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Fast Bootstrapping Nonparametric Maximum

Likelihood for Latent Mixture Models
Shijie Wang , Minsuk Shin , and Ray Bai

Abstract—Estimating the mixing density of a latent mixture
model is an important task in signal processing. Nonparamet-
ric maximum likelihood estimation is one popular approach to
this problem. If the latent variable distribution is assumed to be
continuous, then bootstrapping can be used to approximate it.
However, traditional bootstrapping requires repeated evaluations
on resampled data and is not scalable. In this letter, we construct
a generative process to rapidly produce nonparametric maximum
likelihood bootstrap estimates. Our method requires only a single
evaluation of a novel two-stage optimization algorithm. Simulations
and real data analyses demonstrate that our procedure accurately
estimates the mixing density with little computational cost even
when there are a hundred thousand observations.

Index Terms—Bootstrap/resampling, deep neural network,
generative process, mixing density estimation, nonparametric
maximum likelihood estimation, two-stage algorithm.

I. INTRODUCTION

N
ONPARAMETRIC maximum likelihood estimation
(NPMLE) is a popular methodology in signal processing

applications such as pattern recognition [1], [2], channel esti-
mation [3], signal recovery [4], and positron emission tomogra-
phy [5], [6]. NPMLE also has applications in empirical Bayes
and regression modeling [7], [8], [9]. Suppose that we observe
y = (y1, . . . , yn) where

yi | θi ∼ f(yi | θi), θi ∼ π(θ), i = 1, . . . , n, (1)

and the density f is known but π is unknown. NPMLE aims to
estimate the mixing density (or the prior) π.

The NPMLE estimator π̂ in the latent mixture model (1) [10],
[11] was introduced by [12] and solves the optimization,

π̂ = argmax
π∈Π

n∑

i=1

log[Eπ{f(yi | θi)}]

= argmax
π∈Π

n∑

i=1

log

{∫

Θ

f(yi | θi)dπ(θi)

}
, (2)
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where Π denotes the family of all probability distributions on
the parameter space Θ. Under mild regularity conditions, [13]
showed that the solution π̂ of (2) exists and is unique, and even
if the true π is continuous, π̂ is almost surely discrete with a
support of at most n points. Exploiting this property, there exist
many algorithms to solve (2), including the EM algorithm [14],
[15] and convex optimizers [16], [17].

Nevertheless, a discrete NPMLE estimator π̂ is unsatisfac-
tory when the latent distribution is reasonably assumed to be
continuous [5], [18]. As a result, smoothed variants of NPMLE
have been proposed [2], [5], [7], [19]. However, these methods
typically require careful tuning of smoothing parameters such
as bandwidth [2], [19], roughness penalty term [5], [7], and/or
spline degrees of freedom [2], [7].

As an alternative to smoothing, bootstrapping has been
shown to be an effective way to simulate from both prior
and posterior continuous densities [20], [21], [22], [23]. How-
ever, bootstrapping is seldomly employed for NPMLE. This
may be because the bootstrap traditionally involves resam-
pling the data with replacement and repeatedly optimizing
weighted objective functions. In the context of NPMLE,
the standard bootstrap procedure requires one to repetitively
optimize

π̂(b) = argmax
π

n∑

i=1

w
(b)
i log[Eπ{f(yi | θi)}], w(b) iid

∼ Pw, (3)

for some probability measure Pw. For example, if w ∼
Multinomial(n,1n/n), where 1n denotes an n-dimensional
one vector, we have the nonparametric bootstrap [24].
If w ∼ n× Dirichlet(n,1n), we have the weighted likeli-
hood bootstrap [22]. Repeatedly solving (3) can be time-
consuming.

To resolve this computational bottleneck and broaden the
applicability of bootstrapping, we build upon the genera-
tive bootstrap sampling (GBS) approach of [25]. We intro-
duce a new generative framework called Generative Boot-
strapping for NPMLE (GB-NPMLE). Our contributions are as
follows:

1) We propose GB-NPMLE for estimating a continuous prior
density via bootstrapping. Different from GBS which only
requires weights w as inputs [25], GB-NPMLE needs ad-
ditional noise inputs z to capture the latent representation
of π in (1).

2) To optimize GB-NPMLE, we introduce a novel two-
stage algorithm. In contrast to traditional bootstrap-
ping, GB-NPMLE requires only a single evaluation of
this two-stage algorithm instead of repetitive evaluations
of (3).
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II. PROPOSED METHOD

A. GB-NPMLE

Recent developments in generative learning such as varia-
tional autoencoders (VAEs) [26] and generative adversarial net-
works (GANs) [27], [28], [29] provide another perspective for
NPMLE. Instead of estimatingπ, we can construct a generatorT
that matches to the target density π, i.e. T (z) ∼ π where z ∈ R

q

follows a known distribution such as a Gaussian or a uniform.
We then reformulate NPMLE optimization (2) via a generative
framework,

T̂ = argmaxT∈T

n∑

i=1

log[Ez{f(yi | T (z)}], (4)

where z ∈ R
q follows (for example) a standard uniform. [30]

considered (4) where the generator T was constructed by a
VAE [26] with a Langevin bias-correction algorithm [31]. Un-
fortuantely, both the classical NPMLE π̂ in (2) and the generative

NPMLE T̂ in (4) result in discrete solutions [13]. This discrete-
ness is less attractive when the true latent π is continuous, as in
many signal processing applications [5], [6].

To efficiently obtain a bootstrapped NPMLE distribution as
a smooth estimator for π in (1), we introduce GB-NPMLE.
Our framework (approximately) generates NPMLE bootstrap
estimates via a generator function. The generatorG := G(w, z)
takes both noisez ∈R

q and bootstrap weightsw ∈R
n as inputs.

We constructG using a feedforward neural network (FNN) [32],
[33], because of the FNN’s universal approximation properties
for a large class of functions [32], [33].

GB-NPMLE incorporates the GBS approach of [25]. How-
ever, GBS is only geared towards uncertainty quantification of a
single point estimate. Thus, GBS takes only weights w as inputs
and cannot be directly used to learn an entire probability density
π as in (3). In order to learn an unknown density π, GB-NPMLE
also requires noise inputs z, as in (4). In summary, GB-NPMLE
approximates the bootstrap distribution for NPMLE with the
objective function,

Ĝ = argmaxG Ew

[
n∑

i=1

wi log[Ez{f(yi | G(w, z)}]

]
, (5)

where G(w, z) : Rn+q �→ R. Once we have optimized G (i.e.
the weights and biases of the FNN), it is then effortless to

generate novel NPMLE bootstrap estimates as Ĝ(wnew, znew).
To optimize (5) in practice, the expectations Ez and Ew

are approximated by Monte Carlo averaging, similarly as in
VAEs [26] and GANs [27]. Specifically, we independently sam-
ple z ∼ Unif(0, 1) and w ∼ n× Dirichlet(n,1n) a sufficiently
large number of times and then approximate the expectations in
(5) with sample averages.

Directly optimizingG in (5) using stochastic gradient descent
(SGD) [34] is a nontrivial task. In practice, the Monte Carlo
approximation for Ez introduces high variance to the approxi-
mate gradient for SGD because the log functions in (5) greatly
shatter the linearity of Ez [35]. Consequently, this can lead to
slow convergence when optimizing the GB-NPMLE objective
function (5) [35]. We address these estimation difficulties with
a novel two-stage algorithm.

B. GB-NPMLE Two-Stage Algorithm

To efficiently optimize G in (5), we generalize the generator
output θ = G(w, z) to be a multi-dimensional θ ∈ R

l where
l > 1 is the number of realizations of θ. The resulting sequence

θ = {θ(j)}lj=1 serves as the bootstrap sample candidates. As we
explain shortly, multiple realizations of θ help to stabilize the
gradient approximation in SGD for the Monte Carlo estimate
of Ez in (5). Unfortunately, this generalization also leads to
correlation across the bootstrap samples.

One way to overcome the correlation issue is to take a random

draw of one θ(j) from θ according to mixing probabilities
τ = (τ1, . . . , τl) for the entries of θ. Repeating this procedure
B times produces B independent bootstrap samples. However,
in addition to generator G, we now also need to estimate τ .
Accordingly, we propose a two-stage algorithm where in Stage
I, we train G, and in Stage II, we estimate τ .

GB-NPMLE Algorithm Stage I: Fix τ = (τ1, . . ., τl) where
τ1 = . . . = τl = 1/l, and solve the modified GB-NPMLE ob-
jective function,

Ĝ = argmaxGEw

[
n∑

i=1

wi log[Ez,γ{f(yi | e
�
γG(w, z)}]

]
,

(6)
where γ ∼ Multinomial(1, τ ), eγ is the γ-th unit vector, and

e�γG(w, z) ∈ R is the γ-th entry of generator output θ.
To see how the modified GB-NPMLE objective (6) helps to

relieve high Monte Carlo variance, let Ez,γ{f(yi|e�γG(w, z)}
in (6) be denoted by Ez{Eγ{f(θ[w, z, γ])}}, and similarly,
let Ez{f(yi|G(w, z))} be Ez{f(θ[w, z])} in (5). By the law
of total variance, Var{f(θ[w, z])} ≥ Var{Eγf(θ[w, z, γ])}.
Hence, the generalization of the generator output dimension to
l > 1 reduces Monte Carlo variance.

GB-NPMLE Algorithm Stage II: Fix the well-trained genera-

tor Ĝ from (6) and estimate τ via the Monte Carlo EM (MCEM)
algorithm [36]. In particular, the MCEM updates for each kth
entry of τ have the closed form,

τ
(t+1)
k =

1

n

n∑

i=1

τ
(t)
k · Ew,z{f(yi | e

�
k Ĝ(w, z)}

∑l
k=1 τ

(t)
k · Ew,z{f(yi | e�k Ĝ(w, z)}

. (7)

Note that we already obtained an efficient estimator of θ from
Stage I, and hence, the MCEM algorithm tends to have very
fast convergence. In the literature, slow convergence of MCEM
mostly lies in obtaining a sequence of estimators θ [30]. We
circumvent this issue by fixing the generator from Stage I.

Once we have estimated both G (in Stage I) and τ (in Stage
II), we can easily generate a new bootstrap estimate by sampling

wnew, znew, γnew, and then taking θnew = e�γnew
Ĝ(wnew, znew).

Repeating this procedure B times results in B independent
bootstrap estimates. Thus, in contrast to bootstrapped NPMLE
which requiresB total repetitive evaluations of (3), GB-NPMLE
requires only a single evaluation of the two-stage algorithm. The
entire two-stage GB-NPMLE procedure is given in Algorithm 1.
Empirical evidence (reported in the online Supplementary Ma-
terial) demonstrates sufficient convergence of our algorithm.

III. EXPERIMENTS AND RESULTS

A. Simulation Studies

We investigate the performance of GB-NPMLE optimized
by the two-stage algorithm from Section II-B. The generator
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Algorithm 1: GB-NPMLE Two-Stage Algorithm.

1: Set l = 100, tol = 0.001, T = 2000, B = 1000.
2: Initialize neural network parameters φ and

τ = (1/l, . . . , 1/l)�

3: procedure: Stage I
4: for t in 1, . . . ,Epoch T do
5: Sample w ∼ n× Dirichlet(n,1n)
6: Sample z ∼ Unif(0,1)
7: Sample γ ∼ Multinomial(1, τ )
8: Update Gφ by SGD using modified GB-NPMLE

objective (6)
9: end for

10: return Gφ

11: end procedure
12: procedure: Stage II
13: Initialize τnew = (1/l, . . . , 1/l) and

τ old = (0, . . . , 0)
14: while mink(|τ

old
k − τnewk |) ≥ tol do

15: set τ old = τnew

16: for k in 1, . . . , l do
17: Sample w ∼ n× Dirichlet(n,1n)
18: Sample z ∼ Unif(0,1)
19: Update τnewk as in (7)
20: end for
21: end while
22: return τnew

23: end procedure
24: procedure: Generate B bootstrap estimates
25: for b in 1, . . . , B do
26: Sample w(b) ∼ n× Dirichlet(n,1n)
27: Sample z(b) ∼ Unif(0,1)
28: Sample γ(b) ∼ Multinomial(1, τnew)

29: Generate θ(b) = e�
γ(b)Ĝ(w(b), z(b))

30: end for
31: return θ(1), . . . , θ(B)

32: end procedure

G is an FNN with two hidden layers and 500 neurons per
layer. Sensitivity analysis to this choice of architecture is pre-
sented in the Supplement. The expectations Ew, Ez and Eγ in
the modified GB-NPMLE objective (6) are approximated by
Monte Carlo averages of 100 independent samples of w ∼ n×
Dirichlet(n,1n), z ∼ Unif(0,1) andγ ∼Multinomial(1, τ ), and
the length of τ is set to be l = 100. To train G, we use SGD with
the Adam optimizer [37]. All experiments are conducted on a
single NVIDIA GeForce RTX 2080 Ti graphics processing unit
(GPU) with 11 GB RAM.

We consider three simulation settings for the prior π in the
mixture model (1): (i) bimodal, (ii) unimodal and bounded on
(0,1), and (iii) skewed right. Additional simulations are con-
ducted in the Supplement. Here, we consider:

1) Gaussian mixture model (GMM): y | θ ∼ N (θ, 1) and
θ = 0.5N (−3, 2) + 0.5N (3, 1);

2) Gamma mixture model (GaMM): y | θ ∼ Gamma(10, θ)
and θ ∼ Beta(10, 5);

3) Poisson mixture model (PMM): y | θ ∼ Poisson(θ) and
θ ∼ Gamma(3, 1).

We compare GB-NPMLE to bootstrapped NPMLE (3) and
a smoothed version of the discrete NPMLE (2). We use B =

TABLE I
COMPARISONS OF PERFORMANCE OF DIFFERENT NPMLE METHODS ON

SIMULATED DATASETS

10,000 bootstrap estimates to estimate the prior for GB-NPMLE
and bootstrapped NPMLE. For bootstrapped NPMLE, we use
the nonparametric bootstrap, i.e. we sample n instances of the
data with replacement and then optimize (2) a total ofB times us-
ing theRpackageREBayes [38]. For the smoothed NPMLE, we
use kernel smoothing of π̂ in (2) with theKWsmooth function in
REBayes [38], where we select the optimal bandwidth from an
equispaced grid of length 25 from 0.1 to 10 using leave-one-out
cross-validation (LOOCV).

For performance comparison of the three NPMLE methods,
we generate artificial datasets of size n = 1000. We look at:
a) Wasserstein-1 distance between π and π̂, defined as
W1(π, π̂) =

∫
|Fπ(x)− Fπ̂(x)|dx, where F is the cumulative

density function (CDF) of π, and b) Integrated Squared Er-
ror (ISE), defined as

∫
(π̂(x)− π(x))2dx. Lower W1(π, π̂)

and ISE indicate better performance. Our results for simu-
lations (i)–(iii) averaged across 20 replications are shown in
Table I.

From Table I, we first observe that GB-NPMLE has a very
similar performance to bootstrapped NPMLE. On the other
hand, smoothed NPMLE (with bandwidth parameter chosen
by LOOCV) performs much worse than the bootstrapping ap-
proaches. This demonstrates the difficulty of optimally tuning
smoothing parameters for smoothed NPMLE.

The results from one replication of simulations (i)–(iii) are
plotted in Fig. 1, which also plots the true latent density π (solid
black) and the discrete NPMLE solution (2) (dotted purple).
Fig. 1 shows that the classical (discrete) NPMLE (2) is inade-
quate for capturingπ whenπ is truly continuous. For example, in
the GaMM model, the classical NPMLE does not clearly indicate
that π is unimodal. On the other hand, GB-NPMLE (solid red)
and bootstrapped NPMLE (solid blue) are quite close to the true
π, capturing all inherent aspects of the true π like bimodality,
boundedness and unimodality, and skewness respectively in
the GMM, GaMM, and PMM models. The smoothed NPMLE
appears to be oversmoothed and is unable to capture bimodality
of π in the GMM model or the unimodality and boundedness of
π in the GaMM model. In the PMM model, the sharp peak of the
skewed density π is also not adequately captured by smoothed
NPMLE.

GB-NPMLE and bootstrapped NPMLE both give similar
performance, but GB-NPMLE is much faster because it only
requires a single evaluation of Algorithm 1. We compare
the average computational time of GB-NPMLE and boot-
strapped NPMLE for sample sizesn ∈ {1000, 10,000, 100,000}
across simulations (i)–(iii). Our results are plotted (on the
log scale) in Fig. 2. Fig. 2 shows that GB-NPMLE is much
more scalable. In particular, GB-NPMLE takes only about
five minutes to complete when n = 100,000; on the other
hand, bootstrapped NPMLE requires almost two days to
finish.
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Fig. 1. Results from one replication of Simulations (i)–(iii). In addition to GB-NPMLE (solid red), bootstrapped NPMLE (dashed blue), and smoothed NPMLE
(solid green), we also plot the true density (solid black) and the classical discrete NPMLE (dotted purple).

Fig. 2. Mean computation time in log(seconds) for the three simulations
vs. sample size n ∈ {1000, 10,000, 100,000}. For n = 100,000, GB-NPMLE
takes five minutes, whereas bootstrapped NPMLE takes almost two days.

Fig. 3. Results for real datasets for GB-NPMLE (dashed red, top panel) and
bootstrapped NPMLE (dotted blue, bottom panel). The pink vertical lines in
both plots represent the discrete NPMLE solution.

B. Evaluation on Real Datasets

We evaluate GB-NPMLE on three count datasets where the
counts are assumed to follow a Poisson mixture model, yi |
θi ∼ Poisson(θi) and θi ∼ π, i = 1, . . . , n. The Norberg dataset
consists of 1125 group life insurance statistics in Norway [39],
the Thailland dataset consists of 602 preschool children’s health
condition, and the Mortality dataset contains the number of
deaths for women aged greater than eighty [40]. Fig. 3 compares
GB-NPMLE (top panel) with bootstrapped NPMLE (bottom
panel). We see that GB-NPMLE approximates bootstrapped
NPMLE very well. Furthermore, both methods identify the same
number of local modes (three in Norberg, four in Thailand, and
two in Mortality).

We also examine out-of-sample prediction using the log pre-
dictive score (LPS) Eθ[− log f(ynew; θ) | yobs]. To approximate

TABLE II
COMPARISONS OF PERFORMANCE OF GB-NPMLE AND BOOTSTRAPPED

NPMLE ON REAL COUNT DATASETS

LPS, we use K-fold cross validation (CV),

LPS = K−1
K∑

k=1

∑

i∈Ik

− log

[
B−1

B∑

b=1

f(yi; θ̂
b
(−k))

]
,

where θ̂b(−k) ∼ π̂(−k) and π̂(−k) is the bootstrap distribution

obtained by excluding the kth fold Ik. We set K = 10 and
B = 500. Table II shows that the GB-NPMLE predictions are
quite close to their standard bootstrap counterparts.. Table II
also shows that GB-NPMLE is much more scalable, with only
a modest increase in computation time for 10-fold CV when
n increases from 72 to 1096. When n = 1096, GB-NPMLE is
about 34 times faster than bootstrapped NPMLE.

IV. CONCLUSION

In this letter, we introduced GB-NPMLE, a generative frame-
work for estimating a mixing density through bootstrapping.
A novel two-stage algorithm was proposed to rapidly and ac-
curately obtain bootstrap estimates. Bootstrapping has rarely
been employed for NPMLE in the past, and our work paves
the way for bootstrapping to serve as an attractive alternative to
smoothing NPMLE. Simulations and real data analyses demon-
strated the effectiveness and scalability of our approach. Codes
to implement GB-NPMLE and the real datasets analyzed in this
article are available on GitHub at https://github.com/shijiew97/
GBnpmle.

Our methodology is only presented for estimating a univariate
latent density. However, it will be useful to extend GB-NPMLE
to multivariate density estimation. If covariates are also ob-
served, then GB-NPMLE can be extended to mixture of regres-
sion models [8]. Finally, theoretical analysis of the two-stage
algorithm (e.g. the convergence rate) is needed.
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