Check for
Updates

Comparative Analysis and Evaluation of P4-Based Network
Emulation Testing Environments

Luke Waind
ldwaind@uark.edu
University of Arkansas
Fayetteville, AR, USA

ABSTRACT

P4, an emerging technology enabling flexible and programmable
data plane processing in network devices, has garnered significant
attention for revolutionizing in-network operations. Validating P4
programs requires specially designed testing environments to em-
ulate network functionality in hosts and programmable switches.
However, the choice of testbed involves weighing various pros and
cons. In this paper, we assess four commonly used testbeds, i.e.,
container-based network emulation on the virtual machine, native
Linux, and native Linux with Virtual Time, as well as physical hard-
ware, to provide comparisons and offer guidelines for developers
in selecting the most suitable P4 testbed for their needs.

CCS CONCEPTS

« Computing methodologies — Discrete-event simulation; «
Networks — Network performance evaluation; « Computer sys-
tems organization — Parallel architectures.

ACM Reference Format:

Luke Waind, Gong Chen, and Zheng Hu, Dong Jin. 2024. Comparative Anal-
ysis and Evaluation of P4-Based Network Emulation Testing Environments.
In 38th ACM SIGSIM Conference on Principles of Advanced Discrete Simulation
(SIGSIM PADS °24), June 24-26, 2024, Atlanta, GA, USA. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3615979.3662157

1 INTRODUCTION

Programming Protocol-independent Packet Processors (P4) is a
rapidly growing technology seeing widespread adoption in modern
networks [5]. Offering high-speed programmability in network
data planes, P4 enables swift adaptation to networking challenges
without the need for vendors to develop custom hardware solutions.
The P4 language provides full customizable control over how a
packet is processed.

To mitigate potential complexity and semantic errors in P4 pro-
grams, developers require a safe environment for testing and de-
bugging. Running untested code in a real network system could
have disastrous consequences. An ideal testbed must accurately
emulate complete network functionality to ensure accurate testing
and benchmarking.

We aim to assess P4 testing environments, providing insights
into their setup processes and comparing their pros and cons by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGSIM PADS °24, June 24-26, 2024, Atlanta, GA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0363-8/24/06

https://doi.org/10.1145/3615979.3662157

Gong Chen
gchen31@hawk.iit.edu
Illinois Institute of Technology
Chicago, IL, USA

77

Zheng Hu, Dong Jin
{zhenghu,dongjin}@uark.edu
University of Arkansas
Fayetteville, AR, USA

evaluating factors such as functional and temporal fidelity against
costs, setup complexity, and developer flexibility. We focus on four
prevalent environments and conduct two experiments (linear and
throughput) to measure the fidelity of each environment.

2 ENVIRONMENTS FOR P4 TESTBEDS

This section provides detailed descriptions of each environment we
evaluated and a comparison of their pros and cons (Table 1).
Virtual Machine Environment is contained in a workstation
running VirtualBox [7], set up using resources available in the P4
tutorials repository on GitHub [1]. We maintained default settings
for our experiments: 2 CPU cores with 100% utilization and 2 GB
of RAM.

Native Linux Environment operates directly on a host machine,
utilizing its full computational resources instead of being confined
to a virtualized environment. We used the same GitHub repository
as the Virtual Machine Environment [1]. This environment runs on
a machine with an Intel Core i7-6700 CPU, featuring 4 cores, and 2
threads per core, along with 16 GB of RAM.

Native Linux Environment with VT is similar to the Native
Linux Environment but integrates Virtual Time (VT) technology [6].
VT modifies the Linux kernel by dilating the time returned by
time-keeping kernel functions by a constant factor called the Time
Dilation Factor (TDF). This dilation causes network processing to
reference a virtual clock instead of wall-clock time. We adjust the
TDF to mitigate performance loss caused by CPU overload.
Physical Switch Environment utilizes a custom-designed testbed
comprising a physical programmable switch. The programmable
switch is an Aurora 610 [3]. We used groups of ports on a single
programmable switch to emulate the behavior of multiple switches.
While the P4 programs for the software environments were written
for Behavioral Model Version 2 (BMv2) [2], the P4 programs for
this environment were written for Tofino Native Architecture.

3 EXPERIMENTATION

The two experiments we ran used simple topologies that isolate
the environments’ delays and bandwidths. Realistic scenarios have
more complex topologies to which these results can be applied.

3.1 Linear Experiment

The linear experiment evaluates testbed performance across sev-
eral links, involving two hosts connected via a linear series of
programmable switches. We measured average round-trip time
(RTT) using the Linux ping tool and the TCP throughput using a
TCP connection with iperf [4].

https://doi.org/10.1145/3615979.3662157
https://doi.org/10.1145/3615979.3662157
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3615979.3662157&domain=pdf&date_stamp=2024-06-24

SIGSIM PADS ’24, June 24-26, 2024, Atlanta, GA, USA

Luke Waind, Gong Chen, and Zheng Hu, Dong Jin

Table 1: Testing environments comparison.

2 3 8 10

6
Number of Switches

Figure 1: Average RTT through a linear series of switches.

1000

¥ * * x
—— Native Linux

600 Virtual Machine

—— Native Linux with Virtual Time

—4f— Physical Testbed

800

400

200

TCP Throughput (Mb/s)

o

2 4 8 10

6
Number of Switches

Figure 2: Average bandwidth through a linear chain of switches.

Figure 1 demonstrates that the P4 hardware switch and VT stand
out with consistently low delays. In contrast, Native Linux and Vir-
tual Machine environments show anticipated linear delay increases
(1.217 and 1.4245 ms per BMv2 switch respectively). This perfor-
mance gap is due to considerable delays in packet processing and
forwarding inherent in P4 software switches. Figure 2 shows that
the native Linux and VM environments experience a degradation in
performance as switches are added due to computational resource
constraints. With 10 switches, these environments operate at less
than 30% of the bandwidth they could handle with one switch.
VT-enabled Linux is unaffected as we adjust its time dilation to
maintain performance; hardware performance remains stable as it
can handle higher data volumes. Both environments maintained
speeds near 1000 Mbps, the hosts’ bandwidth cap.

3.2 Single-Switch Throughput Experiment

The single-switch throughput experiment assesses each environ-
ment’s ability to achieve specific throughput. Using iperf [4], we
establish a TCP flow between H1 and H2, varying the flow’s band-
width and measuring the achieved throughput.

1000
—— Native Linux

Virtual Machine
6001 —t— Native Linux with Virtual Time
200 —f— Physical Testbed

200 /
e

800

TCP Throughput (Mb/s)

0 200 a1 800 1000

00 600

Bandwidth (Mb/s)
Figure 3: Bandwidth achieved through a single switch

In Figure 3, the throughput for native Linux and virtual machine

environments stabilizes at approximately 175 Mbps and 145 Mbps,
respectively. Conversely, the other two environments maintain

78

Environment Functional =~ Temporal Fidelity Un- Temporal Fidelity Un- OS Indepen- Cost Ease to Install Flexibility
Fidelity der Low Workload der High Workload dence
BMv2+VM High Medium Low Yes Low Easy High
BMv2+Native Linux High Medium Low No Low Easy High
BMv2+Native Linux+VT | High High High No Low Medium High
Physical Testbed Highest High High No High Hard Low
%15 -+ \N/i::; ﬂg;‘:ine speeds of at least 1000 Mbps. However, the physical hardware envi-
E | — Native Linux with Virtual Time ronment’s maximum throughput is capped at 1000 Mbps, limited
g = Physical Testhed by host capabilities.
o 5
g, —1 3.3 Discussions

In Figure 1, the virtual machine and native Linux environments
exhibit low temporal fidelity, contrasting with VT and physical
hardware setups. These findings caution against using the former
for delay-sensitive applications. However, if temporal fidelity is not
critical and functional fidelity suffices, these environments offer
advantages in cost, flexibility, and installation simplicity.

The native Linux and virtual machine environments exhibit
limited bandwidth capacities (Figure 3). This constraint becomes
evident in more complex topologies, where bandwidth decreases
with the addition of programmable switches (Figure 2). Given these
limitations, researchers should assess whether these environments
meet their experimental requirements by considering the desired
bandwidth and network topology size.

VT should be the next candidate to consider if temporal fidelity
is required. It is more difficult to install because it requires root-
level access to a machine running a supported Linux kernel version.
There is a potential concern using VT if the workload becomes too
heavy, as the TDF directly influences runtime. Our experiments
reached a maximum TDF of 79.6, highlighting the potential imprac-
ticality of higher TDF values due to experimental runtime.

The physical hardware environment provides superior functional
and temporal fidelity but comes with a substantial cost and limited
flexibility. We recommend using a physical hardware environment
when utmost fidelity is essential or when the experiment’s workload
surpasses all available software-based options.

ACKNOWLEDGMENTS

The authors are grateful for the support of the National Science
Foundation under Grant CNS-2247721, CNS-2034870, and EEC-
2113903.

REFERENCES

[1] 2015. p4lang/tutorials. https://github.com/p4lang/tutorials

[2] 2023. BMv2. https://github.com/p4lang/behavioral-model

[3] 2024. Aurora 610. https://bm-switch.com/product/48x25g-8x100g-netberg-
aurora-610-intel-tofino-sonic-ready/

[4] 2024. iperf. https://iperf.fr/

[5] PatBosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker.
2014. P4: Programming Protocol-Independent Packet Processors. SIGCOMM
Comput. Commun. Rev. 44, 3 (jul 2014), 87-95. https://doi.org/10.1145/2656877.
2656890

[6] Gong Chen, Zheng Hu, and Dong Jin. 2022. Integrating I/O Time to Virtual Time
System for High Fidelity Container-based Network Emulation. In Proceedings of
the 2022 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.

[7] Jon Watson. 2008. VirtualBox: Bits and Bytes Masquerading as Machines. Linux J.
(2008).

https://github.com/p4lang/tutorials
https://github.com/p4lang/behavioral-model
https://bm-switch.com/product/48x25g-8x100g-netberg-aurora-610-intel-tofino-sonic-ready/
https://bm-switch.com/product/48x25g-8x100g-netberg-aurora-610-intel-tofino-sonic-ready/
https://iperf.fr/
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890

	Abstract
	1 Introduction
	2 Environments for P4 testbeds
	3 experimentation
	3.1 Linear Experiment
	3.2 Single-Switch Throughput Experiment
	3.3 Discussions

	Acknowledgments
	References

