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ABSTRACT

Disease surveillance, tra�c management, and weather forecasting

are some of the key applications that could bene�t from block max-

ima forecasting of a time series as the extreme block maxima values

often signify events of critical importance such as disease outbreaks,

tra�c gridlock, and severe weather conditions. As the use of deep

neural network models for block maxima forecasting increases, so

does the need for explainable AI methods that could unravel the in-

ner workings of such black box models. To �ll this need, this paper

presents a novel counterfactual explanation framework for block

maxima forecasting models. Unlike existing methods, our proposed

framework, Di�usionCF, combines deep anomaly detection with

a conditional di�usion model to identify unusual patterns in the

time series that could help explain the forecasted extreme block

maxima. Experimental results on several real-world datasets demon-

strate the superiority of Di�usionCF over other baseline methods

when evaluated according to various metrics, particularly their

informativeness and closeness. Our data and codes are available at

https://github.com/yue2023cs/Di�usionCF.
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1 INTRODUCTION

Block maxima forecasting is the task of predicting the maximum

value of a time series for a future time window. Such a forecasting
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task has widespread applicability in many practical domains such as

weather forecasting, disease monitoring, tra�c management, and

�nancial risk assessment. Block maxima forecasting models play

a crucial role in these domains as the predicted block maxima can

provide early warning to stakeholders about an impending severe

event. Despite their growing importance, there is a noticeable gap

in current research regarding the explainability of these models.

Explainability is important for block maxima forecasting models

as it enables stakeholders to comprehend and trust the model’s

predictions, fostering transparency and informed decision-making,

particularly in critical scenarios. The growing �eld of explainable AI

therefore plays a crucial role in this context, o�ering methodologies

and tools that can enhance the explainability of these models.

Explainable AI involves two primary methodologies: feature

attribution and counterfactual explanation methods [23]. Feature

attribution methods, such as LIME [25], SHAP [21], Grad-CAM [26],

CRP [1], and adversarial examples [10, 28], focus on elucidating the

conditions behind a model’s decision, shedding light on the in�u-

ential features or input values. Di�erently, counterfactual explana-

tion methods [13] seek to discover the smallest modi�cation (i.e.,

changes) to the input that leads to a completely opposite forecast,

a.k.a., counterfactual target, by the black box model. Counterfactual

explanation methods are appealing as they o�er a powerful means

to explore alternative scenarios and assess the impact of di�erent

conditions on forecasting outcomes. For block maxima forecast-

ing, the counterfactual instances enable us to identify historical

patterns in the time series that may help explain the forecasted ex-

treme block maxima so actions can be taken to prevent their future

occurrence. In the example depicted in Figure 1, a prior incident

of epidemic outbreak may likely explain the forecasted next wave

by the black box model. The forecast is juxtaposed against a coun-

terfactual scenario which assumes preventative intervention had

been taken to mitigate the likelihood of the subsequent outbreak.

For time series, a good counterfactual instance must be (1) in-

formative, i.e., identi�es the contrastive segment in the time series

that explains the generated prediction by the black box model, (2)

closely mimics the original time series, and (3) realistic, i.e., drawn

from the same distribution as the majority of the time series data.

However, striking a balance among the three criteria can be tricky.

For instance, neighborhood-based methods [8, 20, 33] consider

the nearest training instance whose prediction matches the coun-

terfactual target and utilize or partially modify them to form the
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Figure 1: An illustration of counterfactual explanation for

block maxima forecast of a disease outbreak. The blue dot

denotes the forecasted epidemic outbreak while the red dot

represents a counterfactual scenario devoid of any outbreak.

counterfactual instance. While the counterfactual instance found

by these methods is quite realistic since it corresponds or is close

to an actual training instance, it may not resemble the original

time series. On the other hand, gradient-based methods [5, 30, 32]

learn a counterfactual instance by perturbing the time series in

such a way that maintains closeness to their original time series.

Yet these methods may induce modi�cation across the entire time

series, making it di�cult to pinpoint exactly the segment in the

time series that helps explain the model forecast, thereby reducing

its informativeness.

In this paper, we present a novel counterfactual explanation

framework for block maxima forecasting models. Unlike counter-

factual explanation for time series classi�cation [3, 8, 18], choosing

the right counterfactual target value for block maxima is non-trivial

since the block maxima are continuous-valued, which means, there

are in�nitely many possible counterfactual targets to choose from.

To address this challenge, we propose a principled way to create the

counterfactual target by leveraging the generalized extreme value

(GEV) distribution [7], which governs the distribution of block max-

ima values of a time series. Next, to ensure that the counterfactual

instance is informative, we constrain the area for modi�cation by

identifying abnormal segments within the original time series, de-

parting from the conventional practice of considering the entire

time series for perturbation when constructing the counterfactual

instance. Speci�cally, we apply anomaly detection to each segment

of the time series and extract a subset of the segments with the high-

est anomaly scores as possible candidates for replacement. For each

candidate, we employ a conditional di�usion model [29] to gener-

ate a new time series segment to replace the identi�ed anomalous

segment. This strategy of constructing a counterfactual instance by

replacing only its anomalous segment helps create counterfactual

instances that are informative, yet close to the original time series.

Our overall proposed framework, named Di�usionCF, encapsu-

lates this comprehensive approach. The primary contributions of

this work can be summarized as follows:

(1) We introduce the novel problem of counterfactual expla-

nation for block maxima forecasting models in time series,

where the counterfactual instances help identify anomalous

patterns in the time series that lead to extreme values in the

forecasted block maxima.

(2) We propose a method to create a counterfactual target for

the block maxima by leveraging the generalized extreme

value (GEV) distribution.

(3) We present Di�usionCF, a framework that balances the trade-

o� between generating counterfactual instances that are

informative, yet realistic and close to the original time series.

(4) We perform extensive experiments comparing Di�usionCF

against other baseline methods under di�erent experimental

settings. We demonstrate the versatility and e�ectiveness of

Di�usionCF across di�erent real-world domains.

2 RELATEDWORK

Extreme value theory (EVT) [7] o�ers a well-grounded approach

for modeling and forecasting extreme values in time series. The

theory has recently been incorporated into various deep-learning

formulations. For instance, Nishino et al. [24] proposed to predict

the maximum value in a forecast window using GRU with the gen-

eralized extreme value (GEV) distribution. DeepExtrema [12] is

another approach that uses deep learning to estimate parameters of

the GEV distribution for block maxima forecasting. The GEV distri-

bution has also been used to impute missing values in time series

for block maxima forecasting task [11]. Despite these advances, the

forecasts generated by the black box models can be hard to explain.

Explainable AI, as described by Molnar [23], encompasses two

main methodologies: feature attribution methods, such as LIME

[25], SHAP [21], and Grad-CAM [26], or counterfactual explanation

methods. LIME [25], a representative feature attribution method,

explains the predictions of complex machine learning models by

approximating them locally with simpler models such as linear

regression or decision trees. Di�erently, counterfactual explanation

methods [13] focus on identifying the smallest modi�cations to

the input features that would alter the model’s decision, o�ering

insights into how di�erent inputs could lead to di�erent outcomes.

Such methods have been applied to various domains, including

recommender systems [6, 31], computer vision [9, 16], and natural

language processing [4]. For time series prediction, there are several

ways to generate the counterfactual explanation. First, gradient-

basedmethods [3, 18, 22, 30, 32] can be used to create counterfactual

instances by minimizing the loss between the model prediction and

the desired counterfactual target while maintaining the similarity

between the perturbed and original instances. Attribution analy-

sis methods [19] leverage domain knowledge to select the input

features and quantify their impact on the counterfactual target.

Our work di�ers from past research in several key aspects. First,

we emphasize deriving counterfactual explanations for regression

instead of classi�cation tasks, which have been the focus of many

previous studies. Second, we utilize generative AI to produce realis-

tic counterfactual instances, which is a challenge for gradient-based

methods. Third, unlike attribution analysis methods that require

domain knowledge with a limited number of factors, our method

can automatically identify the explanatory factors responsible for

the prediction.

Generative models [2, 17] have emerged as a key machine learn-

ing paradigm in recent years due to their capacity to synthesize
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Figure 2: Comparison of counterfactual instances under the informativeness (left), closeness (middle), and realisticness (right)

criteria. The blue dot in each �gure denotes the forecasted extreme block maxima by a black box model for the period between

January and September in 2023, while the red dot denotes its corresponding counterfactual target block maxima.

realistic samples replicating the underlying data distribution. Di�u-

sion models [14, 27, 29] have recently emerged as a cutting-edge

approach due to their ability to produce high-quality samples. These

models have found success in diverse applications, including time

series imputation [29] and counterfactual explanation for images

[15]. However, their use for counterfactual explanations of extreme

values in time series remains largely unexplored.

3 PRELIMINARIES

3.1 Problem formulation

Consider a time seriesZ = I1I2 . . . I) , where ) denotes the length

of the time series. Assume the time series is partitioned into a

set of distinct time windows, each denoted as FC = [C − U, C + V],
respectively, where C denotes the current time step. Each window

encompasses a predictor time series, -C = IC−UIC−U+1 . . . IC , where
U+1 is the length of the predictor window, and a forecast time series,

.C = IC+1IC+2 . . . IC+V , where V is the length of the forecast window.

The predictor window [C − U, C] contains historical data or other
input variables employed by the forecasting model to generate its

predictions, whereas the forecast window (C, C + V] contains the
future values to be predicted by themodel. Let~C = maxg∈1,...,V IC+g
be the block maxima of.C , i.e., the maximum value over the forecast

window. Furthermore, we denoteF:C−g = [C−g +1, C−g +:] as a sub-
interval within FC such that -C (F:C−g ) = IC−g+1IC−g+2 · · · IC−g+:
is the corresponding length-: time series segment of -C , where

: f g f U + 1.
Let 5 be a black box model that generates a block maxima fore-

cast, ~̂C , for any given input -C , i.e., ~̂C = 5 (-C ). Our primary goal

is to construct a counterfactual predictor, - ′C , such that 5 (- ′C ) ≈ ~̂′C ,
where ~̂′C ≠ ~̂C is the desired counterfactual target. For example, if ~̂C
corresponds to an extreme block maxima generated by the model

5 , then the counterfactual target ~̂′C would be a non-extreme block

maxima value. In this paper, we employ the Generalized Extreme

Value (GEV) Distribution to de�ne whether a block maxima value

is extreme or non-extreme. If the forecasted block maxima ~̂C is

extreme, then a counterfactual instance (- ′C , ~̂′C ) is generated. To
do so, the counterfactual predictor, - ′C , for -C should satisfy the

following three desirable criteria:

(1) Informativeness:- ′C is (d, :)-informative if∃F:C−g ¢ FC , : j
U, d > 0 : ∥- ′C (F:C−g ) − -C (F:C−g )∥ > d and -C\-C (F:C−g ) ≈

- ′C \- ′C (F:C−g ), where-C\-C (F:C−g ) is the corresponding time

series in -C after excluding the segment -C (F:C−g ).
(2) Closeness: - ′C is n-close to -C if ∥-C − - ′C ∥ < n for n > 0.

(3) Realisticness: - ′C is X-realistic if % (- ′C ) g X , where % (·) is
the probability that - ′C is drawn from the same distribution

as any randomly chosen segment from the time seriesZ.

Figure 2 illustrates examples of counterfactual instances eval-

uated using the 3 criteria above when applied to a temperature

block maxima forecasting model. In this hypothetical example, as-

sume the forecast model predicts an extreme temperature value,

say, 105◦F (depicted as a blue dot), for the forecast window between

January and September in 2023. Suppose a counterfactual instance

with the counterfactual target of around 80◦F (shown as a red dot)

is to be constructed. The left panel shows a comparison between

an informative and uninformative counterfactual instance. Even

though both counterfactual instances yield the same counterfactual

target, the informative counterfactual, shown as a red line, is nearly

identical to the original time series, shown as a blue line, except for

the larger deviation in the interval highlighted in green shadow. The

counterfactual is informative as it pinpoints the segment within the

predictor window whose anomalous values lead to the unusually

extreme block maxima forecasted by the model. In contrast, the

uninformative counterfactual, shown by the green line, exhibits

deviations from the original time series throughout the entire time

period, o�ering little information that could explain the forecasted

extreme block maxima. The middle panel of Figure 2 shows the

distinction between counterfactual instances with high (red line)

and low (green line) closeness in terms of their proximity to the

original time series. Finally, the right panel of Figure 2 illustrates

the di�erence between realistic (red line) and unrealistic (green

line) counterfactual instances. Speci�cally, the temperature pro�le

of the unrealistic counterfactual is counter-intuitive as it exhibits

higher temperatures in winter than in summer.

Unfortunately, balancing the trade-o� among the criteria can

be tricky. For example, the following theorem demonstrates the

impossibility of satisfying both informative and closeness criteria

when d > n .

Theorem 1. Let - ′C be a (d, :)-informative counterfactual predic-

tor of -C . If d > n , then - ′C must not be n-close.
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Proof. Since - ′C is (d, :)-informative, using the additive prop-

erty of vector norm, we have:

∥- ′C − -C ∥ = ∥- ′C (F:C−g ) − -C (F:C−g )∥ + ∥- ′C \- ′C (F:C−g ) − -C\-C (F:C−g )∥
g d + ∥- ′C \- ′C (F:C−g ) − -C\-C (F:C−g )∥

Furthermore, given that d > n , this implies ∥- ′C − -C ∥ > n , which
means - ′C must not be n-close. □

Similarly, if- ′C is n-close and d > n , then ∥- ′C (F:C−g )−-C (F:C−g )∥ f
n , which means �nding a (d, :)-informative counterfactual predic-

tor would be impossible. An analogous impossibility theorem for

realisticness is more challenging as it depends on the probability

model of the time series. The di�culty of balancing the 3 criteria

can be illustrated with an example. Let - ′C be the counterfactual
predictor obtained via the nearest neighbor approach [8]. Since - ′C
is an existing time series, % (- ′C ) must be large. However, it may

not be close unless - ′C is in the n-neighborhood of -C . Even if it is

n-close, - ′C may not be (d, :)-informative if d > n , as shown above.

3.2 Generalized Extreme Value Distribution

Consider a time series Z of length ) that is partitioned into <

sequences, each of length = (i.e., =< = ) ). For each sequence, let

.= be its block maxim. The generalized extreme value (GEV) dis-

tribution [7] is often used to describe the probability distribution

governing the block maxima values. The distribution is character-

ized by its shape (b), location (`), and scalar (f) parameters, with

the following cumulative distribution function (CDF):

% (.= f ~) = exp

{

−
[

1 + b
(~ − `
f

)]− 1
Ĉ

}

, (1)

subject to the constraint:

∀~ : 1 + b ~ − `
f

> 0 (2)

The ?th quantile of the distribution,~? , can be calculated as follows:

~? = ` + f
b

[

(− log?)−b − 1
]

. (3)

Given the shape, location, and scale parameters of the GEV distri-

bution1, the preceding equation is used to determine the threshold

for extreme block maxima and the counterfactual target for our

proposed framework by setting the appropriate quantile values, ? .

3.3 Deep Block Maxima Forecasting Model

Recent years have witnessed a growing number of research focus-

ing on the use of extreme value theory to enhance the forecasting

of extreme events in time series [12, 24, 34]. For example, Wilson

et al. [34] introduced the DeepGPD framework with Generalized

Pareto (GP) distribution to forecast excess values over some pre-

speci�ed threshold while Galib et al. [12] and Nishino et al. [24]

utilized the Generalized Extreme Value (GEV) distribution for block

maxima forecasting problems. In this work, we choose DeepEx-

trema [12] as our black box model due to its superior performance

in block maxima forecasting compared to other baselines. Never-

theless, our framework is model-agnostic, and thus, applicable to

other block maxima forecasting models such as [24].

1These parameters will be estimated by the block maxima forecast model.

DeepExtrema employs a combination of LSTM with fully con-

nected layers to estimate the GEV parameters {` (-C ), f (-C ), b (-C )}
of an input time series -C in a way that preserves the inequality

constraints given in (2). It then utilizes a fully connected network

(FCN) layer to generate the forecast of block maxima, ~̂C , from the

estimated GEV parameters. The framework is trained end-to-end

to simultaneously learn both the GEV parameters and its block

maxima forecast by minimizing the following loss function [12]:

! = _1!̂��+ + (1 − _1)
#
∑

8=1

(~ (8 )C − ~̂
(8 )
C )

2, (4)

where !̂��+ is a regularized negative log-likelihood of the GEV

distribution while the second term is the least-square loss between

the forecasted and actual block maxima of the training instances.

Note that the aim of our study is not to assess the predictive per-

formance of DeepExtrema or other similar forecast models. Instead,

it focuses on providing counterfactual explanations to elucidate the

forecasts generated by the model, regardless of their accuracy.

3.4 Counterfactual Explanation

Existing studies on counterfactual explanation have mostly cen-

tered around binary classi�cation problems [8, 30]. Speci�cally, let

-C denote the predictor time series and 2 denote the predicted class

label of the block maxima in the forecast time series .C , according

to a binary classi�er 5 , i.e., 5 (-C ) = 2 . The primary objective of

counterfactual explanation is to �nd - ′C , a modi�ed counterpart of

-C that will lead to the alternative class label 2′ by the model 5 , i.e.,

5 (- ′C ) = 2′ ≠ 2 . This objective is typically achieved by minimizing

the following loss function [30]:

!(-C , - ′C , 2′, _) = _
(

5 (- ′C ) − 2′
)2 + 3 (-C , - ′C ), (5)

where _ is a tuning parameter that balances the components of the

loss function. The �rst term quanti�es the di�erence between the

model’s prediction for the modi�ed input- ′C and the counterfactual
target class 2′. The second term measures the dissimilarity between

the input -C and its counterfactual - ′C .
In this work, we will adapt the approach to generate a coun-

terfactual explanation for extreme block maxima, a continuous

value instead of a class label, forecasted by models such as DeepEx-

trema [12].

4 PROPOSED FRAMEWORK

To generate the counterfactual explanation for block maxima fore-

casting, our Di�usionCF framework performs the following steps.

First, a continuous-valued counterfactual target ~̂′C associated with

the forecasted block maxima ~̂C is constructed, as described in Sec-

tion 4.1. Next, the corresponding counterfactual predictors - ′C for
the target ~̂′C is learned using the approach described in Section 4.2.

Finally, in Section 4.3, we demonstrate how to use - ′C to explain

the extreme block maxima forecast generated by the model 5 .

4.1 Constructing Counterfactual Target ~̂′C
Our goal is to generate a counterfactual target that satis�es the

following two conditions. First, given an input -C , if the forecasted

block maxima ~̂C is an extreme value, then the counterfactual target

must be non-extreme. This requires setting a threshold ~̂′
*

that
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Figure 3: A schematic illustration of the proposed Di�usionCF framework.

determines whether the forecasted block maxima is extreme or

non-extreme. Second, as the distribution of block maxima values

is governed by the GEV distribution, the sampled counterfactual

target should be drawn from the same distribution. Adhering to

the GEV distribution enables us to construct the continuous-valued

counterfactual target in a more principled fashion.

To achieve both conditions, we utilize the GEV parameters gen-

erated by the DeepExtrema model2. Speci�cally, given an input

-C , DeepExtrema will generate both the block maxima forecast ~̂C
along with parameters of its associated GEV distribution, ` (-C ),
b (-C ), and f (-C ). Let ? ∈ (0, 1) be a hyperparameter corresponding

to the desired quantile for de�ning an extreme block maxima. The

extreme value threshold is computed by setting ~̂′
*

= I? using the

quantile formula for GEV distribution given by (3). If the predicted

block maxima ~̂C g ~̂′* , then ~̂C is considered an extreme value.

If ~̂C is an extreme block maxima, then a counterfactual target

will be constructed using the forecasted GEV distribution by setting

a quantile ?′ < ? to ensure the counterfactual target is below the

extreme threshold. Analogous to (3), the counterfactual target is

computed as follows:

~̂′C = ` (-C ) +
f (-C )
b (-C )

[

(− log ?′)−b (-Ī ) − 1
]

, (6)

where ` (-C ), f (-C ), and b (-C ) are the learned parameters produced

by the DeepExtrema model.

2For other black box models, we can �t a GEV distribution to all the block maxima
values �rst to learn their GEV parameters and use them to generate the threshold ~̂′

đ
.

While our framework can be adapted to explain non-extreme

block maxima forecasts, our current approach is speci�cally de-

signed to generate counterfactual instances for extreme block max-

ima in this work. This is due to their signi�cant practical impli-

cations and the valuable insights they o�er for prevention and

mitigation e�orts.

4.2 Constructing Counterfactual Predictor - ′C
After identifying the counterfactual target ~̂′C , the next step is to

construct its corresponding counterfactual predictor, - ′C , such that

5 (- ′C ) ≈ ~̂′C while ensuring that - ′C is informative, realistic, and

close to the original time series -C . Unlike previous approaches (as

examples in Section 5.2) that often resorted to searching or random

(gradient-based) perturbations of the input data to produce the

counterfactual predictors, our proposed Di�usionCF framework is

designed to balance the tradeo� between informativeness, closeness,

and realisticness of the counterfactual explanation. There are 3main

components in Di�usionCF, as shown in Figure 3.

4.2.1 Constructor for the Counterfactual Predictor. The key assump-

tion guiding our approach is that when the black box model predicts

an exceptionally extreme block maxima value, the time series seg-

ment(s) within -C most likely contributing to the extreme forecast

are those exhibiting a high level of anomaly. Our con�dence in this

assumption stems from the fact that the black box model derives

its prediction solely from -C . If the segments in -C align with typi-

cal observations in the time series, it would be improbable for the

forecast model to produce an extreme value output. While there

may exist other scenarios that could lead to the forecasted extreme
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block maxima, our assumption provides a highly plausible and com-

putationally feasible way to pinpoint the explanatory factor behind

the model’s forecast.

Based on this assumption, our constructor for the counterfactual

predictor needs to identify the most anomaly segment(s) in the time

series and replace them with more typical patterns, while leaving

the rest of the time series intact. This strategy enables our approach

to create more informative yet realistic counterfactual instances.

The counterfactual predictors are constructed as follows:

(1) Extraction of Time Series Segments: Given a time series

-C of length U+1 for the predictor window [C−U, C], our algo-
rithm �rst extracts all the time series segments

{

-
8
C

}U−3+2

8=1
within -C by using a sliding window of �xed length, 3 .

(2) Detection of Anomalous Segments: For each extracted

segment, -
8
C , the algorithm computes the probability ?

-
ğ

Ī

that conforms to the underlying distribution of the time

series data. The probability is estimated using a detector

function 6 (to be described in Section 4.2.2), where ?
-

ğ

Ī

=

6(- 8C ).
(3) CounterfactualGeneration: Starting from themost anoma-

lous segment, -
<0B:
C = argmin

B∈{- ğ

Ī }
?B , the algorithm

would remove this segment from -C and replaces it with

a more “typical" segment. This is achieved by using a sam-

pler ℎ (see Section 4.2.3) to generate a set of < candidate

replacements, denoted as �<C = ℎ(-C , -
<0B:
C ), where each

candidate -
B
C ∈ �<C has a higher probability to be drawn

from the time series than -
<0B:
C , i.e., ?

-
ĩ

Ī
> ?

-
ģėĩġ

Ī

. The

best candidate -
min
C is then selected based on its distance to

the counterfactual target ~̂′C :

-
min
C = arg min

-
ĩ

Ī ∈�ģ
Ī








5
(

(-C \ -
<0B:
C ) · -BC

)

− ~̂′C









1
(7)

Here (-C \ -
<0B:
C ) · -BC denotes the resulting times series

after replacing the anomalous segment -
<0B:
C with the can-

didate -
B
C . The counterfactual predictor -

′
C is obtained by

replacing the anomalous segment with the best candidate,

i.e.,- ′C = (-C \-
<0B:
C )·-min

C . As the forecast for the counter-

factual predictor - ′C generated from the anomalous segment,

5 (- ′C ) may not always be close to the counterfactual target,

~̂′C , this step is repeated using the next  most anomalous

segment(s) until the following conditions are met:

Counterfactual Target Condition:

5 (- ′C ) < ~̂′* and 5 (- ′C ) ∈ [~̂′C − n, ~̂′C + n] (8)

For e�ciency reasons, this process of removal and replace-

ment of the anomalous segment is repeated for at most  

times. If no viable counterfactual predictor - ′C is found, the
algorithm will return the best - ′C it has discovered.

4.2.2 Detector 6. Our Di�usionCF framework uses a variational

auto-encoder (VAE) for anomaly detection [2] as its detector 6. The

VAE for anomaly detection is trained to learn the underlying distri-

bution of all time series segments {- 8C }U−3+28=1 of length 3 extracted

from the predictor time series -C of the training data. It comprises

two main components—an encoder +encoder and a decoder +decoder.

The encoder +encoder takes each -
8
C as input and maps it to a latent

Gaussian distribution with mean vector ` and isotropic covariance

f2I. The Gaussian distribution is used to draw ! samples from the

ℎ-dimensional latent space, denoted as {�8 ∈ 'ℎ |8 = 1, 2, ..., !}. The
decoder +decoder would attempt to reconstruct the original time

series segment, -
8
C , from each sampled latent instance. The VAE for

anomaly detection is trained to minimize the average reconstruc-

tion error of the time series segments.

During the detection step, for each input -
8
C , the VAE would

compute the parameters of its latent distribution, which are used to

calculate the probability ?
-

ğ

Ī

. The probability determines whether

-
8
C is anomalous. The higher the probability, the more likely -

8
C

belongs to the same distribution as the majority of the time series

segments, so the less anomalous it is. Details of the Detector module

are shown in Figure 3.

4.2.3 Samplerℎ. Our framework uses a conditional di�usionmodel

as its sampler ℎ to construct a candidate replacement, -
B
C , for

an anomalous segment, -
<0B:
C . Speci�cally, it will �rst mask the

anomalous segment from the input time series -C and provide the

masked input to CSDI [29], a conditional di�usion model that is

adept at imputing missing segments of a time series (see Appen-

dix A.1 for details). We chose CSDI because it can leverage the

unmasked portion of the time series (i.e., -C \ -
<0B:
C ) to create a

new candidate -
B
C for imputing the masked segment. This allows

Di�usionCF to produce imputed segments that are consistent with

the rest of the time series, leading to more realistic counterfac-

tual predictors. Nevertheless, our framework is �exible and can

incorporate other samplers such as DDPM [14] and VAE [17].

4.3 Using Counterfactual Predictor to Explain
Block Maxima Forecast

The counterfactual predictor, - ′C , generated by Di�usionCF can be

used to elucidate the speci�c segment within the input time series

-C that largely contributes to the forecasted extreme block maxima.

Let �- = -C − - ′C = (�IC−U ,�IC−U+1, ...,�IC ) be a vector of abso-
lute di�erence between the counterfactual and original predictor,

i.e., �I8 = |-C,8 −- ′C,8 |. The time steps within the predictor window,

[C − U, C] can be sorted in decreasing magnitude of their �I8 . If

|�I8 | exceeds some threshold, then the segment can be considered

a notable contributor to the extreme block maxima forecast by the

black box model 5 .

5 PERFORMANCE EVALUATION

5.1 Datasets

We use the following datasets for our experiments: (1) Global

Surface Summary of the Day (GSOD), a dataset that contains

daily observations of precipitation and temperature from 79weather

stations in the Mobile/Pensacola area in the southwestern United

States. The dataset spans a time period from August 1, 1929, to
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Table 1: Summary of datasets, where |-C | and |.C | denote the
length of the predictor and forecast windows, respectively.

Dataset
#Training

samples

#Validation

samples

# Testing

samples
|-Ī | |.Ī |

GSOD 14798 548 511 24 6

S&P 500 7022 251 251 25 5

Dodgers sensor 846 248 241 40 8

November 22, 2023. (2) S&P 500, a dataset comprises of daily closing

prices of the S&P-500 index from January 13, 1994 to January 12,

2024. (3) Dodgers loop sensor, a dataset containing tra�c volume

data from April 10, 2005, to October 2, 2005, at the Glendale ramp

of the 101 North freeway in Los Angeles, near the Dodgers stadium.

Summary statistics of the datasets are given in Table 1 while their

pre-processing steps are described in Appendix A.3.

5.2 Baseline Methods

We compare the performance of Di�usionCF against the following

baseline methods:

• BaseNN, a baseline used in [32] to identify the nearest-

unlike neighbor - ′C from the training set, whose true block

maxima value aligns with the counterfactual target.

• l-CF [30] learns - ′C by minimizing the loss between 5 (- ′C )
and ~̂′C , as well as the distance between -C and -

′
C .

• Native guide (NG-CF) [8] constructs - ′C by identifying a

nearest-unlike neighbor to -C and modifying it to produce a

model forecast close to the counterfactual target.

• ForecastCF [32] employs a mask objective function to learn

- ′C , aiming at minimizing the loss between 5 (- ′C ) and ~̂′C .
• SPARCE [18] generates a counterfactual explanation for

time series by using a generative adversarial network (GAN).

As some baselinemethodswere developed for classi�cation tasks,

they were adapted to generate counterfactual instances for block

maxima forecasts. Details are given in Appendix A.4.

5.3 Evaluation Metrics

As noted in Section 3.1, a good counterfactual predictor should be

realistic, informative, and close to the original time series. Let -C =

IC−UIC−U+1 ...IC be the original predictors and- ′C = I
′
C−UI

′
C−U+1 ...I

′
C

be the counterfactual predictors. We employ the following metrics

to assess the performance of the various methods:

• Informativeness. As noted in Section 3.1, an informative

counterfactual should modify only a small segment of -C ,

keeping the rest of the predictor time series intact. We use a

combination of sparsity and consecutiveness metrics to deter-

mine whether a counterfactual predictor - ′C is informative.

Sparsity(- ′C ) =
1

U + 1 count{8 : IC−8 ≠ I′C−8 , 8 = 0, · · · , U} (9)

A lower value of sparsity means fewer modi�cations to -C .

Next, we construct the following sequence of binary values:

�(IC−8 , I′C−8 ) =
{

1, if |IC−8 − I′C−8 | > d,

0, otherwise,
(10)

where d > 0 is a threshold. Let !max represent the maxi-

mum length of consecutive 1’s in the binary sequence. The

consecutiveness metric is de�ned as

Consecutiveness(- ′C ) =
!max

∑U
8=1 �(IC−8 , I′C−8 )

. (11)

A higher consecutiveness implies the notable di�erence be-

tween-C and-
′
C is mostly concentrated in a local segment of

the time series. Thus, an informative counterfactual should

have low sparsity but high consecutiveness values.

• Closeness. The proximity metric below is used to determine

the extent to which -C is close to -
′
C :

Proximity(-C , - ′C ) =
1

U + 1

U
∑

8=0

|IC−8 − I′C−8 |. (12)

The lower the proximity, the closer the counterfactual pre-

dictor is to the original predictor.

• Realisticness. The negative likelihood function of- ′C is used
to determine whether a counterfactual instance is realistic,

NLL(- ′C ) = − log ?- ′Ī . Here, ?- ′Ī represents the probability
assigned to - ′C by detector 6. The lower the NLL, the more

realistic the counterfactual predictor.

Finally, we use the precision metric to ascertain how well - ′C will
ensure that 5 (- ′C ) is classi�ed as a non-extreme block maxima.

5.4 Experimental Results

5.4.1 Performance Comparison. Experiments results are summa-

rized in Table 2 based on the setup discussed in Appendix A.5.

Figure 4 provides an illustrated example of the counterfactual in-

stances found by the di�erent methods. In general, Di�usionCF

generates the most informative counterfactual instances in all 4

datasets, achieving the best sparsity and consecutiveness scores. It

also appears among the top 2 approaches with the best proximity

and precision in at least 3 of the 4 datasets. These results suggest

that Di�usionCF generally demonstrate superior performance in

explaining the extreme block maxima forecast generated by the

black box model compared to other baselines. Though its NLL score

is slightly worse than BaseNN and NG-CF, this is not surprising as

the latter two approaches create their counterfactuals by sampling

from the training instances.

Speci�cally, (1) For BaseNN, its superior performance in terms of

NLL is attributable to its strategy of using training instances as - ′C .
However, since BaseNN does not optimize for closeness between

-C and -
′
C , it performs poorly in terms of proximity and sparsity

metrics, as illustrated in Figure 4(left). BaseNN also has lower pre-

cision because the forecasted counterfactual block maxima 5 (- ′C )
may not be consistent with the desired counterfactual target since

the nearest-unlike neighbor is chosen based on the true block max-

ima value instead of its forecasted block maxima. (2) For l-CF and

ForecastCF, their precision is perfect in all 4 datasets, which is not

surprising as they both employ optimization-based approaches to

ensure 5 (- ′C ) is close to the counterfactual target, ~̂′C . Nevertheless,
l-CF has a better proximity score compared to ForecastCF. This

is because the loss function used by l-CF includes the distance

between -C and -
′
C to encourage smaller modi�cations to the input.

In contrast, ForecastCF does not consider such a factor, allowing it

to make larger modi�cations. Hence, its proximity score is higher.
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Table 2: Evaluation of performance on 4 real-world datasets conducted for scenarios where the forecast ~̂C is extreme, and the

counterfactual target ~̂′C is non-extreme. Within the comparative results, red entries indicate the top-performing result, while

blue entries signify the second-best performance for each metric.

GSOD-precipitation GSOD-temperature

Method Spars.³ Consecu.↑ Proxi.³ NLL³ Prec.↑ Spars.³ Consecu.↑ Proxi.³ NLL³ Prec.↑

BaseNN
1.00

(±0.00)
0.86

(±0.18)
1.12

(±0.19)
1.18

(±0.15) 0.27
1.00

(±0.00)
0.86

(±0.17)
1.13

(±0.21)
1.08

(±0.36) 0.48

l-CF
1.00

(±0.00)
0.91

(±0.13)
0.17

(±0.07)
1.07

(±0.18) 1.00
1.00

(±0.00)
0.65

(±0.18)
0.18

(±0.08)
1.12

(±0.07) 1.00

NG-CF
0.83

(±0.26)
0.67

(±0.26)
0.57

(±0.24)
0.99

(±0.17) 0.38
0.94

(±0.17)
0.65

(±0.25)
0.56

(±0.22)
1.09

(±0.08) 0.56

ForecastCF
1.00

(±0.00)
0.92

(±0.18)
0.45

(±0.17)
1.13

(±0.37) 1.00
1.00

(±0.00)
0.90

(±0.15)
0.35

(±0.13)
1.21

(±0.09) 1.00

SPARCE
1.00

(±0.00)
0.72

(±0.22)
1.10

(±0.21)
1.13

(±0.17) 0.68
1.00

(±0.00)
0.74

(±0.21)
1.10

(±0.22)
1.18

(±0.07) 0.87

Di�usionCF
0.25

(±0.00)
0.93

(±0.13)
0.16

(±0.07)
1.06

(±0.22) 0.98
0.12

(±0.00)
0.96

(±0.13)
0.08

(±0.04)
1.20

(±0.08) 1.00

S&P 500 Dodgers loop sensor

Method Spars.³ Consecu.↑ Proxi.³ NLL³ Prec.↑ Spars.³ Consecu.↑ Proxi.³ NLL³ Prec.↑

BaseNN
1.00

(±0.00)
0.88

(±0.17)
1.43

(±0.40)
0.84

(±0.49) 0.98
1.00

(±0.01)
0.75

(±0.22)
1.12

(±0.39)
0.36

(±0.17) 0.66

l-CF
1.00

(±0.00)
0.46

(±0.17)
0.59

(±0.11)
1.13

(±0.26) 1.00
1.00

(±0.00)
0.76

(±0.25)
0.02

(±0.01)
0.45

(±0.11) 1.00

NG-CF
1.00

(±0.00)
0.82

(±0.21)
0.92

(±0.23)
0.96

(±0.29) 0.99
0.99

(±0.03)
0.50

(±0.17)
0.52

(±0.18)
0.56

(±0.24) 0.61

ForecastCF
1.00

(±0.00)
0.85

(±0.19)
0.81

(±0.16)
1.10

(±0.23) 1.00
1.00

(±0.00)
0.56

(±0.24)
0.09

(±0.04)
0.44

(±0.12) 1.00

SPARCE
0.98

(±0.00)
0.75

(±0.22)
1.43

(±0.38)
1.71

(±0.20) 1.00
0.97

(±0.00)
0.66

(±0.21)
1.14

(±0.35)
0.46

(±0.12) 1.00

Di�usionCF
0.40

(±0.00)
0.96

(±0.10)
0.51

(±0.16)
1.68

(±0.19) 0.97
0.12

(±0.00)
0.81

(±0.18)
0.05

(±0.03)
0.43

(±0.13) 1.00

Figure 4: A comparative study of - ′C , generated by BaseNN, ForecastCF, l-CF, NGCF, SPARCE, and Di�usionCF, when applied to

precipitation forecasting between 2021-06 and 2023-09 for a weather station in Pensacola, Florida. The blue dot represents the

forecasted block maxima, ~̂C , while the red dot represents the counterfactual target, ~̂′C .

This di�erence in proximity between l-CF and ForecastCF can

be clearly seen in the middle two plots of Figure 4. Furthermore,

in terms of informativeness, both approaches perform poorly in

terms of their sparsity metric, though ForecastCF demonstrates a

relatively higher consecutiveness score compared to l-CF. (3) For

SPARCE, which utilizes GAN for optimization, it outperformsl-CF

and ForecastCF in terms of sparsity on the S&P 500 and Dodgers

loop sensor datasets. However, its sparsity is similar to other base-

lines and worse than NG-CF on the GSOD datasets. SPARCE also

struggles in terms of informativeness, closeness, and realisticness

metrics. This underscores the di�culty of using GAN to optimize

multiple objectives simultaneously. ForecastCF, l-CF, and SPARCE

all fall short compared to BaseNN in terms of NLL, suggesting the

counterfactual predictors produced by these optimization-based

methods are less realistic. (4) For NG-CF, which is a combination of

neighbor searching and perturbation-based methods, can balance

the trade-o� in terms of proximity, precision, and NLL but falls short

in terms of producing informative explanation due to the generally

low consecutiveness scores. Finally, (5) for Di�usionCF, it excels in

terms of sparsity, consecutiveness, proximity, and precision. This

advantage is crucial as it renders the counterfactual explanation

more informative, as shown in Figure 4(right).
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Table 3: Ablation study results on GSOD-precipitation data.

Spars.³ Consecu.↑ Proxi.³ NLL³ Prec.↑

CSDI+3
0.12

(±0.00)
0.97

(±0.13)
0.06

(±0.06)
1.14

(±0.21) 0.87

CSDI+6
0.25

(±0.00)
0.93

(±0.13)
0.16

(±0.07)
1.06

(±0.22) 0.98

CSDI+9
0.38

(±0.00)
0.90

(±0.17)
0.29

(±0.13)
1.11

(±0.28) 1.00

CSDI+12
0.50

(±0.00)
0.91

(±0.16)
0.36

(±0.10)
1.08

(±0.24) 1.00

VAE+3
0.12

(±0.00)
0.98

(±0.15)
0.02

(±0.01)
1.13

(±0.19) 0.36

VAE+6
0.25

(±0.00)
0.90

(±0.17)
0.07

(±0.03)
1.08

(±0.21) 0.42

VAE+9
0.38

(±0.00)
0.84

(±0.17)
0.13

(±0.04)
1.04

(±0.21) 0.56

VAE+12
0.50

(±0.00)
0.87

(±0.17)
0.25

(±0.05)
1.02

(±0.16) 0.49

5.4.2 Ablation study of Di�usionCF. We conduct an ablation study

for Di�usionCF by varying the window size 3 for segment extrac-

tion, as described in Section 4.2.2 and employing VAE as our alter-

native sampling technique. A detailed breakdown of the results is

given in Table 3. Our key conclusions are as follows:

• Increasing the window size 3 from 3 to 12 generally degrades

the performance of Di�usionCF in terms of sparsity, prox-

imity, and consecutiveness, while enhancing its realisticness

and precision. This is because a larger 3 increases the num-

ber of time steps available for adding perturbation, allowing

greater deviation from the original time series, thus reducing

sparsity and increasing their dissimilarity. Larger window

size also reduces the percentage of consecutive time steps

that were perturbed, as shown in Table 3, with the excep-

tion of 3 = 12. Nevertheless, it also gives more �exibility

for Di�usionCF to construct counterfactual instances that

are close to the desired target, thus enhancing its precision.

Interestingly, the NLL values for VAE exhibit a decreasing

trend with larger 3 , warranting future investigation.

• In terms of informativeness and precision, Di�usionCF based

on CSDI outperforms the one based on VAE. However, the

latter is superior in proximity and realisticness. As shown in

Table 3, the CSDI-based method slightly surpasses the VAE-

based method in consecutiveness. The CSDI-based method’s

advantage in precision is evident as the di�usion model used

for imputation generates samples that, while deviating more

from the original time series compared to the VAE-based

method, still remain realistic, thereby contributing to more

accurate counterfactual targets. However, this increased de-

viation results in worse performance in proximity and NLL

compared to the VAE-based method.

5.4.3 Case study of Di�usionCF. Our case study on the Dodgers

loop sensor dataset focuses on the speci�c example when there are

two consecutive game days at the Dodgers stadium, on May 31 and

June 1, 2005. Figure 5 depicts the average 3-hourly tra�c �ow at a

ramp near the stadium from Friday, May 27 to Wednesday, June 1,

Figure 5: Observed average tra�c �ow (May 27-Jun 01) vs.

counterfactual instance found by CSDI-based Di�usionCF.

2005. In this example, the model utilizes tra�c �ow data from the

preceding �ve days to forecast themaximum tra�c �ow for June 1st.

The resulting block maxima value, approximately 1300, is deemed

extreme, surpassing 80% of the average 3-hourly tra�c �ows within

the dataset. This extreme value is attributed to a baseball game held

at the stadium on that day. The �gure also depicts a counterfactual

target, with the block maxima value set around 1150, representing

the typical tra�c �ow if the baseball match had not occurred. Based

on the counterfactual target, a counterfactual instance is generated

by the CSDI-based Di�usionCF model.

The counterfactual instance generated byDi�usionCF adjusts the

tra�c pattern for Tuesday, May 31st, depicting a decrease in tra�c

�ow for that day, indicative of the absence of a baseball game at the

stadium. The absence of a game on Tuesday suggests the likelihood

of no game the following day. In essence, the increase in tra�c

�ow on Tuesday attributed to the baseball game could elucidate the

extreme block maxima forecasted for Wednesday. The result shown

in Figure 5 thus underscores Di�usionCF ’s capability in identifying

anomalies (i.e., pattern of elevated tra�c �ow on game days) and

modify them towards a normative state (i.e., pattern of reduced

tra�c �ow) as its counterfactual instance.

6 CONCLUSIONS AND FUTURE WORK

This paper introduces the novel problem of counterfactual explana-

tion for blockmaxima forecastingmodels in time series.We propose

a methodology for creating counterfactual block maxima and intro-

duce the Di�usionCF framework to balance the trade-o� between

generating counterfactual explanations that are informative, close

to the original time series, and realistic. Experimental results show

that Di�usionCF generates better counterfactual instances com-

pared to other baselines. Nevertheless, the current framework has

two potential limitations. First, it considers only univariate time

series. For future endeavors, we plan to extend our methodology to

the multivariate case. Second, Di�usionCF is biased towards con-

structing its counterfactual predictor by modifying only one of

the anomalous segments in the time series. We plan to investigate

approaches that could modify multiple segments instead.
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A APPENDICES

A.1 Details of CSDI model

CSDI [29] is a conditional score-based di�usion model for imput-

ing missing values in time series by leveraging the available ob-

served values. Speci�cally, CSDI is designed to estimate the true

conditional data distribution @(GC0 |G2> ) via the model distribution

?\ (GC0 |G2> ), where GC0 denotes the missing values to be imputed

and G2> denotes the observed values.

Di�usion models such as DDPM [14] typically follow a two-step

training process. First, during the forward process, the model starts

from an initial input GC00 and iteratively perturbs the time series

values to GC01 , G
C0
2 , · · · by adding random noise until it converges to

GC0
)
, where GC0

)
is of known, simple distribution. Next, during the

reverse process, a neural network is trained to convert GC0
)

back to

the original values GC00 . CSDI modi�es the reverse process of DDPM

with a conditional model de�ned as follows:

?\ (GC00:) |G
2>
0 ) = ? (G

C0
) )

)
∏

C=1

?\ (GC0C−1 |G
C0
C , G

2>
0 ), GC0) ∼ N(0, I),

where ?\ (GC0C−1 |G
C0
C , G

2>
0 ) = N

(

GC0C−1; `\ (G
C0
C , C |G2>0 ), f\ (G

C0
C , C |G2>0 )I

)

.

Here, `\ (GC0C , C |G2>0 ) =
1
UĪ

(

GC − VĪ√
1−UĪ

n\ (GC0C , C |G2>0 )
)

, where VC is a

small positive constant representing the noise level, UC =
∏C
8=1 Û8 ,

ÛC = 1 − VC , and n\ : (XC0 × R|X2> ) → XC0 is a conditional

denoising function. Furthermore, f\ (GC0C , C |G2>0 ) = Ṽ
1/2
C , where

ṼC =

{

1−UĪ−1
1−UĪ VC if C > 1,

V1 if C = 1.
(13)

Given G2>0 and GC00 , noisy samples for di�usion step C is given by:

GC0C =
√
UCG

C0
0 + (1 − UC )n , where n is the added noise. During the

reverse process, n\ is estimated by minimizing the loss function

min
\
L(\ ) := min

\
�G0∼@ (G0 ),n∼N(0,I),C ∥(n − n\ (G

C0
C , C |G2>0 ))∥

2
2, (14)
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where @(G0) is the data distribution of G0. During training, the

choice of imputation target is important, either by random strategy,

historical strategy, mix strategy, or test pattern strategy. See [29] for

details. Once trained, GC00 can be sampled from ?\ (GC0C−1 |G
C0
C , G

2>
0 ).

A.2 The Di�usionCF algorithm

The pseudocode of the Di�usionCF algorithm is summarized in

Algorithm 1. In this context,-C \-
<0B:
C denotes the remaining part

of -C after excluding -
<0B:
C . The expression (-C \ -

<0B:
C ) · -BC

represents the time series obtained after replacing -
<0B:
C in -C

with -
B
C .

Algorithm 1 Di�usionCF

Input: Time series / = -Ī ∪.Ī , quantiles ? and ?′ , sliding window length

3 , sampling epochs !, searching epochs  

Output: Counterfactual instances (- ′Ī , ~̂′Ī )
1: train, validation, test ← dataset.

2: f ← forecast(train, validation).

3: g ← detector(train, validation).

4: h ← sampler(train, validation).

5: probs = []; Cm
t = [].

6: for each / = -Ī ∪.Ī in test do

7: ~̂Ī , ~̂
′
đ

= f(-Ī ).

8: if ~̂Ī > ~̂′
đ

then

9: ~̂′Ī ← ` (-Ī ) + Ă (ĔĪ )
Ĉ (ĔĪ )

[

(− log?′ )−Ĉ (ĔĪ ) − 1
]

10: end if

11: for each of {- ğ
Ī }Ă−Ě+2ğ=1 within sliding windows of length 3 on -Ī

do

12: probs.append(g(-
ğ
Ī )).

13: end for

14: -
ģėĩġ
Ī ← argmin

Ĕ
ğ
Ī
probs.

15: remove -
ģėĩġ
Ī from -Ī .

16: while searching epoch< and conditions 5 (- ′Ī ) <

~̂′
đ

and 5 (- ′Ī ) ∈ [~̂′Ī − n, ~̂′Ī + n ] does not meet do

17: while sampling epoch< ! do

18: Cm
t .append(h(-Ī , -

ģėĩġ
Ī )).

19: end while

20: -
min
Ī = argmin

Ĕ
ĩ
Ī ∈ÿģ

Ī
∥ 5

(

(-Ī \-
ģėĩġ
Ī ) · -ĩ

Ī

)

− ~̂′Ī ∥1.

21: - ′Ī ← (-Ī \-
ģėĩġ
Ī ) · -min

Ī .

22: end while

23: end for

A.3 Data Preprocessing

Global Surface Summary of the Day (GSOD)3. Prior to analysis, the

GSOD dataset undergoes a series of pre-processing steps. Initially,

the daily weather data are converted into monthly aggregates by

averaging each month’s daily recordings, excluding any missing or

invalid entries (e.g., missing or invalid daily precipitation (PRCP)

was recorded as 99.99 while that of daily temperature (TEMP) was

recorded as 999.99). To mitigate seasonal in�uences, standardiza-

tion is applied on a monthly basis. The datasets are then divided

temporally into training, validation, and test sets: data before Janu-

ary 1, 2022, forms the training set; data between January 1, 2022,

3https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-
day?pageNum=1

and January 1, 2023, forms the validation set; data after January 1,

2023, forms the test set. Further, sliding windows of 30 time steps

(months) are applied to the series. Within each sliding window, the

�rst 24 time steps (months) are used as predictors and the last 6

time steps (months) are used as forecasts.

S&P 5004. Its pre-processing involves two primary steps. First, to

eliminate long-term trends, the di�erencing method is applied. This

technique computes the di�erence between consecutive data points,

e�ectively detrending the time series. Following di�erencing, the

entire time series is standardized. Data with the end time step before

January 13, 2023, forms the training set; data between January 13,

2023, and January 13, 2024, forms the validation set; data after

January 13, 2024, forms the test set. Sliding windows of 30 time

steps (days) are applied to the series. Within each sliding window,

the �rst 25 time steps (days) are used as predictors and the last 5

time steps (days) are used as forecasts.

Dodgers loop sensor5. The pre-processing of this dataset involves

several steps. First, approximately 5.76% of the dataset contains

missing values, which are addressed using the Forward Fill tech-

nique. Here, each missing value is replaced with the most recent

observed data point. Second, tra�c data are aggregated in 3-hour in-

tervals, with each interval represented as a single time step, marked

by the �nal timestamp of each 3-hour period. Third, the entire time

series is standardized, normalizing the data to ensure uniformity in

scale. Data before August 1, 2005 forms the training set; data be-

tween August 1, 2005, and September 1, 2005, forms the validation

set; data after September 1, 2005, forms the test set. Additionally,

sliding windows of 48 time steps (equivalent to 144 hours or 6 days)

are applied to the series. Within each sliding window, the �rst 40

time steps (120 hours or 5 days) are used as predictors and the last

8 time steps (24 hours or 1 day) are used as forecasts.

A.4 Details for Baseline Algorithms

A.4.1 BaseNN. BaseNN, which is used as a baseline in the study

by Wang et al. [32], identi�es the closest instance in the training set

that aligns with the desired target outcome. Speci�cally, BaseNN

selects from the training set the predictor time series -C whose

subsequent block maxima ~C is closest to the desired target ~̂′C .
Once identi�ed, it is used as the counterfactual predictor - ′C .

A.4.2 l-CF. Although it was originally developed for classi�ca-

tion tasks, l-CF [30] can be adapted to a regression scenario. The

counterfactual predictor- ′C can be learned through an optimization

process de�ned as

- ′C = argmin
- ∗Ī

max
_
_
�

�5 (- ∗C ) − ~̂′C
�

� + 3 (-C , - ∗C ),

where _ is a tuning parameter that balances the two components

of the objective function and 3 (-C , - ∗C ) is the Manhattan distance.

The learning of l-CF is based on the Adam optimizer.

A.4.3 Native guide (NG-CF). Native guide (NG-CF) [8] encom-

passes a two-step process. Initially, it identi�es the nearest unlikely

neighbor of original instance -C . Then, by leveraging the Dynamic

Time Warping (DTW) algorithm, NG-CF modi�es the identi�ed

4https://�nance.yahoo.com/quote/%5EGSPC/history?period1=1673481600&period2=
1705017600&interval=1d&�lter=history&frequency=1d&includeAdjustedClose=true
5https://archive.ics.uci.edu/dataset/157/dodgers+loop+sensor
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neighbor of -C to construct - ′C , which is engineered to yield a

prediction 5 (- ′C ) closely aligned with the desired outcome ~̂′C .

A.4.4 ForecastCF. ForecastCF [32], which was initially designed

to explain trend forecasting in time series, can be adapted for ex-

plaining block maxima prediction by replacing the time series in

the forecast window of its original formulation with block maxima

value. Speci�cally, in the real world, assume that the forecasted

block maxima ~̂C corresponding to a -C is extreme. In the counter-

factual world, if ~̂C is expected to be non-extreme instead, denoted

by ~̂′C , how should the -C be changed to - ′C ? Given a forecasting

model 5 , take U = ~̂′C − n and V = ~̂′C + n as the lower and upper

boundaries where n is the tolerance, ForecastCF [32] learns - ′C s.t.
5 (- ′C ) ≈ ~̂′C : ' |-

′
Ī | → '1 by minimizing the loss function

! =

{

0, if ∥ 5 (- ′C ) − ~̂′C ∥ f n,
∥ 5 (- ′C ) − U ∥ + ∥V − 5 (- ′C )∥, otherwise,

(15)

The learning of ForecastCF is based on the Adam optimizer.

A.4.5 SPARCE. SPARCE [18] is a GAN-based method used to gen-

erate sparse counterfactual explanations for time series, employing

both a discriminator and a generator. The discriminator attempts

to distinguish between a real instance -C from its counterfactual in-

stance - ′C while the generator attempts to generate counterfactual

instances that could fool the discriminator into misclassifying them

as real instances. In our implementation, the generator initially

receives a real instance -C linked to an extreme forecasted block

maxima ~̂C and then generates a counterfactual instance - ′C that
yields the counterfactual target ~̂′C , which is non-extreme. This setup

enables the generator to learn how to modify (or perturb) its initial

input -C to construct -
′
C , which yields a non-extreme block max-

ima ~̂′C , achieving the desired target. The generator-discriminator

architecture is jointly trained to minimize the di�erence between

~̂′C and 5 (- ′C ), which is also constrained to guarantee the sparsity

of - ′C .

A.5 Experimental Setup

For a fair comparison, all the experiments were conducted using the

same trained DeepExtrema model on each dataset to generate block

maxima forecasts. For the predictor and forecast windows set for

the DeepExtrema model, their lengths were chosen as the ones that

yielded the best performance or were used in previous works. The

RMSE of the trained DeepExtrema model evaluated on the test set

varies between 0.40 and 0.75 on the given datasets. For each block

maxima forecast, a counterfactual target is then constructed to be

utilized by both Di�usionCF and all the baselines. To de�ne the

counterfactual target, we �rst identify a counterfactual threshold

~̂′
*
to determine whether the forecasted block maxima is extreme.

Towards this end, we set the quantile ? of the GEV distribution

in such a way that around 10% (8.8% − 11.1%) of the forecasted

block maxima will be considered as extreme values. Based on this

threshold, a counterfactual target ~̂′C is subsequently constructed

using the quantile ?′ = ? −0.2. It is worth noting, however, that our

framework operates independently of the DeepExtrema model’s

performance.

On the GSOD precipitation dataset, the DeepExtrema model is

con�gured with the following hyperparameters: batch size is set to
128, learning rate to 0.005, dimension of hidden layer to 32, number

of hidden layers to 2, _1 to 0.8, and _2 to 0.5. For ForecastCF and

l−CF, when ~̂C is extreme and ~̂′C is not, the maximum iterations

for learning is set to 300. For ForecastCF, tolerance is set to 0.05. For

SPARCE, we use the default parameters. Considering the balance

between time and accuracy for Di�usionCF, the sampling window

length is searched in [3, 6, 9, 12]. For each of them, the searching

epochs  (as shown in line 16 in Algorithm 1) is set to 5. In each of

the search windows, the sampling epochs ! (as shown in line 17 in

Algorithm 1) is set to 300. This involves determining the least likely

sub-time series - C of sampling window length in -C , removing it,

and then sampling a new -
′
C of the same length from the learned

latent distribution for imputation. The parameter balancing the two

components of the loss function in VAE is set to 10−8

On the GSOD temperature dataset, the DeepExtrema model is

con�gured with the following hyperparameters: batch size is set to

128, learning rate to 0.001, dimension of hidden layer to 10, number of

hidden layers to 2, _1 to 0.1, and _2 to 0.5. The parameter balancing

the two components of the loss function in the VAE is set to 10−9,
and for anomaly detection within the VAE, it is set to 1.0. Other

parameters are identical to those used for the GSOD precipitation

data.

On the S&P 500 dataset, the DeepExtrema model is con�gured

with the following hyperparameters: batch size is set to 128, learning

rate to 0.0001, dimension of hidden layer to 8, number of hidden layers

to 2, _1 to 0.2, and _2 to 0.5. The sampling window length is searched

in [5, 10, 15]. Other parameters are identical to those used for the

GSOD temperature data.

On the Dodgers loop sensor tra�c forecasting dataset, the Deep-

Extrema model is con�gured with the following hyperparameters:

batch size is set to 128, learning rate to 0.0005, dimension of hidden

layer to 16, number of hidden layers to 2, _1 to 0.1, and _2 to 1.5. The

sampling window length is searched in [5, 10, 15, 20]. Additionally,
the parameter balancing the two components of the loss function

in the VAE for anomaly detection is set to 1.0 when its sampling

size is 40. For smaller sampling sizes, speci�cally 5, 10, 15, or 20, the

balancing parameter is adjusted to 5.0. This variation in settings

is aimed at optimizing the model’s performance for di�erent data

granularity and anomaly detection contexts. Other parameters are

identical to those used for the GSOD temperature data.
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