
Merlis et al., Sci. Adv. 10, eadn5217 (2024)     28 June 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

1 of 7

AT M O S P H E R I C  S C I E N C E

Climate sensitivity and relative humidity changes in 
global storm-resolving model simulations of 
climate change
Timothy M. Merlis1*, Kai-Yuan Cheng1, Ilai Guendelman1, Lucas Harris2,  
Christopher S. Bretherton3, Maximilien Bolot1, Linjiong Zhou1, Alex Kaltenbaugh2,  
Spencer K. Clark2,3, Gabriel A. Vecchi1, Stephan Fueglistaler1

The climate simulation frontier of a global storm-resolving model (GSRM; or k-scale model because of its kilometer-
scale horizontal resolution) is deployed for climate change simulations. The climate sensitivity, effective radiative 
forcing, and relative humidity changes are assessed in multiyear atmospheric GSRM simulations with perturbed 
sea-surface temperatures and/or carbon dioxide concentrations. Our comparisons to conventional climate model 
results can build confidence in the existing climate models or highlight important areas for additional research. 
This GSRM’s climate sensitivity is within the range of conventional climate models, although on the lower end as 
the result of neutral, rather than amplifying, shortwave feedbacks. Its radiative forcing from carbon dioxide is 
higher than conventional climate models, and this arises from a bias in climatological clouds and an explicitly 
simulated high-cloud adjustment. Last, the pattern and magnitude of relative humidity changes, simulated with 
greater fidelity via explicitly resolving convection, are notably similar to conventional climate models.

INTRODUCTION
The use of kilometer-scale (k-scale) global storm-resolving models 
(GSRMs) on global domains has emerged as a promising frontier of 
modeling Earth’s atmosphere (1, 2). The implications of this new 
class of models for climate change are in their nascent stage (3–8). 
GSRMs are being developed by numerous modeling centers, and 
several models in this class have participated in a recent intercom-
parison (“DYAMOND”) of 40-day integrations initialized from 
analyzed atmospheric states (9). Using initialized integrations is de-
sirable in that it facilitates comparison to detailed Earth observa-
tions of particular weather statistics, model assessment akin to 
numerical weather prediction evaluation. A central motivation for 
the push to k-scale global climate models (GCMs) is, however, ad-
dressing uncertainty in climate model formulation by explicitly re-
solving more of the interactions between the atmospheric flow and 
the phase change of water vapor. These interactions are, of course, 
responsible for clouds and precipitation and are intimately tied to 
the planetary radiation balance (10, 11). GSRMs explicitly simulate 
aspects of deep moist convection without using sub–grid scale pa-
rameterization. Ambitious research visions and descriptions of req-
uisite resources for this frontier of climate prediction have been 
recently described (12, 13).

Here, we offer an overview of key aspects of global climate change 
in four distinct 2-year-long free-running GSRM simulations with 
the Geophysical Fluid Dynamics Laboratory’s (GFDL) eXperimen-
tal System for High-resolution prediction on Earth-to-Local Do-
mains [X-SHiELD; with ≈3.25  km horizontal resolution and no 
deep convection scheme (5, 14); Materials and Methods]: A control, 
one with a uniform 4-K sea-surface temperature (SST) warming, 
one with an increased CO2 concentration, and one with both. These 

perturbation simulations have a long history in atmospheric model 
simulations of climate change and can be used to assess climate sen-
sitivity (15, 16) and radiative forcing (17, 18).

Figure 1 shows the instantaneous distribution of column-integrated 
cloud ice and liquid water over the Americas for the control simula-
tion’s 8 August 2020 (left). This provides a vivid illustration of the 
detailed flows that are explicitly simulated, from the large-scale 
fronts sweeping across much of the southern hemisphere midlati-
tudes and the sharp East Pacific ITCZ to the k-scale convection 
from Mexico to South America. This type of imagery is evocative, 
and we are further interested in the aggregate effect of these small-
scale features on the global-scale variables that control the climate 
response to external forcing. We see a similar image for the global 
warming simulation (Fig. 1, right), noting that one cannot readily 
discern the effect of climate change from the instantaneous cloud 
morphology. Our climate change motivation naturally mandates a 
systematic investigation of the averaged state of these simulated at-
mospheres. Here, we focus on the top-of-atmosphere (TOA) energy 
balance and some of the key factors underlying its response to cli-
mate change.

Given that we are analyzing long GSRM simulations and extract-
ing their climate change responses, a natural point of comparison 
is conventional GCMs that use parameterizations for unresolved 
moist convection. These have been the dominant means of quantita-
tive future climate projections from the inception of the Inter
governmental Panel on Climate Change Assessment Reports to the 
present Coupled Model Intercomparison Project Phase 6 (CMIP6) 
simulations. To the extent that the GSRM simulations are within the 
range of conventional climate models, it suggests that the net effect 
of the unresolved-but-parameterized processes on the mean climate 
is consistent with k-scale models that simulate more of the atmo-
spheric flow. This possibility would be reassuring from the perspec-
tive of the continued relevance of existing climate change assessments 
based on conventional climate models. To the extent that the GSRM 
simulations are outside the range of conventional climate models, it 
suggests important areas of future inquiry. This may indicate that 
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improvements can be made in the formulation of GSRMs (e.g., if 
there are biases with respect to observations) or it may suggest that 
parameterizations in conventional climate models distort the simu-
lated climate changes in a way that must be revisited with better re-
solved atmospheric simulations. It is, therefore, a high priority to 
undertake the comparison of GSRM simulations of climate change 
relative to existing climate model results. This is complementary to 
the important goal of examining previously unresolved phenomena, 
such as the changes in extreme convective vertical velocities with 
warming (5).

RESULTS
The time-mean components of global-mean TOA net radiation, the 
outgoing longwave radiation (OLR) and absorbed shortwave radia-
tion (ASR), are shown for the control simulation in Fig. 1 (left). Here 
and throughout, we use the simulated calendar years 2020 and 2021. 
Compared to satellite estimates from CERES EBAF (19), X-SHiELD 
has positive global-mean biases of about 7  W  m−2 for ASR and 
about 4 W m−2 for OLR. Note that this X-SHiELD configuration has 
not been extensively optimized against the TOA observations, as 
this is computationally infeasible for this length of integration.

The global-mean TOA components for the global warming sim-
ulation (increased SST with increased CO2) have increased OLR 
(+0.7 W m−2) and ASR (+1.6 W m−2, right versus left of Fig. 1). 
CO2 is a greenhouse gas that increases the planet’s net TOA radia-
tion (primarily by decreasing OLR) and this is offset by stabiliz-
ing temperature-dependent feedbacks. The change in net radiation 
(+0.9  W  m−2) indicates additional energy imbalance, despite our 
desire to obtain a similar degree by tailoring the perturbation CO2 
concentration (imposing a ≈3.1× increase compared to the control). 
However, the assumption of linear superposition between the isolated 
roles of warming and CO2 forcing holds well, as our forcing-feedback 
analysis will show.

This set of simulations can define the two key components of the 
canonical climate feedback analysis. The changes in the global-mean 
TOA energy balance are decomposed into the radiative forcing ℱ 

and the climate feedback parameter λ. At equilibrium, there is no 
change in net radiation ΔN and

where all quantities are global means and the sign convention is that 
a stable climate feedback parameter is negative. That is, a positive 
forcing ℱ > 0 from an increased CO2 concentration provokes a 
warming ΔTs > 0 for the energy balance to re-equilibrate.

The change in TOA net radiation for the simulation with in-
creased CO2 and unchanged SST defines the effective radiative forc-
ing (ERF). This is the typical way of specifying ℱ in Eq. 1. The ERF 
is also referred to as the troposphere-adjusted forcing (17, 18). It 
allows for changes in the stratospheric temperatures driven by the 
CO2 concentration, rather than the surface warming, and analo-
gous CO2 concentration-dependent tropospheric adjustments (20). 
Since the CO2 concentration changes differ in X-SHiELD and the 
corresponding CMIP6 experiment, we assume a logarithmic scal-
ing in CO2 concentration to estimate X-SHiELD’s 4 × CO2 radiative 
forcing.

The ERF is 9.0 W m−2 in X-SHiELD (left side of Fig. 2A). The 
CMIP6 ERF ensemble mean of 7.9 W m−2 is smaller than X-
SHiELD’s. Figure 2 shows both individual CMIP6 models (colored 
circles) and an estimate of their distribution (gray lines). X-SHiELD 
is above the top of the range of the multimodel distribution of ERF 
(Fig.  2A). For the CMIP6 simulations, ERF assessed using time-
means over 2 (versus 30) simulated years changes by ≈±0.3 W m−2 
(fig.  S1). The two individual years of X-SHiELD ERF differ by 
0.1 W m−2, suggesting that the difference relative to CMIP6 is not 
related to the limited time sampling.

The longwave (LW) component of the ERF, the reduction in 
OLR, is 7.3 W m−2 in X-SHiELD. This is larger than the CMIP6 en-
semble mean (6.3  W  m−2), although there is one GCM that has 
comparably large LW forcing (right side of Fig. 2A). The shortwave 
(SW) component of the ERF is +1.8 W m−2 in X-SHiELD, compa-
rable to the ensemble-mean of CMIP6 models, +1.7 W m−2, which 
has larger variations in 2-year averages than the LW component 
(fig. S1). The CMIP6 models are colored by their ERF, which can be 
used to infer the extent to which LW and SW components produce 
variation across models. Broadly, the LW dominates the ERF and 
the SW on average increases it but can decrease it in some models.

X-SHiELD’s larger LW forcing is related to the climatological 
high cloud distribution. Its cloud-top temperatures are biased warm 
(i.e., lower in altitude; fig. S2), so additional CO2 causes a larger re-
duction in OLR. A high-cloud adjustment also contributes to the 
forcing: CO2 increases the cloud fraction and ice concentration 
above the control cloud top and decreases them below (fig. S3). This 
increases the LW forcing by lifting cloud tops to emit from colder 
temperatures. This high-cloud adjustment is an intriguing response 
given the k-scale model simulates the deep convection responsible 
for these clouds and its LW ERF differs from GCM behavior (18). 
Previous GSRM analyses have found increased high clouds in re-
sponse to SST warming (3, 21), but this is the first example of a 
similar cloud response to increased CO2 without any SST change.

The Cess climate sensitivity is determined by the feedback pa-
rameter computed from the difference in global-mean net radiation 
in response to the uniform SST perturbation with unchanged CO2 
concentration: λ = ΔN/ΔTs, where the global-mean surface air tem-
perature change ΔTs includes enhanced land warming. The Cess 
sensitivity can be expressed in terms of a feedback parameter λ of 

ΔN = 0 =ℱ + λΔTs (1)

Fig. 1. Instantaneous simulated cloud liquid and ice water paths for 8 August 
2020 in control and global warming (4K SST warming with increased CO2 con-
centration) X-SHiELD GSRM simulations. The global- and time-mean outgoing 
longwave radiation (OLR) and absorbed shortwave radiation (ASR) components of 
the TOA net radiation over the two simulated years are indicated below the instan-
taneous images. D
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Eq. 1 or in units of temperature by using the convention of a dou-
bled CO2 concentration with a radiative forcing of 3.6 W m−2. The 
intermodel spread in radiative forcing is then suppressed to focus on 
the role of radiative feedbacks in determining the climate sensitiv-
ity. The Cess sensitivity omits the important role for the spatial pat-
tern of surface temperature change in provoking more destabilizing 
regional feedbacks over long time scales (22) or projecting onto 
regions of more stabilizing feedbacks in recent decades (23). Never-
theless, this sensitivity has the virtue of simplicity and was the basis 
of one of the earliest GCM intercomparisons (15).

Figure 2B shows the Cess sensitivity, and X-SHiELD has a sensi-
tivity of 2.31 K. Its feedback parameter λ is −1.56 W m−2 K−1 and 
individual years differ by 0.02 W m−2 K−1. The mean of the CMIP6 
ensemble has an incrementally larger Cess sensitivity of 2.4 K, and 
X-SHiELD is near the widest part of the estimated CMIP6 distribu-
tion (gray line).

The Cess sensitivity can be decomposed into LW and SW com-
ponents. Here, we focus on the LW component, which is the pri-
mary stabilizing influence on climate. X-SHiELD’s LW feedback 
parameter (λLW = −ΔOLR/ΔTs = −1.60  W  m−2  K−1) shows that 
X-SHiELD’s total Cess sensitivity of 2.31 K is nearly identical to the 
LW Cess sensitivity of 2.25 K; i.e., in this model the SW feedback is 
approximately neutral. Conversely, while the CMIP6 ensemble-
mean total Cess feedback of 2.4 K is similar to that of X-SHiELD, 
the LW Cess sensitivity of 1.7 K is substantially less, and corre-
spondingly, the CMIP6 ensemble-mean SW feedbacks are more 

destabilizing than in X-SHiELD. In summary, while X-SHiELD has 
a relatively low (compared to the CMIP6 ensemble) value for the 
Cess sensitivity, it has a relative high value for the LW component 
(that is, less stabilizing LW feedbacks) compared to the CMIP6 en-
semble. The CMIP6 models are colored in Fig. 2B by their Cess sen-
sitivity, and there is at least one GCM with low Cess sensitivity and 
high LW sensitivity, comparable to X-SHiELD (a dark blue dot).

Beyond a comparison to conventional climate models, it is in-
structive to consider how this fits with the null hypothesis that the 
feedbacks are primarily determined by clear-sky (non-cloud) chang-
es and a global-mean relative humidity that is unchanged with 
warming. This constant relative humidity assumption was at the 
heart of Manabe and Weatherald’s 1967 quantification of the climate 
sensitivity (24, 25) by assuming a radiative convective equilibrium 
(RCE) and they found a sensitivity of 2.36 K. Contemporary single-
column RCE estimates of climate sensitivity remain near 2 K (26–28). 
That X-SHiELD does not strongly depart from conventional GCMs, 
which are, in turn, broadly consistent with expectations of a con-
stant relative humidity atmosphere with a stabilizing feedback from 
enhanced warming aloft in the tropics (29), brings our attention to 
X-SHiELD’s atmospheric temperature and relative humidity chang-
es under warming.

The X-SHiELD simulated time- and zonal-mean temperature 
change and relative humidity change are shown in Fig. 3 (A and B) 
for the +4  K SST perturbation simulation (with unchanged CO2 
concentration). There is enhanced warming in the tropical upper 
troposphere, and the warming is also amplified aloft, albeit to a less-
er extent, in the extratropics (Fig.  3A). There is enhanced near-
surface warming in the northern hemisphere, where the land surface 
temperatures can increase more than the imposed SST perturba-
tion. (The global-mean surface air temperature warms by 4.4  K.) 
These features are in-line with the multi-model mean of the CMIP6 
ensemble (Fig. 3C). The sign of the zonal-mean changes is robustly 
simulated by the individual GCMs contributing to the ensemble, as 
indicated by the absence of stippling. Furthermore, subsampling 
GCMs to two-year means has similar results (fig. S4). The upper-
tropospheric enhanced warming has been a long-standing aspect of 
climate model analysis, both for future projections and for compari-
son with observations (30, 31) and additional analysis of this is 
underway.

One of the motivations for advancing to k-scale storm-resolving 
(i.e., convection-permitting) resolution is to simultaneously explic-
itly simulate the large-scale and convective scale, both of which af-
fect the mean relative humidity distribution (32). Examining the 
relative humidity in short integrations is valuable because the resi-
dence time of atmospheric water vapor is about 1 week, therefore its 
distribution is less sensitive to limited time averaging (fig. S5). It also 
has implications for global-mean climate feedbacks. The clear-sky 
LW feedback in conventional climate models is close to that of an 
increase in the specific humidity of the atmosphere with warming 
that leaves RH approximately unchanged (33, 34).

The DYAMOND intercomparison shows that the RH distribu-
tion in the GSRM class of models agrees well with observations over 
short, initialized integrations (35). The possibility that changes in 
convection, such as its organization, influence the relative humidity 
distribution has been assessed in idealized RCE simulations of 
warming in the radiative convective equilibrium model intercom-
parison project (RCEMIP) (36). RCEMIP simulations span a range 
of mid-tropospheric relative humidity changes in response to SST 

Fig. 2. Forcing-feedback decomposition of changes in global-mean TOA net 
radiation assessed in X-SHiELD GSRM simulations compared to CMIP6 simula-
tions. (A) Effective radiative forcing (ERF) for X-SHiELD (red star) versus CMIP6 
models (colored circles, with red indicating higher ERF and blue indicating lower 
ERF) and their estimated distribution (gray violin) with total (longwave and short-
wave, LW + SW) ERF on the left and LW ERF on the right. (B) Cess climate sensitivity 
for X-SHiELD (red star) versus CMIP6 models (colored circles, with red indicating 
higher Cess sensitivity and blue indicating lower Cess sensitivity) and their esti-
mated distribution (gray violin) with total (LW + SW) sensitivity on the left and LW 
sensitivity on the right.
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warming from about −2 to +3 % K−1, with substantial associated 
impacts on the LW component of the radiative feedback parameter 
(37). The extent to which the divergent results among participating 
RCEMIP models, and relative to the modest changes in GCMs, arise 
from the idealized boundary conditions (which would not have di-
rect implications for quantitative estimates of Earth’s climate sensi-
tivity) or resolving convection (which would) makes this a high 
priority for assessing in climate–time scale GSRM simulations.

X-SHiELD’s zonal-mean relative humidity response to surface 
warming has local changes in the troposphere on the order of ±2 % 
K−1 (Fig. 3B). X-SHiELD has an inverted U-shaped pattern of ≈1% 
decreases extending from the tropical upper troposphere (near 
200 hPa) downward into the subtropics and midlatitudes (Fig. 3B, 
red colors). Above these decreases there are regions of increased 
relative humidity of ≈3% that are near the climatological tropo-
pause, where dry stratospheric air in the control simulation is be-
coming upper tropospheric air with a rising tropopause. These 
mid-to-upper troposphere changes can be characterized as an up-
ward shift of the climatological relative humidity (38). This is similar 
to patterns in CMIP6 and across generations of GCMs (Fig.  3D) 
(39). The upward shift of an increase in relative humidity near the 
climatological tropopause and a decrease below is, perhaps, expect-
ed given that both parameterized and resolved convection will 
deepen in warmer climates. However, the detailed similarity extends 
to the mid-troposphere’s increase in the deep tropics and the weak 
decrease in much of the lower troposphere.

In summary, the relative humidity response to warming is a sub-
tle yet robust aspect of GCM-simulated changes, for which the 
convection-permitting RCEMIP simulations show disparate behav-
ior. The X-SHiELD changes are in line with GCM simulations. This 

is highly suggestive of (i) large-scale control on the changes in 
relative humidity [while acknowledging that the representation of 
microphysical processes plays a role in determining the control 
RH distribution (40)]. This (ii) builds confidence in weak GCM-
simulated changes, and, in turn, supports (iii) the now-commonplace 
fixed-relative humidity approach to climate feedback analysis (33).

DISCUSSION
Several multiple-year-long simulations of the GSRM X-SHiELD 
have been performed at the Cooperative Institute for Modeling the 
Earth System. We can subdivide the analyses of these simulations 
into two broad categories: examination of phenomena that cannot 
be investigated with conventional climate models (e.g., intense and 
rotating updrafts) and those that can be simulated with conven-
tional climate models, but depend on parameterized processes and 
warrant careful examination in simulations with better resolved at-
mospheric processes. We focus on the latter here.

We have examined core aspects of the global climate’s response 
to warming: the TOA energy balance and the temperature and 
relative humidity changes that underlie the basic radiative restor-
ing of this balance when subjected to CO2 radiative forcing. That 
is, the forcing and climate sensitivity of this GSRM are analyzed 
here and compared to conventional climate models of the CMIP6 
ensemble.

One aspect of the simulated changes in X-SHiELD that departs 
from the CMIP6 ensemble is the effective radiative forcing. The 
higher-than-CMIP6 radiative forcing of CO2 arises from both a 
model bias and a distinctive cloud adjustment. The control high-
cloud distribution has cloud tops that are biased low in altitude and 

Fig. 3. Change in time- and zonal-mean temperature and relative humidity in X-SHiELD GSRM simulations compared to corresponding CMIP6 simulations in 
response to +4K SST. The mean change in atmospheric temperature (ΔT) (K) and relative humidity (ΔRH) (%K−1) for (A and B) X-SHiELD and (C and D) the ensemble-
mean of CMIP6 models. Red colors indicate decreases and blue colors indicate increases in RH, and stippling on the CMIP6 panels indicates regions where less than 75% 
of CMIP6 models agree on the sign of the response.
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therefore have warm cloud-top temperatures, which enhances CO2 
forcing because their climatological contribution to the greenhouse 
effect is weaker. This also contributes to the control global-mean 
OLR bias (Fig.  1, left). The high-cloud adjustment is a potential 
mechanism of enhancing the CO2 radiative forcing: These high-
cloud changes that occur in response to increased CO2 with un-
changed SST enhance the greenhouse effect.

Compared to conventional climate models, X-SHiELD has a 
fairly typical Cess sensitivity of 2.3 K. The zonal-mean temperature 
change and relative humidity change have substantial similarities 
when compared to the ensemble-mean changes. The tropospheric 
relative humidity change is near zero in the global mean but has a 
zonal-mean pattern of change that is quite similar to GCMs. This 
stands in contrast to simulations that participated in the idealized 
RCEMIP intercomparison, which had substantial variations in the 
relative humidity response to warming and concomitantly large 
variations in climate sensitivity. Therefore, our results highlight the 
importance of large-scale controls on changes in the relative humid-
ity distribution. This lends credibility to GCM simulations and ra-
diative feedback assessments that take unchanged relative humidity 
as a reference response.

There are numerous additional avenues of follow-up research. 
In particular, how do other GSRMs compare to X-SHiELD? The 
planned third phase of DYAMOND will include year-long simula-
tions and increased SST simulations, which will allow an examina-
tion of the dependence of the results presented here on model 
formulation.

MATERIALS AND METHODS
GFDL’s X-SHiELD (5, 14) uses the same Finite-Volume Cubed-
Sphere dynamical core (FV3) as in GFDL’s weather and climate 
models and in many other US modeling systems. At the simulation’s 
horizontal resolution of ≈3.25 km, no deep convective parameter-
ization is used, although there is a shallow convection parameteriza-
tion. How to best handle unresolved shallow convection in k-scale 
models is still an open question and a variety of approaches are used 
(9). The X-SHiELD output analyzed here are variables that were 
coarsened from the native model resolution to ≈25 km online, ex-
cept for fig. S2. We interpolated this coarsened 3-hourly output from 
X-SHiELD’s 79 model levels to the standard CMIP6 pressure levels 
before averaging. X-SHiELD integrations have provided a “ground 
truth” for a machine learning approach that corrects a lower resolu-
tion version of the model (41, 42), and this approach holds promise 
for perturbed climates (43).

SSTs in the control simulation are constrained to daily real-time 
analyses from the European Center for Medium-range Weather 
Forecasts (ECMWF), via a 15-day relaxation of the simulated ocean 
mixed layer temperature towards observed SSTs. As in prescribed 
SST simulations, constraining the SST via relaxation to observations 
can imply a global-mean energy source or sink, and ASR exceeding 
OLR (Fig. 1) shows that it is a sink here. Simulations were performed 
from late October 2019 through December 2021, with the 2019 por-
tion of the simulation omitted from the analysis as a spin-up period. 
For radiative transfer, X-SHiELD uses prescribed global-mean con-
centrations of greenhouse gases and a climatological distribution of 
aerosols. The average CO2 concentration for the analysis period is 
407 ppmv, with other greenhouse gas concentrations near their con-
temporary values.

Figure S2 compares X-SHiELD’s control simulation to active sen-
sor estimates of tropical cloud ice (44–46). An extensive comparison 
of X-SHiELD and observational estimates of the atmosphere is avail-
able (47) or at https://extranet.gfdl.noaa.gov/~Alex.Kaltenbaugh/
verification/.

Simulations of the same length were also performed with per-
turbed SST and/or CO2. The SST perturbation is a uniform warm-
ing of 4 K added to the observed SST. We have also performed 
simulations with increased CO2 concentration, with and without 
the SST warming. The perturbed CO2 concentration is 1270 ppmv, 
which brings the combined perturbation experiment close to 
TOA equilibrium via ≈3.1× the control concentration of 407 ppmv. 
The perturbed CO2 concentration was chosen based on pre-
liminary short integrations in an attempt to have the combined 
perturbation ‘global warming’ simulation have a similar global-
mean net radiation as the control simulation, although the final 
2-year-long integration has a larger imbalance as stated in the 
main text. To compare to the 4 × CO2 CMIP6 experiment, we 
assume a logarithmic scaling of the CO2 concentration to esti-
mate X-SHiELD’s 4 × CO2 radiative forcing: ℱ4×CO2 = [log(4)/
log(1270/407)]ℱX−SHiELD.

CMIP6 experiments are the prescribed SST AMIP simulations 
(“amip” experiment) with the corresponding +4 K SST perturbation 
(“amip-p4K” experiment) and 4 × CO2 (“amip-4xCO2” experi-
ment) simulations. The 12 CMIP6 models analyzed here are BCC-
CSM2-MR, IPSL-CM6A-LR, MRI-ESM2-0, CESM2, GFDL-CM4, 
TaiESM1, CanESM5, CNRM-CM6-1, GISS-E2-1-G, HadGEM3-
GC31-LL, MIROC6, and NorESM2-LM. The 1980–2009 climatolo-
gies are used for Figs. 2 and 3. The calculation of the Cess sensitivity 
uses the individual model-simulated global-mean surface air tem-
perature change ΔTs between the amip-p4K and amip experiments; 
this exceeds the imposed SST warming of 4 K because of enhanced 
land-surface warming. We have also examined 2008–2009 averages 
of CMIP6 simulations for a comparable length to the X-SHiELD in-
tegrations (figs. S1, S4, and S5).

Supplementary Materials
This PDF file includes:
Figs. S1 to S5
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