Optimal Dynamic Task Scheduling in
Heterogeneous Cloud Computing Environment

Wenlong Ni*, Yuhong Zhang', and Wei Li'
*99 ZiYang Ave, JiangXi Normal University, NanChang, CHINA
3100 Cleburne St, Texas Southern University, Houston, USA

Abstract—Cloud computing (CC), often necessitates dynamic
adjustments due to its inherently fluid nature. In this paper, we
introduce a novel dynamic task scheduling model that incor-
porates reward and holding cost considerations, leveraging the
Continuous-Time Markov Decision Process (CTMDP) framework
in heterogeneous CC systems. The primary goal of this model
is to maximize the overall system reward for the Cloud Service
Provider. By solving the Bellman Optimality Equation using the
value-iteration method, we can derive an optimal scheduling
policy for the dynamic task scheduling model. Additionally, to
enhance its practicality in real-world scenarios, we incorporate
a model-free reinforcement learning algorithm to obtain the
optimal policy for our proposed model without requiring ex-
plicit knowledge of the system environment. Simulation results
demonstrate that our proposed model outperforms two common
static scheduling methods.

Index Terms—Cloud Data Center, Optimal Policy, Cost Func-
tion, Q-Learning.

[. INTRODUCTION

Cloud computing (CC) system provides users with safe
and reliable computing resources via the Internet [1]-[6].
The infrastructure of a CC system includes a large-scale,
heterogeneous array of servers that vary in performance and
resource consumption [7]-[9]. By leveraging virtualization
and other technologies, it transforms these physical resources
into pools of virtual resources, facilitating the management
of computing resources such as CPUs, memory, and storage.
As Big Data technology becomes increasingly prevalent, user
demands for CC systems are growing increasingly intricate
and diverse, making efficient task scheduling a crucial aspect
of CC systems, as highlighted in [10], [11].

In recent years, the importance of efficient task scheduling
in CC systems has become increasingly apparent. As the
demand for cloud services continues to grow, so does the
complexity of managing and optimizing resource allocation.
To address this challenge, numerous studies have been con-
ducted on task scheduling algorithms for CC systems, aiming
to improve performance, hardware utilization, and overall
system efficiency. [12] introduces a cloud task scheduling
algorithm based on Three Queues, which aims to enhance
hardware utilization by effectively managing the distribution of
tasks across available resources. This approach helps balance

This material is partially based upon work supported by the NSF un-
der Grant Nos. 2302469 and 2318662, and by NASA under Grant No.
8ONSSC22KMO0052 to Wei Li; and by JiangXi Education Department under
Grant No. GJJ191688 to Wenlong Ni.

workload and resource utilization, leading to improved overall
system performance.

Another approach to CC task scheduling is the use of the ant
colony algorithm, as demonstrated in [13]. This method mim-
ics the natural behavior of ants searching for food, where they
collaborate to find the shortest path to a food source. Similarly,
in task scheduling, the ant colony algorithm enables tasks to
be allocated to the most suitable resources based on historical
data and optimization techniques. The resulting optimized
solution improves system performance by reducing response
time and enhancing task completion rates. Furthermore, a min-
max task scheduling method is proposed in [14]. This method
allocates tasks to achieve better system load balancing and
minimize response time. By considering both the maximum
and minimum loads across different resources, the algorithm
ensures that tasks are distributed evenly, preventing any single
resource from becoming overloaded. This approach not only
improves system stability but also enhances the overall user
experience by providing consistent and responsive service.

These existing studies often focus on enhancing response
time performance and load balancing [12]-[15]. Additionally,
one study presents a dynamic control model to optimize
cloud resource consumption and quality of service [16].
In this model, servers in a CC system are configured as
M /M /1 queuing systems, treating task arrivals and departures
as a Poisson process. Figure 1 illustrates the dynamic task
scheduling model, where the dispatcher assigns multiple Pois-
son streams (tasks) with varying intensities to heterogeneous
servers for dynamic scheduling control.

Fig 1.

In this paper, we propose a dynamic task scheduling model
that incorporates both reward and holding costs. This model
is designed to mirror the dynamic nature of cloud computing
environments, where tasks are constantly being submitted,
processed, and completed. To achieve this, we formulate
the task scheduling problem in heterogeneous CC systems

A task scheduling model in [16].

as a Continuous-Time Markov Decision Process (CTMDP).
This approach enables us to optimize the dynamic scheduling
of cloud tasks by leveraging real-time performance metrics,
rewards, and holding costs associated with heterogeneous
servers. To elaborate, the dynamic nature of cloud computing
environments poses significant challenges in terms of task
scheduling. Heterogeneous servers, varying workload patterns,
and dynamic resource availability all contribute to the com-
plexity of the scheduling problem. By modeling the task
scheduling problem as a CTMDP, we are able to capture
these dynamics and make informed scheduling decisions that
maximize the overall reward of the system.

The core objective of our model is to maximize the overall
reward of the system by making intelligent scheduling deci-
sions. This is achieved by sensing the performance character-
istics, reward structures, and holding costs of various servers
in real-time. Other than the traditional Value Iteration (VI)
method, as depicted in Figure 2, through reinforcement learn-
ing process such as Q-Learning our proposed model allows
tasks accepted by the system to be dynamically scheduled by
the real-time scheduler to the most suitable server based on the
current system state, rather than relying solely on traditional
task flow contral mechaniams

scheduling

Task arrival
—
Q-learning

scheduling

Server
Monitor

The dynamic task scheduling model.

Fig 2.

Our contributions in this paper can be summarized as

follows:

o The real-time scheduler within the system plays a piv-
otal role in efficiently managing the incoming tasks. It
meticulously assigns each task to an appropriate server,
taking into account the current system state. This process
ensures that tasks are processed in an optimal manner,
leveraging the available resources and minimizing any
potential delays. To achieve this, in this paper we pro-
pose a discounted reward model which transforms the
optimization problem into a Continuous-Time Markov
Decision Process (CTMDP). This transformation enables
the scheduler to perceive the dynamics of task arrivals and
departures, providing a comprehensive understanding of
the system’s workload patterns. Additionally, it allows the
scheduler to factor in the cost consumption of the system,
ensuring that resource allocation is not only efficient
but also economically viable. The discounted reward
model employed by the scheduler is a crucial component
of this optimization process. It allows the system to
assign different weights to rewards obtained at different

time steps, reflecting the importance of immediate versus
delayed gratification. This weighting mechanism enables
the scheduler to make informed decisions about task
assignments, balancing the need to maximize immediate
rewards with the longer-term implications of such deci-
sions.

o Theoretically, if one had complete knowledge of the
system environment, including the distribution functions
for task arrival and departure, the reward function, and the
state transition probability, VI could indeed lead to the
derivation of the optimal scheduling policy by solving
the Bellman Optimality Equation for the dynamic task
scheduling model, which is an elusive goal in the realm
of dynamic task scheduling. However, the practicalities of
real-world scenarios often present significant challenges
that render this theoretical ideal unattainable. To address
this challenge, we employ the Q-learning algorithm to
derive a near-optimal scheduling policy for the model
without requiring extensive knowledge of the system
environment. This ensures that the model remains an
effective solution in real-world scenarios.

« In this paper, we conducted a numerical analysis of the
Continuous-Time Markov Decision Process (CTMDP)
model and simulation experiments based on the Q-
learning method. The Q-learning method learns the op-
timal policy by interacting with the environment and
updating the Q-values based on the observed rewards. In
our experiments, we trained the Q-learning agent using
a simulated environment and evaluated its performance
through simulation experiments. The achieved value of
reward and state actions from Q-learning is quite similar
to the one derived from the VI method, which proves the
correctness of our proposed model. Further, the perfor-
mance of our proposed model outperforms a popular task
scheduling model and achieves higher system reward.

The remainder of the paper is listed as follows. Section II
introduces the system model and the CTMDP model. Section
IIT describes our optimization objective. Section IV shows
the numerical analysis results; Section V conducts simulation
experiments and makes an analysis of the experimental results.
The conclusion is presented in Section VI.

II. MODEL ASSUMPTIONS

This section is comprehensively structured into two subsec-
tions, each addressing a distinct aspect of the subject matter.
The first subsection delves into the system model, elucidating
the essential parameters and components that constitute it.
This exploration is crucial as it lays the foundation for the
subsequent discussions and analysis. The second subsection
introducdx the CTMDP model. This model is derived from
the descriptions and definitions established in the previous sub-
section, which is analyzed in depth, highlighting its important
components and their role within the broader context.

A. SYSTEM MODEL

1) The number of VMs in the CC system is limited, which

is represented as C. Each VM is consider as a server and

is assigned a unique identifier, namely P;, ¢ = 1,...,C.
These servers have their own characteristics, some excel at
handling computationally intensive tasks, while others are bet-
ter at handling 10-intensive tasks. Therefore, finding the most
suitable server for each task has become an important issue
in the CC system. In the CC system, tasks come in randomly.
The randomness of tasks poses a significant challenge to the
system. Tasks may arrive at any time, and the processing
time for each task is unknown. This requires the system to
possess a high degree of flexibility and adaptability to ensure
efficient task processing without wasting server resources. To
achieve this goal, the CC system relies on intelligent task
scheduling strategies. These strategies dynamically allocate the
most suitable server to each task based on the nature of the
task, the status of the server, and the system’s load situation.

2) The state of a server engaged in task processing is
designated as “busy,” whereas a server that is not currently
engaged in any task processing is denoted as “idle.” Each
server is configured as a queuing system with a designated
buffer capacity. Tasks assigned to a busy server await pro-
cessing in the buffer queue. Tasks will not be allocated to a
busy server without available buffer capacity for processing.
When all the servers in the system are occupied and no buffers
have remaining capacity, incoming tasks will be rejected by
the system. The maximum number of user tasks that can
be accommodated in P; simultaneously is denoted as N,
i =1,...,C. The operational state of a server is indicated by
the number of tasks staying in the server. Noting the number
of tasks staying in P; as n;,7 = 1,...,C, and the operating
state of the P; is

idle,
busy,

TLZ‘ZO,
n; > 0.

3) The arrival of user tasks is deemed as a Poisson process
with a rate denoted as A. In the CC system, the servers
exhibit heterogeneity and possess distinct service rates. It is
postulated that the duration for P; to accomplish a task follows
an exponential distribution characterized by a rate of u;. The
collection of service rates for all servers within the system can
be represented as {ii1, o, - fhi, .- -, O }-

4) The CC system earns rewards by accepting user tasks
and providing services. The reward obtained by the system
from accepting tasks is defined as a constant R, where R > 0.
As we all know, heterogeneous servers will generate different
costs (for example, different hardware power consumption,
virtual machine prices, maintenance costs, etc.). Each server in
the system has its own cost coefficient, and CSP can determine
its cost coefficient based on the historical information of each
server in the system.

B. CTMDP MODEL

A CTMDP is a stochastic model that generalizes the
discrete-time Markov Decision Process (MDP) to continuous
time. It consists of a set of states, a set of actions, transi-
tion rates between states, and a reward function that assigns
rewards to state-action pairs. The optimization objective in

a CTMDRP is typically to find a policy that maximizes the
expected discounted reward over an infinite horizon. Specif-
ically, let s; represents the state at time ¢, a; represents the
action to be taken under state s;, and r(s;, a;) represents the
return when action a; under state s;, our objective is to find an
optimal policy 7, that can bring the maximum total expected
discounted reward v7(s) as defined below for every initial
state s.

v (s) = Ef{ /°° eatr(st,at)dt}. (1)
0

Here, a policy 7 specifies the decision rule to be used at every
decision epoch. It gives the decision maker a prescription for
action selection for any possible future system state or history.

In this subsection, the optimization problem is modeled as
an CTMDP, and some important components of the CTMDP
are described.

1) State Space:

In the CTMDP model, the state of the servers and
the events occurring in the system (including task arrival
and departure) together define the state space of the sys-
tem. The state of all servers in the system can be repre-
sented as n = (n1,n2,...,n;,...,nc). For example, n =
(2,0,...,0,...,0) means that there are 2 tasks staying in
server P, and no tasks staying in any of the other servers.
After a user task is processed, the task will leave the system.
The arrival event of the user task is denoted as A, and the
departure event of the user task as D. A task departure
event that occurred as a result of P; finishing processing a
task is denoted as D;. Based on the above description, the
events that may occur in the system can be represented as
€ E{A,Dl,D27"' ,Di,...,Dc}.

With all these definitions, the system state space is

S={s|s={(n1,na,...,n4...,nc),e) = (n,e)}.

2) Action Space:

When a user task arrives at the system, the system needs to
make admission and scheduling decisions based on the current
system state. The decisions to be made include whether to
accept the task and, if so, to which server the task will be
scheduled for processing. The system only makes decisions
when those events occur, so we call the points in time of
those events epoch. The decision action taken by the system
at an epoch is denoted as a.

As mentioned in the system model, The system only rejects
a task when there is no capacity remaining in any of the
buffers. The action of the system to reject a task is noted
as a = 0. The system accepts a user task and schedules it
to P; for service, the corresponding action is noted as a =
and i € {1,2,...,C}. When a user task in the system is
processed and leaves the system, the system does not need to
make an additional action but continues to run the system. The
corresponding action is noted as a = —1.

Based on the above description, the system action space
is defined as Action ={—1, 0, 1,... 4,... C}. The possible
actions that the system can take in different system states are

{0,1,...,4,...
_17

a0 0},

3) Transition Probability:

For the state s = ((n1,n92,...,n4,...,n¢c),€) = {(n,e),
after the system takes action a, the new state of the system is
represented as s’ = (n’,€’), and the ¢(s’ | s,a) is denoted as
the corresponding transition probability. For the arrival event
A, if the system takes an action a = 0 to reject the task,
the operational state of all the servers will not change, which
means n’ = n. If the system accepts a task and scheduling it
to P;, the next state n’ is n' which is

n' = (ny,ng,...,n+1,...,nc).

For the departure event D;, the system takes the action a =

—1 to continue running the system, n’ is n; which is
n = (ny,n9,...,ni-1,...,n¢c),
where n; > 0.

Based on the assumptions in the model, it is easy to
know that the interval duration between two decision-making
epochs of the system follow exponential distribution, and the
distribution of time between two epochs is

F(t]s,a)=1—e Dt ¢ >0,
The state transition probability of the system is

A _
| P Al
o s ={
n; Nz
T@)l’ s ={(n',D;),n; en’,

where I is the indicator function.

Here (s, a) is the average rate at which the system moves
from the current decision epoch to the next after taking action
a in state s, and (3(s, a) equals the summation of the rates of
all possible events after taking action a in state s. It is noted
that when n; = 0, P; does not cause a departure event to occur.
Based on these descriptions, 5(s, a) is

B(s,a) =X+ Z I(ng > 0) - pg.

. neen
4) Reward Function:

Let 7(s,a) be the expected time duration of the current
epoch to the next epoch with the current state s taking action
a, and 7(s,a) is

7(57 (I) = ﬂ(sv a)il'

According to the discount reward model defined in [17], the
expected discount reward received by the system at the current
decision epoch is denoted as r(s,a), and (s, a) is

r(s,a) = k(s, a) + c(s, a) E® {/0 e_(”dt}
=k(s,a)+c(s,a)E? {w}

c(s,a)

=]{7(87(1) + m

Here « is the time discount factor, and k(s,a) is the
immediate reward the system received for taking action a in
state s. ¢(s,a) is the unit time cost incurred by the system
from the current decision epoch to the next. Both the reward

and the cost of running the system can be set by CSP. To
simplify the representation, k(s,a) is
0, ee{Dy,Do,..

k(s,a) =<0, e=A,a=0,
R, e=Aa=14i€{1,2,...,C}.

'7DC}70‘:_17

Where R is a positive number denoting the reward that the
system obtains immediately after accepting a user task.

Furthermore, c(s, a) represents the holding cost rate at state
s subsequent to the execution of action a. Let f(n) denote the
cost rate when the system is in state s. Then, c(s,a) can be
expressed as

—fm?), e=Aa=ii=1...C,
c(s,a)=<¢ —f(n), e=Aa=0,
—f(m), e=Dja=-1

III. OPTIMIZATION OBJECTIVES

Our optimization objective is to maximize the long-term dis-
counted reward of the system. The VI method and Q-learning
algorithm were used to achieve this goal. VI is a dynamic
programming approach that relies on the concept of value
functions. These functions estimate the expected cumulative
reward an agent can achieve by following a particular policy
from a given state. VI starts with an initial guess for the value
functions and iteratively updates them until convergence. On
the other hand, Q-learning directly learns the optimal action-
value function, also known as the Q-function, which estimates
the expected cumulative reward for taking a particular action in
a given state and following the optimal policy thereafter. The
Q-function is iteratively updated using the Bellman equation,
which captures the relationship between the current state,
action, reward, and the next state. The agent selects actions
based on the Q-function, gradually learning to favor actions
that lead to higher long-term rewards.

A. Value Iteration

For the VI method, let v(s) denote the state value function
to evaluate the value of state. According to the Bellman
Optimality Equation and the description of the CTMDP model,
the objective is that for each state s

v(s) = max {r(s,a)+~y- q(s’ | s,a)v(s’) ¢,
(5) aem){(47 Yl ><>}
where v = (s, a)/(a + B(s, a)).

For the departure event D;, according to the Bellman
Equation, we have

o((n', DyY) = [\ ((n, 4))

a+ ((s,a)

c
+ Y T(ng > 0)pgv ((m, Dy))
k=0
Where ny € n. Similarly, let j € {1,2,...,C}, i # j, and
from these analyses, it is not too hard to verify that

v(<ni,Di>) = v(<nj,Dj>).

The above equation shows that for a departure event,
v ((n',D;)) is only related to the changed operational state
of the servers in the system and not to the type of departure
event that occurred. Thus, a new function X (n) is defined by
us, and X (n) =v ((n',D;)) i € {1,2,...,C}.

For the arrival event, using the example of the system taking
the action a = 4, 7 > 0, it can be obtained that

. 1 i
v ({n, A) i) :Rer [Av ((n', A))

+ ZC:]I(nk > 0) pio ((0', D))
)
And, for the action of a = 0, we have
v({n,4),0) = Rt s W ({n, 4))
+ Zc:ﬂ(nk > 0) v ((m, Dy))
)

Based on the above analysis, v ((n, A)) is

v ((n, A)) = {X‘“)

70‘:0)

Xm)+R ,a=i,i¢€{1,2,---,C}.

Combined with the Bellman Optimality Equation, the opti-
mal value function for the arrival event occurs can be obtained
by the following equation. It should be noted that the example
here is that all buffers have remaining capacity.

v ((m, 4))

= max(R + max [X (nl) , X (n2) o, X (nc)] , X (m)).

To apply the VI method to solve the continuous time
problem, the optimal equation was uniformized using the rate
uniformization technique from Chp 11.5 in [17]. By the theory
Theorem 11.3.2 of [17], it can be shown that the VI method
will converge to the optimal policy and the optimal scheduling
policy for the dynamic task scheduling model is a deterministic
policy, which means that the optimal action to be taken for
each state is a fixed value.

The X (n) will be solved by the VI method. The pseudo-

code of the VI method is shown below.
Remark: Although the verification for the optimal policy

to be a threshold policy is not provided in this paper, the
following experimental section reveals that the optimal policy
behaves as a threshold policy when the cost function is an
non-decreasing function. We will continue our research in this
direction.

B. The Q-learning

It is well known that the VI method requires complete
knowledge of the environment to solve the optimal equation.
The Q-learning algorithm can find the optimal policy or near-
optimal policy by interacting with data without the knowledge.
Let Q(s,a) denote the action-value function to evaluate the

Algorithm 1: The value-iteration

Data: a small threshold 6 > 0 determining accuracy of
estimation. Initialize X (n), for all s € S.
Result: X (n) under optimal policy, for all s € S.
1 A<+ 1;
2 while A > 6 do
3 for each s € S do

4 z < X(n);

5 X (n) +max, {r(s,a) +E[y-v(s)]};
6 A — max(A, |z — X (n)]);

7 end

8 end

9 return X (n);

value of taking action a in state s. The iterative formulation
of the Q-learning algorithm is

Qs0) = Qs (r(s.) + 7 mx Q) - Qls.a))

where ' is the learning rate, and 7 is a discount factor to
ensure convergence. The objective of Q-learning is to find a
policy m(s) by continuously iterating Q(s,a), and 7(s) is
w(s) = arg max Q(s,a),s € S.
(5) = s max Q(s.0)

The system takes a fixed action a = —1 when the departure
event D occurs. Therefore, the (s, a) that need to be solved
is Q((n', A) ,a). By using the above equation and the solved
Q({n', A) ,a), the optimal or near-optimal policy 7(s) can be
obtained. The pseudo-code of the Q-learning is as follows.

Algorithm 2: The Q-learning

Data: total simulation time 7', learning rate o/,
Initialize Q(s,a) for all s € S.
Result: Q(s,a) with approximation to the value of
Q(s,a), forall s € S.
1 current_time = 0;
2 while current_time < T do
3 observe state s.
4 choose action a from K (s) by using € — greedy.
observer r(s,a), s';
5 Q(s,a) < Q(s,a)+a -
(r(s,a) + ymaxy Q (s',a') — Q (s,a));
6 update current_time;
7 end
8 return Q(s,a);

IV. NUMERICAL ANALYSIS

In this section, the VI method and the Q-learning are used to
solve the optimal policy for the CTMDP model, respectively.
To show our results conveniently, The number of servers is
set C=2, and the maximum queue length of the servers is
N;=Ny=S5. It can be easily seen that the solution and analysis

are similar for the case more servers and larger buffers.
Some of the necessary parameters are listed in TABLE 1. All
parameters given are illustrative and can be set according to
the specific cloud computing environment.

Parameter Value Memo
« 0.5 The time discount factor
A 10 Task arrival rate
R 3 Immediate reward for accepting a task
1 5 Service rate of P
2 10 Service rate of Py
N1 5 Maximum queue length of Py
No 5 Maximum queue length of Po

TABLE I
THE EXPERIMENTS PARAMETERS.

Heterogeneous servers have different cost coefficient, which
increases with increasing service rate of the server [16]. Refer
to the method for setting the cost function in [16], the cost
function is set to ¢(s,a) = Tyny+Tang, where T and Ty are
the cost coefficients of P; and Ps, respectively, T; < Ts.

Noting our definition of v ({n, A)) in the previous section,
by solving for the value of the optimal X (n), the theoreti-
cal optimal decision policy can be obtained. First, the cost
function is set to ¢;(s,a) = nj+ny. The X (n) for each state
obtained by the VI method is shown in TABLE II, and the
optimal actions obtained from TABLE II are shown in TABLE
III, where 1 and 2 mean scheduling the task to Py and Ps for
processing, respectively, and 0 means rejecting the task.

0 ng — 5
0 55.88 55.67 55.30 54.78 54.10 53.26
55.61 55.35 54.90 54.29 53.53 52.59
55.10 54.81 54.28 53.56 52.65 51.53
n1 54.40 54.06 53.46 52.62 51.53 50.17
53.49 53.12 52.43 51.44 50.13 48.43
5 52.40 51.97 51.16 49.97 48.36 46.18
TABLE II
X (n) WITH c1(s, a).
0 no — 5
0 2 1 1 1 1 1
2 2 2 1 1 1
2 2 2 2 2 1
ni 2 2 2 2 2 1
2 2 2 2 2 1
5 2 2 2 2 2 0
TABLE III

THE OPTIMAL ACTION FOR EVERY STATE WITH ¢ (s, a).

From TABLE III, it can be seen that the theoretical optimal
policy shows a threshold scheduling policy. With the cost
function ¢ (s,a), scheduling task to P, which has a faster
processing rate, for processing is often a better choice. As the
load on Ps increases, scheduling tasks to P; will gradually
become a better choice. Next, let ca(s,a) = n1+2ns9, and the
X (n) for each state can be obtained in the same way. The
corresponding optimal actions are shown in TABLE IV.

From the comparison between TABLE III and TABLE 1V,
it can be seen that the threshold for scheduling tasks to P; will
be lowered due to the increase in the cost coefficient of Ps.
To save some space, with the cost function ¢, (s, a), the policy

0 no — 5

0 2 1 1 1 1 1
2 2 1 1 1 1

2 2 1 1 1 1

ni | 2 2 2 1 1 1
2 2 2 1 1 1

5 2 2 2 2 2 0

TABLE IV

THE OPTIMAL ACTION FOR EVERY STATE WITH Cz(s, zz).

obtained by the Q-learning after training for 1x10% units of
time in a simulation environment is shown in TABLE V.

Note from TABLE IV and TABLE V that the Q-learning
effectively converges to a policy that is quite similar to the
theoretical optimal policy solved by VI method, and the minor
difference between the policy obtained by the Q-learning and
the theoretical optimal policy is due to sampling errors caused
by the computational accuracy and the number of events in the
simulation. Similar results can be obtained for the case under
other cost functions.

0 ng — 5

0 2 1 1 1 1 1
2 2 1 1 1 1

2 2 2 1 1 1

nid | 2 2 2 1 1 1
2 2 2 1 1 1

5 2 2 2 2 2 0

TABLE V

THE OPTIMAL ACTIONS OBTAINED BY Q-LEARNING WITH c2(s, a).

V. CONCLUSION

In this paper, we introduce a novel dynamic task scheduling
model tailored for heterogeneous cloud computing systems. To
capture the environmental dynamics, we formulate the task
scheduling problem as a Continuous-Time Markov Decision
Process (CTMDP). With a focus on optimizing system reward
by balancing task processing rewards and costs, we employ
the Value Iteration (VI) method to derive a theoretically
optimal scheduling policy for our model. To enhance practical
relevance, we employ the Q-learning algorithm to discover a
near-optimal policy in the absence of environmental knowl-
edge, and compare it with the theoretically optimal policy
through numerical analysis. Our findings offer CSPs a robust
framework for operating Cloud Computing (CC) systems in a
more cost-effective manner. Future research directions involve
conducting additional simulations across diverse conditions
and perspectives to assess the performance of our model in
a broader range of scenarios.

REFERENCES

[1] P. K. Senyo, E. Addae, and R. Boateng, “Cloud computing
research: A review of research themes, frameworks, methods and
future research directions,” International Journal of Information
Management, vol. 38, no. 1, pp. 128-139, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0268401217305923

[2] A. K. Sandhu, “Big data with cloud computing: Discussions and
challenges,” Big Data Mining and Analytics, vol. 5, no. 1, pp. 32-40,
2022.

(3]

(4]

(31

(6]

(7]
(8]

(9]

[10]

M. Singh, “Virtualization in cloud computing- a study,” in 2018 Interna-
tional Conference on Advances in Computing, Communication Control
and Networking (ICACCCN), 2018, pp. 64-67.

J. Lin, D. Cui, Z. Peng, Q. Li, J. He, and M. Guo, “Virtualized
resource scheduling in cloud computing environments: An review,” in
2020 IEEE Conference on Telecommunications, Optics and Computer
Science (TOCS), 2020, pp. 303-308.

1. Odun-Ayo, O. Ajayi, and C. Okereke, “Virtualization in cloud com-
puting: Developments and trends,” in 2017 International Conference on
Next Generation Computing and Information Systems (ICNGCIS), 2017,
pp. 24-28.

J. K. Meena and R. Kumar Banyal, “Efficient virtualization in cloud
computing,” in 2021 5th International Conference on Computing
Methodologies and Communication (ICCMC), 2021, pp. 227-232.

K. Li, “Optimal power and performance management for heterogeneous
and arbitrary cloud servers,” IEEE Access, vol. 7, pp. 5071-5084, 2019.
J. Mars, L. Tang, and R. Hundt, “Heterogeneity in “homogeneous”
warehouse-scale computers: A performance opportunity,” IEEE Com-
puter Architecture Letters, vol. 10, no. 2, pp. 29-32, 2011.

C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous
federated learning on heterogeneous devices: A survey,” Computer
Science Review, vol. 50, p. 100595, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S157401372300062X
A. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling
techniques in cloud computing: A literature survey,” Future Generation
Computer Systems, vol. 91, pp. 407-415, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X17321519

[11]

[12]

[13]

[14]

[15]

[16]

(17]

E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N. Suganthan,
“Task scheduling in cloud computing based on meta-heuristics: Review,
taxonomy, open challenges, and future trends,” Swarm and Evolutionary
Computation, vol. 62, p. 100841, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S221065022100002X
Y. Yu and Y. Su, “Cloud task scheduling algorithm based on three queues
and dynamic priority,” in 2019 IEEE International Conference on Power,
Intelligent Computing and Systems (ICPICS), 2019, pp. 278-282.

H. Liu, “Research on cloud computing adaptive task
scheduling based on ant colony algorithm,” Op-
tik, vol. 258, p. 168677, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0030402622000936
D. Gnanaprakasam, M. Mohanraj, T. A. S. Srinivas, S. Bhaggiaraj, B. J,
and S. Sivankalai, “Efficient task scheduling in cloud environment based
on hyper min max task scheduling,” in 2023 International Conference
on Distributed Computing and Electrical Circuits and Electronics (ICD-
CECE), 2023, pp. 1-6.

S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam, “Adpso: Adaptive
pso-based task scheduling approach for cloud computing,” Sensors,
vol. 22, no. 3, 2022. [Online]. Available: https://www.mdpi.com/1424-
8220/22/3/920

W. Bai, J. Zhu, S. Huang, and H. Zhang, “A queue waiting cost-aware
control model for large scale heterogeneous cloud datacenter,” [EEE
Transactions on Cloud Computing, vol. 10, no. 2, pp. 849-862, 2022.
M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, 1st ed. USA: John Wiley & Sons, Inc., 1994.

