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Abstract—In chip design, it is crucial to identify timing critical
components early on to preemptively fix any timing issues
and avoid numerous design convergence iterations. However,
obtaining this information requires one to run the time intensive
physical design flows (synthesis, placement, etc.). To this end,
we propose a machine learning approach to predict timing path
delays at a granular level directly from RTL design, thereby
avoiding the reliance on synthesis and placement. This will allow
designers to quickly evaluate the delays of timing critical paths as
well as the worst-case delay at an early stage. Experiment results
show that our approach predicts timing path delays with 91%
accuracy when compared with post-placement timing analysis.
Furthermore, this approach identifies the specific logic sections
in an RTL code responsible for the longest timing delay paths
and is more than 40 times faster than the conventional synthesis
and placement.

Index Terms—RTL Design, Static Timing Analysis, Machine
Learning

I. INTRODUCTION

A typical digital design flow can be simplified to the
following steps - development of register-transfer-level (RTL)
code, logic synthesis of the RTL, followed by placement and
routing (PnR). Static timing analysis of the gate level netlist
is performed multiple times at various post-synthesis stages to
identify timing failures and to explore possible solutions for
timing convergence. One of the solutions to address timing
issues is to change EDA tool recipes to optimize timing paths
in the design. However, this approach is iterative and can
lead to sub-optimal trade-off between timing, area and power
[1]. Another effective approach is to identify the RTL source
code responsible for failed timing paths and attempt to modify
these RTL sections. Often times, a combination of both recipe
changes and RTL improvements is required to resolve timing
failures. However, RTL source code optimization is resource
expensive and is also iterative in nature since evaluating the
timing improvements depend on timing results from post-
synthesis stages. Moreover, the time required for these RTL
changes leaves little time for design verification in constrained
project schedules. Due to these challenges, RTL modifications
are often avoided, even though it is one of the more effective
options for minimizing late stage timing fixes.

In many cases, improving the RTL code exhibits signifi-
cant performance improvements and assists in solving timing
issues. For example, adding pipeline stages to split the logic
between two registers helps break down long delay paths into
multiple shorter paths. This reduces the logic levels and hence

resolves critical timing path issues. Large path delays can also
be addressed by register re-timing, which moves registers in
the logic network to optimal locations to reduce path depth
and delays. For high fan-out scenarios, duplication of logic in
RTL source code can improve routing delay and arrival time.
Therefore, identifying and resolving the timing critical paths
at RTL development stage is imperative for not only the RTL
designers but also for accelerating entire design cycle.

In this work, we introduce a machine learning (ML) ap-
proach, particularly a tree-based ensemble method (XGBoost
[2]) to predict the timing critical paths at the RTL stage without
having to rely on timing feedback from synthesis and PnR
results, allowing early edits of RTL to address critical timing
issues. This work extracts features directly from RTL code
(Verilog) to use as inputs to a ML model to make timing
predictions at a granular design level. The ML model aims
to provide predictions of individual timing path delays which
enables the designers to focus on the problematic areas where
timing failures may appear during the implementation stages.
The contributions of this work include the following:

• Classify the timing paths of any RTL design in bins of
ascending delay classes.

• Predict the worst case timing path delay for a design.
• Make predictions to identify logic components in the RTL

source code that will generate timing critical paths.
• Provide these results more than 40 times faster than the

commercial EDA tools.

The results on a set of benchmark designs show that our
approach can reach an average of 91% accuracy in predicting
post-placement timing path delays. To the best of our knowl-
edge, this is the first work which directly extracts features from
RTL designs to predict timing as well as identify RTL code
sections that’s responsible for the timing failures.

The remainder of the paper is organized as follows. Section
II discusses existing academic literature related to delay pre-
diction of timing paths. Section III presents the primary goals
of this work, followed by Section IV describing the general
concept behind our approach. The details of our novel RTL
parsing and feature extraction technique is described in Section
V. The Machine Learning aspect of our work in discussed in
Section VI, followed by experimental results and observations
in Section VII. We present few real world applications of our
proposed technique in Section VIII that shows the benefits of
early identification of timing issues in an RTL design.979-8-3503-0955-3/23/$31.00 ©2023 IEEE
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II. RELATED WORK

There are few works which utilize machine learning to pre-
dict timing at different stages of the design process. In recent
works [3] and [4], timing prediction models are developed
based on RTL designs consisting of primitive logic gates. The
trained ML models are tested using RTL of various adder
architectures to evaluate the prediction accuracy of the pin to
pin delay. However, these works only address structural RTLs
consisting of primitive combinational logic gates and doesn’t
explore real world hierarchical and behavioral RTL designs.
In addition, the prediction model uses features from Static
Timing Analysis (STA) reports generated using synthesized
netlists and doesn’t consider effects of cell placement.

Another recent work [5] aims to predict the power, perfor-
mance and area outcomes using RTL features generated from
Yosys [6]. The path delay prediction model in this work is
trained with a small dataset that contains a mixture of few
real path samples as well as synthetically generated samples.
To accelerate the processing time, this work samples and
aggregates the timing paths to report the delay of the worst
case timing path for a given design, which does not provide
visibility of the layers of timing issues that may arise from sub-
hierarchies of a design. Also, the machine learning prediction
results in this work reports synthesis timing results and does
not consider effects of placement and layout. The commercial
tool in [7] provides a high level overview on critical timing
paths from the RTL modules which helps designers gauge
the possible implementation effects in advance. This tool uses
calibrated models to make timing estimations, although the
runtime still ranges from hours to days for finding the optimal
solutions. Another relevant work [8] uses machine learning to
predict post-placement dynamic power and total negative slack
results for a given RTL design, where it utilizes Verilog RTL
code and synthesis recipe parameters to compute features for
the prediction task. However, this work predicts total negative
slack for the entire RTL design and doesn’t predict individual
timing path delays of the RTL design.

In general, all the previous works on ML based timing
prediction in the ASIC design domain have different goals
and solution approaches. There is no previous work that aims
to provide quick and early identification of the timing critical
components in the RTL code which utilizes features collected
directly from the RTL source code to train ML models, to the
best of our knowledge.

III. PROBLEM FORMULATION

A. Prediction of timing path delays from RTL

The primary goal of the proposed approach is to predict
post-placement path delays using a machine learning (ML)
model for all possible timing paths from an RTL. The timing
paths identified in the RTL for delay prediction are between
input ports to registers, registers to registers and register to
output ports. The technique of identifying these timing paths in
the RTL and extracting relevant features are key contributions
of this work. The ML model is trained with large sets of path
data, including the feature vector for each path and it’s target
value. The proposed method predicts the delay of each timing

path, including paths that are likely to encounter setup time
failures.

B. Locating sources of the worst delay paths in RTL
Leveraging the timing path delay prediction achieved in the

first goal, the path with the worst case delay can be easily
traced in the source RTL. In addition, our approach highlights
specific lines of Verilog codes with the registers as well as
corresponding sections of the logic that are responsible for
the timing paths with the worst case delay.

IV. OVERVIEW

The entry point of our approach is the Verilog RTL source
code of a given design. The RTL is first converted to its Ab-
stract Syntax Tree (AST) as explained in Section V, followed
by a novel AST post-processing method to construct a directed
graph G, as well as to compute features. Figure 1 shows a high
level overview of our approach. Graph G consists of nodes that
represent the behavioral logic, registers and input/output (IO)
ports, connected by directed edges to define the data-flow.

Fig. 1. Overview of RTL processing and timing path delay prediction

The nodes in graph G can be categorized to two types:
the first being variable nodes (Vr) that represent IO ports
and registers, and the second type for nodes that represent
behavioral logic (Vb). The set of all directed edges in G is
denoted by E. Once G is constructed, all paths between node
pairs (u, v) are identified, where (u, v) ⊂ Vr. Each of theses
path consists of a set of edges ep, where ep ⊂ E and a set
of nodes vp where vp ⊂ Vb. A feature vector is computed
for each path, taking into account the various attributes of ep
and vp. The details of this feature computation can be found
in Section V-B. A set of benchmarks designs from various
domains with varying sizes (listed in Section VII-A) were used
for obtain these behavioral register paths and their associated
feature vector. A collection of these timing paths and their
feature vectors along with the reference post-placement delays
are provided as inputs to the ML model for training. In order
to collect the the reference delays the benchmark designs are
taken through synthesis and placement steps using commercial
implementation tools that report the delay of individual timing
paths that we use as target labels in the training process. The
path delays are categorized into k ascending delay bins in
order to represent the learning task as a classification problem,
where k is a specifiable parameter.
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V. RTL FEATURE EXTRACTION

Verilog is one of the most prominent hardware description
languages (HDL) used for hardware design. It uses constructs
that are similar to non-HDL programming languages to build
logic and storage elements. We took motivation from the
compilation process of general programming languages, where
the source code is often converted to an Abstract Syntax
Tree (AST) representation. The AST of a given source code
is a tree-like data structure that represents the syntactical
components of the code in a formal hierarchical format for
systematic post processing and feature extraction.

A. Verilog Abstract Syntax Tree (AST)

Multiple open-source tools exist that can generate an AST
from Verilog designs. Some notable ones are Verilator [9],
PyVerilog [10], Verible [11] and Yosys [6]. The AST of a
design contain a tree structure that follows the hierarchy estab-
lished in the source code. The tree starts from a root element
(e.g. top module) and ends in many leaf nodes (registers or
I/O ports). In this work, we used Verilator to process Verilog
designs and generate the AST in XML format, which is a
common markup format used to represent hierarchical data. An
example of XML-based AST description is shown in Figure
2. The example AST contains multiple hierarchical elements,
each marked by a starting and ending tag such as <module>,
<always>, <add> etc. Generally these element tag names
represent their Verilog counterpart with the same name. For
example, the <module> element in XML represent the top
level Verilog module, the <always> element represent the
always procedural block and so on. Some of the less obvious
elements tags in the XML are:

• <var>,<varref>: IO port, parameter or register dec-
laration or references.

• <senitem>: Sensitivity list for procedural blocks.
• <cond>: Conditional logic( if,else-if ).
• <gt>,<lt>,<eq>: Greater than, less than or equal

logical operators.
• <assign>,<assigndly>: Denotes value assignment

to a variable (reg, wire or port).
• <add>,<sub>,<mul>: Addition, subtraction or multi-

plication operators.

The post-processing engine developed in this work processes
the XML based AST construct a directed graph representing
the design. An example output of the parser is the design
graph shown in Figure 2. The nodes with rectangular outline
represents the IO ports or registers and nodes with oval/circular
outline represent the behavioral logic operations involving the
IO or the register nodes. The edges represent the flow of data.
For example, the sub node has two incoming edges from data
and from a constant node. These edge connections originate
from the subtraction operation seen in the Verilog source code
where the constant value of 4’d2 is subtracted from the data
variable. However, the subtraction operation only occurs when
the parent if condition is true. Therefore the outgoing edge of
the sub node travels through a cond node and ends at the result
node. Design graphs created from the AST primarily shows

Fig. 2. Example of creating a design graph from Verilog via AST Conversion

the flow of data between IO ports or registers, controlled by
conditional logic and arithmetic or logical operators.

B. Computing Path Features from Design Graph

In a design graph the path from one node to another consists
of one or more edges and may travel through behavioral logic
nodes. We refer to such paths as behavioral paths and denote
the set of all behavioral paths in a design as Pb. Each path in
Pb may carry multiple bits of data and pass through different
logic blocks such as conditional elements, comparators, prim-
itive logic and arithmetic logic. Examples of such behavioral
paths can be seen in Figure 2, where behavioral paths from
input nodes (data) to output nodes (result) travels through
comparators, arithmetic and conditional nodes. The paths may
also undergo concatenation, reduction operators or slicing,
which can affect the total number of single-bit paths present in
the design. The behavioral logic nodes along each path dictates
the logic depth, cells types and delay of the actual gate level
paths that will be constructed in the post-synthesis or post-
placement stage. Hence, we define and compute the following
path features that summarize various useful behavioral path
properties: 1) Behavioral logic depth along the path; 2) Av-
erage logic input/output (I/O) bits along the path; 3) Count
of conditional logic nodes (If/Case, Compare); 4) Count of
arithmetic logic nodes (add/sub,mul,moddiv); 5) Count of
basic logic nodes (and, xor, negate, etc.); 6) Number of logic
nodes shared with other paths; 7) Number of logic nodes
unique to the path; 8) Average cell complexity score n2, where
n is the number of logic I/O bits. The extracted features, along
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with the starting and ending sequential node names are saved
as a feature vector for training the machine learning model.

VI. MACHINE LEARNING-BASED PREDICTION

The features extracted from RTL are fed into the machine
learning models in both training and inference. In parallel to
the feature data, the training process also requires ground truth
data as labels, which are obtained from post-placement timing
analysis as mentioned in Section VII-A.

A. Predicting the Delay of Timing Paths
Prior to defining the learning task of the delay classification,

profiling the delay value distribution of the ground truth
data is required to assess the practical range of delay values
that need to be predicted. After filtering out the outliers,
distribution of the path delays is observed which is categorized
in a reasonable number of k classes as shown in Figure 3.
Therefore, each path in the design is labeled as one of these k
delay classes. Hence, this becomes a multi-class classification
task that predicts the delay class for any given timing path in
an RTL.

B. Model Configuration
For the machine learning classification, we employ the

XGBoost infrastructure [2] to build and train a XGBoost
classification model. The XGBoost model consists of 100
boosted trees with a maximum depth tree of 7. The dataset
in this learning problem is structured in nature and tree-based
ensemble methods are known to outperform more complex
deep learning techniques for such data [12].

VII. EXPERIMENT AND RESULTS

A. Generating Training Data
For training the timing prediction models, it is required to

collect a large set of data with labeled path delays. We employ
26 Verilog designs available in IWLS 2005 benchmark [13]
and OpenCores, which are listed in table I. Each of these
designs is synthesized and placed using industry standard
commercial tools. During the synthesis and placement, the
maximum achievable clock frequency for each design is used
to ensure that the best efforts of the EDA tools are captured in
the training data. At the post-placement stage, a detailed report
of each path delay is collected from timing analysis reports
of each design. Path delays from each design are labeled
with the delay class categorization method. In our experiment,
labeling the paths in k = 8 classes based on the magnitude of
their delay provides good balance between model complexity,
training and inference time. A total of 161K path data is
collected from the benchmark designs and Figure 3 shows
the corresponding logarithmic histogram of the path delays.

The delay classes from A to H represent path delays in an
increasing order, with each class having a spread of 3.5nS.
The distribution shows that classes with higher delays contain
relatively lower number of paths. This is expected since paths
with lower delays are more common in typical digital designs.
However, this causes our classification data set to be imbal-
anced which had be be compensated in training step using
the stratified sampling technique [14]. Stratification ensures

TABLE I
26 BENCHMARK DESIGNS USED FOR TRAINING AND TESTING

Training Designs Seq. Cells Comb. Cell Total Gates
ss pcm 87 173 260
uart2bus 157 611 768
wb dma 523 1,728 2,251
mem ctrl 1,065 3,296 4,361
...

...
...

...
fpu 663 31,881 32,544
xge mac 13,301 33,366 46,667
scdma viterbi 68,393 164,236 232,629

Fig. 3. Histogram of path delays and classes in the training data

that the samples for each class has a similar distribution,
which helps prevent biased model training and evaluation. The
maximum range of the distribution (class H) ensures that worst
case delays of all training designs are included for training.
The collected path delays were split into training the testing
data set using a 75:25 ratio. Testing data was kept separate
from the training sequence in order to collect the prediction
accuracy for timing path unseen to the trained model. Once
trained with data from a given technology node, the model can
be applied for any unseen design targeted for the same process
technology. For application in a new technology node, the
ML models will require retraining with training data generated
using the respected process technology.

B. Path Delay Prediction
The XGBoost classification model was trained with 75% of

the 161k timing path data. For the 8-class timing prediction
task, an average classification accuracy of 91% was achieved,
along with a precision of 88.3%, recall of 86.2% and and F1
score of 87.2%, where accuracy, precision, recall and F1-score
are defined by:

Accuracy =
TruePositive+ TrueNegative

(TotalPredictions)
(1)

Precision =
TruePositive

(TruePositive+ FalsePositive)
(2)

Recall =
TruePositive

(TruePositive+ FalseNegative)
(3)

F1-Score = 2 ∗ (
Precision ∗Recall

(Precision+Recall)
) (4)
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Fig. 4. Per-class accuracy of delay prediction

Fig. 5. Confusion matrix for predicted class vs true class

Fig. 6. Receiver Operator Characteristics for the XGBoost multi-class path
delay classification model

The accuracy per class is shown in Figure 4 followed by the
confusion matrix of true delay class vs predicted delay class in
Figure 5. The confusion matrix represents the rate of correct

predictions, where the predicted class matches the actual
class. The path delay classifier exhibits high rate of correct
predictions, represented by the values along the diagonal fields
of the matrix. The receiver operator characteristics curve for
the trained multi-class classifier is shown in Figure 6 along
with the Area Under the Curve (AUC) for each class. A
ROC curve illustrates the trade-off between the true positive
rate (TPR) and the false positive rate (FPR) for various
classification thresholds [15]. The AUC for each class is a
metric that summarizes the classification performance of a
classifier with 1 being the best AUC possible. The path delay
classifier achieves AUC greater than 0.9 for all classes with
the lowest score for Class F, which is attributed by the low
number of training samples available in that class.

C. Training and Prediction Runtime

To quantify the quick time-to-result from the proposed
approach, we compare the time it takes to receive timing
feedback from post-placement stage of implementation against
the time required by our method to infer path delay from
RTL in Table II. Multiple benchmark designs with varying
path counts are listed in the table. Although collecting the
training data and training process initially consumes multiple
hours, it is easily amortized by the speedup achieved from the
proposed ML model. Furthermore, the generic nature of our
ML model ensures that once trained, it can be used to predict
delays for timing paths extracted from any unseen RTL design
without the need for retraining. The synthesis, placement and
ML inference times in Table II were collected on a 10 Core
Intel(R) Xeon(R) CPU E5-2680 (2.80GHz).

TABLE II
RUNTIME COMPARISON OF THIS WORK WITH TRADITIONAL APPROACHES

Design Number of Time required for path delay
Name Paths Post-Placement1 This Work2

fpu double 5273 118 minutes 3 minutes
des3 perf 9096 153 minutes 3 minutes
scdma viterbi 68091 462 minutes 9 minutes
1Time required for synthesis, placement and reporting of path delays
2Time required for RTL path feature extraction and ML inference

VIII. APPLICATIONS

A. Identifying and fixing timing hot-spots in RTL

In this section we explore some practical application of the
proposed method in the context of developing a Verilog RTL
design. The register delay paths for a Verilog design with
various combinational expressions were analyzed to identify
its worst case path, followed by an attempt to optimize the
relevant RTL code section based on the prediction from our
approach. Synthesizing the unmodified RTL design with a
strict clock period constraint in a commercial implementation
flow yielded a worst path, the start and end points of which are
listed in the timing reports. The report from the commercial
tool also lists standard cells that are a part of the worst path
along with the total path depth. The time to generate detailed
timing reports through logic synthesis and layout requires
several hours to days, depending on the size of the RTL
design. Also such reports usually lack the details that designer
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Fig. 7. RTL optimization based on timing feedback

needs to identify specific sections in the RTL code that require
optimization for reducing the timing delay of the worst path.
In contrast, our proposed approach is able to predict timing
path delays 40 times faster than commercial tools for the
design used in this experiment. The path reported from our
approach not only provides the start and endpoints of the
worst case path, it also indicates the behavioral nodes that
appear along the worst case path. In the design graph created
by our AST parser, each node conveniently stores the specific
Verilog line number as an attribute. This helps the designer to
trace back to the RTL code sections that needs optimization
for improving timing. In the example shown in Figure 7, our
method indicates the complex expression on line 128 to be
the source of the critical path delay of 3.96nS. To replicate a
fix, we simplify the expression to reduce the logic depth. The
modified RTL exhibits a lower delay for the same endpoints,
proving that the feedback provided by our approach is effective
in quickly pinpointing the timing hot-spots in the RTL section.

B. Worst Case Delay Prediction
A timing critical path is often the cause of timing failure and

results in the worst case delay during static timing analysis.
Thus, identifying the specific path responsible for the worst
case delay in a design is the first step to solving a multi-layered
timing problem. Fixing the timing paths with negative slack
is a multi-layer problem because a design that does not meet
timing requirements typically contains a collection of failed
paths ranked by their delay. Hence, solving the worst path is
an iterative process as each step brings the next worst path into
focus. Analyzing any design using our method allows us to
quickly list the top n paths with the largest delay. Comparing

these predicted worst paths against reference timing reports
from the commercial placement tool shows that 90.4% of the
predicted paths are correctly identified.

IX. CONCLUSION AND FUTURE WORK

In this work, we have presented a machine learning based
timing prediction method which utilizes a novel RTL feature
extraction technique to identify granular level timing paths in
RTL designs. The proposed approach is capable of classifying
the delays of these timing paths and identifying the compo-
nents in the RTL source code which contribute to the timing
failures and the worst case delay. The results are achieved 40
times faster than the commercial approaches with an average
accuracy of 91%. In future, we aim to explore regression based
delay prediction models and incorporate the effects of various
synthesis recipes on timing.
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