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Abstract—The privacy vulnerabilities and communication inef-
ficiencies of federated learning have motivated the development
of the split learning architecture. Google’s recent Federated
Reconstruction architecture combines federated and split learning
architectures into a unified design, aiming to improve communi-
cation and computation scalability. While split learning aims to
protect the privacy of clients’ data, recent work has revealed its
vulnerability to malicious adversaries through model poisoning.

We aim to investigate the privacy aspect of split learning,
as an independent architecture or the significant component of
federated reconstruction architecture and expose its shortcomings.
Different from the existing literature, we illustrate that an honest-
but-curious adversary can infer the private properties of clients’
data without model poisoning or manipulation. We demonstrate
the practicality of the property inference attack against split
learning using various datasets. To reduce information leakages
and protect clients’ privacy, we propose Bundle-Net architecture
as a privacy-preserving distributed learning mechanism and assess
its effectiveness in thwarting inference attacks.

Index Terms—Distributed learning, privacy, inference attack,
split learning, model inversion.

I. INTRODUCTION

Advanced machine learning techniques such as deep learning
have recently overcome many challenges that were traditionally
deemed to be impossible. Remarkable success stories include
mastering the game of Go and generating realistic images [1]
or text [2]. The complexity and computational demands of
training deep neural networks motivated the deployment of
Machine Learning-as-a-Service (MLaaS) platforms by major
cloud providers such as Amazon and Google, in which clients
share their data with a centralized server for training and pre-
diction purposes. Such centralized MLaaS platforms, however,
engender extensive communication overhead. Moreover, with
recent privacy laws, such as General Data Privacy Regulation
(GDPR) and the California Privacy Rights Act (CPRA), data
owners are more reluctant to share their privacy-sensitive data.
In light of such concerns, distributed learning architectures such
as federated learning (FL) [3], [4] have emerged, promising
to augment clients’ privacy and improve communication effi-
ciency. The FL architecture, however, is vulnerable to a range
of privacy attacks, including membership inference [5], [6],
property inference [7], [8], and data reconstruction attacks [7],
[9], [10]. Moreover, sharing local models incurs high communi-
cation overhead, particularly in deeper networks with millions
of parameters.
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Recently, split learning (SL) [11], [12] has emerged as
a novel distributed learning architecture, aiming to reduce
the communication overhead of FL and address its privacy
vulnerabilities [13]. The primary premise of SL is to divide
a given neural network into two sequential sub-models. The
clients will execute the first few layers (i.e., a lightweight sub-
model) on their data while the server will execute the follow-up
layers (i.e., a more complex sub-model) on the output of the
first sub-model. Thus, SL preserves clients’ privacy by allowing
them to retain the ownership of their private data and reducing
the communication overhead by only sharing the intermediate
states of the clients’ sub-models with the server. Such traits
have attracted more attention to SL architecture and led to its
adoption in industry and academia [14], [15]. The most notable
adoption of SL is Google’s recent Federated Reconstruction
architecture [16], which is materialized by integrating federated
and split learning architectures. This architecture was used in
the deployment of a mobile keyboard application with hundreds
of millions of clients.

Despite SL’s success in various applications, its privacy and
security considerations did not receive much attention. Recent
work has highlighted the vulnerabilities of SL to inference and
data reconstruction attacks. The authors in [17] have shown
that an active adversary can hijack the training process by
maliciously forging gradients for the client’s sub-model to its
benefit. More specifically, the malicious adversary orchestrates
the proposed attack by poisoning the client’s sub-model during
the training phase, i.e., hijacking the training using forged
gradients. However, the proposed training-hijacking attack,
similar to other adversarial model manipulation and poisoning
attacks, can be detected using the existing techniques [18],
[19]. Moreover, we argue that well-known MLaaS providers
like Google do not compromise their clients’ model training.

In this work, we aim to assess the privacy guarantees of
the SL architecture by considering a more realistic honest-but-
curious adversary that neither compromises the training process
nor poisons the client’s sub-model. We will demonstrate how
such a non-malicious adversary can infer the private properties
of the client’s training/test data in the SL setting. In effect,
we transform the problem of inferring the features of private
data from the output of intermediate layers into a binary clas-
sification problem. We orchestrate our proposed attack using
various datasets and demonstrate its practicality and accuracy.
We will also propose one novel defensive measure to protect
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clients’ privacy: the Bundle-Net architecture. Bundle-Net is a
distributed MLaaS architecture suitable for distributed com-
puting platforms. It effectively mitigates information leakage
through the utilization of model and data-splitting techniques.
In the Bundle-Net training process, clients partition their input
data based on features and share the representations of the
partial feature data with the server. The server then utilizes
these transformed data representations for each feature subset to
train the model. Finally, clients aggregate these representations
to complete the training process, ensuring both high model
accuracy and privacy preservation. We will assess the efficacy
of the approach in reducing unintentional information leakage
and attack accuracy.

In summary, the novel contributions of this paper include:
(i) Demonstration of privacy vulnerabilities in split learning.
In particular, we illustrate the property inference and model in-
version attacks by an honest-but-curious adversary, who neither
has the model’s input data nor compromises the training process
by poisoning the client’s sub-model. (ii) Extensive evaluation
and analysis of property inference and data reconstruction at-
tacks using multiple datasets and neural network architectures.
(iii) Design, development, and comprehensive evaluation of
Bundle-Net, an architectural solution for protecting clients’ pri-
vacy against inference attacks by minimizing the unintentional
information leakage of split learning.

The paper is organized as follows. Section II reviews the
existing literature. Section III outlines our models and assump-
tions. Section IV presents our attack design and evaluation.
We elaborate on the Bundle-Net architecture in Section V and
conclude our work in Section VI.

II. RELATED WORK

The privacy promise of SL relies on the fact that (i) clients
do not share their raw data with the server, and (ii) the server
is unaware of the client’s sub-model parameters. As a result,
a malicious server cannot rebuild the client’s sub-model via
model inversion [9] and hence, can neither reconstruct nor
reveal any private feature of the training/test samples [11].
However, a few recent works have shown successful privacy
attacks against SL [17], [20]. In particular, the high distance
correlation between the raw input data and the cut layer
activation can lead to the reconstruction of 1-dimensional
data [20]. The authors in [21] employed a model inversion
attack to reconstruct the user’s private data in an edge—cloud
collaborative system. While data reconstruction was shown
possible, the authors only used the simple MNIST dataset,
which is not representative of the existing complex data.

In [17], the authors exposed the privacy vulnerability of the
SL architecture through property inference and reconstruction
attacks. In the proposed attack, the malicious server hijacks the
training process to drive the client’s sub-model to an insecure
state. The attack starts during the training phase, in which the
malicious server completes the forward pass of its sub-model
on the client’s smashed data, i.e., output of the cut layer. In
parallel, aiming to mimic the client’s sub-model, the server

TABLE I: Notations Used.

Notation Description

M() Target model

Fe(.) Client’s sub-model of M(.)
Fs() Server’s sub-model of M(.)

K Number of shadow models

F. () The ¢-th shadow model (total of K)

Fe(.) The aggregated shadow model

C() Attack model (binary classifier)

DELereet Client’s private dataset for target model
D:ﬂ‘"gei Attacker’s Shadow dataset for shadow model
Dﬁ“‘“k Attack dataset (generated by shadow models)
dp'r'iv

(c DTarget) A private training/test data sample
c

d; (€ Di“"get) A public training/test data sample
Y Private property of a data sample
[a] Smashed data generated by shadow model

trains a pilot model and its inverse function using a publicly
available dataset of the same distribution. The server uses a
discriminator model to derive a set of forged gradients and
construct an adversarial loss function to maliciously modify
the client’s sub-model. During inference, the server uses the
smashed data and the inverse of the pilot model to reconstruct
the client’s private data. Note that the active adversary in [17]
can hijack the training process and manipulate the client’s
sub-model. Moreover, the authors evaluated the impact of the
attack on the target model in the white-box setting, where the
adversary has complete knowledge of the target model.

In contrast, in this work, we consider a passive and honest-
but-curious adversary that neither (i) compromises the training
process (ii) nor poisons the client’s sub-model. More specif-
ically, our adversary remains passive concerning the client’s
sub-model and does not tamper with the training process.
In addition, we assume that the adversary has only partial
information about the model architecture and its parameters.
Finally, our proposed property inference attack targets inferring
the properties of both the training and inference data.

III. MODELS AND ASSUMPTIONS
A. System Model

We consider a computing ecosystem, such as pervasive edge
computing [22], which offers machine learning-as-a-service
(MLaaS). Cloud providers, such as Amazon and Google, offer
MLaaS platforms equipped with model training and prediction
interfaces to their clients for compute-intensive ML applica-
tions, e.g., smartphones offloading Augmented/Virtual Reality
applications to mobile edge-cloud systems. We particularly
consider the split learning MLaaS architecture, in which the
original model (M(.)) is horizontally (layer-wise) divided into
Fe(.) and Fs(.) sub-models, where the predictions are made by
M(d;) = Fs(Fe(d)) and d is a training/test sample. Following
the conventional split learning MLaaS, we assume the client
owns the first few layers of the model, i.e., F.(.), while the
server hosts the rest of the layers, i.e., F5(.). The proportions
of the two sub-models, i.e., the cut layer, can be negotiated
between the client and the server based on various factors,
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such as the client’s expected privacy requirements or computing
resources. Finally, we consider the architecture proposed in [16]
for scenarios where multiple clients collaboratively train a
shared model. Our notation is summarized in Table I.

B. Threat Model and Security Assumptions

In this work, we consider the adversary to be the back-end
server, hosted either on the cloud or at the edge, responsible
for running the F(.) sub-model for the client during model
training and inference. The adversary constructs the attack
during the training phase and orchestrates it during model
inference. The adversary in this scenario is honest-but-curious,
in that it attempts to infer information about the client’s
sub-model (F.(.)) or data while adhering to the standard
model training and inference processes, without maliciously
sabotaging the training process or poisoning the client’s sub-
model. Such an attacker represents scenarios where the MLaaS
is offered by major cloud providers, who would not risk their
reputation by intentionally poisoning their clients’ models [23].
The rationale for choosing such an adversary, which contrasts
the powerful attacker presented in [17], is to demonstrate that
breaching clients’ privacy in split learning neither requires a
powerful attacker nor demands model poisoning. Moreover,
existing model poisoning detection techniques [18], [19] can
detect active adversaries that perform training-hijacking attacks,
undermining the practicality of the attack in [17].

We consider a scenario where the client possesses a private
training dataset, denoted as Dg‘"g“. We assume that the
adversary has access to a public shadow dataset, denoted as
Dzarget, which is assumed to follow the same underlying
distribution as Dg”get but has no overlapping data points
(Dgamet N Dzarget = ). Note that there are various ap-
proaches for building shadow datasets [24] and the adversary’s
access to the shadow dataset is a common assumption [6], [17],
[24]. It is worth noting that our attack methodology remains
effective even when the adversary possesses partial knowledge
of the client’s private dataset [14].

In this work, we assume that the adversary possesses partial
knowledge of architecture, denoted as F.(.), of the neural
network under consideration. Specifically, the adversary is
aware of the network’s structure and design but does not have
any knowledge of its specific weight values. This is a fair
assumption as there are established methods available for the
adversary to extract the architecture of neural networks [25].
In our framework, we consider that the client can request the
parameters of F(.) from the edge server. This allows the client
to verify the accuracy and effectiveness of the overall model,
denoted as (Fs(F.(-))). Moreover, this provision enables the
client to detect and potentially mitigate any model poisoning
attacks that may be present within the system [17].

IV. ATTACK METHODOLOGY

In this section, we discuss our attacks foundation and further
evaluate their efficacy under various configurations.

Client Server
——
Private Training Dataset - L(F F
¢, Fs)
Adversary Freeze
—
[ | Fo
Server
—
(===n Lk

Fig. 1: To generate the attack dataset, the adversary freezes its sub-

model (F5) to train a set of shadow models ({.7—'\61(.)7 - ,]/-'\CK(.)})
for imitating the behavior of F..

A. Attack Objective and Overview

In split learning, the server (hereafter adversary) actively
participates in the training of the sub-model (F,(-)) by uti-
lizing the smashed data provided by the client. However, this
participation raises concerns regarding sensitive information
leakage from the client’s private dataset [17]. The correlation
between the model’s input, denoted as d,;,, and the smashed
data, denoted as F.(dpriv), amplifies the risk of such leakage.
The server’s involvement in the training process can inadver-
tently expose confidential information from the client’s private
dataset, posing a potential privacy breach. As such, we propose
an inference attack, in which the adversary’s primary objective
is to infer the properties of private training and inference data —
those data features that are seemingly unrelated to the model’s
primary goal [26], [27], e.g., inferring the “gender” attribute
from a multi-attributed face image by exploiting an inference
attack on a deep learning model that was initially trained
to predict the “smiling” attribute. The adversary’s secondary
objective is to reconstruct the client’s data instance using only
the intermediate representations obtained from the layers of
the deep learning models. Different from recent works [17],
[26], [27], our attack targets the live inference data that clients
provide during the inference phase. We also show the impact
of our attacks on the training data for completeness.

B. Attack Modeling

Our proposed attack follows a two-step process. In the target
model shadowing step, the adversary creates a set of shadow

models ({.7-'\61(), e ,.?—"\CK()}) to mimic the behavior of the
client’s sub-model F.(.); K is the number of shadow models
and each shadow model is trained on a different shadow dataset.
In the attack training and orchestration step, the adversary
trains an attack model (C ()) — a binary classifier that acts
similar to discriminator models — to identify whether dp;.;,
features a specific property or not. For attack orchestration, the
adversary obtains the client’s smashed data during the inference
phase and uses C(.) to infer the desired properties or reconstruct
the client’s data. Here, we elaborate on the attacks.

1) Target Model Shadowing: Considering that F. is the
client’s private sub-model and not publicly available, the ad-
versary trains a set of shadow models to mimic its behavior
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(Fig. 1). The adversary executes this step in parallel with the
client’s model training over multiple iterations. In particular,
the adversary trains the following neural networks:

e F,, which is the sub-model requested by the client to
complement F, in training the final target model, such that
M(.) = Fs(F.(.)). The client generates the smashed data,
Fe(DE*9), as the training data of the F, sub-model.

o Shadow models, j7-'\c() = {./7-'\61()7 - 7.7-'\6]((.)}, which
mimic the behavior of the client’s private sub-model (F.(.)).
The adversary trains these shadow models using the shadow

dataset (Dﬁ‘”g ehy.

The target model shadowing process starts with the adversary
performing one training iteration of F, on the client’s smashed
data, including back-propagation. At this stage, the adversary
freezes F and proceeds with the forward pass of F.(.) using
the shadow dataset Diarg ““ up to the cut layer and the already
trained F. The rationale for freezing F after each training
iteration is to influence the training of F.(.) such that its
weights and biases find a local minima of loss function that
is similar to the local minima of .. Thus, helping reduce the
distance correlation between F. and F.(.) without adversarial
manipulation of F.. The adversary then completes one training
iteration of F.(.) by back-propagating the gradients from F;
to j-"\c() The adversary iteratively trains the target’s Fy and
./F\C() until the model converges. Finally, the adversary trains
K shadow models and extracts the aggregated shadow model
— F.(.) — by weighted averaging of parameters:

P
. .,
Fol) =3 wpFe (), S w, =1.
p=1

While various aggregating strategies can be applied to com-
bine shadow models, we averaged the models’ parameters
as done in federated averaging [28]. In our experiments,
we assigned equal weight to all shadow models due to the
homogeneity of the datasets.

2) Property Inference Attack Training and Orchestration:
The adversary uses the aggregated shadow model F.(.) for
generating attack datasets and training the attack model(s) — a
collection of models, one per data property of interest. To gen-
erate Dﬁ““k, the adversary queries the resultant aggregated
shadow models using the shadow test dataset. Per Section III-B,
the shadow and client datasets are disjoint with no intersection,
resulting in the worst-case scenario for the adversary. Formally,
we define the attack dataset, D4k

DAk = { ({a],y) : [a] = Fola), ¥ € DY},

in which [a] is the smashed data generated by aggregated
shadow models on the shadow dataset and y is the label of
the corresponding property; y = 1 represents the presence of
desired property in the input and y = 0 indicates its absence.

The adversary uses the attack dataset, D49, to train
the attack model, C(.). We define C(.) as a binary classifier,
aiming to discriminate between the data samples that feature
the desired property and those that do not. For the attack

orchestration during inference, the client sends F.(dpyir) to
the server for prediction. At this stage, the server executes the
requested service as Fi(Fc(dpriv)) and returns the result to
the client. At the same time, the server executes the attack
model, C(F.(dpriv)), to infer dp.;, properties without direct
access to it. If the training data features various properties,
the adversary needs to create a unique Dﬁ“‘wk per property
for training the corresponding attack model. For instance, we
generated multiple attack datasets and models for MNIST, one
per property, e.g., samples with horizontal and vertical lines.
3) Data Reconstruction Attack: We also performed the data
reconstruction attack on the target model in the split learning
setting, in which the adversary aims to reconstruct the raw
input data by observing only the output of the client’s sub-
model F.(.). Considering the adversary’s access to the smashed
data from J(.), the data reconstruction attack can be realized
using the shadow model F.(.). We adopt the implementation in
work [21] to perform the model inversion attack in a splitting
learning environment. First, for any input sample x. from
the client dataset DCTm’g"‘t, the adversary receives the feature
representation F.(z.) from the client’s sub-model. Second, the
adversary creates one noise input x, with the initial random
values and calls the pre-trained shadow models to generate the
hidden features F.(z,). The adversary then performs the back-
propagation over the parameters of 7. (.) to derive the gradients
of input z, and update the input data using gradient descent
algorithms. The back-propagation process will be repeated until
the input sample is optimized to achieve the minimum distance
error between F.(z.) and F.(x,). The optimized input is then
derived as the reconstructed data for the client’s sample.

C. Attack Evaluation

1) Dataset: We use the following datasets:

o MNIST [29] dataset consists of 70,000 images of hand-
written digits. Each digit image has been annotated with three
primary attributes: Loop, Horizontal line, and Vertical line —
digits {2, 4, 5, 7} have “Horizontal” property, digits {1,4, 7,9}
have “Vertical” property, and digits {0, 6, 8,9} have “Loop”
property. For our experiment, we trained a binary classifier as
the target model to predict the presence of the “Loop” attribute
in an image. Additionally, we trained two attack models to
infer the presence of the “Vertical” and “Horizontal” lines,
respectively.

o UTKFace [30] dataset comprises over 20,000 face images
with annotations for age, gender, and ethnicity. These images
exhibit a wide range of variations in pose, facial expression,
illumination, occlusion, and resolution. In our attack evalua-
tion, the binary target classifier focuses on predicting “Race”
while the attack aims to infer the “Gender” property.

o CelebA [31] dataset contains 202,599 face images of
celebrities with annotations of 40 binary labels indicating
the presence of attributes in each image, such as hair color,
gender, and age. Note that most of these attributes are highly
imbalanced, making it challenging to train accurate classifiers.
For instance, the attribute “Eyeglasses” is present in only 6.5%
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of the images, while the attribute “Wearing Hat” is present in
only 4.8% of the images. Following the data configuration
in [32], we selected and combined the three most balanced
attributes, namely ‘“Heavy Makeup,” “Mouth Slightly Open,”
and “Smiling,” referred to as HMS. We then concatenated
these attributes to create eight classification classes as labels
for our target model training. Meanwhile, our attack model
aims to infer the combined attributes, “Young” and “Male”,
and assigns them to four classification classes, denoted as YM.

We applied the same preprocessing pipeline to all datasets,
resulting in the construction of three types of data: Dg""9,
Dﬁarget, and D#4'e°*. Tnitially, we randomly divided each
dataset into two equal-sized and non-overlapping subsets:
D79 and D", Furthermore, both D5*"9*" and D’,*"7¢
were split into training and test sets in a 5:5 ratio to evaluate
the performance of the target classification and attack models.
Lastly, we selected a validation set by sampling 10% of the
images from each training set to identify the optimal deep
learning model during training. To validate the robustness of
the pipeline, we repeated the above data generation process 10
times, each time using different random seeds.

2) Models Specification and Experiment Setup: We evalu-
ated our attack in a scenario where the client sends one data
point to the server at a time. However, our attack remains
applicable if the client decides to send a batch of data at
once. To ensure consistency across datasets with varying input
sizes, we resized input images to a uniform size of 64 x 64
before the training phase. In our experiments, we utilized a
convolutional neural network (CNN) that consisted of three
convolutional blocks, each containing a convolution layer with
kernel sizes of 32, 64, and 128, followed by a ReLU layer,
and a MaxPooling layer. Furthermore, we incorporated two
fully connected dense layers (with a hidden layer comprising
512 neurons) to perform target classification. For the purpose
of comparison in target classification and property inference
attacks, we also employed the ResNet-18 architecture alongside
the CNN. We define the attack model C(.) as a shallow feed-
forward neural network (with one hidden layer comprising 128
neurons) that infers the presence of properties in the input
data. We conduct experiments on the target model by splitting
the network at four different layers, including three splits at
the convolutional layers (i.e., (]—'C()) owns 20%, 40%, or
60% of the layers) and one split at the fully connected layer.
Additionally, we evaluate the classification accuracy of the
target model and the effectiveness of the attack for these splits.

3) Results Analysis: We first present the training and test
accuracy of the target and shadow models (Fig. 2). The
shadow models demonstrate similar classification accuracy in
both training and test scenarios when compared to the tar-
get models across all datasets, architectures, and cut layers.
The averaged test classification accuracy for target/shadow
models, considering different cut layers, is 98.97%/99.08%
(MNIST), 82.65%/83.07% (UTKFace), and 63.22%/62.68%
(CelebA) for the CNN model, and 99.27%/99.30% (MNIST),
80.27%/79.86% (UTKFace), and 69.58%/69.43% (CelebA) for

CNN Training
<L 2 <3 o3 c1 c2 c3 ca

Accuracy (%)
o
T
1
1
(Shadow Data] (Target Data]

100 =) 4 t
1_Loop (MNIST) 2_Race (UTKFace)

ResNet18 Training
<t o] [ok ] (o} c1 <2 c3 ca

3_HMS (CelebA)

c1 c2 Cc3 ca

Accuracy (%)
o
T
1
1
(Shadow Data) (Target Data)

1004 %t 2 4 a
1_Loop (MNIST) 2_Race (UTKFace) 3_HMS (CelebA)
Dataset
[Z1 Training data B Test data

Fig. 2: The training and testing accuracy of the target and shadow
models in split learning (SL), considering different datasets and
splitting proportions. The classification performance of both the target
and shadow models is assessed at four cut layers (C1, C2, C3, C4).

ResNet18, respectively. The results also demonstrate the com-
plexity of the three datasets. Notably, the CelebA dataset ex-
hibits lower test accuracy for both the target and shadow models
compared to the training accuracy. Conversely, the MNIST
dataset shows nearly identical training and test accuracy for
both the target and shadow models.

Fig. 3 showecases the effectiveness of our proposed attack in
accurately inferring private properties of the input data, both
in training and test scenarios, across all datasets and cut layers
for the CNN and ResNet architectures. First, shifting the cut
layer towards the last layer results in a lower attack accuracy,
irrespective of the data or architecture — particularly when
Fe(.) includes a dense layer. The outcome is partly due to
the large number of functionally equivalent neural networks
that can be generated by flattening the neurons — by reordering
the neurons without changing weights — which misleads the
adversary [11]. Second, we observed that the attack achieves
greater success rates on less complex datasets. For example,
when using feature representation from the first layer of the
CNN to infer the “vertical” attribute in MNIST data, the
attack accuracy reaches 98.25%. In contrast, the accuracy for
inferring “Gender” in UTKFace is 82.54%, and 69.61% for
inferring “YM” in CelebA. ResNetl8 achieves similar attack
performance by leveraging feature representation derived from
earlier layers in the deep learning architecture. The results
closely follow the state-of-the-art property inference attack
against deep learning [32]. Finally, one can observe that the
accuracy of the attack on test data closely follows the attack
accuracy of training data, which shows the robustness of the
underlying property inference attacks.

4) Data Reconstruction Attack: We evaluated data recon-
struction attacks on split learning using the structural similarity
index measure (SSIM) and the mean squared error (MSE)
metrics (Fig. 4). Due to space limitations, we will focus our
presentation solely on the results for UTKFace and CelebA.
One can observe that reconstructing the input data solely based
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Fig. 3: Accuracy of property inference attack on target model for training and test samples across different datasets. The x-axis shows model
splitting at different layers. The attack accuracy consistently drops on training and testing samples as the ratio of the model split increases.
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Fig. 4: MSE & SSIM of model inversion attack on Target model for
training and test instances using shadow training. The attack efficacy
decreases as the cut layer approaches the model’s last layer.

on the activations of the cut layer yields higher precision
when using the output of the convolution layers compared
to reconstructing from the fully connected layer. The earlier
model splits result into lower errors (i.e., MSE) and higher
similarities (i.e., SSIM). Furthermore, the results indicate that
the complexity of the dataset influences the effectiveness of
the attack. Specifically, data reconstruction of lower complexity
datasets, such as UTKFace, leads to a more potent attack com-
pared to the more complex CelebA dataset. This observation
aligns with our findings from the property inference attack.
Fig. 5 showcases the quality of the reconstructed data samples
from both the UTKFace and CelebA datasets. The visual
representation of the reconstructed data samples complements
our evaluation using the MSE and SSIM metrics, confirming
the negative impact of shifting the cut layer towards the models’
end on attack accuracy.

V. BUNDLE-NET ARCHITECTURE

Besides being vulnerable to property inference and data
reconstruction attacks, the split learning architecture also ex-
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Fig. 5: Model inversion attack on CelebA and UTKface data using
shadow training in split learning. Columns 1-2: Training images of
CelebA data in target model training. Columns 3-4: Testing images of
CelebA data in target model training. Columns 5-6: Training images of
UTKface data in target model training. Columns 7-8: Testing images
of UTKface data in target model training.
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poses the intermediate layer outputs of the model to the server.
Moreover, the privacy advantage of split learning becomes
more evident when the client’s sub-model (F.(.)) includes
a greater number of layers, despite the potential increase in
computational demands on the client side. To address these
shortcomings, we introduce Bundle-Net, a distributed learning
architecture designed to mitigate the unintentional information
leakage associated with split MLaaS. We elaborate on the de-
sign of Bundle-Net and evaluate its effectiveness in countering
inference attacks.

A. Bundle-Net Architectural Design

The fundamental concept behind the Bundle-Net architecture
combines horizontal model splitting with vertical data feature
partitioning. For horizontal model splitting, Bundle-Net first
splits the model in a layer-wise fashion, i.e.,, horizontally,
into three sequential sub-models: F!, F,, and F2. The client
retains F} and F? to perform data transformation and label
prediction, while the server handles the intermediate sub-
model, F, responsible for feature extraction. For data parti-
tioning, Bundle-Net divides the features of each data into T’
chunks. Processing these chunks involves vertically mapping
the server’s sub-model (F,) into T' feature-wise sub-models
F! (for all i in T). This enables parallel feature extraction
for model prediction (see Fig. 6). The Bundle-Net architecture
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empowers the client to regulate the information they disclose
to each server by assigning each data chunk to a specific
server that possesses the corresponding sub-model F:. As a
result, unintended information leakage is substantially reduced,
while minimizing computational burden on the clients. Similar
to various existing security frameworks, such as multi-party
computation, we operate under the assumption that the majority
of servers are trustworthy and do not engage in collusion.

1) Bundle-Net Training and Inference: The training phase
initiates with the client and servers loading the corresponding
sub-models of a predefined architecture with random parame-
ters. In this phase, assuming an image-type input, the client
partitions the input data into 7' chunks, where each chunk
represents a subset of features. Subsequently, the client applies
F! to each chunk to generate the transformed data, which
is then transmitted to the servers’ models. On receiving its
unique smashed data (chunk), each server performs the forward
pass to the corresponding intermediate sub-model, i.e., F! for
the i*" data chunk, for feature representation learning. Finally,
the participating servers return the outputs of their respective
sub-models back to the client. The client then aggregates the
servers’ output, executes 2 for label prediction, and calculates
the loss (Fig. 6). Several aggregation functions, including
average, sum, and concatenation, have been explored. In this
study, we employ mean aggregation of the servers’ outputs for
label prediction. The client then initiates the back-propagation
process on F2 by deriving and splitting the input’s gradients for
each intermediate sub-models, 7! (Vi € T'). Upon receiving the
gradients, the servers continue the back-propagation using their
respective sub-models and send their derived input gradients
back to the client to be processed by Fl. All the weights
of F!, F! (Vi € T), and F? are then updated based on
the collected gradients using an SGD optimizer. It concludes
the first training iteration, wherein each of the server’s sub-
models will be trained on a particular data chunk, resulting
in similar architectures but different parameters. Furthermore,
Bundle-Net allows the client to enhance classification accuracy
by incorporating the representation of original features, which
are not shared with the servers, into the aggregation function
through an independent shortcut layer.

During the inference phase, the client executes .7-'01 and
divides its output into the respective data chunks. Each chunk,
along with the identifier of the corresponding intermediate sub-

model is then sent to a designated server. The selected servers
run the requested sub-models and return their smashed data to
the client. Finally, the client aggregates the received tensors
into the smashed data for label prediction using F2.

2) Data Splitting Strategy: We consider three data-splitting
strategies to partition the features of each data sample into T
chunks, including serious overlapping (SO), non-overlapping
(NO), and sparse non-overlapping (SPO). The serious overlap-
ping strategy divides data such that a subset (or all) of its fea-
tures (i.e., pixels) belongs to two data chunks; hence, processed
by two intermediate sub-models. The non-overlapping strategy
divides the data into equal-size chunks, in which each data
feature belongs to only one data chunk. Finally, the sparse non-
overlapping strategy performs sub-sampling of data features in
a non-overlapping manner, which leads to only a subset of
data features being processed by servers. In our evaluation, we
used the three strategies under two extreme configurations —
generating four and sixteen chunks for each image data:

e Four and sixteen serious overlapping chunks (i.e., SO-K,
where K represents the number of feature chunks) with sizes
of 1/2 and 1/8 features, respectively. Each chunk is derived
by splitting the input data horizontally and vertically into
one-half and one-quarter.

o Four and sixteen non-overlapping chunks (i.e., NO-K) with
sizes of 1/4 and 1/16 features, respectively. We split data into
four and sixteen equal chunks, fully offset from one another.
o Four and sixteen sparse non-overlapping chunks (i.e., SNO-
K) with sizes of 1/16 and 1/64 features, respectively. The
input data is split into four and sixteen non-overlapping equal
pieces with each chunk located centrally in each piece.

3) Bundle-Net Privacy and Efficiency Implications: The
Bundle-Net architecture offloads the majority of compute-
intensive layers of neural networks to the servers, suitable for
resource-constrained devices. Moreover, Bundle-Net protects
the client’s input data and the model prediction by virtue of
running the F! and F2 on the client. Finally, by splitting the
input data into multiple smaller chunks, Bundle-Net drastically
reduces the accuracy of the property inference attack as each
server only observes a smaller chunk of the input data. Our
proposed data splitting is a particular case of data cropping
where we intentionally or randomly drop the feature block of a
data sample. The truncated data inputs will be less informative
for the corresponding machine-learning tasks. Note that our
data splitting strategy can be generalized to any number of
structured chunks without limiting them to four and sixteen
chunks. The data chunking strategy can also be extended to
random sub-sampling by varying factors to get unstructured
feature chunks sent to intermediate sub-models.

B. Bundle-Net Evaluation

1) Bundle-Net Attack Modeling: The proposed inference
attack against the Bundle-Net architecture closely follows the
methodology described in Section IV-B. In particular, we
consider the adversary to be one of the servers, e.g., server
i who own an intermediate sub-model F¢, participating in
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Fig. 9: Attack accuracy on BundleNet’s sub-models, i.e., individual
data partitions. The dashed and dotted lines represent the attack
accuracy on CNN and ResNetl18 models using BundleNet learning,
respectively. The solid line shows the attack accuracy of split learning.

the training of the server’s sub-model, i.e., F5. During model
training, the adversary freezes its sub-model (]-';) and uses
the shadow dataset to train a set of shadow sub-models,
{F.) :Vj € T,j # i}, aiming to replace all the missing
intermediate sub-models, which are owned by other servers.
Therefore, the attacker has access to F! and the set of shadow
models, which constitute F,; a sub-model that mimics Fs.
Following Section IV-B, the attacker uses F, for training the
attack model to process the received chunk of the client’s data
and infer the expected properties.

2) Bundle-Net training for classification: We first evaluate
the target classification accuracy using Bundle-Net architecture

over the six different data splitting approaches (i.e., SO-4,
NO-4, SPO-4, SO-16, NO-16, and SPO-16), following the
same evaluation metrics as we used to assess the performance
of split learning for a fair comparison. Fig. 7 suggests that
the Bundle-Net architecture achieves comparable classification
performance to split learning. This holds true across all three
datasets and split strategies, although the accuracy slightly
diminishes as the number of adopted features decreases. For
instance, when employing ResNet18 for UTKFace classifica-
tion, the accuracy of the attack drops from 84.03% for SO-4
to 83.19% for NO-4, and further decreases to 79.4% for SPO-
4. Similarly, the splitting strategies (SO-16, NO-16, and SPO-
16) exhibit corresponding decreases in accuracy, ranging from
83.06% to 81.45%. Furthermore, when using the ResNetl8
model, the accuracy decreases from 99.27% for split learning
to a range of 99.13% for SO-4 and 97.96% for SPO-4 on the
MNIST dataset. On the CelebA dataset, the accuracy decreases
from 69.58% for split learning to 67.4% for SO-4 and further to
65.96% for SPO-4. The CNN models also demonstrate similar
trends, although with less pronounced differences. These results
highlight the feasibility of Bundle-Net learning across datasets.

3) Property inference attack using Bundle-Net: Fig. 8§ sum-
marizes the performance of the property inference attack
against the Bundle-Net architecture using test data across
various data splitting strategies (i.e., SO, NO, and SPO) and
chunk numbers (i.e., 4 and 16). While the attack performance
on the training data follows the same trend, we do not
present them due to space limitations. When considering the
MNIST dataset with the CNN architecture, utilizing Bundle-
Net training significantly reduces the average attack accuracy
on the “Vertical” attribute. It drops from 98.2940.03% in split
learning to a range between 77.35+21.13% and 53.5£10.3%,
depending on the specific data splitting strategy. Similarly, for
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inferring the “Horizontal” attribute, the average attack accuracy
decreases from 97.714+0.05% in split learning to a range of
68.54+£10.84% and 49.21+10.79% across all strategies. We
observed a similar trend in the UTKFace and CelebA datasets.
Specifically, on the UTKFace dataset, the attack accuracy
decreases from 82.5+2.63% for CNN in split learning to a
range of 74.64+3.75% to 51.65£2.34% across all strategies
with Bundle-Net learning. The accuracy of property inference
attacks on ResNet18 models consistently drops using Bundle-
Net learning. Fig. 9 visually demonstrates how Bundle-Net
reduces the success rate of property inference attacks for
each sub-model of the server, using the representation of sub-
features under different data splitting strategies (SO-4, NO-
4, and SPO-4). These results highlight the effectiveness of
Bundle-Net in mitigating the risk of privacy leakage.

VI. CONCLUSION

In this work, we exposed the privacy vulnerability of the
novel split learning architecture against an honest-but-curious
adversary. In particular, we have demonstrated that a passive
adversary can identify attributes of the client’s private data
without compromising the training process or manipulating
the client’s model. To address this privacy leakage, we intro-
duced Bundle-Net architecture and demonstrated its efficacy
in reducing the information leakage and practicality of the
property inference attack. In the future, we will consider an
architecture-agnostic adversary, with no prior knowledge of the
architecture, and investigate the impact of noisy and non-IID
shadow datasets on the attack performance.
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