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Abstract

Whilemany freshwater lakes havewitnessed a rapid increase in surfacewater temperatures, the trends

in subsurfacewater temperatures are not well-understood. This study explored the long-term

subsurfacewater temperature change and its connection to climate change and human activities in

Seneca Lake. Utilizing linear regression and the Theil-Sen estimator, the study identified a significant

monotonic temperature trend in the subsurfacewater. Principal component and contribution

analyses revealed that climate changes, particularly air warming, weremore critical in explainingwater

temperature patterns, and human activities such as land cover change could exacerbate the impact of

climate change. Using remotely sensed surface water temperature data, the study found a significant

positive correlation between thermal pollution andwater temperatures in the northern region of the

lake, and after incorporating control variables, the regression analysis suggested that the adverse effects

of thermal pollution are primarily confined to the area adjacent to the power plant. This research can

offer fresh insights into lake ecology improvement andmanagement strategies.

1. Introduction

Lakes are sentinels of climate change due to their sensitivity to environmental changes (Adrian et al 2009). There

is a robust scientific consensus that the globalmean air temperature has increased at an unprecedented rate over

the last century (Winslow et al 2018). Consequently, in situ and satellite observations have shown that surface

water temperatures rose rapidly inmany freshwater lakes over the past several decades (Yang et al 2019,O’Reilly

et al 2015, Yang et al 2020).What is less clear is howdeepwater temperatures have changed during the same

period. The subsurfacemixing determines the vertical distribution of heatwithin lakes, a process that can be

affected by thermal stratification (Pilla et al 2020, Anderson et al 2021). Thus, deepwater temperature in lakes

may have changed at different rates from the lake’s surface temperature. Due to limited direct observations of

subsurface water temperatures, only a few studies have examined the deepwater temperatures and vertical

thermal structure of lakes, whichwere also limited to several largest lakes, such as LakeMichigan (Anderson et al

2021).While there aremanymore lakeswith sizes smaller than theGreat Lakes, our knowledge of how these

smaller lakes respond to climate change is still lacking. Thus, the first objective of the study is to better

understand how surface and subsurface temperatures have changed in smaller lakes.

Previous studies have suggested that climate change is a critical driver for the rapid increase of lakewater

temperatures (O’Reilly et al 2003, 2015, Anderson et al 2021). However, the significant impact of human

activities on lake temperatures should not be ignored. For example, the expansion of impervious surfaces due to
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urbanization can exponentially accelerate land surface temperature rise (Xu et al 2013), which has awarming

effect on surface runoff and lake surface temperature (Yang et al 2019). Thermal pollution froma power plant’s

coolingwater dischargemay not only significantly affect the lake surface temperature but also seriously threaten

the vertical stability of thewater column and affect thewater temperatures elsewhere in the lake (Kirillin et al

2013). But few studies have tried to quantitatively analyze the impact of human activities on the lakewater

temperatures besides climate change (Yang et al 2019), andmost of them focused on the impact on lake surface

temperature. It is less clear howhuman activitiesmay have affected the vertical thermal structure of lakes and the

temperature changes in deepwater. Therefore, the second objective of the study is to attribute changes in deep

water temperature to various environmental factors associatedwith climate change and human activities.

In this study, we take advantage of the in situ observations of thewater temperature profile at Seneca Lake in

NewYork state to explore the long-term surface and subsurface water temperature changes and their

connection to climate change and human activities. Interestingly, a natural gas power plant was built on the

western shore of Seneca Lake. The power plant utilizes a once-through cooling system that extracts water from

the lake and discharges cooling water back to the lake, potentially raising thewater temperature and resulting in

further harm to aquatic life (VanVliet et al 2012,Madden et al 2013, Kirillin et al 2013, VanVliet et al 2013,

Coffel andMankin 2021). This also gives us the opportunity to assess the impact of thermal pollution on lake

water changes.

Since deepwater temperatures are an essential factor in lake ecological environments, our study could offer

new insights by providing a reference for environmental impact assessment, improving the lake ecology, and

supporting sustainable lakemanagement (Zhu et al 2020).

2.Data andmethods

2.1. Study area

Seneca Lake is at the heart of the Finger Lakes region of westernNewYork state (figure 1). Eleven lakes in the

Finger Lakes region formed over 2million years ago, and all lakes, including Seneca Lake, are glacier lakes that

are the dominant lake type inNorth America (Anderson et al 1997,Mašín et al 2012). Seneca Lake is the largest

by volume in the region (Hunkins and Fliegel 1973), with a total volume of 15.9 km3. Themaximumwater depth

of the lake is 186 m, and themeanwater depth is 88 m (Hunkins and Fliegel 1973). Herdendorf (1982)

considered natural lakes with a surface area greater than 500 km2 as large lakes and only identified 253 such large

lakes in theworld, such as LakeMichigan. But compared to LakeMichigan, Seneca Lake, with an area of

175 km2, is amuch smaller butmore typical-size lake in theU.S. Seneca Lake is a warmmonomictic lake (i.e. it

circulates only during thewinter and stratifies during the summer) (Anderson et al 1997,Hambright et al 1994).

Figure 1.The geographical location of Seneca Lake.
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Whenpresent, the thermocline (a steep temperature gradient in a body of water) of Seneca Lake is usually

approximately 20mbutmay oscillate vertically (Ahrnsbrak 1975). CatharineCreek at the southern end and the

Keuka LakeOutlet on the central western shore providemost of thewater flowing into the lake, and Seneca Lake

water releases into the Seneca River or Cayuga-Seneca Canal at the northern end.

Near Keuka LakeOutlet is theGreenidgeGeneration Plant. Originally established in 1937, the plant had to

be shut down in 2011 due tofinancial insolvency.However, it resumed operations in 2017 to cater to the region’s

power needs and eventually commenced the production of electricity specifically for cryptocurrencymining in

2019. The plant utilizes water fromKeuka LakeOutlet for cooling and discharges the cooledwater directly into

Seneca Lake. The initiation of cryptocurrencymining at the power plant has resulted in a substantial surge in

power production, stirring up a contentious issue concerning the impact of water pollution on the Seneca Lake

watershed. The dispute regarding the potential thermal pollution in the lakewater still remains unresolved and

inconclusive.

2.2.Data Source

In-situwater temperatures: Lakewater temperatures were observed at themid-lake water qualitymonitoring

buoy (42.82°N, 76.96°W), which ismanaged by the Finger Lakes Institute. Thewater depth at this sampling

location is around 60 m.We obtainedwater temperature records atmultiple depths, from the lake surface to

55 mnear the lake bottom, between 2006 and 2022, with the exception of 2020. This study focused on long-term

temperature change during summertimewhen the lake develops thermal stratification. Due to themissing data

in other summermonths, we only used temperature data in August during the 16-year period tominimize

uncertainties of the long-term changes at various depths. To exclude the influence of diurnal variations of lake

water temperature (Woolway et al 2016,Wan et al 2017), only water temperature records at noon of each day

were used, and theywere averaged to obtainmonthlymeanwater temperatures at each depth before the trend

analysis.

Remotely sensedwater temperature: To investigate the impact of thermal pollution from the power plant

on the lake temperature, we relied on remotely sensedwater temperature instead of in situ data. The Landsat

Level 2 Land Surface Temperature (LST) products covering the period of 2017 to 2021, whichwere derived from

Landsat 8OLI/TIRS, were acquired usingGoogle Earth Engine (GEE). As the spatial resolution of the thermal

bands fromLandsat 8 is 100 m, the images were resampled to 30 musing the cubic convolution resampling

method (Sekertekin andBonafoni 2020). Subsequently, we removed pixels that were contaminated by clouds,

cloud shadows, and snow. Finally, themonthly surface lakewater temperatures of each pixel were derived from

the average LST of the available images for each givenmonth, and linear interpolationwas used tofill in the

missingmonths.

Environmental data: The daily air temperature, wind speed, shortwave radiation, longwave radiation, and

precipitationwere from theNorthAmerican LandDataAssimilation System (NLDAS) (Cosgrove et al 2003, Xia

et al 2012), averaged over all 1/8 degreeNLDAS grids covering Seneca Lake. Themean daily streamflowdata for

theKeuka LakeOutlet andCayuga-Seneca Canal, which are primary inlets and outlets of Seneca Lake, were

obtained from theNationalWater Information System (NWIS) of theUnited States Geological Survey (USGS)

and then averaged to obtainmonthly streamflowdata.

Human factor data:Weextracted the land cover information from theNational LandCoverDatabase

(NLCD) for the Seneca Lakewatershed to examine the land cover change in this watershed. The land cover data

inNLCDcontain snapshots of land cover in time, including 2006, 2008, 2011, 2013, 2016, and 2019 records.We

applied linear interpolation to estimate the percentage change in the land cover during thosemissing years. In

this study, we used changes in low-,medium-, and high-intensity developed areas, and the areas of cultivated

crops, based onNLCDcategories, as a proxy for human activities. Themonthly average intakewater

temperatures, average dischargewater temperatures, and cooling water volumes betweenApril 2017 and

December 2021were obtained from and fully validated by theUnited States Energy Information Administration

(EIA). Furthermore, we can estimate the heat discharge from the power plant using the given equation (1).

H
T T V C

D 24 60 60 10
1

d i

6

( )
( )

r
=

- ´ ´ ´
´ ´ ´ ´

whereH denotes the heat discharge inmegawatts (MW),Td/Ti denotes themonthly average discharge/intake

water temperatures in degree Celsius (◦C),V denotes themonthly coolingwater volumes in cubicmeters (m3
), ρ

denotes the liquidwater density, set at 1000 kilograms per cubicmeter (kg/m3
),C denotes thewater heat

capacity, set at 4184 joules per kilogram-degree Celsius (J/kg◦C), and finally,D denotes the number of days in a

specificmonth.
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2.3.Methods

Trend analysis: Todetermine the long-term trends of summertime lake temperatures, we used two approaches

to estimate the trends and the associated statistical significance. A simple linear regressionwas applied to the

Augustmeanwater temperature time series at each depth, and the slope is an estimate of thewarming ratewhile

the p-value/standard error represents the significance and uncertainty of this warming trend. Furthermore, the

Mann-Kendall and Sen’s Slope estimator test, a non-parametricmethod, was also employed for determining

long-termmonotonic trends alongside the linear regression because of their robustness to outliers and the skew

and heteroscedastic data (Kaushal et al 2010, Yang et al 2020).

Contribution analysis: The contribution analysis is to determine the relative contributions of climate

change and human activities to thewarming trends in Seneca Lake. In the analysis,multiple linear regression

models are used to quantify the association between a set of predictors and the response variable. For a specific

predictor xi, we calculate theR
2 values of two linear regressionmodels: one that excludes xi but includes all other

predictors and the other that includes all predictors (Brereton 2019, Yang et al 2020). The difference between the

twoR2 values represents the relative contribution of xi on explaining the response variable, which describes the

proportional impact of predictor xi onR
2
(Johnson 2000). Since all predictors within the linear regression

modelsmust be orthogonal (Brereton 2019), we performed the principal component analysis (PCA) on all

climate and human activity variables, which helps to remove redundant information and formorthogonal

components (Daffertshofer et al 2004).We also performed a varimax rotation of all predictors tomake our

principal components (PCs)more interpretable.

Correlation analysis: Pearson’s correlation coefficient, as ameasure of linear association, was calculated to

describe the relationships between the remotely sensed surfacewater temperature and heat discharge from the

power plant (Yang et al 2020, van denHeuvel andZhan 2022). To account for the possibility of the inaccurate

linear association, we utilizedKendall’s tau rank correlation coefficients as an alternativemethod to estimate

non-linearmonotonic relationships (van denHeuvel andZhan 2022).

Regression analysis:Weperformed themultiple linear regression at each pixel within Seneca Lake to assess

how thermal pollution from the power plant, which is the variable of interest, affects the lake’s surface

temperature. Control variables that are known to have an influence onwater temperatures, including air

temperatures, wind speed, and streamflow for theKeuka LakeOutlet, were included in the analysis to isolate the

effect of thermal pollution on the lakewater temperatures (Makni et al 2009). Before conducting the linear

regression tests, we assessed the predictor variables for potential collinearity.

3. Results and discussion

3.1. Long-term trends in vertical temperature profiles

Similar tomanymiddle-latitude lakes, thermal stratification occurs in Seneca Lake during the summertime.

Thermal stratificationmeans that water can be divided into three layers based on the temperature profile

(Haddout et al 2020), namely, epilimnion,metalimnion, and hypolimnion. To capture the vertical temperature

profiles with greater details, we discretized the profile into 2-m layers here, while for the rest of the analysis, we

used 5-m layers. The climatologicalmean of August temperatures for each 2-m layer from2006 to 2022 is

depicted infigure 2(a). It is evident that thewell-mixed epilimnion layer between 0mand 10 mhas relatively

uniform temperatures (Berger et al 2010,Haddout et al 2020). Themetalimnion layer is between 10 mand 20 m

where lakewater temperatures change rapidly with depth (usually 0.5–4.5 °C/m) (Haddout et al 2020, Yankova

et al 2016). At the bottom, between 20 m and 50 m, is the relatively undisturbed hypolimnion layer where

temperatures are relatively uniformbut cooler.

We divided the top 50-mwater column into ten 5-m layers and calculated the annual rate of change for the

lakewater temperature inAugust with the two approaches. As shown infigure 2(b) and table S1, we observed an

increasing trend in summertime lakewater temperature throughout the entire water column. The rates of

change reported in both approaches are very similar for all 10 layers, both inmagnitude and statistical

significance.

From2006 through 2022, Seneca Lake’s surfacewater temperature rose at an average rate of approximately

0.9 °Cper decade based on the linear regression andTheilSen estimator analysis. This warming trend is stronger

than the global summertime averagewarming for lake surface water temperatures, whichwas about 0.34 °Cper

decade between 1985 and 2009 (O’Reilly et al 2015). O’Reilly et al (2015) also suggested that thewarming rates of

water temperatures, dependent upon the combination of climate and local characteristics, weremuch higher in

the northeast United States than the global level (O’Reilly et al 2015), whichwas consistent with our results here.

The higherwarming rate found in this studymay also be related to the fact that our study period ismore recent

thanwhatwas reported inO’Reilly et al (2015).
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The temperature trend in the top 10 mwas approximately 0.8 °C–0.9 °Cper decade, which is nearly

equivalent to the rate of warming at the surface.Warming trends can be identified at depths of 10-20 m, and

these trends increased to approximately 1.3 °C–1.4 °Cper decade. These trends were all statistically significant at

the 0.05 significance level.Water temperature change rates at 20–50 mdepthswere still non-negative and

between 0.3 °Cand 0.7 °Cper decade but statistically insignificant in both approaches. And thewarming rates

tended to diminishwith the increase in depth. The slowerwarming in the hypolimnion layer could be attributed

to theweaker coupling of deepwater with air temperature due to lake stratification (Niedrist et al 2018, Read et al

2011). Our results indicate that surfacewater temperatures alone are not sufficient to obtain a full picture of the

warming in freshwater systems. This is particularly important asmost in situ observations currently only

account for surfacewater temperatures.

It is interesting to note that as shown infigure 2(b), the rate of temperature increase in themetalimnion layer

was notably higher than that in the epilimnion layer. The temperatures of the epilimnion layer are strongly

correlatedwith air temperature and are directly affected by climate warming (Haddout et al 2018). But the

heightened verticalmixing occurring within the epilimnion andmetalimnion layers due towarming (Wahl and

Peeters 2014) can push the thermocline slightly downward, causing faster warming at themetalimnion layer.

Additionally, thewind’s cooling effect through enhanced evaporation on the epilimnion layermight also be a

contributing factor to the notably elevatedwarming rate observed in themetalimnion layer (Yang et al 2020).

Thewarming rate of Seneca Lake is significantly higher than that of LakeMichigan, despite their similar

latitudes. Smaller lakes, such as Seneca Lake, with smaller volumes and lower heat storage capacities, aremore

sensitive to the increase in air temperature and radiation, which leads to faster warming (Mooij et al 2008,

Anderson et al 2021). Additionally, significant warming trends exist in the top 100meters in LakeMichigan and

in the top 20meters in Seneca Lake, which are about 36% and 11%of their respectivemaximumdepth.

Warming trends usually exist inmuch shallowerwater in smaller lakes than in larger ones because stronger

wind-sheltering reduces watermixing in smaller lakes (Winslow et al 2015).

3.2.Driving factors in long-termwaterwarming trends

Weperformed the contribution analysis to explore the contributions of different driving factors to long-term

waterwarming in Seneca Lake.We applied PCA to our exploratory variables to ensure our driving factors are

orthogonal. There are four PCs, and the correlations between the PCs and the original exploratory variable are

shown in table S2. Thefirst PC strongly correlates with the lake inflows, outflows, and precipitation. These three

variables are related towater supplies in Seneca Lake, andwe labeled the first PC as the Flow factor. The change

in the developed areawas found to have a correlation of 0.91with the second PC,while the change in agricultural

landwas found to have a correlation of 0.95with this component. Thus, the second PC is associatedwith human

activities in thewatershed, andwe labeled it as theHuman factor. The third PChas strong correlations with net

radiation and air temperature. Because the net radiation is the sumof the longwave and shortwave radiation,

which can heat up the soil and air (An et al 2017), we labeled the third PC as theHeat factor. The fourth PCwas

labeled as theWind factor because it exhibits a strong correlationwithwind speed.

Our analysis examined how the four factors contribute towarming trends in the epilimnion,metalimnion,

and hypolimnion layers, as well as the entire water column. As shown infigure 3, the environmental factors

(Flow,Heat, andWind)were the dominant driving factors. TheHeat factor had the largest contribution

throughout thewater column. A high correlation between the net solar radiation and the air temperature

suggests that the increased net solar radiation is strongly associatedwith air warming, and lake temperature can

increase following rapid air warming (Webb andNobilis 2007, Kaushal et al 2010, Yang et al 2019, 2020).

Figure 2.Vertical water temperature profile and long-term changes in Seneca Lake duringAugusts of 2006 to 2022. (a)Climatological
mean of lake temperatures for each 2-m layer for all Augusts between 2006 and 2022. (b)Trends of long-term temperature changes in
August for every 5-m layer.
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Furthermore, our analysis revealed that the impact of wind speedwas particularly notable for themetalimnion

and hypolimnion layers.Wind effects on lake heat distribution can usually be categorized into thermal

(enhanced cooling due to evaporation) and dynamic (enhanced verticalmixing) effects. As the depth increases,

the role of direct solar heating in determining lakewater temperatures diminishes (Jassby and Powell 1975), and

the importance of heat exchange associatedwith verticalmixing becomes increasingly pronounced (Mesman

et al 2021). Considering the crucial role of wind speed in influencing thermal stratification, verticalmixing, and

ultimately heat transfer (Oleksy andRichardson 2021), the relative importance of the impact of wind on the

water temperatures of deeper layers is observed to increase. Finally, the Flow factor does not seem to show a

noticeable impact onwater temperatures, whose contribution is less than 2% throughout thewater column.

Our analysis also showed that theHuman factor contributed 20%and 17.6% to thewarming in the

epilimnion layer and the entire water column,while its contributions areweaker for themetalimnion and

hypolimnion layers. As suggested byKaushal et al (2010), the land covermight be one of the critical factors in

determiningwater warming.Our results confirmed this as theHuman factor in our studywasmainly related to

land cover changes (developed area and agricultural land change). Urbanization represented by the expansion of

developed areas usuallymeans increasing impervious surfaces, which can increase the air temperature due to the

urban heat island effect (Kaushal et al 2010) and accelerate land surface temperature rise (Xu et al 2013), resulting

inwarming in streams and freshwater bodies. The expansion of agricultural land has been accompanied by the

shrinking of forests. And agricultural land expansion, which is strongly correlatedwith theHuman factor, is

often the primary driver of deforestation (Macedo et al 2013). The headwater in the forest usually stays at a low

temperature due to the shade and shelter, and deforestation directly exposes steams to solar radiation (Evans et al

1998,Macedo et al 2013), thus contributing towaterwarming.

Figure 3.Relative contribution of four driving factors as determined in the PCA.
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Our analysis lumped factors other than those being represented intoOther component, and these factors can

play an important role in influencing temperatures inmetalimnion and hypolimnion layers. The interaction

with groundwater is a part of this other component. Saline groundwater intrusion into Seneca Lake has been

observed (Wing et al 1995), ultimately leading to groundwater recharge. In addition, the groundwater recharge

often generates concave-upward thermal profiles and intensifies the thermal stratificationwithin Seneca Lake

Figure 4. (a)Pearson correlation analysis between thermal pollution andwater temperatures. (a1). Pearson correlation coefficients.
(a2). P values of Pearson correlation coefficients. (a3). Box plots of Pearson correlation coefficients. (b)Kendall correlation analysis
between thermal pollution andwater temperatures. (b1). Kendall correlation coefficients. (b2). P values of Kendall correlation
coefficients. (b3). Box plots of Kendall correlation coefficients. (c)Regression analysis of thermal pollution’s impact onwater
temperatures. (c1). Regression coefficients of the heat discharge. (c2). P values of regression coefficients. (c3). Box plots of regression
coefficients.
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(Dong et al 2018). As depth increases, the importance of heat exchange becomesmore pronounced (Mesman

et al 2021). Consequently, the impact of groundwater, which can affect thermal profiles and heat transfer,

becomes increasingly noticeable within themetalimnion and hypolimnion layers.

3.3. Impact of the power plant onwater temperatures

The controversy surrounding the impact of thermal pollution on the lake environment after the reopening of the

power plant in 2017 received substantial public attention.We examined the influence of thermal pollution on

lake surface water temperature betweenApril 2017 andDecember 2021, using correlation analysis to assess the

relationship between heat discharge and lake surfacewater temperature, as well as linear regression that

incorporated air temperature, wind speed, and streamflow as control variables. As shown infigure 4, both

Pearson andKendall correlation analyses show significant positive correlation coefficients at the 5% level,

primarily in the upper part of Seneca Lake. However, after accounting for the impacts of environmental factors,

the significant positive regression coefficients at a 5% significance level were confined to the lake area adjacent to

the power plant. Significant regression coefficients near the lake’s edgemay be attributed to the typically low

accuracy of remote sensing data at thewater-land boundary, potentially leading to an absolute error of up to 5 °C

(Schaeffer et al 2018). Conversely, no significant regression coefficients, either positive or negative, were detected

in the rest areas of Seneca Lake. In summary, the lake areas influenced by thermal pollutionwere relatively small.

However, it would be imprudent to overlook the potential adverse impact of that thermal pollution on the

lake’s ecosystem. In our study, the strong negative correlation betweenwind and air temperatures suggested

collinearity in the linear regression, based on the guideline that collinearity exists when the absolute value of the

Pearson correlation coefficient nears 0.8 (Shrestha 2020). However, collinearity was only detected among the

control variables, not between the independent and control variables (Shrestha 2020), the coefficient for the

thermal pollution in the regressionwas still interpretable andmeaningful (Johnston et al 2018). For the lake

regionwith significant regression, figure 4 indicates that a heat discharge of onemegawatt (MW) from the power

station typically resulted in amedian surfacewater temperature increase of about 0.07 °C. Starting in February

2020, the power plant’s heat emission surged, withmonthly heat discharge typically ranging between 40 and 95

MW, potentially leading to a rise of 3 to 7 °Cestimated based on the regression results. Usually, an increase of

5 °Cor above inwater temperatures can substantially impact the aquatic biodiversity and ecosystems (Madden

et al 2013). Therefore, thermal pollution should be recognized as an issue for aquatic environments near this

power station.

Considering the averagemargin of error of 1.34 °C in remotely sensedwater temperature data (Schaeffer

et al 2018), detecting subtle effects of thermal pollution becomes quite challenging. A past case study has shown

thatwhile the local warming effect of thermal pollution can reach up to 3.4 °C, the average effect across the entire

lake systemdrops to 0.3 °C (RåmanVinnå et al 2017). Less precise remote sensing datamay explainwhy our

regression only showed a significant association in the vicinity of the power plant butmissed themore subtle

effects of thermal pollution in thewider area of Seneca Lake. Thus,more precise year-round in situmonitoring

or regularmonitoring coupledwith numericalmodel simulations of the lake environment is indispensable to

better assess the power plant’s impacts onwater temperatures and their subsequent influence on lake ecosystems

and biodiversity.

4. Conclusion

By taking advantage of in situ observations atmultiple depths, we found that surface and sub-surface water

temperatures gradually warmed in Seneca Lake between 2006 and 2022. Long-termwarming trends, significant

at 5% level, exist in the top 20 mwith an average rate of approximately 0.8 °C–0.9 °Cper decade above 10 m and

around 1.3 °C–1.4 °Cper decade between 10 m and 20 m.Whilemany earlier studies observed pervasive and

rapid surfacewater warming around theworld (O’Reilly et al 2015, Yang et al 2019, 2020), our results showed

that thewarming could extend downward a fewdozenmeters, and it is not necessarily the surface layer that

warms themost due to changes in the lake dynamics. Our study highlights the need formore in situ observations

atmultiple depths to better assess and understand the changes in freshwater systems and their impact on aquatic

ecosystems. Furthermore, understanding the changes in Seneca Lake, amore typical-sized lake in theUS and the

world, can help to better understand howother freshwater systemsmay behave under climate change.

Previous research has indicated that climate warming plays a pivotal role in the rapid increase of lake water

temperatures (O’Reilly et al 2003, 2015, Anderson et al 2021). However, our study reveals that human activities,

such as urbanization and thermal pollution, can further exacerbate these changes. Despite the allocation of

substantial resources by governments in recent years to address ecological issues in lakes, there has been limited

observable progress in improving the lake environments (Jia et al 2022). In this context, our study provides

valuable insights into the role of human activities, enabling governments to identify the underlying causes of
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environmental and ecological issues in specific lakes. Such understanding is essential for effective lakewater

qualitymanagement. By acknowledging the contribution of human activities to lakewater warming and taking

appropriatemeasures tomitigate our environmental impact, we can contribute to a sustainable future for our

planet and its inhabitants.

Lastly, the debate over the thermal pollution from the power plant near Seneca Lake underscores the need to

revisit state and federal environmental guidelines concerningwater temperature, ensuring they are grounded in

solid scientific research. Ourfindings emphasize the adverse effects of thermal pollution in the vicinity of the

power plant, butmore precise data and additional research are needed to understand themechanisms of how the

thermal pollution dissipates from the lake and finally to gauge the extent of these impacts. Therefore, it is

imperative to conduct frequent and extensive in situmonitoring of surface and subsurface waters near the power

plant and throughout the entire lake to provide a comprehensive assessment of the impact of thermal discharge.

Additionally, given the essential need for electricity to support domestic and industrial activities, wemust

recognize the inevitability of thermal pollution frompower plants, evenwhen the electricity is not used for

cryptocurrencymining.Hence, it’s imperative to conductmore research to identify the best areas and depths for

thermal waste release to reduce its ecological impact, such as, possibly employing amulti-point discharge system

to spread heatmore broadly and reduce local warming rates.
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