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Abstract—Forecasting extreme values in time series is an
important but challenging problem as the extreme values are
rarely observed even when a large amount of historical data
is available. The modeling of extreme values requires a specific
focus on estimating the tail distribution of the time series, whose
statistical properties may differ from the distribution of its non-
extreme values. To overcome this challenge, we present a novel
self-supervised learning framework, SimEXT, to learn a robust
representation of the time series that preserves the fidelity of its tail
distribution. The framework employs a combination of contrastive
learning and a reconstruction-based autoencoder architecture to
facilitate robust representation learning of the temporal patterns
associated with the extreme events. SimEXT also incorporates a
wavelet-based data augmentation technique with a distribution-
based loss function to prioritize the learning of extreme value
distribution. We provide probabilistic guarantees on the wavelet-
based augmentation that enables the wavelet coefficients to be
perturbed during data augmentation without significantly altering
the extreme values of the time series. Experimental results on
real-world datasets show that SimEXT can effectively learn a
robust representation of the time series to boost the performance
of downstream tasks for forecasting block maxima values.

Index Terms—forecasting; time series, extreme values

I. INTRODUCTION

Deep time series forecasting models are widely used to
predict the future outcomes of complex processes that evolve
over time. The accuracy and effectiveness of these models
often depend on their ability to discern the underlying patterns
of the data and and using them to predict the time series’
future evolution. A critical element in time series forecasting
is predicting extreme values, which are values significantly
outside the usual range. This is crucial in various domains, as
extreme events can signify dire scenarios like natural disasters,
financial crises, or public health risks.

Block maxima or minima [1] are commonly used to define
extreme values in a time series. These definitions involve
dividing a time series into non-overlapping blocks of a fixed
period and identifying the maximum or minimum value within
each block. Alternatively, extreme values can be defined as
excess values over a user-specified threshold. In this paper,
we focus on block maxima (or minima) as extreme values
due to their critical significance for anticipating worst-case
scenarios during forecast periods. For instance, predicting the
maximum intensity of an upcoming hurricane or amplitude of
seismic activity for a future time window can assist emergency
planners in assessing its potential damages.

Accurate forecasting of extreme values in time series is
challenging for several reasons. Firstly, it necessitates a focused
approach on modeling the tail distribution [1], deviating signif-
icantly from conventional techniques that typically emphasize
on modeling the conditional mean. Secondly, the rarity of
extreme values compounds the difficulty of prediction, even
with abundant historical data. Finally, the extreme values could
be associated with certain peculiarities in the time series, such
as abrupt changes, volatility clustering, persistent dependencies,
etc [2], [3]. Advanced representation learning approach is
therefore needed to learn the underlying patterns in the time
series that can be utilized for extreme value forecasting.

Self-supervised learning (SSL) [4], [5] is an emerging
machine learning technique that fosters robust feature rep-
resentation learning despite data limitations. Self-supervised
contrastive learning [4] employs data augmentation to address
labeled data scarcity issues, comparing augmented versions of
the same input to learn a robust representation that is invariant
to changes introduced by the augmentation. For time series,
it facilitates learning representations invariant to time shifts,
scaling, or warping [6], thereby improving generalizability of
the model. SSL also excels in capturing complex patterns and
non-linear dependencies in time series [7].

Existing SSL approaches, although promising for extracting
meaningful time series representations [4], [5], often prioritize
common patterns over extreme values. Furthermore, current
data augmentation methods can inadvertently distort extreme
values, compromising the fidelity of the tail distribution in
learned representations. To ensure robustness across scenarios
and the ability to capture extreme event characteristics, it is
essential to develop data augmentation techniques that account
for extreme values when transforming time series data for SSL.

To address these challenges, we propose a SSL framework
called SimEXT to learn a feature representation that captures
the extreme values of a time series. SimEXT leverages
contrastive learning with a reconstruction-based autoencoder
architecture. A novel wavelet-based data augmentation tech-
nique is also introduced to ensure that the extreme values are
not significantly altered during augmentation. Additionally, we
investigate two distribution loss functions that emphasize on
learning features that preserve the extreme values of a time
series. These learned representations are subsequently applied
to downstream tasks that focused on predicting future block
maxima (or minima) of the time series.



II. PRELIMINARIES
A. Problem Statement

Consider a time series of 7' discrete time steps,
Y1,Y2, - ,yr, where y; € R. Assume the time series is
divided into a set of non-overlapping time windows, where
each window w; corresponds to the interval [t — «,t + /3] and
contains a segment (Yi—q, - ,Yt, - ,Yi+p) of the input time
series. For each window w;, we define its predictor window
as the interval [t — a, ¢] and its forecast window as the interval
[t + 1,¢ + ). The block maxima of the time series for the
forecast window of w; is given by:

my; =  max

TE[t+1,t+0] Yt

Our objective here is two-fold: (1) to learn a robust feature
representation of the time series in each predictor window, i.e.,
z; = ho(x;) € R, where ; = (Y0, ,y:) € RO s
the time series segment associated with the predictor window,
hg(-) is an encoder model that maps the input time series
segment into its latent representation, and 6 is the learnable
parameters; and (2) to predict the block maxima, m;, of the
forecast window by learning a mapping function f,(-) such
that 1M, = fs(x, z;), where ¢ is the learnable parameters.

B. Contrastive Learning

Contrastive learning aims to learn feature representations in
such a way that similar instances are close to each other in
the latent representation space while dissimilar instances are
far apart by minimizing the following NT-Xent loss [8]:

exp [sim (h(z"), h(z7)) /7]
2N . .
2 k=1 Lkziexp [sim (h(z'), h(z")) /7]
where z* and x7 are two augmented views of a data instance,
Ly is an indicator function, h(-) denotes the representation
learning function, sim(-, -) is the cosine similarity measure, and

T is the temperature hyperparameter. The final loss is computed
for all positive pairs in a minibatch of size NV as follows [8]:

Ui, §) = —log M

N
1
Leonmasive = 57z ]; [0(2k — 1,2k) + €(2k, 2k — 1)]

(@)

C. Discrete Wavelet Transform

The discrete wavelet transform (DWT) decomposes a time
series into its approximation (scaling) and detail (wavelet) co-
efficients, facilitating multi-resolution analysis. Approximation
coefficients convey information about the signal’s overall trend
(low-frequency components), while detail coefficients capture
the noisy temporal variations (high-frequency components). An
input signal x; can be expressed as linear combination of the
scaling functions ¢(¢) and wavelet functions (¢) using the
detail and approximation coefficients as follows:

Ty = Z Cj(k)¢j,k<t) + Z Z dj(k‘)’(/Jj)k@) 3)
k kg

where j and k are the scale and dilation parameters respectively,
¢; (k) denotes the approximation (scaling) coefficient, and d; (k)
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Fig. 1. An overview of the proposed SimEXT framework for time series
forecasting of extreme values.

denotes the detail (wavelet) coefficient. For orthogonal scaling
and wavelet functions, c;(k) and d;(k) can be calculated by
taking their inner product with the original signal x;.

In practice, the approximation and detail coefficients can be
calculated without using the scaling and wavelet functions.
Instead, a cascading filter banks algorithm is employed,
allowing the coefficients to be recursively computed as follows:

ci(k) = D hip(m—2k) ¢;a(m),

dj(k) = Y hwp(m —2k) dj11(m) )
where m = 2k + n while hi,(-) and hyp(-) denote the low-
pass and high-pass filters, respectively. Choosing the right
wavelet function depends on the signal’s characteristics and
application goals. For instance, the Haar wavelet is preferred
when rapid computation is vital. It reduces coefficients by half
at each decomposition level, yielding a more compact signal
representation, particularly advantageous for large datasets or
real-time applications requiring computational efficiency.

III. PROPOSED ST1MEXT FRAMEWORK

SimEXT combines contrastive learning with a reconstruction-
based autoencoder to generate a robust latent representation of
time series data. An overview of the proposed framework is
shown in Fig. 1.



A. Wavelet-based Data Augmentation

Contrastive learning requires performing data augmentation
to generate conceptually similar samples by perturbing the
original data. For time series, the perturbation methods include
jittering, flipping, shuffling, time warping, etc. Choosing the
right data augmentation approach is crucial for block maxima
forecasting to ensure that the learned representation preserves
the overall pattern of the time series without significantly
altering its block maxima values. To achieve this, the framework
introduces a wavelet-based data augmentation technique. Before
describing the approach, we first examine the effect of jittering
on the block maxima of a time series.

Theorem 1. Let y1,y2, -+ ,yn be a sequence, where y; € R
and M, = max;y;. Assuming M, = max;y;, where j; =
yi + € and €; ~ N (0, 02), it can be shown that:

2

E, [Mn — Mn] <logn + % (5)

Proof. First, observe that [E. {Mn — Mn} =E. Mn} - M,.
Since the exponent function is non-negative, the expected value
of M, can be expressed as follows:

E. [Mn} =E, [mlax (€ + yz)} = E. [mlax (log 66#%)}

log z": e‘i+?]i]
i=1

The inequality above can be further simplified using Jensen
inequality as follows:
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Replacing the expected value into the inequality given in (6),
we obtain the following:

E. [Mn} <log <i 6(72‘2““)
i=1
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The proof follows by subtracting M,, from the expected value
given above. O

Theorem 1 provides an upper bound on the expected value
of the difference between the perturbed block maxima and
the original block maxima of a time series of length n. Note
that the bound is proportional to the variance of the noise as
well as number of perturbed data points. Thus, by using a
smaller variance during the jittering process, fewer number of
perturbed data points, or both, this can help avoid altering the
block maxima value significantly.

Algorithm 1 Wavelet-based Data Augmentation Algorithm

Input: Time series predictor x; and noise variance, o2

Output: Augmented time series pair, z} and 7.

(Cjo.k> djk) <= DWT(ay)
fori=1to2do
;}k < djk + €, where ¢; ~ N(0,02?)
:c@ — IDVVT(CJ‘U’]€7 6;,]6)
end for
return z; and z?

Algorithm 1 summarizes the pseudocode of our proposed
wavelet-based data augmentation approach. Given an input
segment, x;, we first employ DWT to decompose the time series
into its approximation coefficients (c;, 1) and wavelet (detail)
coefficients (d; ;). We apply the Daubechies 1 wavelet, also
known as the Haar wavelet, in this study but the methodology
is applicable to other wavelet functions. As mentioned in
Section II-C, by employing the Haar wavelet, the number
of detail and approximation coefficients will be halved of
the length of the original time series. Since the approximation
coefficient captures the overall trend while the detail coefficient
captures the noisy, high-frequency components, we perform
augmentation by applying jittering to the detail coefficients
only. Specifically, each detail coefficient is perturbed by adding
a Gaussian noise with variance o2. As the number of detail
coefficients is half of the length of x; and using a low variance
o2, following Theorem 1, this ensures that the block maxima
of the augmented time series is close to that of its input time
series. Finally, we employ the inverse discrete wavelet transform
(IDWT) on the approximation and perturbed detail coefficients
to construct the augmented time series.

B. Self-supervised Representation Learning

The wavelet-based data augmentation technique described
in the previous section is used to create augmented pairs
of similar samples for each predictor window x;. Each

augmented pair (a:%, af;f) is passed to an autoencoder to generate

its corresponding feature embedding (z},2?), capable of
reconstructing the original sample: x}* = Decoder(z}), where
z} = Encoder(zi). The framework employs a reconstruction
loss based on the squared Euclidean norm between the
original and augmented sample to preserve important features.
Additionally, the contrastive loss (Eq. (2)) is calculated for all
positive samples to ensure that the representations of similar
pairs remain close. By minimizing both losses, the framework
learns a robust representation of the time series.

C. Enforcing Fidelity of Tail Distribution

The reconstruction and contrastive losses alone cannot
guarantee that the learned representation would preserve the
fidelity of the block maxima distribution. To address this,
we introduce a distribution loss in the objective function to
emphasize feature learning that considers extreme values in
the time series. Let @, be the original input time series and x}



be the reconstructed time series. Their corresponding empirical
cumulation distribution functions (ECDFs) are defined as

1 & R
Fy(z) = - Zﬂ[x(i) <z|, Fu(z) = - Z]l[x(i) <z (6
=1 =1

where n is the sample size, z(;) is the i-th largest observation
in , and 1[z(; < 2] is an indicator function, whose value is
1if z(;y < 7z and 0 otherwise. We consider two approaches for
measuring the distribution loss.

1) Tail-Weighted Distance (TWD) between Empirical Cumu-
lative Distribution Functions (ECDFs): This loss is motivated
by the Kolmogorov—Smirnov (KS) distance [9] for determining
whether a sample is drawn from a particular distribution:
Dgs(Fy, Fy) = sup, |Fu(z) — F.(z)|. However, as the
distance does not consider whether the extreme values of
the distribution are well-preserved. we introduce the following
tail-weighted distance as our distribution loss function:

1 n
TWD = 527(@-)- |Fur(25) = Fa(es)l (D)
where F) and F, are the ECDFs of the original and recon-
structed time series respectively, p; = F[x;] is the percentile
of the j-th observation, and ~(p;) = p? is a tail-weighted
function, whose value grows quadratically with increasing p;.

2) Cramér—von Mises Distance (CMD) between the ECDFs
of GEV Distribution for Block Maxima: In this approach,
we employ the Cramér-von Mises (CM) distance [10] to
measure the deviation between the GEV distribution of the
block maxima values in the original and reconstructed time
series. Let m = maxy,co z; be the block maxima of the
original series and m’ = max,, ¢4 ; be the block maxima of
the reconstructed series. Given a set of block maxima values
generated from the predictor windows of the training data, we
use the maximum likelihood approach to estimate the GEV
parameters of the block maxima values. Let G, and G,/ be
the ECDF of the fitted GEV distributions of block maxima
values associated with the original and reconstructed time series,
respectively. We then compute the CMD as follows:

CMD = | Y " |Gor(2i) — Gau(2)] (8)
=1

where {z1, 22, ,2,} are the samples drawn from the fitted
GEV distribution and n is the number of samples drawn.

D. Optimization

The SimEXT framework is trained to minimize the following
loss function:

L= )\1 ﬁcontrastive + )\2 ‘Crecon + A?) ‘Cdist (9)

where L ontrastive 1S the contrastive loss given in Eq. (2),
Lrecon = Y, ||® — f||3 is the reconstruction loss of the
autoencoder, and Lg4;,; is either the TWD or CMD distribution
losses described in Section III-C. Note that A1, Ay, and A3
are hyperparameters that manage the trade-off between the
different components of the loss function.

IV. EXPERIMENTAL EVALUATION

We have performed extensive experiments to evaluate the
performance of our SimEXT framework.

We consider the following three datasets for our experiments.
(1) Hurricane [11]. This dataset corresponds to wind speed
values at 6-hourly intervals for 3,111 hurricanes between the
years 1851 to 2019. We segmented each hurricane into non-
overlapping 24-time step (6-day) time windows. The first 16
time steps (4 days) constitute the predictor window, while
the last 8 time steps (2 days) form the forecast window.
(2) Climate'. This dataset comprises of daily maximum
temperature for 3 weather stations (Maple City, Hart, and
Eau Claire) from 1978 to 1998. We segment the data into
14-day non-overlapping time windows, with the initial 7 days
as the predictor window and the subsequent 7 days as the
target window. (3) ECL 2. This dataset comprises the hourly
electricity consumption of 321 clients. We partition the time
series into non-overlapping time windows of 14-day duration.
The initial 7-day period is used as predictor time window, while
the remaining 7-day interval defines the forecast window.

To demonstrate the efficacy of SimEXT, we conducted a
comparative analysis against the following state-of-the-art time
series representation learning methods: (1) CoST [12], (2)
TS2Vec, (3) TNC, and (4)TimeCLR [13]. The experiments
were conducted using the following downstream models: (1)
LSTM, (2) Transformer, (3) Informer [14], (4) EVL [15],
and (5) DeepExtrema [16]. Furthermore, to understand the
efficacy of the features generated by our proposed SimEXT
framework, we also compare its performance under the
following experimental settings: (1) Original Features: The
original features of the time series are directly fed into the
downstream forecasting models without any transformation. (2)
AE: This setting uses the autoencoder module only to learn the
representation. (3) AE + CL: This setting incorporates both the
autoencoder and contrastive learning modules. (4) AE + CL +
TWD: This extends the previous setting by incorporating the
TWD distribution loss. (5) AE + CL + CMD: This is similar
to previous setting except is uses the CMD distribution loss.

A. Experiment Settings

We partitioned each dataset into training, validation, and
testing, according to an 8:1:1 ratio. We repeated the experiments
5 times using different partitioning of the data. Data is stan-
dardized to have zero mean and unit variance. Our framework
employs a 4-layer bidirectional LSTM architecture for the
encoder and decoder components. The training was facilitated
using the Adam optimizer. We conducted hyperparameter
tuning for all methods using the Ray Tune framework with
an Asynchronous Successive Halving Algorithm (ASHA)
scheduler for early stopping. We evaluated the framework’s
performance using: (1) Root Mean Squared Error (RMSE)
between predicted and actual block maxima within the forecast
window, (2) Correlation between the predicted and actual

Uhttps://www.narccap.ucar.edu/data/index.html
Zhttps://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014



TABLE I
PERFORMANCE COMPARISON AGAINST STATE-OF-THE-ART TIME SERIES REPRESENTATION LEARNING MODELS FOR BLOCK MAXIMA FORECASTING AND
CLASSIFICATION. RMSE AND CORRELATION ARE CALCULATED FOR BLOCK MAXIMA PREDICTION. F1 SCORE IS MEASURED FOR CLASSIFICATION
EXTREME EVENTS (CATEGORY 4 AND ABOVE FOR HURRICANE AND ABOVE 90TH PERCENTILE FOR CLIMATE AND ECL DATA)

Evaluation on Representation Learning Models

Methods Climate Hurricane ECL
RMSE Corr F1 RMSE Corr F1 RMSE Corr F1
CoST [12] 3.08 £0.27 080+ 0.03 0.85+£0.02 | 1512 +£025 087 +0.04 0.84 £0.04 | 098 £0.05 0.79 & 0.03 0.82 4+ 0.03
TS2Vec [17] 299 +£0.28 0.81 +0.03 0.86 £ 0.01 15.03 £ 026 0.88 £ 0.03 0.86 & 0.03 | 095 £0.03 0.78 & 0.03 0.80 £ 0.04
TNC [18] 3.05 £023 0.80 &+ 0.02 0.84 £ 0.03 15.06 + 028 0.89 £ 0.02 0.85 £ 0.03 | 0.94 &£ 0.04 0.78 & 0.04 0.82 + 0.04
TimeCLR [13] 3.18 £0.28 0.79 + 0.03 0.82 £ 0.03 15.22 4+ 0.30 0.854+ 0.03 0.83 £ 0.04 | 1.04 £ 0.07 0.76 £0.03 0.81 4+ 0.03
SimEXT (TWD) | 2.82 + 0.25 0.82 + 0.02 0.87 + 0.02 1486 £ 0.22  0.90 + 0.03 0.88 = 0.04 | 0.88 = 0.05 0.81 = 0.03 0.85 £+ 0.03
SimEXT (CMD) | 2.84 +£ 028 0.80 = 0.03  0.88 + 0.03 | 14.82 + 0.24 0.89 = 0.03  0.90 £+ 0.02 | 0.90 £ 0.04 0.80 & 0.04  0.84+ 0.04
TABLE II

PERFORMANCE COMPARISON OF DOWNSTREAM MODELS UNDER DIFFERENT EXPERIMENT SETTINGS FOR BLOCK MAXIMA FORECASTING AND
CLASSIFICATION. RMSE AND CORRELATION ARE CALCULATED FOR BLOCK MAXIMA PREDICTION. F1 SCORE IS MEASURED FOR CLASSIFICATION
EXTREME EVENTS (CATEGORY 4 AND ABOVE FOR HURRICANE AND ABOVE 90TH PERCENTILE FOR CLIMATE AND ECL DATA)

Evaluation on Downstream Models

- . Climate Hurricane ECL

Methods Configuration RMSE Corr FI RMSE Corr FI RMSE Corr FI
Original Features | 322 £ 025 073 = 0.04 074004 | 1551 £035 076035 078003 | 122009 074 =005 0.76 = 0.03
AE 318+ 026 072+005 075%005 | 1555+037 078+005 079004 | 112008 076+ 003 077 + 0.03
LSTM AE + CL 3114024 075+004 078=003 | 1534+032 081 +003 0.82+003 | 1.06 =005 076=002 079 % 0.02
AE+CL+TWD | 302025 077+002 078+0.03 | 1512+026 0.82+004 082003 | 1.00 006 0.78 +0.03 0.80 % 0.02
AE+CL+CMD | 297024 076+003 079+004 | 1509 +024 082+003 0.84+002 | 099 +0.07 079+ 0.03 079 + 0.03
Original Features | 3.19 £ 023 0.73 £0.04 078005 | 1533 £032 0.9 004 082003 | 1.I1£0.08 0.76 = 0.03 0.77 = 0.03
AE 3154021 074+005 079=005 | 1530029 081 +003 081 +0.03 | 1.05+0.05 0.75+003 077 0.04
Informer AE + CL 308+023 077+003 082+004 | 1508+024 086+004 0.84+004 | 099007 077004 0.80 003
AE+CL+TWD | 297025 081002 083003 | 1494+023 086+0.04 0.86+002 | 096+ 005 079003 081 +0.03
AE+CL+CMD | 299026 078+0.03 085+ 004 | 1497 +025 087 £0.04 0.89+002 | 098 +0.06 080+ 0.03 0.82 + 0.03
Original Features | 321 £026 0.72£0.05 0.78 005 | 1541 £036 078 £0.03 0.81 £0.04 | 1.14 =007 0.75£0.04 0.75 £ 0.04
AE 312+£023 073+006 077=006 | 1536+035 0.80+004 0.82+003 | 1.04+006 077=002 0.78 = 0.03
Transformer AE + CL 3.03£025 078+004 083+005 | 1513029 087 +005 085004 | 1.01£0.07 077 %003 079 % 0.02
AE+CL+TWD | 294+029 080+003 086+0.03 | 1498+025 0.88+003 087 +0.03 | 099 =006 0.80 %002 081 % 0.04
AE+CL +CMD | 291026 079 %004 0.85+004 | 1495+ 028 086+ 004 0.89+0.02 | 095 =004 0.80 %001 0.83 % 0.02
Original Features | 3.8 £ 0.27 0.72 = 0.03 _0.76 = 0.05 | 1544 £ 030 078 £0.04 078 £0.03 | 1.09 = 0.07 0.77 = 0.03 _ 0.74 % 0.05
AE 3212025 074+004 078+004 | 1540+032 0.80+005 078003 | 1.04=005 077+002 077 %0.02
EVL AE + CL 3.18+027 076+003 082003 | 1521 £028 0.80+0.03 081 +003 | 1.02+005 078+003 0.8 +0.03
AE+CL+TWD | 307024 079%002 084003 | 1510+021 084 +004 084+004 | 098+ 007 080002 0.82 003
AE+CL+CMD | 305+026 079+003 083+004 | 1507+024 083+003 084+002 | 099 =005 079002 081 % 0.04
Original Features | 3.10 £0.17 0.73 £0.05 0.78 £ 0.04 | 1518 £026 0.83 £ 0.04 0.84 004 | 1.02£0.07 0.77 = 0.04 _0.80 = 0.03
AE 3.02£019 075+004 079%005 | 1521 +028 082003 0.84+003 | 098 =006 079 %002 0.82 % 0.02
DeepExtrema AE + CL 292021 078+005 084+004 | 1504+025 088+004 0.88+003 | 095+006 078+003 0.83 003
AE+CL+TWD | 279 £ 024 083 +0.02 088 =002 | 1481 £023 090+ 0.02 0.88 +0.03 | 0.86 +0.06 0.83 = 0.02 0.85 = 0.03
AE+CL+CMD | 281026 081 %004 0.89 %002 | 1478 + 025 0.89+0.02 089 = 0.02 | 0.89 = 0.05 0.82+0.03 0.86 % 0.03

block maxima of the forecast window, (3) F1 score of the
extreme event detection, where an extreme event is defined as
a hurricane intensity value surpassing 130 mph (i.e., category
4 and above hurricanes) or a temperature and electricity
consumption value exceeding the 90th percentile at a specific
location (for the climate and ECL datasets).

B. Experimental Results

Table I provides a comprehensive comparison of the
performance of SimEXT compared to other state-of-the-art
representation learning methods. The results suggest that the
proposed SimEXT framework, which incorporates distribution
losses (TWD and CMD), outperforms all the baseline methods,
namely CoST [12], TS2Vec [17], TNC [18], and TimeCLR [13],
in terms of RMSE, Correlation, and F1 Score. Furthermore,
Figure 2 provides a visual representation of the probability
distribution comparison between the ground truth, SimEXT,
and TS2Vec for block maxima forecasting using the hurricane
dataset. The figure demonstrates that the proposed SimEXT
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Fig. 2. Probability distribution comparison of ground truth, SimEXT, and
TS2Vec for block maxima forecasting with hurricane data

significantly outperforms TS2Vec in matching the ground truth
distribution for Category 1-5 hurricanes. These findings serve
as compelling evidence supporting the superior performance
of SImEXT in capturing the tail distribution of a time series
while simultaneously learning its feature representation.
Table 2 presents the results of applying SimEXT to five
downstream models (LSTM, Informer, Transformer, EVL,
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Fig. 3. RMSE comparison of the different modules of SimEXT under different
experimental setting for block maxima forecasting

and DeepExtrema) for block maxima forecasting. The table
showcases the performance of SimEXT under five different
settings: Original Features, AE, AE + CL, AE + CL + TWD,
and AE + CL + CMD. Consistently, the results suggest that the
incorporation of distribution losses (AE + CL + TWD and AE
+ CL + CMD) significantly enhances the performance of block
maxima prediction for all downstream models. This finding
underscores the effectiveness of the proposed distribution
losses in capturing extreme values and improving forecasting
accuracy. Moreover, the results reveal that the DeepExtrema
model for downstream tasks, when using it with the SimEXT
representation learning approach, achieves the best performance,
exhibiting the lowest RMSE and the highest correlation and F1
score. The combined evidence from Tables I and II supports
the superiority of SImEXT in capturing extreme values and
enhancing representation learning for time series data. By
incorporating distribution losses, SimEXT outperforms state-
of-the-art methods. Additionally, when applied to downstream
models for block maxima forecasting, SIimEXT consistently
improves performance across various settings.

C. Ablation study

In this study, we investigate the effect of gradually incorpo-
rating the AE, CL, and TWD/CMD modules into the proposed
SimEXT framework. Figure 3 shows the RMSE values obtained
when using different modules of the SimEXT framework. The
results suggest that incorporating CL (contrastive learning)
alone yields more substantial benefits compared to incorpo-
rating only AE (Autoencoder) for all datasets used. This
finding aligns with current understanding that contrastive
learning is generally more beneficial in learning meaning-
ful representations compared to autoencoder-based methods.
Nevertheless, our results also highlight the positive impact of
incorporating the distribution loss, ultimately leading to the best
performance across all three datasets. This suggests that while
the autoencoder module alone may not deliver optimal results
on its own, it does exert a positive impact when integrated
alongside the CL and distribution loss (TMD or CMD).

V. CONCLUSION

This paper introduces SimEXT, a novel self-supervised
learning framework for modeling time series extreme values.
It combines a novel wavelet-based data augmentation with
contrastive learning and auto-encoders to learn time series
representations. To preserve extreme values, SImEXT includes

a distribution loss function focused on capturing block maxima.
Experimental results on real-world data show that SimEXT
enhances the performance of existing representation learning
and downstream approaches for forecasting block maxima.
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