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Climate sensitivity and relative humidity changes in
global storm-resolving model simulations of

climate change
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The climate simulation frontier of a global storm-resolving model (GSRM; or k-scale model because of its kilometer-
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scale horizontal resolution) is deployed for climate change simulations. The climate sensitivity, effective radiative
forcing, and relative humidity changes are assessed in multiyear atmospheric GSRM simulations with perturbed
sea-surface temperatures and/or carbon dioxide concentrations. Our comparisons to conventional climate model
results can build confidence in the existing climate models or highlight important areas for additional research.
This GSRM’s climate sensitivity is within the range of conventional climate models, although on the lower end as
the result of neutral, rather than amplifying, shortwave feedbacks. Its radiative forcing from carbon dioxide is
higher than conventional climate models, and this arises from a bias in climatological clouds and an explicitly
simulated high-cloud adjustment. Last, the pattern and magnitude of relative humidity changes, simulated with
greater fidelity via explicitly resolving convection, are notably similar to conventional climate models.

INTRODUCTION

The use of kilometer-scale (k-scale) global storm-resolving models
(GSRMs) on global domains has emerged as a promising frontier of
modeling Earth’s atmosphere (1, 2). The implications of this new
class of models for climate change are in their nascent stage (3-8).
GSRMs are being developed by numerous modeling centers, and
several models in this class have participated in a recent intercom-
parison (“DYAMOND?”) of 40-day integrations initialized from
analyzed atmospheric states (9). Using initialized integrations is de-
sirable in that it facilitates comparison to detailed Earth observa-
tions of particular weather statistics, model assessment akin to
numerical weather prediction evaluation. A central motivation for
the push to k-scale global climate models (GCMs) is, however, ad-
dressing uncertainty in climate model formulation by explicitly re-
solving more of the interactions between the atmospheric flow and
the phase change of water vapor. These interactions are, of course,
responsible for clouds and precipitation and are intimately tied to
the planetary radiation balance (10, 11). GSRMs explicitly simulate
aspects of deep moist convection without using sub-grid scale pa-
rameterization. Ambitious research visions and descriptions of req-
uisite resources for this frontier of climate prediction have been
recently described (12, 13).

Here, we offer an overview of key aspects of global climate change
in four distinct 2-year-long free-running GSRM simulations with
the Geophysical Fluid Dynamics Laboratory’s (GFDL) eXperimen-
tal System for High-resolution prediction on Earth-to-Local Do-
mains [X-SHiELD; with ~3.25 km horizontal resolution and no
deep convection scheme (5, 14); Materials and Methods]: A control,
one with a uniform 4-K sea-surface temperature (SST) warming,
one with an increased CO, concentration, and one with both. These
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perturbation simulations have a long history in atmospheric model
simulations of climate change and can be used to assess climate sen-
sitivity (15, 16) and radiative forcing (17, 18).

Figure 1 shows the instantaneous distribution of column-integrated
cloud ice and liquid water over the Americas for the control simula-
tion’s 8 August 2020 (left). This provides a vivid illustration of the
detailed flows that are explicitly simulated, from the large-scale
fronts sweeping across much of the southern hemisphere midlati-
tudes and the sharp East Pacific ITCZ to the k-scale convection
from Mexico to South America. This type of imagery is evocative,
and we are further interested in the aggregate effect of these small-
scale features on the global-scale variables that control the climate
response to external forcing. We see a similar image for the global
warming simulation (Fig. 1, right), noting that one cannot readily
discern the effect of climate change from the instantaneous cloud
morphology. Our climate change motivation naturally mandates a
systematic investigation of the averaged state of these simulated at-
mospheres. Here, we focus on the top-of-atmosphere (TOA) energy
balance and some of the key factors underlying its response to cli-
mate change.

Given that we are analyzing long GSRM simulations and extract-
ing their climate change responses, a natural point of comparison
is conventional GCMs that use parameterizations for unresolved
moist convection. These have been the dominant means of quantita-
tive future climate projections from the inception of the Inter-
governmental Panel on Climate Change Assessment Reports to the
present Coupled Model Intercomparison Project Phase 6 (CMIP6)
simulations. To the extent that the GSRM simulations are within the
range of conventional climate models, it suggests that the net effect
of the unresolved-but-parameterized processes on the mean climate
is consistent with k-scale models that simulate more of the atmo-
spheric flow. This possibility would be reassuring from the perspec-
tive of the continued relevance of existing climate change assessments
based on conventional climate models. To the extent that the GSRM
simulations are outside the range of conventional climate models, it
suggests important areas of future inquiry. This may indicate that
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Fig. 1. Instantaneous simulated cloud liquid and ice water paths for 8 August
2020 in control and global warming (4K SST warming with increased CO, con-
centration) X-SHIiELD GSRM simulations. The global- and time-mean outgoing
longwave radiation (OLR) and absorbed shortwave radiation (ASR) components of
the TOA net radiation over the two simulated years are indicated below the instan-
taneous images.

improvements can be made in the formulation of GSRMs (e.g., if
there are biases with respect to observations) or it may suggest that
parameterizations in conventional climate models distort the simu-
lated climate changes in a way that must be revisited with better re-
solved atmospheric simulations. It is, therefore, a high priority to
undertake the comparison of GSRM simulations of climate change
relative to existing climate model results. This is complementary to
the important goal of examining previously unresolved phenomena,
such as the changes in extreme convective vertical velocities with
warming (5).

RESULTS

The time-mean components of global-mean TOA net radiation, the
outgoing longwave radiation (OLR) and absorbed shortwave radia-
tion (ASR), are shown for the control simulation in Fig. 1 (left). Here
and throughout, we use the simulated calendar years 2020 and 2021.
Compared to satellite estimates from CERES EBAF (19), X-SHiELD
has positive global-mean biases of about 7 W m™ for ASR and
about 4 W m™” for OLR. Note that this X-SHiELD configuration has
not been extensively optimized against the TOA observations, as
this is computationally infeasible for this length of integration.

The global-mean TOA components for the global warming sim-
ulation (increased SST with increased CO,) have increased OLR
(+0.7 W m™2) and ASR (+1.6 W m~2, right versus left of Fig. 1).
CO; is a greenhouse gas that increases the planet’s net TOA radia-
tion (primarily by decreasing OLR) and this is offset by stabiliz-
ing temperature-dependent feedbacks. The change in net radiation
(+0.9 W m™?) indicates additional energy imbalance, despite our
desire to obtain a similar degree by tailoring the perturbation CO,
concentration (imposing a ~3.1X increase compared to the control).
However, the assumption of linear superposition between the isolated
roles of warming and CO, forcing holds well, as our forcing-feedback
analysis will show.

This set of simulations can define the two key components of the
canonical climate feedback analysis. The changes in the global-mean
TOA energy balance are decomposed into the radiative forcing #
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and the climate feedback parameter A. At equilibrium, there is no
change in net radiation AN and

AN =0=F + AT, 1)

where all quantities are global means and the sign convention is that
a stable climate feedback parameter is negative. That is, a positive
forcing & > 0 from an increased CO, concentration provokes a
warming AT, > 0 for the energy balance to re-equilibrate.

The change in TOA net radiation for the simulation with in-
creased CO; and unchanged SST defines the effective radiative forc-
ing (ERF). This is the typical way of specifying & in Eq. 1. The ERF
is also referred to as the troposphere-adjusted forcing (17, 18). It
allows for changes in the stratospheric temperatures driven by the
CO; concentration, rather than the surface warming, and analo-
gous CO; concentration-dependent tropospheric adjustments (20).
Since the CO; concentration changes differ in X-SHiELD and the
corresponding CMIP6 experiment, we assume a logarithmic scal-
ing in CO;, concentration to estimate X-SHIiELD’s 4 X CO; radiative
forcing.

The ERF is 9.0 W m™2 in X-SHiELD (left side of Fig. 2A). The
CMIP6 ERF ensemble mean of 7.9 W m™ is smaller than X-
SHIiELD’s. Figure 2 shows both individual CMIP6 models (colored
circles) and an estimate of their distribution (gray lines). X-SHiELD
is above the top of the range of the multimodel distribution of ERF
(Fig. 2A). For the CMIP6 simulations, ERF assessed using time-
means over 2 (versus 30) simulated years changes by ~+0.3 W m™>
(fig. S1). The two individual years of X-SHIiELD ERF differ by
0.1 W m™?, suggesting that the difference relative to CMIP6 is not
related to the limited time sampling.

The longwave (LW) component of the ERFE, the reduction in
OLR, is 7.3 W m ™2 in X-SHiELD. This is larger than the CMIP6 en-
semble mean (6.3 W m™2), although there is one GCM that has
comparably large LW forcing (right side of Fig. 2A). The shortwave
(SW) component of the ERF is +1.8 W m ™ in X-SHiELD, compa-
rable to the ensemble-mean of CMIP6 models, +1.7 W m ™%, which
has larger variations in 2-year averages than the LW component
(fig. S1). The CMIP6 models are colored by their ERE, which can be
used to infer the extent to which LW and SW components produce
variation across models. Broadly, the LW dominates the ERF and
the SW on average increases it but can decrease it in some models.

X-SHIiELD’s larger LW forcing is related to the climatological
high cloud distribution. Its cloud-top temperatures are biased warm
(i.e., lower in altitude; fig. S2), so additional CO, causes a larger re-
duction in OLR. A high-cloud adjustment also contributes to the
forcing: CO; increases the cloud fraction and ice concentration
above the control cloud top and decreases them below (fig. S3). This
increases the LW forcing by lifting cloud tops to emit from colder
temperatures. This high-cloud adjustment is an intriguing response
given the k-scale model simulates the deep convection responsible
for these clouds and its LW ERF differs from GCM behavior (18).
Previous GSRM analyses have found increased high clouds in re-
sponse to SST warming (3, 21), but this is the first example of a
similar cloud response to increased CO, without any SST change.

The Cess climate sensitivity is determined by the feedback pa-
rameter computed from the difference in global-mean net radiation
in response to the uniform SST perturbation with unchanged CO,
concentration: A = AN/AT, where the global-mean surface air tem-
perature change AT includes enhanced land warming. The Cess
sensitivity can be expressed in terms of a feedback parameter A of
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Fig. 2. Forcing-feedback decomposition of changes in global-mean TOA net
radiation assessed in X-SHIiELD GSRM simulations compared to CMIP6 simula-
tions. (A) Effective radiative forcing (ERF) for X-SHIiELD (red star) versus CMIP6
models (colored circles, with red indicating higher ERF and blue indicating lower
ERF) and their estimated distribution (gray violin) with total (longwave and short-
wave, LW + SW) ERF on the left and LW ERF on the right. (B) Cess climate sensitivity
for X-SHIELD (red star) versus CMIP6 models (colored circles, with red indicating
higher Cess sensitivity and blue indicating lower Cess sensitivity) and their esti-
mated distribution (gray violin) with total (LW + SW) sensitivity on the left and LW
sensitivity on the right.

Eq. 1 or in units of temperature by using the convention of a dou-
bled CO, concentration with a radiative forcing of 3.6 W m™2. The
intermodel spread in radiative forcing is then suppressed to focus on
the role of radiative feedbacks in determining the climate sensitiv-
ity. The Cess sensitivity omits the important role for the spatial pat-
tern of surface temperature change in provoking more destabilizing
regional feedbacks over long time scales (22) or projecting onto
regions of more stabilizing feedbacks in recent decades (23). Never-
theless, this sensitivity has the virtue of simplicity and was the basis
of one of the earliest GCM intercomparisons (15).

Figure 2B shows the Cess sensitivity, and X-SHIiELD has a sensi-
tivity of 2.31 K. Its feedback parameter A is —1.56 W m > K~' and
individual years differ by 0.02 W m™* K", The mean of the CMIP6
ensemble has an incrementally larger Cess sensitivity of 2.4 K, and
X-SHIELD is near the widest part of the estimated CMIP6 distribu-
tion (gray line).

The Cess sensitivity can be decomposed into LW and SW com-
ponents. Here, we focus on the LW component, which is the pri-
mary stabilizing influence on climate. X-SHIiELD’s LW feedback
parameter (A\yw = —AOLR/AT; = —1.60 W m~2 K™!) shows that
X-SHIELD’s total Cess sensitivity of 2.31 K is nearly identical to the
LW Cess sensitivity of 2.25 K; i.e., in this model the SW feedback is
approximately neutral. Conversely, while the CMIP6 ensemble-
mean total Cess feedback of 2.4 K is similar to that of X-SHIiELD,
the LW Cess sensitivity of 1.7 K is substantially less, and corre-
spondingly, the CMIP6 ensemble-mean SW feedbacks are more
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destabilizing than in X-SHIiELD. In summary, while X-SHiELD has
a relatively low (compared to the CMIP6 ensemble) value for the
Cess sensitivity, it has a relative high value for the LW component
(that is, less stabilizing LW feedbacks) compared to the CMIP6 en-
semble. The CMIP6 models are colored in Fig. 2B by their Cess sen-
sitivity, and there is at least one GCM with low Cess sensitivity and
high LW sensitivity, comparable to X-SHiELD (a dark blue dot).

Beyond a comparison to conventional climate models, it is in-
structive to consider how this fits with the null hypothesis that the
feedbacks are primarily determined by clear-sky (non-cloud) chang-
es and a global-mean relative humidity that is unchanged with
warming. This constant relative humidity assumption was at the
heart of Manabe and Weatherald’s 1967 quantification of the climate
sensitivity (24, 25) by assuming a radiative convective equilibrium
(RCE) and they found a sensitivity of 2.36 K. Contemporary single-
column RCE estimates of climate sensitivity remain near 2 K (26-28).
That X-SHIiELD does not strongly depart from conventional GCMs,
which are, in turn, broadly consistent with expectations of a con-
stant relative humidity atmosphere with a stabilizing feedback from
enhanced warming aloft in the tropics (29), brings our attention to
X-SHIiELD’s atmospheric temperature and relative humidity chang-
es under warming.

The X-SHIiELD simulated time- and zonal-mean temperature
change and relative humidity change are shown in Fig. 3 (A and B)
for the +4 K SST perturbation simulation (with unchanged CO,
concentration). There is enhanced warming in the tropical upper
troposphere, and the warming is also amplified aloft, albeit to a less-
er extent, in the extratropics (Fig. 3A). There is enhanced near-
surface warming in the northern hemisphere, where the land surface
temperatures can increase more than the imposed SST perturba-
tion. (The global-mean surface air temperature warms by 4.4 K.)
These features are in-line with the multi-model mean of the CMIP6
ensemble (Fig. 3C). The sign of the zonal-mean changes is robustly
simulated by the individual GCMs contributing to the ensemble, as
indicated by the absence of stippling. Furthermore, subsampling
GCMs to two-year means has similar results (fig. S4). The upper-
tropospheric enhanced warming has been a long-standing aspect of
climate model analysis, both for future projections and for compari-
son with observations (30, 31) and additional analysis of this is
underway.

One of the motivations for advancing to k-scale storm-resolving
(i.e., convection-permitting) resolution is to simultaneously explic-
itly simulate the large-scale and convective scale, both of which af-
fect the mean relative humidity distribution (32). Examining the
relative humidity in short integrations is valuable because the resi-
dence time of atmospheric water vapor is about 1 week, therefore its
distribution is less sensitive to limited time averaging (fig. S5). It also
has implications for global-mean climate feedbacks. The clear-sky
LW feedback in conventional climate models is close to that of an
increase in the specific humidity of the atmosphere with warming
that leaves RH approximately unchanged (33, 34).

The DYAMOND intercomparison shows that the RH distribu-
tion in the GSRM class of models agrees well with observations over
short, initialized integrations (35). The possibility that changes in
convection, such as its organization, influence the relative humidity
distribution has been assessed in idealized RCE simulations of
warming in the radiative convective equilibrium model intercom-
parison project (RCEMIP) (36). RCEMIP simulations span a range
of mid-tropospheric relative humidity changes in response to SST
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Fig. 3. Change in time- and zonal-mean temperature and relative humidity in X-SHiELD GSRM simulations compared to corresponding CMIP6 simulations in
response to +4K SST. The mean change in atmospheric temperature (AT) (K) and relative humidity (ARH) (%K™ for (A and B) X-SHiELD and (C and D) the ensemble-
mean of CMIP6 models. Red colors indicate decreases and blue colors indicate increases in RH, and stippling on the CMIP6 panels indicates regions where less than 75%

of CMIP6 models agree on the sign of the response.

warming from about —2 to +3 % K', with substantial associated
impacts on the LW component of the radiative feedback parameter
(37). The extent to which the divergent results among participating
RCEMIP models, and relative to the modest changes in GCMs, arise
from the idealized boundary conditions (which would not have di-
rect implications for quantitative estimates of Earth’s climate sensi-
tivity) or resolving convection (which would) makes this a high
priority for assessing in climate—time scale GSRM simulations.

X-SHIiELD’s zonal-mean relative humidity response to surface
warming has local changes in the troposphere on the order of +2 %
K™' (Fig. 3B). X-SHIiELD has an inverted U-shaped pattern of ~1%
decreases extending from the tropical upper troposphere (near
200 hPa) downward into the subtropics and midlatitudes (Fig. 3B,
red colors). Above these decreases there are regions of increased
relative humidity of ~3% that are near the climatological tropo-
pause, where dry stratospheric air in the control simulation is be-
coming upper tropospheric air with a rising tropopause. These
mid-to-upper troposphere changes can be characterized as an up-
ward shift of the climatological relative humidity (38). This is similar
to patterns in CMIP6 and across generations of GCMs (Fig. 3D)
(39). The upward shift of an increase in relative humidity near the
climatological tropopause and a decrease below is, perhaps, expect-
ed given that both parameterized and resolved convection will
deepen in warmer climates. However, the detailed similarity extends
to the mid-troposphere’s increase in the deep tropics and the weak
decrease in much of the lower troposphere.

In summary, the relative humidity response to warming is a sub-
tle yet robust aspect of GCM-simulated changes, for which the
convection-permitting RCEMIP simulations show disparate behav-
ior. The X-SHIiELD changes are in line with GCM simulations. This
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is highly suggestive of (i) large-scale control on the changes in
relative humidity [while acknowledging that the representation of
microphysical processes plays a role in determining the control
RH distribution (40)]. This (ii) builds confidence in weak GCM-
simulated changes, and, in turn, supports (iii) the now-commonplace
fixed-relative humidity approach to climate feedback analysis (33).

DISCUSSION

Several multiple-year-long simulations of the GSRM X-SHiELD
have been performed at the Cooperative Institute for Modeling the
Earth System. We can subdivide the analyses of these simulations
into two broad categories: examination of phenomena that cannot
be investigated with conventional climate models (e.g., intense and
rotating updrafts) and those that can be simulated with conven-
tional climate models, but depend on parameterized processes and
warrant careful examination in simulations with better resolved at-
mospheric processes. We focus on the latter here.

We have examined core aspects of the global climate’s response
to warming: the TOA energy balance and the temperature and
relative humidity changes that underlie the basic radiative restor-
ing of this balance when subjected to CO, radiative forcing. That
is, the forcing and climate sensitivity of this GSRM are analyzed
here and compared to conventional climate models of the CMIP6
ensemble.

One aspect of the simulated changes in X-SHIiELD that departs
from the CMIP6 ensemble is the effective radiative forcing. The
higher-than-CMIP6 radiative forcing of CO, arises from both a
model bias and a distinctive cloud adjustment. The control high-
cloud distribution has cloud tops that are biased low in altitude and
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therefore have warm cloud-top temperatures, which enhances CO,
forcing because their climatological contribution to the greenhouse
effect is weaker. This also contributes to the control global-mean
OLR bias (Fig. 1, left). The high-cloud adjustment is a potential
mechanism of enhancing the CO; radiative forcing: These high-
cloud changes that occur in response to increased CO, with un-
changed SST enhance the greenhouse effect.

Compared to conventional climate models, X-SHiELD has a
fairly typical Cess sensitivity of 2.3 K. The zonal-mean temperature
change and relative humidity change have substantial similarities
when compared to the ensemble-mean changes. The tropospheric
relative humidity change is near zero in the global mean but has a
zonal-mean pattern of change that is quite similar to GCMs. This
stands in contrast to simulations that participated in the idealized
RCEMIP intercomparison, which had substantial variations in the
relative humidity response to warming and concomitantly large
variations in climate sensitivity. Therefore, our results highlight the
importance of large-scale controls on changes in the relative humid-
ity distribution. This lends credibility to GCM simulations and ra-
diative feedback assessments that take unchanged relative humidity
as a reference response.

There are numerous additional avenues of follow-up research.
In particular, how do other GSRMs compare to X-SHiELD? The
planned third phase of DYAMOND will include year-long simula-
tions and increased SST simulations, which will allow an examina-
tion of the dependence of the results presented here on model
formulation.

MATERIALS AND METHODS

GFDLs X-SHIiELD (5, 14) uses the same Finite-Volume Cubed-
Sphere dynamical core (FV3) as in GFDLs weather and climate
models and in many other US modeling systems. At the simulation’s
horizontal resolution of ~3.25 km, no deep convective parameter-
ization is used, although there is a shallow convection parameteriza-
tion. How to best handle unresolved shallow convection in k-scale
models is still an open question and a variety of approaches are used
(9). The X-SHiELD output analyzed here are variables that were
coarsened from the native model resolution to %25 km online, ex-
cept for fig. S2. We interpolated this coarsened 3-hourly output from
X-SHIiELD’s 79 model levels to the standard CMIP6 pressure levels
before averaging. X-SHIiELD integrations have provided a “ground
truth” for a machine learning approach that corrects a lower resolu-
tion version of the model (41, 42), and this approach holds promise
for perturbed climates (43).

SSTs in the control simulation are constrained to daily real-time
analyses from the European Center for Medium-range Weather
Forecasts (ECMWFE), via a 15-day relaxation of the simulated ocean
mixed layer temperature towards observed SSTs. As in prescribed
SST simulations, constraining the SST via relaxation to observations
can imply a global-mean energy source or sink, and ASR exceeding
OLR (Fig. 1) shows that it is a sink here. Simulations were performed
from late October 2019 through December 2021, with the 2019 por-
tion of the simulation omitted from the analysis as a spin-up period.
For radiative transfer, X-SHiELD uses prescribed global-mean con-
centrations of greenhouse gases and a climatological distribution of
aerosols. The average CO, concentration for the analysis period is
407 ppmv, with other greenhouse gas concentrations near their con-
temporary values.
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Figure S2 compares X-SHIiELD’s control simulation to active sen-
sor estimates of tropical cloud ice (44-46). An extensive comparison
of X-SHIiELD and observational estimates of the atmosphere is avail-
able (47) or at https://extranet.gfdl.noaa.gov/~Alex.Kaltenbaugh/
verification/.

Simulations of the same length were also performed with per-
turbed SST and/or CO,. The SST perturbation is a uniform warm-
ing of 4 K added to the observed SST. We have also performed
simulations with increased CO, concentration, with and without
the SST warming. The perturbed CO; concentration is 1270 ppmv,
which brings the combined perturbation experiment close to
TOA equilibrium via &3.1x the control concentration of 407 ppmv.
The perturbed CO, concentration was chosen based on pre-
liminary short integrations in an attempt to have the combined
perturbation ‘global warming’ simulation have a similar global-
mean net radiation as the control simulation, although the final
2-year-long integration has a larger imbalance as stated in the
main text. To compare to the 4 x CO, CMIP6 experiment, we
assume a logarithmic scaling of the CO; concentration to esti-
mate X-SHIiELD’s 4 X CO, radiative forcing: Zyxcoz = [log(4)/
log(1270/407)]gX—SHiELD~

CMIP6 experiments are the prescribed SST AMIP simulations
(“amip” experiment) with the corresponding +4 K SST perturbation
(“amip-p4K” experiment) and 4 X CO; (“amip-4xCO2” experi-
ment) simulations. The 12 CMIP6 models analyzed here are BCC-
CSM2-MR, IPSL-CM6A-LR, MRI-ESM2-0, CESM2, GFDL-CM4,
TaiESM1, CanESM5, CNRM-CM6-1, GISS-E2-1-G, HadGEM3-
GC31-LL, MIROC6, and NorESM2-LM. The 1980-2009 climatolo-
gies are used for Figs. 2 and 3. The calculation of the Cess sensitivity
uses the individual model-simulated global-mean surface air tem-
perature change AT, between the amip-p4K and amip experiments;
this exceeds the imposed SST warming of 4 K because of enhanced
land-surface warming. We have also examined 2008-2009 averages
of CMIP6 simulations for a comparable length to the X-SHIiELD in-
tegrations (figs. S1, S4, and S5).

Supplementary Materials
This PDF file includes:
Figs.S1to S5
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