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ABSTRACT

P4, an emerging technology enabling flexible and programmable
data plane processing in network devices, has garnered significant
attention for revolutionizing in-network operations. Validating P4
programs requires specially designed testing environments to em-
ulate network functionality in hosts and programmable switches.
However, the choice of testbed involves weighing various pros and
cons. In this paper, we assess four commonly used testbeds, i.e.,
container-based network emulation on the virtual machine, native
Linux, and native Linux with Virtual Time, as well as physical hard-
ware, to provide comparisons and offer guidelines for developers
in selecting the most suitable P4 testbed for their needs.
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1 INTRODUCTION

Programming Protocol-independent Packet Processors (P4) is a
rapidly growing technology seeing widespread adoption in modern
networks [5]. Offering high-speed programmability in network
data planes, P4 enables swift adaptation to networking challenges
without the need for vendors to develop custom hardware solutions.
The P4 language provides full customizable control over how a
packet is processed.

To mitigate potential complexity and semantic errors in P4 pro-
grams, developers require a safe environment for testing and de-
bugging. Running untested code in a real network system could
have disastrous consequences. An ideal testbed must accurately
emulate complete network functionality to ensure accurate testing
and benchmarking.

We aim to assess P4 testing environments, providing insights
into their setup processes and comparing their pros and cons by
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evaluating factors such as functional and temporal fidelity against
costs, setup complexity, and developer flexibility. We focus on four
prevalent environments and conduct two experiments (linear and
throughput) to measure the fidelity of each environment.

2 ENVIRONMENTS FOR P4 TESTBEDS

This section provides detailed descriptions of each environment we
evaluated and a comparison of their pros and cons (Table 1).
Virtual Machine Environment is contained in a workstation
running VirtualBox [7], set up using resources available in the P4
tutorials repository on GitHub [1]. We maintained default settings
for our experiments: 2 CPU cores with 100% utilization and 2 GB
of RAM.

Native Linux Environment operates directly on a host machine,
utilizing its full computational resources instead of being confined
to a virtualized environment. We used the same GitHub repository
as the Virtual Machine Environment [1]. This environment runs on
a machine with an Intel Core i7-6700 CPU, featuring 4 cores, and 2
threads per core, along with 16 GB of RAM.

Native Linux Environment with VT is similar to the Native
Linux Environment but integrates Virtual Time (VT) technology [6].
VT modifies the Linux kernel by dilating the time returned by
time-keeping kernel functions by a constant factor called the Time
Dilation Factor (TDF). This dilation causes network processing to
reference a virtual clock instead of wall-clock time. We adjust the
TDF to mitigate performance loss caused by CPU overload.
Physical Switch Environment utilizes a custom-designed testbed
comprising a physical programmable switch. The programmable
switch is an Aurora 610 [3]. We used groups of ports on a single
programmable switch to emulate the behavior of multiple switches.
While the P4 programs for the software environments were written
for Behavioral Model Version 2 (BMv2) [2], the P4 programs for
this environment were written for Tofino Native Architecture.

3 EXPERIMENTATION

The two experiments we ran used simple topologies that isolate
the environments’ delays and bandwidths. Realistic scenarios have
more complex topologies to which these results can be applied.

3.1 Linear Experiment

The linear experiment evaluates testbed performance across sev-
eral links, involving two hosts connected via a linear series of
programmable switches. We measured average round-trip time
(RTT) using the Linux ping tool and the TCP throughput using a
TCP connection with iperf [4].
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Table 1: Testing environments comparison.
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Figure 1: Average RTT through a linear series of switches.
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Figure 2: Average bandwidth through a linear chain of switches.

Figure 1 demonstrates that the P4 hardware switch and VT stand
out with consistently low delays. In contrast, Native Linux and Vir-
tual Machine environments show anticipated linear delay increases
(1.217 and 1.4245 ms per BMv2 switch respectively). This perfor-
mance gap is due to considerable delays in packet processing and
forwarding inherent in P4 software switches. Figure 2 shows that
the native Linux and VM environments experience a degradation in
performance as switches are added due to computational resource
constraints. With 10 switches, these environments operate at less
than 30% of the bandwidth they could handle with one switch.
VT-enabled Linux is unaffected as we adjust its time dilation to
maintain performance; hardware performance remains stable as it
can handle higher data volumes. Both environments maintained
speeds near 1000 Mbps, the hosts’ bandwidth cap.

3.2 Single-Switch Throughput Experiment

The single-switch throughput experiment assesses each environ-
ment’s ability to achieve specific throughput. Using iperf [4], we
establish a TCP flow between H1 and H2, varying the flow’s band-
width and measuring the achieved throughput.
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Figure 3: Bandwidth achieved through a single switch

In Figure 3, the throughput for native Linux and virtual machine

environments stabilizes at approximately 175 Mbps and 145 Mbps,
respectively. Conversely, the other two environments maintain
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In Figure 1, the virtual machine and native Linux environments
exhibit low temporal fidelity, contrasting with VT and physical
hardware setups. These findings caution against using the former
for delay-sensitive applications. However, if temporal fidelity is not
critical and functional fidelity suffices, these environments offer
advantages in cost, flexibility, and installation simplicity.

The native Linux and virtual machine environments exhibit
limited bandwidth capacities (Figure 3). This constraint becomes
evident in more complex topologies, where bandwidth decreases
with the addition of programmable switches (Figure 2). Given these
limitations, researchers should assess whether these environments
meet their experimental requirements by considering the desired
bandwidth and network topology size.

VT should be the next candidate to consider if temporal fidelity
is required. It is more difficult to install because it requires root-
level access to a machine running a supported Linux kernel version.
There is a potential concern using VT if the workload becomes too
heavy, as the TDF directly influences runtime. Our experiments
reached a maximum TDF of 79.6, highlighting the potential imprac-
ticality of higher TDF values due to experimental runtime.

The physical hardware environment provides superior functional
and temporal fidelity but comes with a substantial cost and limited
flexibility. We recommend using a physical hardware environment
when utmost fidelity is essential or when the experiment’s workload
surpasses all available software-based options.
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