-algebra. In particular, Shlyakhtenko explicitly
connected this to ¢2-Betti numbers of groups. In this paper, we present an alternative
proof of Shlyakhtenko’s result [25] that finitely presented sofic groups with vanishing first
£2-Betti number are strongly 1-bounded (results in this direction are in Jung’s paper but
under somewhat restrictive hypotheses). Shlyakhtenko’s result generalized Jung’s earlier
work [19] but with a different proof strategy using non-microstates free entropy rather
than microstates free entropy. We give a purely microstates proof that streamlines Jung’s
original ideas and clarifies the essential ingredients and limitations of this approach. The
statement of the theorem is as follows.

Theorem 1.1 ([25]). If G is a sofic finitely presented group with vanishing first £>-Betti
number, then L(G) is strongly 1-bounded.

Shlyakhtenko proved Theorem 1.1 by obtaining a key technical free probabilistic fact
involving non-microstates theory and Fisher’s information. Using this in combination with
an inequality between the microstates and non-microstates free entropy dimensions, he
obtains, as a corollary, the following generalization of Jung’s result [ 19, Theorem 6.9].

Theorem 1.2. Let (M, 1) be a tracial W*-algebra generated by some x € Msi. Suppose
that |x|leo < R. Let m € N U {oo}. Let f(t1,...,t3) € C{t1,...,t3)®™ be a tuple of
non-commutative polynomials such that f(x) = 0. Let

X1Q®1—-1®x1 -+ x3Q®@1—-1Q x4

Df(x) = ( 0, £(x) ade(x) ) S Mm,d(M ® M*®P),

and let ju|p,| be the spectral measure of |Dy| = (Df* Df)l/2 with respectto T ® t. If

/ llog?|dpip, (1) < oo, 1.1)
[0,00)

(with the convention that log(0) = —o0), then M is strongly 1-bounded.

Strictly speaking, both Jung and Shlyakhtenko’s results are about a-boundedness for
general « > 1, whereas the above theorem just covers @ = 1. However, the case of @ = 1
is of the most interest in applications, and the case of @ > 1 will not be relevant in our
paper.

One deduces Theorem 1.1 from Theorem 1.2 through the well-known relationship
between group cocycles and derivations on the group algebra. One then parameterizes the
derivations in terms of their action on a self-adjoint generating set, hence obtaining a bijec-
tion between derivations and vectors z in the kernel of df(x). Looking at cocycles that are
orthogonal to the inner cocycles results in the additional condition of Z?:l [xj.z;] =0,
or that z is in the kernel of the commutator operator in the first row of the matrix Dy (x).
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Hence, the first £2-Betti number with respect to 7 of the x-algebra generated by x is the
Murray—von Neumann dimension of the kernel of Dy.

The condition (1.1) is needed for the microstates argument to go through in the case
of [19], or the more general non-microstates estimate used in [25] (the arguments are
substantially different). This hypothesis is non-trivial to check in the group case, and this
is where one uses the assumption of soficity. The bound (1.1) expresses positivity of a
certain Fuglede—Kadison determinant, which is known for sofic groups [11]. We remark
that Shlyakhtenko’s results about vanishing L2-Betti numbers have been generalized to
x-algebras that are not group algebras [5], but this still requires some way of controlling
the Fuglede—Kadison determinant.

Our proof of Theorem 1.2 is longer than Shlyakhtenko’s argument, but it is more self-
contained. Indeed, Shlyakhtenko’s argument used the external fact that y < y* from [4]
and the result about strong 1-boundedness and non-amenability sets from [15, Proposition
A.16]. In this paper, we generalize and streamline Jung’s strategy from [19], which uses
iteration to bound covering numbers for smaller and smaller £ with errors controlled by the
integral (1.1). Much of the technical challenge in Jung’s work had to do with converting
between covering numbers with respect to different non-commutative L?-norms on the
von Neumann algebra (and in fact L? quasinorms for p € (0, 1)). Our argument works
mostly with L2 norms but requires conversion between L' and L? norms at one point,
and this is the main time we use a significant external ingredient, Szarek’s estimates for
the covering numbers of Grassmannians [26].

Another notable feature of the proof is the way in which the condition ) j [xj,zj]=0
(which corresponded in cohomology to looking at cocycles orthogonal to inner cocycles)
arises naturally in the microstate setting by considering the element in a unitary orbit
closest to a given point x.

We also remark that polynomials in Theorem 1.2 can be replaced more generally
by power series and even non-commutative trace C? functions in the sense of [17]; see
Remark 3.10.

2. Background

2.1. Tracial von Neumann algebras and non-commutative laws

A tracial von Neumann algebra is a pair (M, t) where M is a von Neumann algebra and
7: M — C is a faithful, normal, tracial state. The classical example is M, (C) as a tracial
von Neumann algebra with the tracial state tr,, given by

1 n
tr,(A) = - Z Aji.

i=1

We will primarily be interested in cases where M is diffuse, i.e., it has no non-zero min-
imal projections. The above algebra is finite-dimensional, and is thus not diffuse. One
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interesting class of diffuse tracial von Neumann algebras are the group von Neumann alge-
bras. For a discrete group, we define the left regular representation A: G — U(L?(G)) by

(A(g)E)(h) = E(g™'h) forall g.h € G.

The group von Neumann algebra of G is then

L(G) = span{A(g): g € G}SOT.

The linear functional t: L(G) — C given by 7(x) = (x61, §1) is a faithful, normal, tracial
state (see, e.g., [21, Remark 6.7.3]). So, (L(G), 1) is a tracial von Neumann algebra.
Moreover, it can be shown that L(G) is diffuse if and only if G is infinite.

For a von Neumann algebra M, we use My, for the self-adjoint elements of M and
U(M) for the unitary elements of M.

Abelian tracial von Neumann algebras correspond exactly to probability spaces, and
so we may think of tracial von Neumann algebras as an instance of non-commutative
probability spaces. Mimicking the Abelian case, for a tracial von Neumann algebra (M, t)
and 1 < p < oo, we define || - ||, on M by

Ixll, = z(Ix|?)"/?,  where |x| = (x*x)"/2.

It can be shown [9] that this is indeed a norm on M. We use the notation ||x| o for the
operator norm. More generally, for x € M 4 we set

d 1/
(Zj:l T(|xj|p)) P, pE [1’ OO),
max;=1,..4 x| p = 0.

||(x15"-»xd)||l7 = {

If (M, ) is viewed as a non-commutative probability space, then its elements may be
viewed as non-commutative random variables. In fact, a d-tuple x = (x1,...,x4) € Mg
is the non-commutative analog of an R?-valued random variable. In the commutative
setting, an R¥-valued random variable naturally gives rise to a probability distribution
as a classical measure on R?. It is not possible to define such a measure in the non-
commutative setting. However, as probability measures of compactly supported measures
may be uniquely characterized by their moments, we define an analog of the notion of
probability distribution as a linear functional on non-commutative polynomials.

For d € N, we let C(t1,...,t4) be the algebra of non-commutative polynomials
in d formal variables #q, ..., 4, i.e., the free C-algebra with d-generators. We give
C(t1,...,tg) the unique *-algebra structure which makes the ¢; self-adjoint. By universal-
ity, if A is any %-algebra and x = (x1,...,x4) € A? is a self-adjoint tuple, then there is a
unique *-homomorphism C(¢,...,7;) — A which sends ¢; to x;. For p € C(ty,...,14).
We use p(x) for the image of p under this *-homomorphism. Given a tracial von Neu-
mann algebra (M, 1) and x € M&, we define the law of x, denoted by £, to be the linear

sa?’

functional £,: C(ty,...,t3) — C given by

() = (S (x)).

Non-commutative laws can be characterized as follows.
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Proposition 2.1 (see [1, Proposition 5.2.14]). The following are equivalent.

(i)  There exists a tracial von Neumann algebra (M, t) and x € Msda such that £ = £,
and || x]leo < R.

(i1) £ satisfies the following conditions:
e U(1) =1,
s USf*f)=0for feCln,... la),
* U fg) =LUgf) for f.g € Clt,... 1a),
o |0t --t;)| < RF forallk € N and iy, ... ix €{1,...,d}.

For R > 0,d € N, we let X g be the space of laws, satisfying either of the above
equivalent conditions (for this specific) R. We also denote

Zq = | Sar-
R>0

Since ¥, is a space of linear functionals on C{ty,...,?;), we can give it the weak™-
topology.

Remark. The proof of ((ii) implies (i)) uses the GNS construction (see [1, Proposition
5.2.14]). Namely, let H = L?({) be separation-completion of C(t1, ... ,%;) with respect
to the semi-inner product ( f, g), = £(f*g). It can be shown that multiplication by ¢;
is bounded with respect to this semi-inner product and induces a well-defined bounded,
self-adjoint operator x; on L2({). Let M = W*(xy,..., x4) be the algebra generated
by x1,..., x4, and we define 7: M — C by 7(x) = (x1,1), where 1 € C{tq,...,t4) is
viewed as a vector in L2(£). We will denote M = W* (), and 7r;: C(t1, ..., t5) — W*({)
the unique *-homomorphism, satisfying my(f;) = x;.

2.2. Microstate spaces and 1-bounded entropy

Let (M, 1) be a diffuse tracial von Neumann algebra, and x € Msd‘i for some d € N with
W*(x) = M. Suppose that || x|l < R.Following [28], for each open set @ of X, g and
N € N, we define

r'(O) = {X e M, (C)% : tx € O).

When O is a neighborhood of £, we call " g')((9) a microstate space for x.

Givend,n e N, p € [1,00], ¢ > 0,and 2, E C M,,((C)d, then E is said to (e, [|:||p)-
cover Q if, for every A € Q, thereisa B € &8 with |4 — B||, < . We define the covering
number of Q € M,,(C)%, denoted by K. (2, | - || p). to be the minimal cardinality of a set
that (e, || - || p)-covers 2. For subsets of M, (C)¢ which are invariant under the conjugation
action of U(n) on M, (C)¢, it is natural to take the orbital numbers modulo unitary conju-
gation. Givenn € N, ¢ > 0 and Q, E C M,,(C)%, we say that E orbitally (e, I:|p)-covers
Q if, for every A € Q, thereis a B € E and an n X n unitary matrix V' so that

|A—VBV*|, <e.
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We define the orbital covering number Ko®(S2, ||-|») as the minimal cardinality of a set of
Qo that orbitally (e, ||-|| )-covers 2. Since we will usually be concerned with || - || 2-norms,
we will frequently drop | - |2 from the notation and use K2 (2) instead of K°(2, || - |12)-
Let R € [0, 0o0) be such that || x||cc < R.

For a weak*-neighborhood O of £, we define

1
hR.s(0) == limsup — log KI®(I g (0)),
n

n—oo

hre(x):= inf hg .(0O),
R,e(X) anf R.e(0)
where the infimum is over all weak*-neighborhoods O of £,.. We then define

hr(x) :=suphpg(x).
>0

By [15], it follows that s g(x) is independent of R as soon as ||x||cc < R, so we use A(x)
instead of hg(x) as soon as ||x|cc < R. Moreover, if x, y are two self-adjoint tuples in
M with W*(x) = M = W*(y), then h(x) = h(y). So, we may define h(M) = h(x) if
W*(x) = M.If M is not a factor, then the 1-bounded entropy depends upon the choice of
M . We will use h(M, 7) if we wish to emphasize the dependence of the 1-bounded entropy
of 7. Usually, the choice of 7 will be clear from the context and use 2(M). In [15], it is
shown how to extend this definition to infinitely many variables, but we will not need this.
The 1-bounded entropy characterizes strong 1-boundedness by the following result.

Theorem 2.2 (see [15, Proposition A.16]). A tracial von Neumann algebra M is strongly
1-bounded in the sense of Jung [18] if and only if h(M) < oo.

Because of this, we will not use Jung’s original definition of strong 1-boundedness [18]
and will prove that algebras are strongly 1-bounded by showing that they have finite 1-
bounded entropy.

3. Proof of Theorem 1.2

3.1. Sketch of the proof

In order to prove strong 1-boundedness, or equivalently that 4 g (x) < oo, we will estimate
h R ¢(x) iteratively for smaller and smaller values of ¢ in a similar manner to Jung [18]. In
particular, if n < ¢, then we want to estimate /g ,(x) in terms of 4g .(x) by covering a
(&, ||I-]l2)-ball in the microstate space by an (7, ||-||2)-balls.

Consider the (¢, ||-||2)-ball centered at some microstate X € M, ((C)fb1 with | X ||eo < R.
Let Dy (X) denote the matrix of tensors as in the theorem statement with x replaced by
X.If Y is a microstate in the (g, ||-||2)-ball of X, then, by Taylor expansion f(Y) — f(X)
is approximately df(X)#(Y — X). By taking a high degree of approximation for our
microstate space, we can make f(Y) — f(X) arbitrarily small, and thus arrange that
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Y — X is in the approximate kernel of df(X). Furthermore, because we are only con-
sidering microstates up to unitary orbits, we can assume without loss of generality that
Y is the closest point in its unitary orbit to X, which implies that Z;":l[X 7. Y] =
0 (see Lemma 3.3). Hence, ¥ — X is in the approximate kernel of Ds(X). Because
Jlog 1] dpp,(x)|(t) < oo and [Dy(X)| converges in distribution to | Dy (x)|, the dimen-
sion of the kernel of Ds(X) vanishes in comparison to n?, and we can use standard
estimates on covering numbers of approximate kernels to get a bound on the n-covering
number.

3.2. Background on non-commutative derivatives and Taylor expansion

First, we recall Voiculescu’s free difference quotient [28,30]. Consider the d -variable non-
commutative polynomial algebra C(¢1,...,24). Let d; : C(t1,...,t7) = C{t1,...,14) ®
C(t1,...,tq) be the unique linear map, satisfying

k
Ojltiy - 11 = D Biamjtiy +++ligey ® liguy = iy
a=1

The map d; can also be characterized as the unique derivation

Clty,....tg) > Clty,...,t3) @ Clt1,...,14),

satisfying

(1) = di=;(1®1).
Here, when we describe d; as a ““derivation”, we are viewing C(¢1,...,t7) ® C(t1,...,tz)
as a bimodule over C(tq, ..., f;) using the multiplication operations

r(fRg=pf®g (f®Yp=[f®gp.
If f=(0M,..., fm) €C{t1,...,t5)™, then
of € M qa(Clty,....12) @ Clt1,...,12))

will denote the matrix whose (i, j) entry is d; f;. This matrix plays a similar role to
the derivative of a function R¢ — C™ in that it furnishes the first-order term in a non-
commutative Taylor expansion for the evaluation of f on elements of a tracial von Neu-
mann algebra.

Recall that if (M, 7) is a tracial von Neumann algebra and f € C(t;,...,t7) and
X =(x1,...,Xq4) € Msda, then the evaluation of f(x) is the image of f under the unique
unital *-homomorphism C(ty,...,75) — M given by t; — x;. The evaluation of f =

(f1,..., fm) on x = (x1,...,xq) is defined by (f1(x),..., fim(x)). Moreover, f, g €
Clt1,...,tq); we set

(f @) =f()®@gx)PeM e M,
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where M P denotes the opposite algebra of M, and ® is the algebraic tensor product. By
extending this operation linearly, we can define

F(x)e My, (M ® M) for F € Mm,d(c(t1»~--»[d> Q@ Clt1,...,tq)).
Fora,b,x € M, we define
(a ® bP)#tx = axb.

This extends to a bilinear map (M @ MP) x M — M.If A e M,,, 4(M ® M°P) and

x € M2, we define A#x € M™ as the vector with entries

d
(A#x),- = Z A,‘,j#x]‘.
Jj=1

The first-order Taylor approximation is as follows. Note that in contrast with the classical
Taylor approximation where the error estimates are typically given in the Euclidean norm
or 2-norm on R™, we have to mix different non-commutative p-norms of y — x in the
estimates.

Lemma 3.1. Let f € C(t1,...,14)" and let R > 0. Then, there exist constants Ay, By,
Cy depending only on f and R such that for every tracial von Neumann algebra (M, T)
and x,y € Ms”la with || X |lcos |V loo < R, we have

/() lloo < Af, (3.1
If) = f)2 < Brlly — x|, (3.2)
I f() = f(x) = af ()#(y —x) |1 < Crlly — x3. (3.3)

Proof. The case of general m will follow from applying the m = 1 case componentwise.
For the m = 1 case, to verify the claims for every non-commutative polynomial f, it
suffices to check them for f(#1,...,7;7) = t; and show that they are preserved under
linear combinations and products.

(1) For f(t1,...,tq) = t;, the claims hold with Ay = R, Bf =1, Cy = 0 since
0 f =3di=;(1®1).

(2) If f and g satisty the claims and «, § € C, then of + fg satisfies the claims with
Agfype = |la|Ar + |B|Ag and the same for the B’s and C’’s.

(3) Suppose that f, g € C(t1,...,t;) satisfy the conclusions of the lemma. Then, fg
satisfies (3.1) with Az, = Ay Ag. Moreover, by writing

(SO = (f)(») = (f(y) = f(x)g(y) + f(x)(g(y) — g(x))

UM is an algebra with the same addition and *-operation but the order of multiplication is reversed;
note that M P is a tracial von Neumann algebra.
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and using the L2-L%°-Holder inequality, fg satisfies (3.2) with Bfg = Br Ay, + Af By
Similarly, using algebraic manipulations and the fact that d; is a derivation,

(f9) () = (fe)(x) = I(f)(X)#(y — x) = [f(y)—f(x)=9f (x)#(y —x)]g (x)
+ f(0)[g(y)—g(x)—dg (x)#(y—x)]
+ () = FONEH) — gx)).
We estimate the first two terms by the L!-L%° Hélder inequality and the third term by

the L2-L? Holder inequality and thus obtain that fg satisfies (3.3) with C rg = CrAg +
Cg Ay + BrBg. [ ]

The following lemma will be needed to show that the spectral measures of certain oper-
ators on M, (C)? associated with matricial microstates for x € M¢ converge as n — oo
to the spectral measures of corresponding operators from a tracial von Neumann algebra.
In the following, for a tracial von Neumann algebra M, we denote by M ® M °P the tra-
cial von Neumann algebraic tensor product of M, equipped with the trace tpy ® tpgor. If
M @M P is represented on the Hilbert space H, then M, 4 (M ® M °P) are represented as
operators H? — H™. Also, Mz (M'®M °P) is a tracial von Neumann algebra and can be
equipped with the normalized trace try ®Tpr ® Tpr00, Where try is the normalized trace on
My (C). Moreover, & (R) denotes the space of probability measures on R equipped with
the weak™ topology as linear functionals on Cy(R).

Lemma3.2. Letd,m e N, f € C{t1,...,13)", and R > 0. For { € 24 g, let
we:Clty, ... tg) = W*()
be the GNS construction corresponding to £ as in Remark after Proposition 2.1. Let
F € My, qa(Clt1,....1q) ® C{t1,...,14)),

consider F(my(ty,...,1q)) € My a(W*(£) ® W*(£)®), and let [4|F(x,(1.,....15)) De the
spectral measure of

|F(e(tr), ..., we(ta)| = (F(me(tr), ..., we(ta)* F (e (), ..., 7o (ta))) >
as an element of Mg (W*(£)@W*(£)°P). Then, the map
La.r = PR) L= WFy,ta))]
is weak™-weak™® continuous.

Proof. Because F(x) is a linear combination of simple tensors of polynomials, there is
some universal constant C depending on F' and R such that || F (x)||Mm, Jmemoy = K
for every tuple of operators with || x||ec < R. In particular, the spectral measure of | F(x)|
is supported on [0, K]. Hence, it suffices to show that, for every ¢ € C([0, K]), the map

> (ttg @Twe () ® Ty () (P F (e (tr), ... me(ta))])
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is continuous. By the Stone—Weierstrass theorem, it suffices to consider the case when
#(s) = ¥ (s?) where ¥ is a polynomial. In this case,

P(F(me(tr), ... .me(ta)))) = Y (F(e(tr), ..., we(ta))" Fme(1r), ... me(1a)))

The right-hand side is just an element of My (C(t1,...,25) ® C(t1,...,t5)) applied to
the operators 7y (t1), ..., w¢(t;). Hence,

(trg ®7we(o) ® T ) FCre(tr). ... e (1))
= (twr () ® Tye () (G (e (t1), - . ., 7e(12))),
where G € C(t1,...,13) ® C{t1,...,t4) is 1/d times the sum of the diagonal entries of

this matrix of tensors of polynomials. Since G is a linear combination of simple tensors,
it suffices to show the continuity of the map

C> (twe(0) ® Ty ) ((f ® @) (e(t1). ... e (t2)),

where f,g € C(t1,...,t5). But the right-hand side is equal to £( f){(g), and £+ £( f)L(g)
is continuous by definition of the weak™ topology. ]

3.3. Covering the microstate space

We now give the details of the argument sketched in Section 3.1. We begin with the orbital
optimization trick. This lemma also appears in [12, Lemma 1.14], where it is related to
non-commutative optimal transport theory.

Lemma 3.3. Let X, Y € M,,(C )fa There exists a unitary matrix U that minimizes || X —
UY U*||,, and any such unitary satisfies

d
> ;. uY;U*] =o.
j=1

Proof. A minimizer exists because the unitary group is compact and the function U +
| X —UYU*||, is continuous. Suppose that U is a minimizer and let A € M, (C),. Then
0<|X —e"UyU*e )2 —||IX —UYU|?

=2X, MUY U*e A —UYU™).

Differentiating at ¢ = 0, we get

d d
0= ty(X;i[A. UY;U*]) = >, (i[UY;U*, X;]A).
j=1 j=1
Because A was arbitrary, we have

d
Y Uy;ur x;]=o0. .
j=1
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Next, we will give an initial form of the iterative estimate in terms of an auxiliary
quantity Wg , s .(x, /) measuring the size of approximate kernels of D (X ). For a neigh-
borhood O of £ in X4 g, define

\pR,T],S,E(Ov f)

. 1
= lim sup e sup log K,,({Z NZ| 2R, || Z||2<8, |Dr (X)#Z |4 <8}, ||||2)
n—>00 Xer® ()

Note that Wg ,, 5 (O, f) is monotone in @. We define
qu,n,b’,s(x’ f) = igf\pR,n,&e((gv f)

At this point, the reader may be wondering why we use || Dy (X)#Z||; < ¢ instead of
| Df (X)#Z|, < e. The reason is that the error estimate in the non-commutative Taylor
expansion requires the 1-norm rather than the 2-norm; that is,

IF(Y) = f(X) = af (XO#Y = X)) = CllY = X|5.

Later, we will work to estimate this in terms of the approximate kernel with the error
measured in 2-norm.

Lemma 3.4. With the setup of Theorem 1.2, there is a constant C > 0 (depending only
upon [ and R) so that for all ¢, 1 > 0 we have that

hRn(x) < hRe(X) + Yar p/2.26,c62(X, f).

Proof. Fix the neighborhood
m
U = {z DY LSV < 82} C Z4r.
j=1

In order to estimate hg ,(x, ||-||2), pick a neighborhood @ of £, and then we will cover
the microstate space I'™ (@ N U) by orbital (1, ||-|2)-balls. Recall that if a set can be
covered by a certain number of e-balls with centers not necessarily in that set, then it
can be covered with the same number of 2¢-balls with centers in the set. Hence, there
exists a set Q2 C Fg')((ﬂ N W) of cardinality at most Kg(Fg’)((Q N U), ||-||2) such that the
(2¢, ||-]|2)-balls centered at X in 2 cover Fgl)((9 N Uu).

We want to cover each of the orbital (e, ||-||2)-balls by orbital (1, ||-]|2)-balls. If ¥ is in
the orbital (2¢, ||-||2)-ball around X, then because we only need to cover Y up to unitary
equivalence, we can assume without loss of generality that Y is the element of its orbit
that is closest to X in [|-[|2, and thus ) [X;, ¥;] = 0 by Lemma 3.3. Recall by Lemma 3.1,

JX) = f(X) = f (X)HY = X) + Ar(X,Y),
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where the error term Ay (X,Y) satisfies
1AF(X, V)1 < Cr|Y — X3 < 4Cré®

for a constant Cr depending only on f and R. By our choice of U, we have

IFQCON =Dt (f5(X)* f(X)Y? < &2,

j=1
and similarly || f(Y)||; < &2. It follows that
19f (X)#Y — X))l < (2 + 4Cp)e”.

Let Z = Y — X. Note that
d d

[X;.2;] =) _[X,;.Y;]=0.
1 j=1

J

Since ;
Y X Zj] =0,
j=1
we have
D (X)#Y — X)|ly = QN X)H#Y — X)|1 < 2+ 4Cp)e”.

Also, || Z||eo < 2R. Of course, the number of (7, ||-||2)-balls needed to cover the set of Z’s
obtained in this way is at most

sup Kp({Z :1Z)| < 2RI Z)2 <26, | Dp(X)#Z||1 < (24 4Cp)e?}, || ]l2).
xXer'™ o)
R

It follows that

K@ nu), |,

1
< K (TR © N W, |12)

d
X sup Kn/z({Z:uznszR,Z[Zj,Xj]zo,uznz<2e,
xer® (o) j=1

oWzl < 2+ Cpe2l ).
Apply limsup,,_, . (1/n?) log to obtain

hry(O N U Il2) = hre(O N U) + Vag /2,26, 2+¢p)e2(O N U, f).

Because all the covering numbers are monotone in the “(” variable, taking the infimum
over all O yields the same result whether or not we intersect with U first. Thus, upon
taking the infimum with respect to (9, we obtain the asserted result. ]
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3.4. Covering the approximate kernel

In order to convert our estimate with the ||-||;-approximate kernel to an estimate with the
||-]l2-approximate kernel, we will estimate in Lemma 3.6 the ||-||2-covering number of the
intersection of a ||-||;-ball and a ||-|| o ball. We employ Szarek’s covering estimate [26] in
a similar way to [16]. For convenience of the reader, we state the lemma explicitly here.

Lemma 3.5 ([16]). There exists a universal constant C such that fort > 0,

K ({P € M, (C) projection, try(P) < ¢}, || - lloo)
= Ks({P € M, (C) projection, tr, (P) > 1 — t}, ||||Oo)

2n%t
(1 4+nt) (%) .

Lemma 3.6. There is a universal constant C such that for t > 0 and ¢ < 3R,

IA

. 1 CR
limsup — log K¢ (Bw, (C), |lo0 (0, B) N B, ), 111 (0, 28), [|-loc) < 127 1og —.

n—oo N &
Proof. By Lemma 3.5, there exists a set £ of projections of rank at least n(1 — 3¢) such
that every projection P of rank at least n(1 — 3¢) satisfies | P — Qoo < &/3R for some
Q € E and such that

6C: R 6n2t
|E|§(1+nt)( 8‘ ) .

Next, for each Q € E, observe that (1 — Q)M (C)s, is a Hilbert space of real dimension
at most 6n2¢, and hence for some constant C,,

3C R 6n2t
K8/3((1_Q)BMn(C),”‘”oo(O’R)v”'”oo)f( 2 ) :

Therefore, we may choose a set 2 with

2
3C2R 2n-t
Q <
| Q|_( . )

that (g/3, ||:||co)-covers (1 — Q) Bu, (C), -1 (0, R).
We claim Q = UQea Qo is an (&, ||| co)-covering of

B, (€)1 (0- R) N Bur, )., (0. 8¢/3).

Let A € BM,(C),|1le (0, R) N By, (c), |-, (0, t€), and let 1) 4| be the spectral measure of
|A|, which is supported on [0, R]. Let P = 1{9 ¢/3)(]A|). Note that

3% 3|4
MlA\([8/3v 00)) < E/ xdppg(x) < % < 3t.
&
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Therefore,
rank(P) = nu4/([0,&/3)) = n(1 —3¢).

Choose Q € E such that | P — Qe < &/3R. There is some B € Q¢ such that | B —
QAlleo < &/3. Observe that

4= Bl < [PAllcc + (P = @)Alloc + Q4 — Blloo
< & T & R+ &
3 3R 3
= ¢&.

It follows that

K (BM, (©), ]l (0, R) N By, ), 111 (0, 28, ||l oo)

6C, R\ (3C, R\
5(1+3nt)(—1) ( 2 ) .
&

&

Let C = max(6Cy, 3C3). Then

1
-5 108 Ke (B, ©),1110 (0. B) 0 Bt €0, (0. 8). [l-llo0)
1 CR
< — log(1 + 3nr) + 121 log —.
n e
Taking n — oo, we obtain the desired estimate. ]

The second ingredient for estimating Wg , 5 -(x, f) is the following standard estimate
for covering numbers of approximate kernels of operators on a Hilbert space. Of course,
we will apply this lemma to the operator Dy (X )# from the Hilbert space M, (C)? with
the normalized Hilbert-Schmidt norm ||-||, to the Hilbert space M, (C)™ with ||-||2. We
remark that B(M,(C)?) is isomorphic to My (M, (C) ® M, (C)°) acting on M, (C)4
with the # operation, and the normalized trace on B(M,(C)?) corresponds to

trg ®TM,,((C) [ TMI(C)op -

Lemma 3.7. There is a universal constant C > 0 with the following property. Let #, X
be (complex) Hilbert spaces with ¥ finite-dimensional, and let T € B(¥#, K). Fix R > 0.
For any §,¢,n > 0 with n < 3, we have that

)

€7\ 20mORT (0,2
Ky((E € < €] < 8. |TE] < &) < (7)

where 7| is the spectral measure of |T | with respect to the normalized trace on B(H).

Proof. Let P = 1y 2¢1(|T|). Suppose that § € # and || T§| < e. Then, by functional
’n
calculus,
n n
1§ = PEI = 112t o) ITDEN = ZITEN < 5
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Thus, {§€ € # : ||&|| < 8, ||IT|l < e} is contained in the 1/2-neighborhood of Bp (g (0, §).
Thus,

3

8 2dim(P #)
Ky (€ € 9 : ]l < 8. | TE] < &}) < Kyja(Bpaey(0.8)) < (7)

since the real dimension of P J is twice the complex dimension. Then, note that

dim(P ) = tgm(sey(P) dim(3€) = 7 ([0, 2¢/n]) dim(Je). .
Lemma 3.8. Let t € (0, 1/3] and suppose that Rt > €. Then for some constants C, and
C; depending on [, we have

Cy4 C3Rmt
Wnsie (. ) = D) (10:2/ 1) log == + 12mi log ===

Proof. Let O be a neighborhood of £, and X € '™ (©9). We want to estimate the (7, ||||2)
covering number of

B, @211 (0 B) N By, )2 11, (0, 8) N D (X) ™ (Bug, cym, 11, (0, €))-
There exists a constant C; depending on f such that

[Df(X)#Z oo = C1l|Z]l00-

and in particular, this is bounded by 2C; R when || Z ||c < 2R. Hence, it suffices to esti-
mate the (7, ||-||2)-covering number of

By, )1, (0-8) N D (X) ™ (B, ). 100 (0. 2C1 R) N Bug, cym 11, (0. €)),

where we use D¢ (X) to denote the linear transformation Dy (X )#: M, (C)? - M, (C)™.
Fix a set Q@ € M, (C)™ that (5, ||-[|2)-covers

B, ©ym 1106 (0, 2C1 R) N B, cym -1, (0. €)
and satisfies
12| < Key2: (Bm, (©)m,|-ll00 (0, 2C1 R) N By, ©ym, -1, (0, &), [|-12)
< Ke/2mt (B, (©), 100 (0: 2C1 R) N By, ), 1111 (0 €), I loo)™ .

where for the last several steps we used that ||-||2 < m||-||cc on M, (C)? and that

B, €)1 (0, 2C1 R) N By, (cym -4 (0. €)

is contained in the product of m copies of B, (), e (0s 2C1R) N By, (), |-1: (0, &).
Then

By, ) 11, (0:8) N D (X) ™ (Bua, ©)m, 100 (0: C1 R) N Baa, cym 11, (0, €))

< U B, 14,(0:8) 0 Dr(X) ™ (Bu, cm 1. (V- 57)).
YeQ
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Foreach Y € Q, if Byy, (cya ., (0,8) N Dy (X)~Y(Bwm, cym ||, (Y. £/21)) is non-empty,
then pick some Zy in this set so that

_ £
By, ) 11, (0:8) N Dy (X)) (BMn(C)m,||~||z (Y7 27))

_ £
€ B, )4, |1, (0.8) N Dy (X) 1(BMn(cw,n-nz(Df(X)#ZY, —t))

2
_ 1>
C Zy + (BMn((C)d,II'llz(O’ 20) 0 Dy (X) 1(BM"(C)'"’”'"2(O’ ?)))

By Lemma 3.7,

_ &
K, (BMH(C)(;,"AHZ(O, 28) N Dy (X) I(BMn(C)’”,ll'llz (0» ;)) ||‘||2)
C 8 2dn2,u|Df(X)‘([0,28/tﬂ])
- (L) .
n
In particular,
1
5108 K (Bua, €2, 11100 (0 B) 1 By, €32, 14, (0 9)
N Dy (X))~ (Bwm,ym 111, (0. €)). [1I2)

Cy6
sw(wpummwﬂm@mi—
XeT ™ () n

m
+ 3108 Kej2mi (Bu, ©).1-10 (0- 2C1 R) N By, (€114 (0- €). [l o)

By Lemma 3.6,

, 1
lim sup —-10g K¢/2m: (B, (), (0. 2C1 R) N By, ), 111 (0: ) [|-lloo)
n—oo N

C3Rmt
< 12t log .

Now observe that as O shrinks to {{}, the measures u|p,(x)| for X € '™ (O) converge
uniformly in distribution to u|p, (x)| using Lemma 3.2. Thus, we have

limsup sup 1y, (x)/(10.2¢/10)) < ([0, 26/ 1),
n—00 ¥ eI (U)

Thus, when we take the lim sup as n — 0o, we obtain the assertion of the theorem. n

3.5. Iteration of the estimates

By combining Lemmas 3.4 and 3.8, we obtain the following bounds.
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Corollary 3.9. Lett € (0,1/3] and n < ¢ and Rt > ¢. Then

C182

Cye C3Rmt
log — + 12m¢t log
m n

g2

hRrn(x) < hRe(x) + 1D, ()] ([0 (3.4)

In particular, if ¢ is sufficiently small (depending on R and f), we can take n = */3 and
t=¢"310 get
hpesn (6, [-2) < AR, [112) + 1ip, 01 ([0, Cre'*]) log(Co67?)
+ 12me'/3 log(C3 Rme™>/3). (3.5)
Proof of Theorem 1.2. Fix some ¢ sufficiently small that we can apply (3.5). By repeated
application of that estimate,

k—1

hR,e4k/3k (x) < hR,s(x) + Z (I/L|Df(x)|([0, C 84-’/3.I+1]) log(C28—4.//3./+1)
=0

+ 12me* /3! log(C3 Rm8_5'4j/3j+1)).

Recall that g ,(x, ||-||2) decreases to i(x) as n — 0. Thus,

o0
h(M) = hp(x) < hre() + D (1, () (0. Cre*' /* " ) log(Coe™ #"™)
j=0

+ 12me¥ 13! log(C3Rm8_5'4j/3Hl)).

Of course, because Fg) (0) is always contained in Byg, (cya |, (0, R), the first term
hR (x) is automatically finite. The summability in j of the term

12me? 13! log(C3 Rme=54 /37" )

in the series is straightforward: ¢ log(1/¢°) is bounded by a constant times 13/2; hence, we
can estimate the terms by a constant times £*'/3’ which is in turn bounded by a geometric
series. Thus, to complete the argument, it suffices to show the summability of the first
term. We rewrite

0 o o 00
3w, (0. Cre¥ ¥ D log(Coe~ ¥ = /0 $(1) dpip, oy (1),
j=0

where -~
—4J j+1
p(1) =Y log(Coe ¥/ M ig,c,e87 135411 (8).
j=0
We claim that ¢(¢) < A + Blog(1/t) for some constants A and B (depending on & and all
the parameters in the theorem), and this claim is sufficient to complete the proof because
H|Ds(x)| is a compactly supported probability measure, and we assumed that

| 101/0)dpipy o0 < .
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For every t € [0, C;¢), there exists a unique k € N such that
k j3k+1 k-1 /3k
C184 /3 <t =< C184 /3 .

Then

k—1
$(1) =Y log(Cre™*' /3™

j=0

k—1 i

47 1
= Z(:) (long + Wlog g)
]:

k—1 4 j
> (3)

1 1
< (long + glog g)
Jj=0
k—1

1 1
12(10gC2 + glog 5)3—](
12( 1 l)log(l/l) + log C;

IA

IA

log C; + = log —
°8 2+3 Ogs log(1/¢)

1
A—l—Blog;,

for some constants A and B. [

Remark. Given the apparent freedom to choose parameters in (3.4), one might won-
der whether it is possible to improve the argument to allow a weaker hypothesis on
H|Ds(x)| than integrability of the logarithm. But, in fact, this hypothesis is necessary for
any argument based on (3.4) to bound % (x). Indeed, suppose that we choose a sequence
e decreasing to zero and ; € (g /R, 1/3), and suppose that

2

o0

C18 C28k
ZMID/(x)I([O L :|)10g < 00.
k=0

" tkEr41 Ek+1

Since ¢y is decreasing and 7 < 1/3, we have C; 8i/lk8n+1 > 3C,ep. Since g < 1, we
have log(Caex/er+1) > log(C2/er+1)- Hence,

C](;‘i C28k
ool |0, log > D, @) ((3Crex+1,3C1ex]) 10g(Ca /e 11)
Tk€k+1 Ek+1

>

/ log(3C1 Ca/1) dptyp o) (0).
(3C1ek41,3C1e¢]

Hence, if the sum converges, then

1
| 100170 1, 001 0) < .
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Remark 3.10. Although we have stated Theorem 1.2 only for polynomial f for sim-
plicity, the same argument works for more general non-commutative functions. Indeed,
it only requires that f has a Taylor expansion and error estimate as in Lemma 3.1 and
that the spectral measure of |df | is the large-n limit of the spectral measures of corre-
sponding operators on M, (C)? as in Lemma 3.2. This holds for instance if f is given
by a non-commutative power series with radius of convergence R’ > R as in [28, Section
3.3]. More generally, it applies to the non-commutative C? functions of [17] (as well as
those of [7]). Roughly speaking, [17, Section 3.2] defines a space Ctlr‘ (R*?) consisting of
functions f that can be evaluated on self-adjoint d-tuples (xy, ..., xyz) from every tracial
von Neumann algebra (M, ) such that f is a Fréchet C¥ map Mbi — M, and the Fréchet
derivatives of order j < k, viewed as multilinear maps (Ms‘i)j — M, satisfy

187 F) 1. yilllp < constant(f. j. R)IY1llpy -+ 11y lp,

whenever 1/p =1/p1 +---+1/p; and ||x||oc < R such that trace polynomials are dense.
In particular, the space is cooked up so that Taylor expansions with error estimates inspired
by the non-commutative Holder’s inequality, such as Lemma 3.1, will hold. Furthermore,
[17, Section 4.4] describes a trace (as well as a log-determinant for invertible elements)
on the algebra CX~1(R*¢, M!) in which the first derivatives ; f of a trace C* function
f live. Extending this trace to d x d matrices over CL]f_l (R*4, M) enables us to make
sense of the spectral measure of df (x)*df(x). This also applies to the operator Dy f(x)
in Theorem 1.2 since the ; ® 1 — 1 ® ¢, defines an element of C¥~1(R*?, M (R*1)) for
each j. Furthermore, thanks to the way that the trace on Ct’r‘_1 (R*4, M) describes the
asymptotic behavior of traces on matrices (see [17, Section 4.5]), Lemma 3.2 generalizes
to this setting. Hence, mutatis mutandis Theorem 1.2 generalizes to f € C?2 (R*dym,

We have now completed the proof of Theorem 1.2. We refer the reader to Section 4.2
for a proof that Theorem 1.2 implies Theorem 1.1.

4. Connections to £2-invariants of sofic groups

In this section, we recall the connection between £2-cohomology and the non-commutative
difference quotient (Section 4.1) exploited by Shlyakhtenko [25] as well as his argument
why Theorem 1.2 implies Theorem 1.1 (Section 4.2). Then, we show how the argument for
Theorem 1.1, together with Shalom’s result [24], furnishes an alternative proof of strong
1-boundedness for the von Neumann algebras of sofic Property (T) groups (Section 4.3).

4.1. Cocycles, derivations, and the free difference quotient

This subsection describes how to translate from group cohomology to derivations on the
group algebra to the kernel of the free difference quotient df for a function f associated
with a group presentation, following [6,23,25,27].

For a *-algebra A and an A-A bimodule J#, let Der(A4, #) denote the set of derivations
§:A — JH.If (M, 1) is a tracial von Neumann algebra and A C M is a weak*-dense
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x-subalgebra, then one bimodule of interest is LZ(M) ® L?*(M), where A acts on the
left by left multiplying by @ ® 1 and on the right by right multiplying by 1 ® a. We have
a commuting action of M @M on L?>(M) ® L?*(M) where a ® b acts on ¢ ® d by
sending it to ¢ch ® ad. We use #;, for this action, so

(@ ®b*)#n(§) = (1 ®@a)s(b®1);

it is straightforward to verify that this action extends to a normal representation of M ®
M° on L*(M) ® L*(M). Moreover, for all x € M®M®, all a,b € M, and all IS
L*(M) ® L*(M),

x#in((@ ® DE ® b)) = (a @ D(x#in§)(1 ® ).
This produces an action of M ® M °° on Der(A, L?>(M) ® L?(M)) by
(x8)(a) = x#;,(8(a)) forallx € MM, a € A.

So, we may regard Der(A, L?(M) ® L?(M)) as a module over M ® M °P, and so it makes
sense by [22] to consider

dimyyg 700 (Der(A, L>(M) ® L*(M))).

We have a special class of derivatives called the inner derivations. We say that § is inner
if there is a £ € L2(M) ® L?(M) with §(a) = [a, £]. We let Inn(4, L>(M) ® L?>(M))
be the inner derivations, and let

Der(A, L2 (M) ® L*>(M))
Inn(A4, L2(M) ® L2(M))

HY A7) =

We define the first £2-Betti number of A by

Bizy(A. 1) = dimygprm(H' (4. 7).
This definition is due to Connes—Shlyakhtenko [6].

Proposition 4.1. Let G be a countable, discrete group, let T be the canonical trace, and
set M = L(G). Then

@) ,3(12)(G) = ,3(12) (C[GY], ). In particular, if G is infinite, then
By (G) + 1 = dimysgpre (Der(C[G], L* (M) ® L*(M))).

(i) Suppose that G is finitely generated, and suppose that g1, ..., gy Is a finite
generating set. Set

x = (Re(g1), Im(g1), Re(g2), Im(g2), .. ., Re(gx), Im(gx)) € (C[Glw)*",
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where

* _ *
Re(a) = a —;a , Im(a) = —

forall a € C[G].

Let J be the kernel of the homomorphism
evy: Clt1, ..., t02r) = C[G].

Then, G is finitely presented if and only if J is finitely generated as a two-sided
ideal.

Proof. (i) This is [6, Proposition 2.3], [23, Corollary 3.6], [27, Section 4].
(ii) Let [F, be the free group on letters ay, ..., a,. Consider the surjective homomor-

phism ¢g: [, — G so that ¢(a;) = g;; we continue to use ¢ to denote the linear extension
q:C[F,] — C[G]. Let

y = (Re(al)v Im(al)v Re(aZ)v Im(aZ)v R Re(ak)7 Im(ak)) € ((C []Fr])Zr

sa ’

soevy = q oev,. Let B be the ideal in C(¢1, ..., tox) generated by
{lojr. il j =1 k}U{3, +13;,—1:j =1,... .k},

and let
a:Clty,....tx) > Clt,...,tx)/B

be the quotient map. Then, the kernel of ev, contains m, and so ev, descends to a map
ev,: C(t1,....t2x)/B — C[F,]
withev, =@ev, ox.Forevery 1 < j < k, the element
uj =tyj_1 +ity; +BeC{ty,....tx)/B

is unitary, and so there is a unique map ¢: C[F,] — C(t1, ..., fpx)/B which satisfies
¢(a;) = uj. Routine calculations verify that ¢, ev,, are mutual inverses to each other, and
sogpoevy = .

First, suppose that G is finitely presented, and let F' be a finite subset of the kernel
of g : F, — G so that ker(g) is the smallest normal subgroup containing F'. It is direct
to verify that the kernel of g : C[F,] — C[G] is the smallest ideal in C[F,] containing
{w—1:we F}.Forw € F,let Qy € C(t1,...,1y) be any element so that 7(Q,,) =
¢(w). We leave it as an exercise to show that J is generated as a two-sided ideal by

{Qu—1:we FyU{ltyj1.t5]:j =1.....kJ {3, +13, —1:j =1}

This shows that J is finitely generated as a two-sided ideal.
Now suppose that J is finitely generated as a two-sided ideal, say by Fy, ..., F. Set
N =ker(q:G — F,), and Q; = ev, (F;). Then, 7(F1),. .., w(Fy) generate ker(q o ev,)
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as a two-sided ideal. Since &v), is an isomorphism, it follows that Oy, ..., Qk gener-
ate ker(g: C[F,] — C[G]) as a two-sided ideal. Observe that ker(g: C[F,] — C[G]) is
generated as a two-sided ideal by {x — 1 : x € N}. So, for j = 1,...,k, we can find a
finite F; € N so that Q; is in the two-sided ideal generated by {x — 1 : x € F;}. Let
F = Ule F;, and let I be the two-sided in C[F,] generated by {x —1:x € F}. Then,
Qj el forall j,and so I =ker(q: C[F,] — C[G]). If N is the normal subgroup of G
generated by R, then [ is the kernel of the natural quotient map

C[F,] = C[F,/N].
But N < N, and we saw above that / is the kernel of the natural quotient map
C[F,] = C[F,/N].
So, N = N , and this establishes that G is finitely presented. [

The following may be argued exactly as in [25, Lemma 3.1].

Proposition 4.2. Let (M, ©) be a tracial von Neumann algebra and let x € Ms’j be such
that W*(x) = M. Let A be the x-algebra generated by x, and let J be the kernel of
evy: C(tq, ..., 1) — A. Suppose that (F,-);?‘;l is a sequence which generates J as a
two-sided ideal in C(ty, ..., ty). Then, the map

§ > (8(x))k_,

is an M -M bimodular isomorphism

Der(A, L*(M) ® L*(M)) — (] ker((0F;)(x)#).
j=1

4.2. Strong 1-boundedness from vanishing £2-Betti numbers

In this section, we need the following notation. Given a group G, we view C(G) C
L(G) by sending Zg agg — Zg agA(g). This induces natural inclusion M, ,(C(G)) €
My, (L(G)). Given A € M, ,(C(G)), we let w41 be the spectral measure of (4* 4)'/2
with respect to the trace Tr @ t, with t defined as in Section 2. We define

+
g =ex( | | loxtt) o))

We have explained how to get from £2-Betti number conditions as in Theorem 1.1 to
conditions on df for some tuple f of non-commutative polynomials as in Theorem 1.2.
The other main ingredient needed to prove Theorem 1.1 is the positivity of Fuglede—
Kadison determinant. The following theorem of Elek and Szabo is the main way we know
of to guarantee the positivity of Fuglede—Kadison determinants.
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Theorem 4.3 ([11, Theorem 5]). Let G be a countable, discrete, sofic group, and m,n €
N. Fix A € M, 4,(Z(G)). Then

+
det (A) > 1.
L(G)( ) >

Note that if G is as in the statement of the above theorem and A € M,, ,(Q(G)) for
some m,n € N, then there is a ¢ € N so that g4 € M,, ,(Z(G)). Thus

+ 1+ 1

det (A) = — det (q4) = — > 0.
L(G) q L(G) q

Having collected the appropriate background material on derivations and L2-Betti num-

bers, we now discuss why Theorem 1.2 implies Theorem 1.1.

Proof of Theorem 1.1 from Theorem 1.2. Let G = (g1, ..., gs|w1,...,w;) be afinite pre-
sentation of G. For 1 < j <, set

g — &'

R Y

)

and set x = (X1, X2, ...,x25) € (C[G]w)?*. Let ¢: C[F,] - C[G] and y € (C[]Fr]fj‘ be as
in the proof of Proposition 4.1 (ii). For j = 1,...,[ + 2s, define f; € C(t;,...,t2¢) by

wj(ll~|—ilz,l3+il4,...,l2s—l+it2s), ifl <j<l
Ji = taj-1t2j —tajt2j—1. ifl+1<j=<l+s
5+, -1, ifl+s+1<j<Il+2s.

By the proof of Proposition 4.1 (ii), we see that the kernel of ev,: C(t1, ..., ts) = C[G]
is generated (as an ideal) by

{fi. for oo Si42s)-

Set f = (fi..-.. fi+2s). Let Dy be as in the statement of Theorem 1.2. We leave it as
an exercise to verify that Dy € M 7541,2:(Q(G x G)). By Theorem 4.3, we have that
det} )(Ds) > 0, ie.

/ log(?) dpip,|(t) > —oo.
(0,00)

All that remains is to verify that D¢ is injective. Recall that the (1, j) entry of Dy is
Xj ® 1 =1 ® x; and the remaining rows are given by the matrix of partial derivatives
df discussed in Section 3.2. Suppose that § € [L?(M) ® L?(M)]** and Ds#£ = 0. This
implies that (3f) (x)#& = 0. By Proposition 4.2, we see that there is a derivation §: C[G] —
L?>(M) ® L?>(M) so that §; = §(x;) for j = 1,...,2s. By Proposition 4.1 and the fact
that (12)(G) = 0, we find that § is approximately inner. Thus, we may choose a sequence
tn€ L2(M) ® L*>(M) so thatforall j = 1,...,2s

§ = Jim ;. G] = lim (vj @ 1~ 1® x;)#L,.
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Since Dy#£ = 0, we have that
xj®1-1 ®x;)p)#§j =0 forallj=1,...,2s.
Thus, forall j =1,...,2s,
16513 = Tim (5. (5 ® 1~ 1 ® M) = lim (5 ® 1 - 1© 1. 6) = 0.
So, we have shown that § = 0. Thus, Dy is injective, and this completes the proof. [

More generally, the same proof shows that if (A4, t) is any tracial x-algebra and
ﬁ(lz)(A’ T) =0,

 there exists a generating tuple x € A;‘; and f € C(ty,...,t2)®" sothat { f1...., fm}
generates ev, as an ideal, and with detq ((df)(x)) > 0,

then W*(A, t) is strongly 1-bounded. This recovers the case n = rank((dF)(x)) of [25,
Theorem 2.5].

4.3. Strong 1-boundedness of Property (T) sofic groups from Theorem 1.1

The vanishing of first £2-Betti numbers for Property (T) groups was obtained in [3, Corol-
lary 6]. We will need a little more than the above result to give a short proof that sofic group
with Property (T) are strongly 1-bounded. Specifically, we will need the full strength of
the Delorme—Guichardet Theorem [8, 14], which is about cohomology of groups with val-
ues in a unitary representation. This is because we will need not just the cohomology with
values in the left regular representation of a group, but in the quasi-regular representation
on £? of a coset spaces. Let G be a countable, discrete group and 77: G — U(H) a unitary
representation. A cocycle for w is amap §: G — J which satisfies

B(gh) = n(g)p(h) + p(g) forallg.h e G.

We say that B is inner if there is a £ € H so that B(g) = 7(g)§ — &. The Delorme—
Guichardet theorem says that G has (T) if and only if for every cocycle on G with values
in a unitary representation is inner. See [2, Section 2.12] for a proof.

Lemma 4.4. Let G, G be Property (T) groups and let q: G —>Gbea surjective homo-
morphism. Let # be an L(G) — L(G) bimodule, and view J as a bimodule over C[a]
via q. Then, every derivation §: (C[E] — JH is inner.

Proof. Suppose that §: C [5] — J is a derivation. Define §: G—J by B(x) = S(x)u;(lx).
The fact that § is a derivation implies, by a direct calculation, that 8 is a cocycle for 7.
By the Delorme—Guichardet theorem and the fact that G has Property (T), we know that
B is inner; i.e., there is a £ € H so that (x) = uq(x)éu;(lx) —&forall x € G. So for all
xeG,

8(x) = B(X)ug(x) = Ug)§ — Eulg(x),

and this verifies that § is inner. [
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We will be primarily interested in the following special case of the above lemma.

Corollary 4.5. Let G.G be infinite Property (T) groups, and let q: G—>Gbea surjective
homomorphism. Set M = L(G). Then, every derivation

§:C[G] —» L*(M) ® L*(M)
is inner.

We now show that Property (T) sofic groups are strongly 1-bounded. We argue directly
from [25] using Shalom’s theorem on the structure of Property (T) groups.

Corollary 4.6. Let G be an infinite Property (T) sofic group. Then, L(G) is strongly 1-
bounded.

Proof. Since G has Property (T), it is finitely generated. By a theorem of Shalom [24,
Theorem 6. 7] there is a finitely presented Property (T) group G and a surjective homo-
morphism g: G—>G.It may be that G is not sofic. However, we will still be able to use
the soﬁc1ty of G to apply Shlyakhtenko s results to our settlng

Let S be a finite generatmg set of G and set S = q(S ). Then, there is a finite set R
of words in S so that G has a presentation (S|R). Use S to build self-adjoint generators
x = (X1, ..., %m) of C[G] which have lifts ¥ = (X].....%,) to generators of G. Now
use the relations R to produce Fi,..., Fr € Q[i]{t1, ..., t,) with the property that if J is
the ideal generated by Fi, ..., Fy, then the natural map C(tq,...,t) — (C[g] given by
F + F(X) has kernel J.Let F = (F1,..., F,). By the proof of Proposition 4.2, we have
that

ker((9F ) (x)#) = Der(C[G], L2 (M) ® L*(M))

with M = L(G). By the preceding corollary, it follows that ker((dF)(x)) corresponds
under this isomorphism to the inner derivations C[G] — L?(M) ® L?(M), and since M
is diffuse,

dimy g ager (ker((9F ) (x)#)) = dimyygpr00 In(C[G], L2 (M) ® L2(M))) = 1.

Further, since Fy, ..., Fr € Q[i]{t1,...,t), we know from the soficity of G and Theo-
rem 4.3 that det}',[ ((0F)(x)) > 0. Thus, Shlyakhtenko’s theorem [25] implies that M is
strongly 1-bounded (this also follows from our proof of Theorem 1.1 from Theorem 1.2;
see the discussion at the end of the previous section). |
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