
A Stealthy Inference Attack on Split Learning with

a Split-Fuse Defensive Measure

Sean Dougherty∗, Abhinav Kumar∗, Jie Hou∗, Reza Tourani∗, Atena M. Tabakhi†

∗Saint Louis University, {sean.dougherty, abhinav.kumar, jie.hou, reza.tourani}@slu.edu
†Washington University in St. Louis, amtabakhi@wustl.edu

AbstractÐThe privacy vulnerabilities and communication inef-
ficiencies of federated learning have motivated the development
of the split learning architecture. Google’s recent Federated
Reconstruction architecture combines federated and split learning
architectures into a unified design, aiming to improve communi-
cation and computation scalability. While split learning aims to
protect the privacy of clients’ data, recent work has revealed its
vulnerability to malicious adversaries through model poisoning.

We aim to investigate the privacy aspect of split learning,
as an independent architecture or the significant component of
federated reconstruction architecture and expose its shortcomings.
Different from the existing literature, we illustrate that an honest-

but-curious adversary can infer the private properties of clients’
data without model poisoning or manipulation. We demonstrate
the practicality of the property inference attack against split
learning using various datasets. To reduce information leakages
and protect clients’ privacy, we propose Bundle-Net architecture
as a privacy-preserving distributed learning mechanism and assess
its effectiveness in thwarting inference attacks.

Index TermsÐDistributed learning, privacy, inference attack,
split learning, model inversion.

I. INTRODUCTION

Advanced machine learning techniques such as deep learning

have recently overcome many challenges that were traditionally

deemed to be impossible. Remarkable success stories include

mastering the game of Go and generating realistic images [1]

or text [2]. The complexity and computational demands of

training deep neural networks motivated the deployment of

Machine Learning-as-a-Service (MLaaS) platforms by major

cloud providers such as Amazon and Google, in which clients

share their data with a centralized server for training and pre-

diction purposes. Such centralized MLaaS platforms, however,

engender extensive communication overhead. Moreover, with

recent privacy laws, such as General Data Privacy Regulation

(GDPR) and the California Privacy Rights Act (CPRA), data

owners are more reluctant to share their privacy-sensitive data.

In light of such concerns, distributed learning architectures such

as federated learning (FL) [3], [4] have emerged, promising

to augment clients’ privacy and improve communication effi-

ciency. The FL architecture, however, is vulnerable to a range

of privacy attacks, including membership inference [5], [6],

property inference [7], [8], and data reconstruction attacks [7],

[9], [10]. Moreover, sharing local models incurs high communi-

cation overhead, particularly in deeper networks with millions

of parameters.

This research was partially supported by US NSF awards #2133407.

Recently, split learning (SL) [11], [12] has emerged as

a novel distributed learning architecture, aiming to reduce

the communication overhead of FL and address its privacy

vulnerabilities [13]. The primary premise of SL is to divide

a given neural network into two sequential sub-models. The

clients will execute the first few layers (i.e., a lightweight sub-

model) on their data while the server will execute the follow-up

layers (i.e., a more complex sub-model) on the output of the

first sub-model. Thus, SL preserves clients’ privacy by allowing

them to retain the ownership of their private data and reducing

the communication overhead by only sharing the intermediate

states of the clients’ sub-models with the server. Such traits

have attracted more attention to SL architecture and led to its

adoption in industry and academia [14], [15]. The most notable

adoption of SL is Google’s recent Federated Reconstruction

architecture [16], which is materialized by integrating federated

and split learning architectures. This architecture was used in

the deployment of a mobile keyboard application with hundreds

of millions of clients.

Despite SL’s success in various applications, its privacy and

security considerations did not receive much attention. Recent

work has highlighted the vulnerabilities of SL to inference and

data reconstruction attacks. The authors in [17] have shown

that an active adversary can hijack the training process by

maliciously forging gradients for the client’s sub-model to its

benefit. More specifically, the malicious adversary orchestrates

the proposed attack by poisoning the client’s sub-model during

the training phase, i.e., hijacking the training using forged

gradients. However, the proposed training-hijacking attack,

similar to other adversarial model manipulation and poisoning

attacks, can be detected using the existing techniques [18],

[19]. Moreover, we argue that well-known MLaaS providers

like Google do not compromise their clients’ model training.

In this work, we aim to assess the privacy guarantees of

the SL architecture by considering a more realistic honest-but-

curious adversary that neither compromises the training process

nor poisons the client’s sub-model. We will demonstrate how

such a non-malicious adversary can infer the private properties

of the client’s training/test data in the SL setting. In effect,

we transform the problem of inferring the features of private

data from the output of intermediate layers into a binary clas-

sification problem. We orchestrate our proposed attack using

various datasets and demonstrate its practicality and accuracy.

We will also propose one novel defensive measure to protect

2023 IEEE Conference on Communications and Network Security (CNS)

979-8-3503-3945-1/23/$31.00 ©2023 IEEE

2
0
2
3
 I

E
E

E
 C

o
n
fe

re
n
ce

 o
n
 C

o
m

m
u
n
ic

at
io

n
s

an
d
 N

et
w

o
rk

 S
ec

u
ri

ty
 (

C
N

S
)

| 9
7
9
-8

-3
5
0
3
-3

9
4
5
-1

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/C

N
S

5
9
7
0
7
.2

0
2
3
.1

0
2
8
8
6
6
1

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY LIBRARIES. Downloaded on September 28,2024 at 20:45:48 UTC from IEEE Xplore. Restrictions apply.

clients’ privacy: the Bundle-Net architecture. Bundle-Net is a

distributed MLaaS architecture suitable for distributed com-

puting platforms. It effectively mitigates information leakage

through the utilization of model and data-splitting techniques.

In the Bundle-Net training process, clients partition their input

data based on features and share the representations of the

partial feature data with the server. The server then utilizes

these transformed data representations for each feature subset to

train the model. Finally, clients aggregate these representations

to complete the training process, ensuring both high model

accuracy and privacy preservation. We will assess the efficacy

of the approach in reducing unintentional information leakage

and attack accuracy.

In summary, the novel contributions of this paper include:

(i) Demonstration of privacy vulnerabilities in split learning.

In particular, we illustrate the property inference and model in-

version attacks by an honest-but-curious adversary, who neither

has the model’s input data nor compromises the training process

by poisoning the client’s sub-model. (ii) Extensive evaluation

and analysis of property inference and data reconstruction at-

tacks using multiple datasets and neural network architectures.

(iii) Design, development, and comprehensive evaluation of

Bundle-Net, an architectural solution for protecting clients’ pri-

vacy against inference attacks by minimizing the unintentional

information leakage of split learning.

The paper is organized as follows. Section II reviews the

existing literature. Section III outlines our models and assump-

tions. Section IV presents our attack design and evaluation.

We elaborate on the Bundle-Net architecture in Section V and

conclude our work in Section VI.

II. RELATED WORK

The privacy promise of SL relies on the fact that (i) clients

do not share their raw data with the server, and (ii) the server

is unaware of the client’s sub-model parameters. As a result,

a malicious server cannot rebuild the client’s sub-model via

model inversion [9] and hence, can neither reconstruct nor

reveal any private feature of the training/test samples [11].

However, a few recent works have shown successful privacy

attacks against SL [17], [20]. In particular, the high distance

correlation between the raw input data and the cut layer

activation can lead to the reconstruction of 1-dimensional

data [20]. The authors in [21] employed a model inversion

attack to reconstruct the user’s private data in an edge±cloud

collaborative system. While data reconstruction was shown

possible, the authors only used the simple MNIST dataset,

which is not representative of the existing complex data.

In [17], the authors exposed the privacy vulnerability of the

SL architecture through property inference and reconstruction

attacks. In the proposed attack, the malicious server hijacks the

training process to drive the client’s sub-model to an insecure

state. The attack starts during the training phase, in which the

malicious server completes the forward pass of its sub-model

on the client’s smashed data, i.e., output of the cut layer. In

parallel, aiming to mimic the client’s sub-model, the server

TABLE I: Notations Used.

Notation Description

M(.) Target model
Fc(.) Client’s sub-model of M(.)
Fs(.) Server’s sub-model of M(.)
K Number of shadow models

F̂c

i
(.) The i-th shadow model (total of K)

Fc(.) The aggregated shadow model

C(.) Attack model (binary classifier)

D
Target
C

Client’s private dataset for target model

D
Target
A

Attacker’s Shadow dataset for shadow model

DAttack
A Attack dataset (generated by shadow models)

dpriv
(∈ D

Target
C)

A private training/test data sample

di (∈ D
Target
A

) A public training/test data sample

y Private property of a data sample
[a] Smashed data generated by shadow model

trains a pilot model and its inverse function using a publicly

available dataset of the same distribution. The server uses a

discriminator model to derive a set of forged gradients and

construct an adversarial loss function to maliciously modify

the client’s sub-model. During inference, the server uses the

smashed data and the inverse of the pilot model to reconstruct

the client’s private data. Note that the active adversary in [17]

can hijack the training process and manipulate the client’s

sub-model. Moreover, the authors evaluated the impact of the

attack on the target model in the white-box setting, where the

adversary has complete knowledge of the target model.

In contrast, in this work, we consider a passive and honest-

but-curious adversary that neither (i) compromises the training

process (ii) nor poisons the client’s sub-model. More specif-

ically, our adversary remains passive concerning the client’s

sub-model and does not tamper with the training process.

In addition, we assume that the adversary has only partial

information about the model architecture and its parameters.

Finally, our proposed property inference attack targets inferring

the properties of both the training and inference data.

III. MODELS AND ASSUMPTIONS

A. System Model

We consider a computing ecosystem, such as pervasive edge

computing [22], which offers machine learning-as-a-service

(MLaaS). Cloud providers, such as Amazon and Google, offer

MLaaS platforms equipped with model training and prediction

interfaces to their clients for compute-intensive ML applica-

tions, e.g., smartphones offloading Augmented/Virtual Reality

applications to mobile edge-cloud systems. We particularly

consider the split learning MLaaS architecture, in which the

original model (M(.)) is horizontally (layer-wise) divided into

Fc(.) and Fs(.) sub-models, where the predictions are made by

M(di) = Fs

(
Fc(d)

)
and d is a training/test sample. Following

the conventional split learning MLaaS, we assume the client

owns the first few layers of the model, i.e., Fc(.), while the

server hosts the rest of the layers, i.e., Fs(.). The proportions

of the two sub-models, i.e., the cut layer, can be negotiated

between the client and the server based on various factors,

2023 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY LIBRARIES. Downloaded on September 28,2024 at 20:45:48 UTC from IEEE Xplore. Restrictions apply.

such as the client’s expected privacy requirements or computing

resources. Finally, we consider the architecture proposed in [16]

for scenarios where multiple clients collaboratively train a

shared model. Our notation is summarized in Table I.

B. Threat Model and Security Assumptions

In this work, we consider the adversary to be the back-end

server, hosted either on the cloud or at the edge, responsible

for running the Fs(.) sub-model for the client during model

training and inference. The adversary constructs the attack

during the training phase and orchestrates it during model

inference. The adversary in this scenario is honest-but-curious,

in that it attempts to infer information about the client’s

sub-model (Fc(.)) or data while adhering to the standard

model training and inference processes, without maliciously

sabotaging the training process or poisoning the client’s sub-

model. Such an attacker represents scenarios where the MLaaS

is offered by major cloud providers, who would not risk their

reputation by intentionally poisoning their clients’ models [23].

The rationale for choosing such an adversary, which contrasts

the powerful attacker presented in [17], is to demonstrate that

breaching clients’ privacy in split learning neither requires a

powerful attacker nor demands model poisoning. Moreover,

existing model poisoning detection techniques [18], [19] can

detect active adversaries that perform training-hijacking attacks,

undermining the practicality of the attack in [17].

We consider a scenario where the client possesses a private

training dataset, denoted as D
Target
C . We assume that the

adversary has access to a public shadow dataset, denoted as

D
Target
A

, which is assumed to follow the same underlying

distribution as D
Target
C but has no overlapping data points

(D
Target
C ∩ D

Target
A

= ∅). Note that there are various ap-

proaches for building shadow datasets [24] and the adversary’s

access to the shadow dataset is a common assumption [6], [17],

[24]. It is worth noting that our attack methodology remains

effective even when the adversary possesses partial knowledge

of the client’s private dataset [14].

In this work, we assume that the adversary possesses partial

knowledge of architecture, denoted as Fc(.), of the neural

network under consideration. Specifically, the adversary is

aware of the network’s structure and design but does not have

any knowledge of its specific weight values. This is a fair

assumption as there are established methods available for the

adversary to extract the architecture of neural networks [25].

In our framework, we consider that the client can request the

parameters of Fs(.) from the edge server. This allows the client

to verify the accuracy and effectiveness of the overall model,

denoted as
(
Fs(Fc(·))

)
. Moreover, this provision enables the

client to detect and potentially mitigate any model poisoning

attacks that may be present within the system [17].

IV. ATTACK METHODOLOGY

In this section, we discuss our attacks foundation and further

evaluate their efficacy under various configurations.

𝐹
𝑆

Server

𝐹
𝑆

Server

𝑃𝑟𝑖𝑣𝑎𝑡𝑒	𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝐷𝑎𝑡𝑎𝑠𝑒𝑡	 𝐹
𝐶

Client

𝑆ℎ𝑎𝑑𝑜𝑤	𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝐷𝑎𝑡𝑎𝑠𝑒𝑡	1	 𝐹"!
"

Adversary

𝑆ℎ𝑎𝑑𝑜𝑤	𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝐷𝑎𝑡𝑎𝑠𝑒𝑡	2	 𝐹"!
#

𝑆ℎ𝑎𝑑𝑜𝑤	𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝐷𝑎𝑡𝑎𝑠𝑒𝑡	𝐾	 𝐹0#
$

…

Freeze

𝐹𝑆

𝐿
(%&6
7 ,	%8)

𝐿(%6	,	%8)

Fig. 1: To generate the attack dataset, the adversary freezes its sub-

model (Fs) to train a set of shadow models
(
{F̂c

1

(.), · · · , F̂c
K
(.)}

)

for imitating the behavior of Fc.

A. Attack Objective and Overview

In split learning, the server (hereafter adversary) actively

participates in the training of the sub-model (Fs(·)) by uti-

lizing the smashed data provided by the client. However, this

participation raises concerns regarding sensitive information

leakage from the client’s private dataset [17]. The correlation

between the model’s input, denoted as dpriv , and the smashed

data, denoted as Fc(dpriv), amplifies the risk of such leakage.

The server’s involvement in the training process can inadver-

tently expose confidential information from the client’s private

dataset, posing a potential privacy breach. As such, we propose

an inference attack, in which the adversary’s primary objective

is to infer the properties of private training and inference data ±

those data features that are seemingly unrelated to the model’s

primary goal [26], [27], e.g., inferring the ªgenderº attribute

from a multi-attributed face image by exploiting an inference

attack on a deep learning model that was initially trained

to predict the ªsmilingº attribute. The adversary’s secondary

objective is to reconstruct the client’s data instance using only

the intermediate representations obtained from the layers of

the deep learning models. Different from recent works [17],

[26], [27], our attack targets the live inference data that clients

provide during the inference phase. We also show the impact

of our attacks on the training data for completeness.

B. Attack Modeling

Our proposed attack follows a two-step process. In the target

model shadowing step, the adversary creates a set of shadow

models
(
{F̂c

1

(.), · · · , F̂c

K
(.)}

)
to mimic the behavior of the

client’s sub-model Fc(.); K is the number of shadow models

and each shadow model is trained on a different shadow dataset.

In the attack training and orchestration step, the adversary

trains an attack model
(
C(.)

)
± a binary classifier that acts

similar to discriminator models ± to identify whether dpriv
features a specific property or not. For attack orchestration, the

adversary obtains the client’s smashed data during the inference

phase and uses C(.) to infer the desired properties or reconstruct

the client’s data. Here, we elaborate on the attacks.

1) Target Model Shadowing: Considering that Fc is the

client’s private sub-model and not publicly available, the ad-

versary trains a set of shadow models to mimic its behavior

2023 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY LIBRARIES. Downloaded on September 28,2024 at 20:45:48 UTC from IEEE Xplore. Restrictions apply.

(Fig. 1). The adversary executes this step in parallel with the

client’s model training over multiple iterations. In particular,

the adversary trains the following neural networks:

• Fs, which is the sub-model requested by the client to

complement Fc in training the final target model, such that

M(.) = Fs

(
Fc(.)

)
. The client generates the smashed data,

Fc(D
Target
C), as the training data of the Fs sub-model.

• Shadow models, F̂c(.) = {F̂c

1

(.), · · · , F̂c

K
(.)}, which

mimic the behavior of the client’s private sub-model (Fc(.)).
The adversary trains these shadow models using the shadow

dataset (D
Target
A

).

The target model shadowing process starts with the adversary

performing one training iteration of Fs on the client’s smashed

data, including back-propagation. At this stage, the adversary

freezes Fs and proceeds with the forward pass of F̂c(.) using

the shadow dataset D
Target
A

up to the cut layer and the already

trained Fs. The rationale for freezing Fs after each training

iteration is to influence the training of F̂c(.) such that its

weights and biases find a local minima of loss function that

is similar to the local minima of Fc. Thus, helping reduce the

distance correlation between Fc and F̂c(.) without adversarial

manipulation of Fc. The adversary then completes one training

iteration of F̂c(.) by back-propagating the gradients from Fs

to F̂c(.). The adversary iteratively trains the target’s Fs and

F̂c(.) until the model converges. Finally, the adversary trains

K shadow models and extracts the aggregated shadow model

± Fc(.) ± by weighted averaging of parameters:

Fc(.) =
P∑

p=1

wpF̂c

p
(.),

∑P

p=1
wp = 1.

While various aggregating strategies can be applied to com-

bine shadow models, we averaged the models’ parameters

as done in federated averaging [28]. In our experiments,

we assigned equal weight to all shadow models due to the

homogeneity of the datasets.

2) Property Inference Attack Training and Orchestration:

The adversary uses the aggregated shadow model Fc(.) for

generating attack datasets and training the attack model(s) ± a

collection of models, one per data property of interest. To gen-

erate DAttack
A

, the adversary queries the resultant aggregated

shadow models using the shadow test dataset. Per Section III-B,

the shadow and client datasets are disjoint with no intersection,

resulting in the worst-case scenario for the adversary. Formally,

we define the attack dataset, DAttack
A

:

DAttack
A =

{(
[a], y

)
: [a] = Fc(d), ∀d ∈ D

Target
A

}
,

in which [a] is the smashed data generated by aggregated

shadow models on the shadow dataset and y is the label of

the corresponding property; y = 1 represents the presence of

desired property in the input and y = 0 indicates its absence.

The adversary uses the attack dataset, DAttack
A

, to train

the attack model, C(.). We define C(.) as a binary classifier,

aiming to discriminate between the data samples that feature

the desired property and those that do not. For the attack

orchestration during inference, the client sends Fc(dpriv) to

the server for prediction. At this stage, the server executes the

requested service as Fs

(
Fc(dpriv)

)
and returns the result to

the client. At the same time, the server executes the attack

model, C
(
Fc(dpriv)

)
, to infer dpriv properties without direct

access to it. If the training data features various properties,

the adversary needs to create a unique DAttack
A

per property

for training the corresponding attack model. For instance, we

generated multiple attack datasets and models for MNIST, one

per property, e.g., samples with horizontal and vertical lines.

3) Data Reconstruction Attack: We also performed the data

reconstruction attack on the target model in the split learning

setting, in which the adversary aims to reconstruct the raw

input data by observing only the output of the client’s sub-

model Fc(.). Considering the adversary’s access to the smashed

data from Fc(.), the data reconstruction attack can be realized

using the shadow model F̂c(.). We adopt the implementation in

work [21] to perform the model inversion attack in a splitting

learning environment. First, for any input sample xc from

the client dataset D
Target
C

, the adversary receives the feature

representation Fc(xc) from the client’s sub-model. Second, the

adversary creates one noise input xr with the initial random

values and calls the pre-trained shadow models to generate the

hidden features F̂c(xr). The adversary then performs the back-

propagation over the parameters of F̂c(.) to derive the gradients

of input xr and update the input data using gradient descent

algorithms. The back-propagation process will be repeated until

the input sample is optimized to achieve the minimum distance

error between Fc(xc) and F̂c(xr). The optimized input is then

derived as the reconstructed data for the client’s sample.

C. Attack Evaluation

1) Dataset: We use the following datasets:

• MNIST [29] dataset consists of 70,000 images of hand-

written digits. Each digit image has been annotated with three

primary attributes: Loop, Horizontal line, and Vertical line ±

digits {2, 4, 5, 7} have ªHorizontalº property, digits {1, 4, 7, 9}
have ªVerticalº property, and digits {0, 6, 8, 9} have ªLoopº

property. For our experiment, we trained a binary classifier as

the target model to predict the presence of the ªLoopº attribute

in an image. Additionally, we trained two attack models to

infer the presence of the ªVerticalº and ªHorizontalº lines,

respectively.

• UTKFace [30] dataset comprises over 20,000 face images

with annotations for age, gender, and ethnicity. These images

exhibit a wide range of variations in pose, facial expression,

illumination, occlusion, and resolution. In our attack evalua-

tion, the binary target classifier focuses on predicting ªRaceº

while the attack aims to infer the ªGenderº property.

• CelebA [31] dataset contains 202,599 face images of

celebrities with annotations of 40 binary labels indicating

the presence of attributes in each image, such as hair color,

gender, and age. Note that most of these attributes are highly

imbalanced, making it challenging to train accurate classifiers.

For instance, the attribute ªEyeglassesº is present in only 6.5%

2023 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY LIBRARIES. Downloaded on September 28,2024 at 20:45:48 UTC from IEEE Xplore. Restrictions apply.

of the images, while the attribute ªWearing Hatº is present in

only 4.8% of the images. Following the data configuration

in [32], we selected and combined the three most balanced

attributes, namely ªHeavy Makeup,º ªMouth Slightly Open,º

and ªSmiling,º referred to as HMS. We then concatenated

these attributes to create eight classification classes as labels

for our target model training. Meanwhile, our attack model

aims to infer the combined attributes, ªYoungº and ªMaleº,

and assigns them to four classification classes, denoted as YM.

We applied the same preprocessing pipeline to all datasets,

resulting in the construction of three types of data: D
Target
C ,

D
Target
A

, and DAttack
A

. Initially, we randomly divided each

dataset into two equal-sized and non-overlapping subsets:

D
Target
C and D

Target
A

. Furthermore, both D
Target
C and D

Target
A

were split into training and test sets in a 5:5 ratio to evaluate

the performance of the target classification and attack models.

Lastly, we selected a validation set by sampling 10% of the

images from each training set to identify the optimal deep

learning model during training. To validate the robustness of

the pipeline, we repeated the above data generation process 10

times, each time using different random seeds.

2) Models Specification and Experiment Setup: We evalu-

ated our attack in a scenario where the client sends one data

point to the server at a time. However, our attack remains

applicable if the client decides to send a batch of data at

once. To ensure consistency across datasets with varying input

sizes, we resized input images to a uniform size of 64 × 64
before the training phase. In our experiments, we utilized a

convolutional neural network (CNN) that consisted of three

convolutional blocks, each containing a convolution layer with

kernel sizes of 32, 64, and 128, followed by a ReLU layer,

and a MaxPooling layer. Furthermore, we incorporated two

fully connected dense layers (with a hidden layer comprising

512 neurons) to perform target classification. For the purpose

of comparison in target classification and property inference

attacks, we also employed the ResNet-18 architecture alongside

the CNN. We define the attack model C(.) as a shallow feed-

forward neural network (with one hidden layer comprising 128

neurons) that infers the presence of properties in the input

data. We conduct experiments on the target model by splitting

the network at four different layers, including three splits at

the convolutional layers (i.e.,
(
Fc(·)

)
owns 20%, 40%, or

60% of the layers) and one split at the fully connected layer.

Additionally, we evaluate the classification accuracy of the

target model and the effectiveness of the attack for these splits.

3) Results Analysis: We first present the training and test

accuracy of the target and shadow models (Fig. 2). The

shadow models demonstrate similar classification accuracy in

both training and test scenarios when compared to the tar-

get models across all datasets, architectures, and cut layers.

The averaged test classification accuracy for target/shadow

models, considering different cut layers, is 98.97%/99.08%

(MNIST), 82.65%/83.07% (UTKFace), and 63.22%/62.68%

(CelebA) for the CNN model, and 99.27%/99.30% (MNIST),

80.27%/79.86% (UTKFace), and 69.58%/69.43% (CelebA) for

Fig. 2: The training and testing accuracy of the target and shadow
models in split learning (SL), considering different datasets and
splitting proportions. The classification performance of both the target
and shadow models is assessed at four cut layers (C1, C2, C3, C4).

ResNet18, respectively. The results also demonstrate the com-

plexity of the three datasets. Notably, the CelebA dataset ex-

hibits lower test accuracy for both the target and shadow models

compared to the training accuracy. Conversely, the MNIST

dataset shows nearly identical training and test accuracy for

both the target and shadow models.

Fig. 3 showcases the effectiveness of our proposed attack in

accurately inferring private properties of the input data, both

in training and test scenarios, across all datasets and cut layers

for the CNN and ResNet architectures. First, shifting the cut

layer towards the last layer results in a lower attack accuracy,

irrespective of the data or architecture ± particularly when

Fc(.) includes a dense layer. The outcome is partly due to

the large number of functionally equivalent neural networks

that can be generated by flattening the neurons ± by reordering

the neurons without changing weights ± which misleads the

adversary [11]. Second, we observed that the attack achieves

greater success rates on less complex datasets. For example,

when using feature representation from the first layer of the

CNN to infer the ªverticalº attribute in MNIST data, the

attack accuracy reaches 98.25%. In contrast, the accuracy for

inferring ªGenderº in UTKFace is 82.54%, and 69.61% for

inferring ªYMº in CelebA. ResNet18 achieves similar attack

performance by leveraging feature representation derived from

earlier layers in the deep learning architecture. The results

closely follow the state-of-the-art property inference attack

against deep learning [32]. Finally, one can observe that the

accuracy of the attack on test data closely follows the attack

accuracy of training data, which shows the robustness of the

underlying property inference attacks.

4) Data Reconstruction Attack: We evaluated data recon-

struction attacks on split learning using the structural similarity

index measure (SSIM) and the mean squared error (MSE)

metrics (Fig. 4). Due to space limitations, we will focus our

presentation solely on the results for UTKFace and CelebA.

One can observe that reconstructing the input data solely based

2023 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY LIBRARIES. Downloaded on September 28,2024 at 20:45:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Accuracy of property inference attack on target model for training and test samples across different datasets. The x-axis shows model
splitting at different layers. The attack accuracy consistently drops on training and testing samples as the ratio of the model split increases.

Fig. 4: MSE & SSIM of model inversion attack on Target model for
training and test instances using shadow training. The attack efficacy
decreases as the cut layer approaches the model’s last layer.

on the activations of the cut layer yields higher precision

when using the output of the convolution layers compared

to reconstructing from the fully connected layer. The earlier

model splits result into lower errors (i.e., MSE) and higher

similarities (i.e., SSIM). Furthermore, the results indicate that

the complexity of the dataset influences the effectiveness of

the attack. Specifically, data reconstruction of lower complexity

datasets, such as UTKFace, leads to a more potent attack com-

pared to the more complex CelebA dataset. This observation

aligns with our findings from the property inference attack.

Fig. 5 showcases the quality of the reconstructed data samples

from both the UTKFace and CelebA datasets. The visual

representation of the reconstructed data samples complements

our evaluation using the MSE and SSIM metrics, confirming

the negative impact of shifting the cut layer towards the models’

end on attack accuracy.

V. BUNDLE-NET ARCHITECTURE

Besides being vulnerable to property inference and data

reconstruction attacks, the split learning architecture also ex-

Fig. 5: Model inversion attack on CelebA and UTKface data using
shadow training in split learning. Columns 1-2: Training images of
CelebA data in target model training. Columns 3-4: Testing images of
CelebA data in target model training. Columns 5-6: Training images of
UTKface data in target model training. Columns 7-8: Testing images
of UTKface data in target model training.

poses the intermediate layer outputs of the model to the server.

Moreover, the privacy advantage of split learning becomes

more evident when the client’s sub-model (Fc(.)) includes

a greater number of layers, despite the potential increase in

computational demands on the client side. To address these

shortcomings, we introduce Bundle-Net, a distributed learning

architecture designed to mitigate the unintentional information

leakage associated with split MLaaS. We elaborate on the de-

sign of Bundle-Net and evaluate its effectiveness in countering

inference attacks.

A. Bundle-Net Architectural Design

The fundamental concept behind the Bundle-Net architecture

combines horizontal model splitting with vertical data feature

partitioning. For horizontal model splitting, Bundle-Net first

splits the model in a layer-wise fashion, i.e., horizontally,

into three sequential sub-models: F1

c , Fs, and F2

c . The client

retains F1

c and F2

c to perform data transformation and label

prediction, while the server handles the intermediate sub-

model, Fs, responsible for feature extraction. For data parti-

tioning, Bundle-Net divides the features of each data into T

chunks. Processing these chunks involves vertically mapping

the server’s sub-model (Fs) into T feature-wise sub-models

F i
s (for all i in T). This enables parallel feature extraction

for model prediction (see Fig. 6). The Bundle-Net architecture

2023 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY LIBRARIES. Downloaded on September 28,2024 at 20:45:48 UTC from IEEE Xplore. Restrictions apply.

⋱⋱

User

Inputs

Feature

Chunks

𝐹'
(!)
(𝑋(

!,𝑊'
(!)
)

𝐹'
(")
(𝑋(

",𝑊'
(")
)

𝐹'
(#)
(𝑋(

#,𝑊'
(#)
)

𝐹'
($)
(𝑋(

$,𝑊'
($)
)

ℎ'
(!)

ℎ'
(")

ℎ'
(#)

ℎ'
($)

𝐹(
"
([ℎ'

!
; … ; ℎ'

$
],𝑊(

(")
)

Activation/Gradient

communication

Server

Party

Client

Party

𝑿𝟐

Client

Party

Summation netBundle-Net

Data-wise

splitting

Layer-wise

splitting

𝐿𝑜𝑠𝑠(𝑓, 𝑌)

𝑿𝟏

𝑿𝒌𝑿𝟑

𝑋%
&

𝑋%
'

𝑋%
(

𝑋%
)

Activation/Gradient

communication

𝐹(
(!)

𝐹(
(!)

𝐹(
(!)

𝐹(
(!)

Feature

aggregation

Fig. 6: Bundle-Net architecture for distributed MLaaS.

empowers the client to regulate the information they disclose

to each server by assigning each data chunk to a specific

server that possesses the corresponding sub-model F i
s. As a

result, unintended information leakage is substantially reduced,

while minimizing computational burden on the clients. Similar

to various existing security frameworks, such as multi-party

computation, we operate under the assumption that the majority

of servers are trustworthy and do not engage in collusion.

1) Bundle-Net Training and Inference: The training phase

initiates with the client and servers loading the corresponding

sub-models of a predefined architecture with random parame-

ters. In this phase, assuming an image-type input, the client

partitions the input data into T chunks, where each chunk

represents a subset of features. Subsequently, the client applies

F1

c to each chunk to generate the transformed data, which

is then transmitted to the servers’ models. On receiving its

unique smashed data (chunk), each server performs the forward

pass to the corresponding intermediate sub-model, i.e., F i
s for

the ith data chunk, for feature representation learning. Finally,

the participating servers return the outputs of their respective

sub-models back to the client. The client then aggregates the

servers’ output, executes F2

c for label prediction, and calculates

the loss (Fig. 6). Several aggregation functions, including

average, sum, and concatenation, have been explored. In this

study, we employ mean aggregation of the servers’ outputs for

label prediction. The client then initiates the back-propagation

process on F2

c by deriving and splitting the input’s gradients for

each intermediate sub-models, F i
s (∀i ∈ T). Upon receiving the

gradients, the servers continue the back-propagation using their

respective sub-models and send their derived input gradients

back to the client to be processed by F1

c . All the weights

of F1

c , F i
s (∀i ∈ T), and F2

c are then updated based on

the collected gradients using an SGD optimizer. It concludes

the first training iteration, wherein each of the server’s sub-

models will be trained on a particular data chunk, resulting

in similar architectures but different parameters. Furthermore,

Bundle-Net allows the client to enhance classification accuracy

by incorporating the representation of original features, which

are not shared with the servers, into the aggregation function

through an independent shortcut layer.

During the inference phase, the client executes F1

c and

divides its output into the respective data chunks. Each chunk,

along with the identifier of the corresponding intermediate sub-

model is then sent to a designated server. The selected servers

run the requested sub-models and return their smashed data to

the client. Finally, the client aggregates the received tensors

into the smashed data for label prediction using F2

c .

2) Data Splitting Strategy: We consider three data-splitting

strategies to partition the features of each data sample into T

chunks, including serious overlapping (SO), non-overlapping

(NO), and sparse non-overlapping (SPO). The serious overlap-

ping strategy divides data such that a subset (or all) of its fea-

tures (i.e., pixels) belongs to two data chunks; hence, processed

by two intermediate sub-models. The non-overlapping strategy

divides the data into equal-size chunks, in which each data

feature belongs to only one data chunk. Finally, the sparse non-

overlapping strategy performs sub-sampling of data features in

a non-overlapping manner, which leads to only a subset of

data features being processed by servers. In our evaluation, we

used the three strategies under two extreme configurations ±

generating four and sixteen chunks for each image data:

• Four and sixteen serious overlapping chunks (i.e., SO-K,

where K represents the number of feature chunks) with sizes

of 1/2 and 1/8 features, respectively. Each chunk is derived

by splitting the input data horizontally and vertically into

one-half and one-quarter.

• Four and sixteen non-overlapping chunks (i.e., NO-K) with

sizes of 1/4 and 1/16 features, respectively. We split data into

four and sixteen equal chunks, fully offset from one another.

• Four and sixteen sparse non-overlapping chunks (i.e., SNO-

K) with sizes of 1/16 and 1/64 features, respectively. The

input data is split into four and sixteen non-overlapping equal

pieces with each chunk located centrally in each piece.

3) Bundle-Net Privacy and Efficiency Implications: The

Bundle-Net architecture offloads the majority of compute-

intensive layers of neural networks to the servers, suitable for

resource-constrained devices. Moreover, Bundle-Net protects

the client’s input data and the model prediction by virtue of

running the F1

c and F2

c on the client. Finally, by splitting the

input data into multiple smaller chunks, Bundle-Net drastically

reduces the accuracy of the property inference attack as each

server only observes a smaller chunk of the input data. Our

proposed data splitting is a particular case of data cropping

where we intentionally or randomly drop the feature block of a

data sample. The truncated data inputs will be less informative

for the corresponding machine-learning tasks. Note that our

data splitting strategy can be generalized to any number of

structured chunks without limiting them to four and sixteen

chunks. The data chunking strategy can also be extended to

random sub-sampling by varying factors to get unstructured

feature chunks sent to intermediate sub-models.

B. Bundle-Net Evaluation

1) Bundle-Net Attack Modeling: The proposed inference

attack against the Bundle-Net architecture closely follows the

methodology described in Section IV-B. In particular, we

consider the adversary to be one of the servers, e.g., server

i who own an intermediate sub-model F i
s, participating in

2023 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY LIBRARIES. Downloaded on September 28,2024 at 20:45:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Target classification performance using Bundle-Net across all splitting strategies (SO4, NO4, SPO4, SO16, NO16, SPO16). The first
two bars labeled SP represent the accuracy of split learning.

Fig. 8: Accuracy of property inference attacks on Bundle-Net using test data from all datasets and data splitting strategies (SO-4, NO-4,
SPO-4, SO-16, NO-16, SPO-16). The first two bars labeled SP represent the attack accuracy of split learning.

Fig. 9: Attack accuracy on BundleNet’s sub-models, i.e., individual
data partitions. The dashed and dotted lines represent the attack
accuracy on CNN and ResNet18 models using BundleNet learning,
respectively. The solid line shows the attack accuracy of split learning.

the training of the server’s sub-model, i.e., Fs. During model

training, the adversary freezes its sub-model (F i
s) and uses

the shadow dataset to train a set of shadow sub-models,

{Fs
j
: ∀j ∈ T, j ̸= i}, aiming to replace all the missing

intermediate sub-models, which are owned by other servers.

Therefore, the attacker has access to F i
s and the set of shadow

models, which constitute Fs; a sub-model that mimics Fs.

Following Section IV-B, the attacker uses Fs for training the

attack model to process the received chunk of the client’s data

and infer the expected properties.

2) Bundle-Net training for classification: We first evaluate

the target classification accuracy using Bundle-Net architecture

over the six different data splitting approaches (i.e., SO-4,

NO-4, SPO-4, SO-16, NO-16, and SPO-16), following the

same evaluation metrics as we used to assess the performance

of split learning for a fair comparison. Fig. 7 suggests that

the Bundle-Net architecture achieves comparable classification

performance to split learning. This holds true across all three

datasets and split strategies, although the accuracy slightly

diminishes as the number of adopted features decreases. For

instance, when employing ResNet18 for UTKFace classifica-

tion, the accuracy of the attack drops from 84.03% for SO-4

to 83.19% for NO-4, and further decreases to 79.4% for SPO-

4. Similarly, the splitting strategies (SO-16, NO-16, and SPO-

16) exhibit corresponding decreases in accuracy, ranging from

83.06% to 81.45%. Furthermore, when using the ResNet18

model, the accuracy decreases from 99.27% for split learning

to a range of 99.13% for SO-4 and 97.96% for SPO-4 on the

MNIST dataset. On the CelebA dataset, the accuracy decreases

from 69.58% for split learning to 67.4% for SO-4 and further to

65.96% for SPO-4. The CNN models also demonstrate similar

trends, although with less pronounced differences. These results

highlight the feasibility of Bundle-Net learning across datasets.

3) Property inference attack using Bundle-Net: Fig. 8 sum-

marizes the performance of the property inference attack

against the Bundle-Net architecture using test data across

various data splitting strategies (i.e., SO, NO, and SPO) and

chunk numbers (i.e., 4 and 16). While the attack performance

on the training data follows the same trend, we do not

present them due to space limitations. When considering the

MNIST dataset with the CNN architecture, utilizing Bundle-

Net training significantly reduces the average attack accuracy

on the ªVerticalº attribute. It drops from 98.29±0.03% in split

learning to a range between 77.35±21.13% and 53.5±10.3%,

depending on the specific data splitting strategy. Similarly, for

2023 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY LIBRARIES. Downloaded on September 28,2024 at 20:45:48 UTC from IEEE Xplore. Restrictions apply.

inferring the ªHorizontalº attribute, the average attack accuracy

decreases from 97.71±0.05% in split learning to a range of

68.54±10.84% and 49.21±10.79% across all strategies. We

observed a similar trend in the UTKFace and CelebA datasets.

Specifically, on the UTKFace dataset, the attack accuracy

decreases from 82.5±2.63% for CNN in split learning to a

range of 74.6±3.75% to 51.65±2.34% across all strategies

with Bundle-Net learning. The accuracy of property inference

attacks on ResNet18 models consistently drops using Bundle-

Net learning. Fig. 9 visually demonstrates how Bundle-Net

reduces the success rate of property inference attacks for

each sub-model of the server, using the representation of sub-

features under different data splitting strategies (SO-4, NO-

4, and SPO-4). These results highlight the effectiveness of

Bundle-Net in mitigating the risk of privacy leakage.

VI. CONCLUSION

In this work, we exposed the privacy vulnerability of the

novel split learning architecture against an honest-but-curious

adversary. In particular, we have demonstrated that a passive

adversary can identify attributes of the client’s private data

without compromising the training process or manipulating

the client’s model. To address this privacy leakage, we intro-

duced Bundle-Net architecture and demonstrated its efficacy

in reducing the information leakage and practicality of the

property inference attack. In the future, we will consider an

architecture-agnostic adversary, with no prior knowledge of the

architecture, and investigate the impact of noisy and non-IID

shadow datasets on the attack performance.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ªGenerative adversarial nets,º
in Advances in Neural Information Processing Systems 27. Curran
Associates, Inc., 2014, pp. 2672±2680.

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
ªLanguage models are unsupervised multitask learners,º OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[3] R. Shokri and V. Shmatikov, ªPrivacy-preserving deep learning,º in Pro-

ceedings of ACM conference on computer and communications security,
2015, pp. 1310±1321.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Arcas,
ªCommunication-efficient learning of deep networks from decentralized
data,º in Artificial intelligence and statistics, 2017, pp. 1273±1282.

[5] S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei, ªDemystifying
membership inference attacks in machine learning as a service,º IEEE

Transactions on Services Computing, 2019.

[6] M. Nasr, R. Shokri, and A. Houmansadr, ªComprehensive privacy anal-
ysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,º in 2019 IEEE symposium on

security and privacy. IEEE, 2019, pp. 739±753.

[7] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, ªBeyond
inferring class representatives: User-level privacy leakage from federated
learning,º in IEEE INFOCOM 2019-IEEE Conference on Computer

Communications. IEEE, 2019, pp. 2512±2520.

[8] M. Xu and X. Li, ªSubject property inference attack in collaborative
learning,º in International Conference on Intelligent Human-Machine

Systems and Cybernetics, vol. 1. IEEE, 2020, pp. 227±231.

[9] M. Fredrikson, S. Jha, and T. Ristenpart, ªModel inversion attacks that ex-
ploit confidence information and basic countermeasures,º in Proceedings

of the 22nd ACM SIGSAC conference on computer and communications

security, 2015, pp. 1322±1333.

[10] B. Hitaj, G. Ateniese, and F. Perez-Cruz, ªDeep models under the gan:
information leakage from collaborative deep learning,º in Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications

Security, 2017, pp. 603±618.
[11] O. Gupta and R. Raskar, ªDistributed learning of deep neural network

over multiple agents,º Journal of Network and Computer Applications,
vol. 116, pp. 1±8, 2018.

[12] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, ªSplit learning for
health: Distributed deep learning without sharing raw patient data,º arXiv

preprint arXiv:1812.00564, 2018.
[13] C. Thapa, M. Chamikara, and S. Camtepe, ªAdvancements of federated

learning towards privacy preservation: from federated learning to split
learning,º in Federated Learning Systems. Springer, 2021, pp. 79±109.

[14] P. Vepakomma, T. Swedish, R. Raskar, O. Gupta, and A. Dubey, ªNo
peek: A survey of private distributed deep learning,º arXiv preprint

arXiv:1812.03288, 2018.
[15] A. Singh, P. Vepakomma, O. Gupta, and R. Raskar, ªDetailed comparison

of communication efficiency of split learning and federated learning,º
arXiv preprint arXiv:1909.09145, 2019.

[16] K. Singhal, H. Sidahmed, Z. Garrett, S. Wu, J. Rush, and S. Prakash,
ªFederated reconstruction: Partially local federated learning,º NeurIPS,
vol. 34, pp. 11 220±11 232, 2021.

[17] D. Pasquini, G. Ateniese, and M. Bernaschi, ªUnleashing the tiger:
Inference attacks on split learning,º in Proceedings of ACM Conference

on Computer and Communications Security, 2021, pp. 2113±2129.
[18] V. Shejwalkar and A. Houmansadr, ªManipulating the byzantine: Op-

timizing model poisoning attacks and defenses for federated learning,º
Internet Society, p. 18, 2021.

[19] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, ªMa-
chine learning with adversaries: Byzantine tolerant gradient descent,º in
Proceedings of the 31st International Conference on Neural Information

Processing Systems, 2017, pp. 118±128.
[20] S. Abuadbba, K. Kim, M. Kim, C. Thapa, S. A. Camtepe, Y. Gao, H. Kim,

and S. Nepal, ªCan we use split learning on 1d cnn models for privacy
preserving training?º in Proceedings of the ACM AsiaCCS, 2020.

[21] Z. He, T. Zhang, and R. B. Lee, ªAttacking and protecting data privacy
in edge±cloud collaborative inference systems,º IEEE Internet of Things

Journal, vol. 8, no. 12, pp. 9706±9716, 2020.
[22] R. Tourani, S. Srikanteswara, S. Misra, R. Chow, L. Yang, X. Liu,

and Y. Zhang, ªDemocratizing the edge: A pervasive edge computing
framework,º arXiv preprint arXiv:2007.00641, vol. 1, no. 1, 2020.

[23] C. Niu, F. Wu, S. Tang, S. Ma, and G. Chen, ªToward verifiable and
privacy preserving machine learning prediction,º IEEE TDSC, vol. 19,
no. 03, pp. 1703±1721, 2022.

[24] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, ªMembership infer-
ence attacks against machine learning models,º in 2017 IEEE Symposium

on Security and Privacy (SP). IEEE, 2017, pp. 3±18.
[25] A. S. Rakin, Y. Luo, X. Xu, and D. Fan, ªDeep-dup: An adversarial

weight duplication attack framework to crush deep neural network in
multi-tenant fpga,º in 30th USENIX Security Symposium, 2021.

[26] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, ªProperty
inference attacks on fully connected neural networks using permutation
invariant representations,º in Proceedings of ACM conference on com-

puter and communications security, 2018, pp. 619±633.
[27] M. P. Parisot, B. Pejo, and D. Spagnuelo, ªProperty inference attacks

on convolutional neural networks: Influence and implications of target
model’s complexity,º arXiv preprint arXiv:2104.13061, 2021.

[28] M. Mohri, G. Sivek, and A. T. Suresh, ªAgnostic federated learning,º
in International Conference on Machine Learning. PMLR, 2019, pp.
4615±4625.

[29] L. Deng, ªThe MNIST database of handwritten digit images for machine
learning research,º IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141±142, 2012.

[30] Z. Zhang, Y. Song, and H. Qi, ªAge progression/regression by conditional
adversarial autoencoder,º in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 5810±5818.
[31] Z. Liu, P. Luo, X. Wang, and X. Tang, ªDeep learning face attributes

in the wild,º in Proceedings of the IEEE international conference on

computer vision, 2015, pp. 3730±3738.
[32] Y. Liu, R. Wen, X. He, A. Salem, Z. Zhang, M. Backes, E. De Cristofaro,

M. Fritz, and Y. Zhang, ª{ML-Doctor}: Holistic risk assessment of
inference attacks against machine learning models,º in USENIX Security

Symposium, 2022, pp. 4525±4542.

2023 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY LIBRARIES. Downloaded on September 28,2024 at 20:45:48 UTC from IEEE Xplore. Restrictions apply.

