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AbstractÐForecasting extreme values in time series is an
important but challenging problem as the extreme values are
rarely observed even when a large amount of historical data
is available. The modeling of extreme values requires a specific
focus on estimating the tail distribution of the time series, whose
statistical properties may differ from the distribution of its non-
extreme values. To overcome this challenge, we present a novel
self-supervised learning framework, SimEXT, to learn a robust
representation of the time series that preserves the fidelity of its tail
distribution. The framework employs a combination of contrastive
learning and a reconstruction-based autoencoder architecture to
facilitate robust representation learning of the temporal patterns
associated with the extreme events. SimEXT also incorporates a
wavelet-based data augmentation technique with a distribution-
based loss function to prioritize the learning of extreme value
distribution. We provide probabilistic guarantees on the wavelet-
based augmentation that enables the wavelet coefficients to be
perturbed during data augmentation without significantly altering
the extreme values of the time series. Experimental results on
real-world datasets show that SimEXT can effectively learn a
robust representation of the time series to boost the performance
of downstream tasks for forecasting block maxima values.

Index TermsÐforecasting; time series, extreme values

I. INTRODUCTION

Deep time series forecasting models are widely used to

predict the future outcomes of complex processes that evolve

over time. The accuracy and effectiveness of these models

often depend on their ability to discern the underlying patterns

of the data and and using them to predict the time series’

future evolution. A critical element in time series forecasting

is predicting extreme values, which are values significantly

outside the usual range. This is crucial in various domains, as

extreme events can signify dire scenarios like natural disasters,

financial crises, or public health risks.

Block maxima or minima [1] are commonly used to define

extreme values in a time series. These definitions involve

dividing a time series into non-overlapping blocks of a fixed

period and identifying the maximum or minimum value within

each block. Alternatively, extreme values can be defined as

excess values over a user-specified threshold. In this paper,

we focus on block maxima (or minima) as extreme values

due to their critical significance for anticipating worst-case

scenarios during forecast periods. For instance, predicting the

maximum intensity of an upcoming hurricane or amplitude of

seismic activity for a future time window can assist emergency

planners in assessing its potential damages.

Accurate forecasting of extreme values in time series is

challenging for several reasons. Firstly, it necessitates a focused

approach on modeling the tail distribution [1], deviating signif-

icantly from conventional techniques that typically emphasize

on modeling the conditional mean. Secondly, the rarity of

extreme values compounds the difficulty of prediction, even

with abundant historical data. Finally, the extreme values could

be associated with certain peculiarities in the time series, such

as abrupt changes, volatility clustering, persistent dependencies,

etc [2], [3]. Advanced representation learning approach is

therefore needed to learn the underlying patterns in the time

series that can be utilized for extreme value forecasting.

Self-supervised learning (SSL) [4], [5] is an emerging

machine learning technique that fosters robust feature rep-

resentation learning despite data limitations. Self-supervised

contrastive learning [4] employs data augmentation to address

labeled data scarcity issues, comparing augmented versions of

the same input to learn a robust representation that is invariant

to changes introduced by the augmentation. For time series,

it facilitates learning representations invariant to time shifts,

scaling, or warping [6], thereby improving generalizability of

the model. SSL also excels in capturing complex patterns and

non-linear dependencies in time series [7].

Existing SSL approaches, although promising for extracting

meaningful time series representations [4], [5], often prioritize

common patterns over extreme values. Furthermore, current

data augmentation methods can inadvertently distort extreme

values, compromising the fidelity of the tail distribution in

learned representations. To ensure robustness across scenarios

and the ability to capture extreme event characteristics, it is

essential to develop data augmentation techniques that account

for extreme values when transforming time series data for SSL.

To address these challenges, we propose a SSL framework

called SimEXT to learn a feature representation that captures

the extreme values of a time series. SimEXT leverages

contrastive learning with a reconstruction-based autoencoder

architecture. A novel wavelet-based data augmentation tech-

nique is also introduced to ensure that the extreme values are

not significantly altered during augmentation. Additionally, we

investigate two distribution loss functions that emphasize on

learning features that preserve the extreme values of a time

series. These learned representations are subsequently applied

to downstream tasks that focused on predicting future block

maxima (or minima) of the time series.



II. PRELIMINARIES

A. Problem Statement

Consider a time series of T discrete time steps,

y1, y2, · · · , yT , where yi ∈ R. Assume the time series is

divided into a set of non-overlapping time windows, where

each window wt corresponds to the interval [t− α, t+ β] and

contains a segment (yt−α, · · · , yt, · · · , yt+β) of the input time

series. For each window wt, we define its predictor window

as the interval [t−α, t] and its forecast window as the interval

[t + 1, t + β]. The block maxima of the time series for the

forecast window of wt is given by:

mt = max
τ∈[t+1,t+β]

yt

Our objective here is two-fold: (1) to learn a robust feature

representation of the time series in each predictor window, i.e.,

zt = hθ(xt) ∈ R
d, where xt = (yt−α, · · · , yt) ∈ R

α+1 is

the time series segment associated with the predictor window,

hθ(·) is an encoder model that maps the input time series

segment into its latent representation, and θ is the learnable

parameters; and (2) to predict the block maxima, m̂t, of the

forecast window by learning a mapping function fϕ(·) such

that m̂t = fϕ(xt, zt), where ϕ is the learnable parameters.

B. Contrastive Learning

Contrastive learning aims to learn feature representations in

such a way that similar instances are close to each other in

the latent representation space while dissimilar instances are

far apart by minimizing the following NT-Xent loss [8]:

ℓ(i, j) = − log
exp

[

sim
(

h(xi), h(xj)
)

/τ
]

∑2N
k=1 1k ̸=i exp [sim (h(xi), h(xk)) /τ ]

(1)

where x
i and x

j are two augmented views of a data instance,

1k ̸=i is an indicator function, h(·) denotes the representation

learning function, sim(·, ·) is the cosine similarity measure, and

τ is the temperature hyperparameter. The final loss is computed

for all positive pairs in a minibatch of size N as follows [8]:

Lcontrastive =
1

2N

N
∑

k−1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)] (2)

C. Discrete Wavelet Transform

The discrete wavelet transform (DWT) decomposes a time

series into its approximation (scaling) and detail (wavelet) co-

efficients, facilitating multi-resolution analysis. Approximation

coefficients convey information about the signal’s overall trend

(low-frequency components), while detail coefficients capture

the noisy temporal variations (high-frequency components). An

input signal xt can be expressed as linear combination of the

scaling functions ϕ(t) and wavelet functions ψ(t) using the

detail and approximation coefficients as follows:

xt =
∑

k

cj(k)ϕj,k(t) +
∑

k

∑

j

dj(k)ψj,k(t) (3)

where j and k are the scale and dilation parameters respectively,

cj(k) denotes the approximation (scaling) coefficient, and dj(k)

Fig. 1. An overview of the proposed SimEXT framework for time series
forecasting of extreme values.

denotes the detail (wavelet) coefficient. For orthogonal scaling

and wavelet functions, cj(k) and dj(k) can be calculated by

taking their inner product with the original signal xt.

In practice, the approximation and detail coefficients can be

calculated without using the scaling and wavelet functions.

Instead, a cascading filter banks algorithm is employed,

allowing the coefficients to be recursively computed as follows:

cj(k) =
∑

m

hlp(m− 2k) cj+1(m),

dj(k) =
∑

m

hhp(m− 2k) dj+1(m) (4)

where m = 2k + n while hlp(·) and hhp(·) denote the low-

pass and high-pass filters, respectively. Choosing the right

wavelet function depends on the signal’s characteristics and

application goals. For instance, the Haar wavelet is preferred

when rapid computation is vital. It reduces coefficients by half

at each decomposition level, yielding a more compact signal

representation, particularly advantageous for large datasets or

real-time applications requiring computational efficiency.

III. PROPOSED SIMEXT FRAMEWORK

SimEXT combines contrastive learning with a reconstruction-

based autoencoder to generate a robust latent representation of

time series data. An overview of the proposed framework is

shown in Fig. 1.



A. Wavelet-based Data Augmentation

Contrastive learning requires performing data augmentation

to generate conceptually similar samples by perturbing the

original data. For time series, the perturbation methods include

jittering, flipping, shuffling, time warping, etc. Choosing the

right data augmentation approach is crucial for block maxima

forecasting to ensure that the learned representation preserves

the overall pattern of the time series without significantly

altering its block maxima values. To achieve this, the framework

introduces a wavelet-based data augmentation technique. Before

describing the approach, we first examine the effect of jittering

on the block maxima of a time series.

Theorem 1. Let y1, y2, · · · , yn be a sequence, where yi ∈ R

and Mn = maxi yi. Assuming M̂n = maxi ŷi, where ŷi =
yi + ϵi and ϵi ∼ N (0, σ2), it can be shown that:

Eϵ

[

M̂n −Mn

]

≤ log n+
σ2

2
(5)

Proof. First, observe that Eϵ

[

M̂n −Mn

]

= Eϵ

[

M̂n

]

−Mn.

Since the exponent function is non-negative, the expected value

of M̂n can be expressed as follows:

Eϵ

[

M̂n

]

= Eϵ

[

max
i

(ϵi + yi)
]

= Eϵ

[

max
i

(

log eϵi+yi

)

]

≤ Eϵ

[

log

n
∑

i=1

eϵi+yi

]

The inequality above can be further simplified using Jensen

inequality as follows:

Eϵ

[

M̂n

]

≤ logEϵ

[

n
∑

i=1

eϵieyi

]

= log

(

n
∑

i=1

Eϵ [e
ϵi ] eyi

)

Assuming ϵi ∼ N (0, σ2), it can be shown that

E [eϵ] =

∫ ∞

−∞

eϵ
1√
2πσ2

e−
ϵ
2

2σ2 dϵ = e
σ
2

2

Replacing the expected value into the inequality given in (6),

we obtain the following:

Eϵ

[

M̂n

]

≤ log

(

n
∑

i=1

e
σ
2

2
+yi

)

≤ log

(

n
∑

i=1

e
σ
2

2
+Mn

)

= log n+
σ2

2
+Mn

The proof follows by subtracting Mn from the expected value

given above.

Theorem 1 provides an upper bound on the expected value

of the difference between the perturbed block maxima and

the original block maxima of a time series of length n. Note

that the bound is proportional to the variance of the noise as

well as number of perturbed data points. Thus, by using a

smaller variance during the jittering process, fewer number of

perturbed data points, or both, this can help avoid altering the

block maxima value significantly.

Algorithm 1 Wavelet-based Data Augmentation Algorithm

Input: Time series predictor xt and noise variance, σ2.

Output: Augmented time series pair, x1
t and x

2
t .

(cj0,k, dj,k)← DWT(xt)
for i = 1 to 2 do

δij,k ← dj,k + ϵi, where ϵi ∼ N (0, σ2)
x
i
t ← IDWT(cj0,k, δ

i
j,k)

end for

return x
1
t and x

2
t

Algorithm 1 summarizes the pseudocode of our proposed

wavelet-based data augmentation approach. Given an input

segment, xt, we first employ DWT to decompose the time series

into its approximation coefficients (cj0,k) and wavelet (detail)

coefficients (dj,k). We apply the Daubechies 1 wavelet, also

known as the Haar wavelet, in this study but the methodology

is applicable to other wavelet functions. As mentioned in

Section II-C, by employing the Haar wavelet, the number

of detail and approximation coefficients will be halved of

the length of the original time series. Since the approximation

coefficient captures the overall trend while the detail coefficient

captures the noisy, high-frequency components, we perform

augmentation by applying jittering to the detail coefficients

only. Specifically, each detail coefficient is perturbed by adding

a Gaussian noise with variance σ2. As the number of detail

coefficients is half of the length of xt and using a low variance

σ2, following Theorem 1, this ensures that the block maxima

of the augmented time series is close to that of its input time

series. Finally, we employ the inverse discrete wavelet transform

(IDWT) on the approximation and perturbed detail coefficients

to construct the augmented time series.

B. Self-supervised Representation Learning

The wavelet-based data augmentation technique described

in the previous section is used to create augmented pairs

of similar samples for each predictor window xt. Each

augmented pair (x1
t ,x

2
t ) is passed to an autoencoder to generate

its corresponding feature embedding (z1
t , z

2
t ), capable of

reconstructing the original sample: x′i
t = Decoder(zi

t), where

z
i
t = Encoder(xi

t). The framework employs a reconstruction

loss based on the squared Euclidean norm between the

original and augmented sample to preserve important features.

Additionally, the contrastive loss (Eq. (2)) is calculated for all

positive samples to ensure that the representations of similar

pairs remain close. By minimizing both losses, the framework

learns a robust representation of the time series.

C. Enforcing Fidelity of Tail Distribution

The reconstruction and contrastive losses alone cannot

guarantee that the learned representation would preserve the

fidelity of the block maxima distribution. To address this,

we introduce a distribution loss in the objective function to

emphasize feature learning that considers extreme values in

the time series. Let xt be the original input time series and x
′

t



be the reconstructed time series. Their corresponding empirical

cumulation distribution functions (ECDFs) are defined as

Fx(z) =
1

n

n
∑

i=1

1[x(i) ≤ z], Fx′(z) =
1

n

n
∑

i=1

1[x′(i) ≤ z] (6)

where n is the sample size, x(i) is the i-th largest observation

in x, and 1[x(i) ≤ z] is an indicator function, whose value is

1 if x(i) ≤ z and 0 otherwise. We consider two approaches for

measuring the distribution loss.

1) Tail-Weighted Distance (TWD) between Empirical Cumu-

lative Distribution Functions (ECDFs): This loss is motivated

by the Kolmogorov–Smirnov (KS) distance [9] for determining

whether a sample is drawn from a particular distribution:

DKS(Fx′ , Fx) = supz |Fx′(z) − Fx(z)|. However, as the

distance does not consider whether the extreme values of

the distribution are well-preserved. we introduce the following

tail-weighted distance as our distribution loss function:

TWD =
1

n

n
∑

j=1

γ(pj) · |Fx′(xj)− Fx(xj)| (7)

where Fx and Fx′ are the ECDFs of the original and recon-

structed time series respectively, pj = Fx[xj ] is the percentile

of the j-th observation, and γ(pj) = p2j is a tail-weighted

function, whose value grows quadratically with increasing pj .

2) Cramér–von Mises Distance (CMD) between the ECDFs

of GEV Distribution for Block Maxima: In this approach,

we employ the Cramér-von Mises (CM) distance [10] to

measure the deviation between the GEV distribution of the

block maxima values in the original and reconstructed time

series. Let m = maxxi∈x xi be the block maxima of the

original series and m′ = maxxi∈x′ xi be the block maxima of

the reconstructed series. Given a set of block maxima values

generated from the predictor windows of the training data, we

use the maximum likelihood approach to estimate the GEV

parameters of the block maxima values. Let Gx and Gx′ be

the ECDF of the fitted GEV distributions of block maxima

values associated with the original and reconstructed time series,

respectively. We then compute the CMD as follows:

CMD =

√

√

√

√

n
∑

i=1

|Gx′(zi)−Gx(zi)| (8)

where {z1, z2, · · · , zn} are the samples drawn from the fitted

GEV distribution and n is the number of samples drawn.

D. Optimization

The SimEXT framework is trained to minimize the following

loss function:

L = λ1 Lcontrastive + λ2 Lrecon + λ3 Ldist (9)

where Lcontrastive is the contrastive loss given in Eq. (2),

Lrecon =
∑

t ∥xt − x
′

t∥22 is the reconstruction loss of the

autoencoder, and Ldist is either the TWD or CMD distribution

losses described in Section III-C. Note that λ1, λ2, and λ3
are hyperparameters that manage the trade-off between the

different components of the loss function.

IV. EXPERIMENTAL EVALUATION

We have performed extensive experiments to evaluate the

performance of our SimEXT framework.

We consider the following three datasets for our experiments.

(1) Hurricane [11]. This dataset corresponds to wind speed

values at 6-hourly intervals for 3,111 hurricanes between the

years 1851 to 2019. We segmented each hurricane into non-

overlapping 24-time step (6-day) time windows. The first 16

time steps (4 days) constitute the predictor window, while

the last 8 time steps (2 days) form the forecast window.

(2) Climate1. This dataset comprises of daily maximum

temperature for 3 weather stations (Maple City, Hart, and

Eau Claire) from 1978 to 1998. We segment the data into

14-day non-overlapping time windows, with the initial 7 days

as the predictor window and the subsequent 7 days as the

target window. (3) ECL 2. This dataset comprises the hourly

electricity consumption of 321 clients. We partition the time

series into non-overlapping time windows of 14-day duration.

The initial 7-day period is used as predictor time window, while

the remaining 7-day interval defines the forecast window.

To demonstrate the efficacy of SimEXT, we conducted a

comparative analysis against the following state-of-the-art time

series representation learning methods: (1) CoST [12], (2)

TS2Vec, (3) TNC, and (4)TimeCLR [13]. The experiments

were conducted using the following downstream models: (1)

LSTM, (2) Transformer, (3) Informer [14], (4) EVL [15],

and (5) DeepExtrema [16]. Furthermore, to understand the

efficacy of the features generated by our proposed SimEXT

framework, we also compare its performance under the

following experimental settings: (1) Original Features: The

original features of the time series are directly fed into the

downstream forecasting models without any transformation. (2)

AE: This setting uses the autoencoder module only to learn the

representation. (3) AE + CL: This setting incorporates both the

autoencoder and contrastive learning modules. (4) AE + CL +

TWD: This extends the previous setting by incorporating the

TWD distribution loss. (5) AE + CL + CMD: This is similar

to previous setting except is uses the CMD distribution loss.

A. Experiment Settings

We partitioned each dataset into training, validation, and

testing, according to an 8:1:1 ratio. We repeated the experiments

5 times using different partitioning of the data. Data is stan-

dardized to have zero mean and unit variance. Our framework

employs a 4-layer bidirectional LSTM architecture for the

encoder and decoder components. The training was facilitated

using the Adam optimizer. We conducted hyperparameter

tuning for all methods using the Ray Tune framework with

an Asynchronous Successive Halving Algorithm (ASHA)

scheduler for early stopping. We evaluated the framework’s

performance using: (1) Root Mean Squared Error (RMSE)

between predicted and actual block maxima within the forecast

window, (2) Correlation between the predicted and actual

1https://www.narccap.ucar.edu/data/index.html
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014



TABLE I
PERFORMANCE COMPARISON AGAINST STATE-OF-THE-ART TIME SERIES REPRESENTATION LEARNING MODELS FOR BLOCK MAXIMA FORECASTING AND

CLASSIFICATION. RMSE AND CORRELATION ARE CALCULATED FOR BLOCK MAXIMA PREDICTION. F1 SCORE IS MEASURED FOR CLASSIFICATION

EXTREME EVENTS (CATEGORY 4 AND ABOVE FOR HURRICANE AND ABOVE 90TH PERCENTILE FOR CLIMATE AND ECL DATA)

Evaluation on Representation Learning Models

Methods
Climate Hurricane ECL

RMSE Corr F1 RMSE Corr F1 RMSE Corr F1

CoST [12] 3.08 ± 0.27 0.80 ± 0.03 0.85 ± 0.02 15.12 ± 0.25 0.87 ± 0.04 0.84 ± 0.04 0.98 ± 0.05 0.79 ± 0.03 0.82 ± 0.03

TS2Vec [17] 2.99 ± 0.28 0.81 ± 0.03 0.86 ± 0.01 15.03 ± 0.26 0.88 ± 0.03 0.86 ± 0.03 0.95 ± 0.03 0.78 ± 0.03 0.80 ± 0.04

TNC [18] 3.05 ± 0.23 0.80 ± 0.02 0.84 ± 0.03 15.06 ± 0.28 0.89 ± 0.02 0.85 ± 0.03 0.94 ± 0.04 0.78 ± 0.04 0.82 ± 0.04

TimeCLR [13] 3.18 ± 0.28 0.79 ± 0.03 0.82 ± 0.03 15.22 ± 0.30 0.85± 0.03 0.83 ± 0.04 1.04 ± 0.07 0.76 ±0.03 0.81 ± 0.03

SimEXT (TWD) 2.82 ± 0.25 0.82 ± 0.02 0.87 ± 0.02 14.86 ± 0.22 0.90 ± 0.03 0.88 ± 0.04 0.88 ± 0.05 0.81 ± 0.03 0.85 ± 0.03

SimEXT (CMD) 2.84 ± 0.28 0.80 ± 0.03 0.88 ± 0.03 14.82 ± 0.24 0.89 ± 0.03 0.90 ± 0.02 0.90 ± 0.04 0.80 ± 0.04 0.84± 0.04

TABLE II
PERFORMANCE COMPARISON OF DOWNSTREAM MODELS UNDER DIFFERENT EXPERIMENT SETTINGS FOR BLOCK MAXIMA FORECASTING AND

CLASSIFICATION. RMSE AND CORRELATION ARE CALCULATED FOR BLOCK MAXIMA PREDICTION. F1 SCORE IS MEASURED FOR CLASSIFICATION

EXTREME EVENTS (CATEGORY 4 AND ABOVE FOR HURRICANE AND ABOVE 90TH PERCENTILE FOR CLIMATE AND ECL DATA)

Evaluation on Downstream Models

Methods Configuration
Climate Hurricane ECL

RMSE Corr F1 RMSE Corr F1 RMSE Corr F1

LSTM

Original Features 3.22 ± 0.25 0.73 ± 0.04 0.74 ± 0.04 15.51 ± 0.35 0.76 ± 0.35 0.78 ± 0.03 1.22 ± 0.09 0.74 ± 0.05 0.76 ± 0.03

AE 3.18 ± 0.26 0.72 ± 0.05 0.75 ± 0.05 15.55 ± 0.37 0.78 ± 0.05 0.79 ± 0.04 1.12 ± 0.08 0.76 ± 0.03 0.77 ± 0.03

AE + CL 3.11 ± 0.24 0.75 ± 0.04 0.78 ± 0.03 15.34 ± 0.32 0.81 ± 0.03 0.82 ± 0.03 1.06 ± 0.05 0.76 ± 0.02 0.79 ± 0.02

AE + CL + TWD 3.02 ± 0.25 0.77 ± 0.02 0.78 ± 0.03 15.12 ± 0.26 0.82 ± 0.04 0.82 ± 0.03 1.00 ± 0.06 0.78 ± 0.03 0.80 ± 0.02

AE + CL + CMD 2.97 ± 0.24 0.76 ± 0.03 0.79 ± 0.04 15.09 ± 0.24 0.82 ± 0.03 0.84 ± 0.02 0.99 ± 0.07 0.79± 0.03 0.79 ± 0.03

Informer

Original Features 3.19 ± 0.23 0.73 ± 0.04 0.78 ± 0.05 15.33 ± 0.32 0.79 ± 0.04 0.82± 0.03 1.11 ± 0.08 0.76 ± 0.03 0.77 ± 0.03

AE 3.15 ± 0.21 0.74 ± 0.05 0.79 ± 0.05 15.30 ± 0.29 0.81 ± 0.03 0.81 ± 0.03 1.05 ± 0.05 0.75 ± 0.03 0.77 ± 0.04

AE + CL 3.08 ± 0.23 0.77 ± 0.03 0.82 ± 0.04 15.08 ± 0.24 0.86 ± 0.04 0.84 ± 0.04 0.99 ± 0.07 0.77 ± 0.04 0.80 ± 0.03

AE + CL + TWD 2.97 ± 0.25 0.81 ± 0.02 0.83 ± 0.03 14.94 ± 0.23 0.86 ± 0.04 0.86 ± 0.02 0.96 ± 0.05 0.79 ± 0.03 0.81 ± 0.03

AE + CL + CMD 2.99 ± 0.26 0.78 ± 0.03 0.85 ± 0.04 14.97 ± 0.25 0.87 ± 0.04 0.89 ± 0.02 0.98 ± 0.06 0.80 ± 0.03 0.82 ± 0.03

Transformer

Original Features 3.21 ± 0.26 0.72 ± 0.05 0.78 ± 0.05 15.41 ± 0.36 0.78 ± 0.03 0.81 ± 0.04 1.14 ± 0.07 0.75 ± 0.04 0.75 ± 0.04

AE 3.12 ± 0.23 0.73 ± 0.06 0.77 ± 0.06 15.36 ± 0.35 0.80 ± 0.04 0.82 ± 0.03 1.04 ± 0.06 0.77 ± 0.02 0.78 ± 0.03

AE + CL 3.03 ± 0.25 0.78 ± 0.04 0.83 ± 0.05 15.13 ± 0.29 0.87 ± 0.05 0.85 ± 0.04 1.01 ± 0.07 0.77 ± 0.03 0.79 ± 0.02

AE + CL + TWD 2.94 ± 0.29 0.80 ± 0.03 0.86 ± 0.03 14.98 ± 0.25 0.88 ± 0.03 0.87 ± 0.03 0.99 ± 0.06 0.80 ± 0.02 0.81 ± 0.04

AE + CL + CMD 2.91 ± 0.26 0.79 ± 0.04 0.85 ± 0.04 14.95 ± 0.28 0.86 ± 0.04 0.89 ± 0.02 0.95 ± 0.04 0.80 ± 0.01 0.83 ± 0.02

EVL

Original Features 3.28 ± 0.27 0.72 ± 0.03 0.76 ± 0.05 15.44 ± 0.30 0.78 ± 0.04 0.78 ± 0.03 1.09 ± 0.07 0.77 ± 0.03 0.74 ± 0.05

AE 3.21 ± 0.25 0.74 ± 0.04 0.78 ± 0.04 15.40 ± 0.32 0.80 ± 0.05 0.78 ± 0.03 1.04 ± 0.05 0.77 ± 0.02 0.77 ± 0.02

AE + CL 3.18 ± 0.27 0.76 ± 0.03 0.82 ± 0.03 15.21 ± 0.28 0.80 ± 0.03 0.81 ± 0.03 1.02 ± 0.05 0.78 ± 0.03 0.78 ± 0.03

AE + CL + TWD 3.07 ± 0.24 0.79 ± 0.02 0.84 ± 0.03 15.10 ± 0.21 0.84 ± 0.04 0.84 ± 0.04 0.98 ± 0.07 0.80 ± 0.02 0.82 ± 0.03

AE + CL + CMD 3.05 ± 0.26 0.79 ± 0.03 0.83 ± 0.04 15.07 ± 0.24 0.83 ± 0.03 0.84 ± 0.02 0.99 ± 0.05 0.79± 0.02 0.81 ± 0.04

DeepExtrema

Original Features 3.10 ± 0.17 0.73 ± 0.05 0.78 ± 0.04 15.18 ± 0.26 0.83 ± 0.04 0.84 ± 0.04 1.02 ± 0.07 0.77 ± 0.04 0.80 ± 0.03

AE 3.02 ± 0.19 0.75 ± 0.04 0.79 ± 0.05 15.21 ± 0.28 0.82 ± 0.03 0.84 ± 0.03 0.98 ± 0.06 0.79 ± 0.02 0.82 ± 0.02

AE + CL 2.92 ± 0.21 0.78 ± 0.05 0.84 ± 0.04 15.04 ± 0.25 0.88 ± 0.04 0.88 ± 0.03 0.95 ± 0.06 0.78 ± 0.03 0.83 ± 0.03

AE + CL + TWD 2.79 ± 0.24 0.83 ± 0.02 0.88 ± 0.02 14.81 ± 0.23 0.90 ± 0.02 0.88 ± 0.03 0.86 ± 0.06 0.83 ± 0.02 0.85 ± 0.03

AE + CL + CMD 2.81 ± 0.26 0.81 ± 0.04 0.89 ± 0.02 14.78 ± 0.25 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.05 0.82 ± 0.03 0.86 ± 0.03

block maxima of the forecast window, (3) F1 score of the

extreme event detection, where an extreme event is defined as

a hurricane intensity value surpassing 130 mph (i.e., category

4 and above hurricanes) or a temperature and electricity

consumption value exceeding the 90th percentile at a specific

location (for the climate and ECL datasets).

B. Experimental Results

Table I provides a comprehensive comparison of the

performance of SimEXT compared to other state-of-the-art

representation learning methods. The results suggest that the

proposed SimEXT framework, which incorporates distribution

losses (TWD and CMD), outperforms all the baseline methods,

namely CoST [12], TS2Vec [17], TNC [18], and TimeCLR [13],

in terms of RMSE, Correlation, and F1 Score. Furthermore,

Figure 2 provides a visual representation of the probability

distribution comparison between the ground truth, SimEXT,

and TS2Vec for block maxima forecasting using the hurricane

dataset. The figure demonstrates that the proposed SimEXT

Fig. 2. Probability distribution comparison of ground truth, SimEXT, and
TS2Vec for block maxima forecasting with hurricane data

significantly outperforms TS2Vec in matching the ground truth

distribution for Category 1-5 hurricanes. These findings serve

as compelling evidence supporting the superior performance

of SimEXT in capturing the tail distribution of a time series

while simultaneously learning its feature representation.

Table 2 presents the results of applying SimEXT to five

downstream models (LSTM, Informer, Transformer, EVL,



Fig. 3. RMSE comparison of the different modules of SimEXT under different
experimental setting for block maxima forecasting

and DeepExtrema) for block maxima forecasting. The table

showcases the performance of SimEXT under five different

settings: Original Features, AE, AE + CL, AE + CL + TWD,

and AE + CL + CMD. Consistently, the results suggest that the

incorporation of distribution losses (AE + CL + TWD and AE

+ CL + CMD) significantly enhances the performance of block

maxima prediction for all downstream models. This finding

underscores the effectiveness of the proposed distribution

losses in capturing extreme values and improving forecasting

accuracy. Moreover, the results reveal that the DeepExtrema

model for downstream tasks, when using it with the SimEXT

representation learning approach, achieves the best performance,

exhibiting the lowest RMSE and the highest correlation and F1

score. The combined evidence from Tables I and II supports

the superiority of SimEXT in capturing extreme values and

enhancing representation learning for time series data. By

incorporating distribution losses, SimEXT outperforms state-

of-the-art methods. Additionally, when applied to downstream

models for block maxima forecasting, SimEXT consistently

improves performance across various settings.

C. Ablation study

In this study, we investigate the effect of gradually incorpo-

rating the AE, CL, and TWD/CMD modules into the proposed

SimEXT framework. Figure 3 shows the RMSE values obtained

when using different modules of the SimEXT framework. The

results suggest that incorporating CL (contrastive learning)

alone yields more substantial benefits compared to incorpo-

rating only AE (Autoencoder) for all datasets used. This

finding aligns with current understanding that contrastive

learning is generally more beneficial in learning meaning-

ful representations compared to autoencoder-based methods.

Nevertheless, our results also highlight the positive impact of

incorporating the distribution loss, ultimately leading to the best

performance across all three datasets. This suggests that while

the autoencoder module alone may not deliver optimal results

on its own, it does exert a positive impact when integrated

alongside the CL and distribution loss (TMD or CMD).

V. CONCLUSION

This paper introduces SimEXT, a novel self-supervised

learning framework for modeling time series extreme values.

It combines a novel wavelet-based data augmentation with

contrastive learning and auto-encoders to learn time series

representations. To preserve extreme values, SimEXT includes

a distribution loss function focused on capturing block maxima.

Experimental results on real-world data show that SimEXT

enhances the performance of existing representation learning

and downstream approaches for forecasting block maxima.
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