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ABSTRACT: Hurricanes have been the most destructive and expensive hydrometeorological event in U.S. history, caus-
ing catastrophic winds and floods. Hurricane dynamics can significantly impact the amount and spatial extent of storm pre-
cipitation. However, the complex interactions of hurricane intensity and precipitation and the impacts of improving
hurricane dynamics on streamflow forecasts are not well established yet. This paper addresses these gaps by comprehen-
sively characterizing the role of vertical diffusion in improving hurricane intensity and streamflow forecasts under different
planetary boundary layer, microphysics, and cumulus parameterizations. To this end, the Weather Research and Forecast-
ing (WRF) atmospheric model is coupled with the WRF hydrological (WRF-Hydro) model to simulate four major hurri-
canes landfalling in three hurricane-prone regions in the United States. First, a stepwise calibration is carried out in
WRF-Hydro, which remarkably reduces streamflow forecast errors compared to the U.S. Geological Survey (USGS)
gauges. Then, 60 coupled hydrometeorological simulations were conducted to evaluate the performance of current weather
parameterizations. All schemes were shown to underestimate the observed intensity of the considered major hurricanes
since their diffusion is overdissipative for hurricane flow simulations. By reducing the vertical diffusion, hurricane intensity
forecasts were improved by ;39.5% on average compared to the default models. These intensified hurricanes generated
more intense and localized precipitation forcing. This enhancement in intensity led to ;16% and ;34% improvements in
hurricane streamflow bias and correlation forecasts, respectively. The research underscores the role of improved hurricane
dynamics in enhancing flood predictions and provides new insights into the impacts of vertical diffusion on hurricane inten-
sity and streamflow forecasts.

SIGNIFICANCE STATEMENT: Despite significant recent improvements, numerical weather prediction models
struggle to accurately forecast hurricane intensity and track due to many reasons such as inaccurate physical parameter-
ization for hurricane flows. Furthermore, the performance of existing physics schemes is not well studied for hurricane
flood forecasting. This study bridges these knowledge gaps by extensively evaluating different physical parameteriza-
tions for hurricane track, intensity, and flood forecasts using an atmospheric model coupled with a hydrological model.
Then, a reduced diffusion boundary layer scheme is developed, making remarkable improvements in hurricane inten-
sity forecasts due to the overdissipative nature of the considered schemes for major hurricane simulations. This reduced
diffusion model is shown to significantly enhance hurricane flood forecasts, indicating the significance of hurricane dy-
namics on its induced precipitation.

KEYWORDS: Boundary layer; Intensification; Diffusion; Hurricanes/typhoons; Hydrometeorology;
Numerical weather prediction/forecasting

1. Introduction

Hurricanes have been the costliest natural disaster in the
United States, inflicting more than $1 trillion in total esti-
mated damage between 1980 and 2021 (Smith 2021; Chen
2022). A significant component of hurricane damage is caused
by torrential rainfalls that induce catastrophic floods in coastal
areas. For instance, ;1.25 million people experienced over
45 in. of rain in 7 days when Hurricane Harvey made landfall
in Texas in 2017. The damage from this devastating hurricane

event, which cost more than;$100 billion, made it the second
costliest natural catastrophe in U.S. history thus far (NOAA
2022; Blake and Zelinsky 2018). Future hurricanes may be-
come even more intense (Mei and Xie 2016; Emanuel 2005;
Cheikh and Momen 2020) and more frequent (Emanuel
2017) and induce more rainfalls (Shearer et al. 2022; Reed
et al. 2022; Liu et al. 2019) due to climate change. It is thus
crucial to accurately characterize hurricane dynamics and im-
prove their forecasts to reduce some aspects of hurricane
damage.

Numerical weather prediction (NWP) models play a crucial
role in predicting these extreme weather events. The Weather
Research and Forecasting (WRF) Model (Skamarock et al.
2019), the state-of-the-art mesoscale atmospheric NWP sys-
tem, is often utilized in the United States for weather research
and forecasts. The WRF model has been used in many studies
to investigate different hurricane physics, which led to several
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remarkable findings such as rainband–eyewall interactions
(Davis et al. 2008; Nolan et al. 2021b, 2013; Yang et al. 2019;
Jeworrek et al. 2019; Zhou and Wang 2009), turbulent mixing
in hurricane flows (Zhu et al. 2019), and the impacts of precip-
itation physics on hurricane simulations (Nasrollahi et al.
2012).

Hurricane-induced flood forecasts strongly depend on hur-
ricane intensity and track predictions. Despite the recent en-
hancements of model physics and cloud-permitting grid
resolutions in NWP models like WRF for hurricane simula-
tions, they still face many challenges to accurately predict hur-
ricane intensity and track (Emanuel 2017; Xue et al. 2013;
Romdhani et al. 2024). One of the primary causes of this
disparity is that the current physical parameterizations are
neither specifically designed nor evaluated for simulating
hurricanes, which have unique dynamics (Zhang 2010;
Momen et al. 2021; Sabet et al. 2022; Li et al. 2023). Hurri-
canes can alter the typical coherent structure of turbulent ed-
dies in regular atmospheric flows. Strong rotation in hurricanes
leads to the formation of smaller eddies with reduced turbulent
length scales compared to the regular atmospheric boundary
layers (Momen et al. 2021). Romdhani et al. (2022) demon-
strated that the Advanced Research version of WRF’s (ARW)
default horizontal diffusion is overly diffusive and found that
decreasing diffusion considerably improves hurricane inten-
sity estimations. Previous studies also found that reducing
the default vertical eddy diffusion in WRF leads to signifi-
cantly improved hurricane structure and intensity forecasts
compared to observations over the ocean (J. A. Zhang et al.
2017; Matak and Momen 2023; Gopalakrishnan et al. 2013;
Zhang et al. 2015; Zhang and Pu 2017; F. Zhang et al. 2017).
The reason for this eddy diffusion decrease is due to the strong
rotational effects that exist in hurricane flows, which can sup-
press turbulence production similar to rotating shear flows
(Tritton 1992; Cazalbou et al. 2005; Durbin 2011; Arolla and
Durbin 2014). Such diffusion reductions also lead to shal-
lower boundary layers, greater hurricane inflow, deeper up-
drafts, and enhanced boundary layer convergence to the eye of
the hurricane (Ming et al. 2023; J. A. Zhang et al. 2017).

To forecast hurricane-induced flood inundation levels, the
meteorological forecasts need to be coupled with a hydrologi-
cal model. To this end, the WRF atmospheric model is re-
cently coupled to the WRF hydrological (WRF-Hydro)
model. WRF-Hydro is a leading-edge framework that bridges
the atmospheric and hydrological modeling systems, allowing
a physics-based, fully coupled surface hydrology-regional at-
mospheric modeling capability for hydrometeorological appli-
cations (Maidment 2017; Gochis et al. 2020). Since 2016, the
National Water Model (NWM), which is based on the WRF-
Hydro model architecture (Gochis et al. 2020), has become a
fully operational hydrologic forecasting system providing
real-time, high-resolution, distributed hydrologic forecasts for
the contiguous United States (Lahmers et al. 2019). The hy-
drological parameters of this model (e.g., soil, runoff, ground-
water, and vegetation) have been calibrated for streamflow
predictions using available streamflow gauges in the United
States (Tijerina-Kreuzer et al. 2021; Lahmers et al. 2021; Mascaro
et al. 2023). The WRF-Hydro model has been widely used and

evaluated for streamflow forecasts, especially for flash floods
(Coelho et al. 2022; Viterbo et al. 2020; Senatore et al. 2020; Lin
et al. 2018a; Zhang et al. 2020) and hurricane-induced flood pre-
dictions (Abbaszadeh et al. 2020; Kim et al. 2021; Jafarzadegan
et al. 2021; Chen et al. 2021; El Gharamti et al. 2021; Yin et al.
2021, 2022a,b; Bao et al. 2022; Zhang et al. 2020; Katsafados et al.
2018; Shastry et al. 2019). Some recent developments of WRF-
Hydro and NWM include introducing channel infiltration
for semiarid regions (Lahmers et al. 2019, 2021), a vector-
based channel network routing parameterization (Lin et al.
2018b), a new river boundary parameterization (Jafarzadegan
et al. 2021), and a 2D groundwater scheme (Rummler et al.
2022).

Accurate precipitation forcing is essential for correct hurricane-
induced flood forecasts. Several studies found that the input
precipitation forcing data can significantly impact the accu-
racy of streamflow forecasts (Ma et al. 2021; Chao et al. 2021;
Arnault et al. 2018). Precipitation is typically one of the most
challenging and uncertain variables in NWP models (Nielsen-
Gammon et al. 2005). The precipitation data can be ingested
into WRF-Hydro in two ways. The WRF-Hydro system can
either be coupled with the WRF atmospheric model (WRF-
ARW) to receive precipitation forcing or employ such data in
the uncoupled mode from observations including rain gauges,
radar, and remote sensing (Gochis et al. 2020). The uncoupled
simulations are useful for model calibration and spinup in the
hindcasting mode, whereas coupled simulations are necessary
for real-time and long-term forecasts.

The coupled ARW-WRF-Hydro model has been used in
several hydrological and quantitative precipitation forecasting
studies (Pal et al. 2021; Arnault et al. 2018; Lahmers et al.
2020; Verri et al. 2017; Senatore et al. 2020, 2015). For
instance, Yucel et al. (2015) assessed the efficacy of WRF-
derived precipitation in forecasting flood hydrograph charac-
teristics before and after 3D data assimilation. Some studies
also characterized the impacts of different planetary boundary
layer (PBL) parameterizations on terrestrial water flow uncer-
tainties (Arnault et al. 2018). However, most of these studies
primarily focused on regular flood events or general water-
shed behavior, and extreme hurricane events have received
less attention. Furthermore, the interacting effects of different
PBL, microphysics, and cumulus parameterizations on hurricane-
induced streamflow forecasts are not comprehensively estab-
lished yet. Despite recent improvements in hurricane intensity
predictions via eddy diffusion adjustments, it is not yet well
known how such enhancements impact the accuracy of flood
forecasts. The objective of this study is to address these
knowledge gaps by conducting coupled ARW-WRF-Hydro
simulations for four hurricanes in the United States. Unlike
previous studies that only tested a single PBL type parame-
terization and used a different atmospheric dynamical core,
we will use WRF-ARW and evaluate different PBL closures
and adjustments. Moreover, unlike most prior efforts, we will
couple the WRF-Hydro with WRF-ARW’s precipitation forcing
to directly determine the impacts of hurricane meteorological
enhancements on hydrological forecasts. To this end, we will an-
swer the following research questions:
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1) How do different PBL, microphysics, and cumulus param-
eterizations affect the accuracy of real hurricane intensity,
track, and flood forecasts?

2) What are the impacts of improvements in hurricane inten-
sity predictions, via adjusting the default diffusion, on pre-
cipitation forcing and corresponding flood forecasts?

The paper addresses these questions as follows. Section 2
describes the selected hurricanes, the suite of stand-alone
WRF-Hydro and coupled ARW-WRF-Hydro simulations,
and evaluation metrics. Next, the results of WRF-Hydro cali-
brations and the impacts of different PBL, microphysics, and
cumulus parameterizations on coupled simulations are dis-
cussed in section 3 (question 1). Then, the effects of adjusting
the vertical diffusion on simulated hurricane intensity and
precipitation, as well as the accuracy of streamflow forecasts,
are characterized in this section (question 2). Finally, section 4
summarizes themain findings of this study.

2. Methods

a. Study areas and hurricane cases

In this study, three hurricane-prone regions in the United
States were selected to conduct one-way coupled ARW-
WRF-Hydro (denoted by “C-AWH” hereafter) simulations.
Four category 4–5 hurricanes that made landfall in these re-
gions are simulated to evaluate the impacts of different hydro-
meteorological parameterizations on hurricane intensity and
precipitation. The three selected WRF-Hydro basins and the
best-observed track for the simulated hurricanes, along with
their WRF-ARW domain, are shown in Fig. 1. The details
of the simulation periods and selected basins are summarized
in Table 1. The most expensive hurricane in U.S. history,
Katrina, made landfall in Louisiana in 2005 and caused an esti-
mated damage of more than $150 billion (Knabb et al. 2023).
Hurricane Harvey, the second costliest hurricane in the United
States, hit Texas in 2017 and caused historically heavy rainfall
and severe damage (Blake and Zelinsky 2018). In 2004,
Hurricane Frances, along with three more hurricanes, swept
across Florida within 6 weeks, resulting in an estimated
$82 billion in damage. Hurricane Irma flooded low-lying

neighborhoods and roadways in Florida in 2017 and caused
more than $75 billion in damages (Cangialosi et al. 2021).
In total, the four hurricanes caused a total of more than
$400 billion in economic damages (Blake et al. 2011).

All these major hurricanes led to significant precipitation-
induced flooding. To evaluate the simulated flood response of
these hurricanes, we used 64 U.S. Geological Survey (USGS)
streamflow gauges in the selected areas. The subbasins are
selected based on the Hydrologic Unit Code 8 (HUC-8) in
the hurricane-inflicted areas (Fig. 2). These subbasins are in
hurricane-prone areas of the United States, with hurricane
return periods ranging from 7 to 9 years (Blake et al. 2011).
The details of the number of gauges and hydrological basins
are shown in Table 1.

b. PBL schemes and reducing vertical exchange coefficient

The PBL is the lowest and most turbulent layer of the at-
mosphere, which is in direct contact with Earth’s surface and

FIG. 1. The best-observed track of the four selected hurricanes.
The solid lines show the tracks of the hurricanes during the simula-
tion period with at least category one strength before landfall, and
dotted lines denote their simulated trajectory 2–3 days after land-
fall. The dashed boxes show the simulated domain for each hurri-
cane. The markers indicate the position of the hurricane’s eye ev-
ery 6 h. The shaded regions represent HUC-8 subbasins in Texas
(blue), Louisiana (red), and Florida (green) for streamflow
evaluations.

TABLE 1. Selected hurricanes and their simulation periods in C-AWH models and their corresponding hydrologic subbasins and the
number of gauges for streamflow evaluation.

Hurricane (year)
C-AWH simulation

period
Maximum wind
intensity (m s21)

Region (HUC-4,
HUC-8) No. of gauges

Harvey (2017) 0000 UTC 25 Aug–
0000 UTC 5 Sep

59 HUC-4: 1204,
HUC-8:
12020003,6-7,
12030202-
3,12010005

31

Katrina (2005) 0000 UTC 27 Aug–
0000 UTC 5 Sep

77.2 HUC-4: 0807, 0809,
HUC-8:
03180004

8

Irma (2017) 0000 UTC 4 Sep–
0000 UTC 21 Sep

79.7 HUC-4: 0310 25

Frances (2004) 1200 UTC 30 Aug–
0000 UTC 13 Sep

64.3 HUC-4: 0310 25
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extends up to ;1–2 km above the ground (Momen and
Bou-Zeid 2016, 2017). The PBL schemes are used to parame-
terize the unresolved turbulent vertical fluxes of momentum,
heat, and scalars (e.g., moisture) inside the PBL (Momen
2022; Momen et al. 2018) and throughout the atmosphere. In
the current study, two widely used Yonsei University (YSU;
Hong et al. 2006) and Mellor–Yamada–Janjić (MYJ; Janjić
1994) PBL schemes are employed for simulating hurricanes.
The MYJ scheme is a local closure model that calculates verti-
cal turbulent fluxes using average local atmospheric variables.
On the other hand, the YSU model implicitly assesses the
nonlocal fluxes through a parameterized nonlocal term (Hu
et al. 2010).

The YSU scheme is recommended by the WRF user guide
for hurricane simulations (Wang et al. 2018). In the YSU
scheme, the momentum diffusivity coefficient Km is defined as

Km 5 kwsz 1 2
z
h

( )p
, (1)

where p is the profile shape exponent (52 in YSU), k is the
von Kármán constant (50.4), z is the height from the surface,
and h is the height of the PBL. Using the Prandtl number re-
lation, the eddy diffusivity for moisture and temperature is de-
termined from Km (Hong et al. 2006). The MYJ PBL scheme
determines Km from the prognostic turbulent kinetic energy
(TKE) equations.

Due to the overdiffusive nature of current turbulence
schemes in WRF for major hurricane simulations (Romdhani
et al. 2022), the depth of the eddy diffusivity profile is ad-
justed in all these schemes to control the magnitude of the
vertical diffusion and consequently the intensity of the simu-
lated hurricanes. To this end, in the newly modified runs, the
vertical eddy diffusivity is set to zero from a certain elevation
to the topmost level of the domain following a method de-
scribed in Matak and Momen (2023). In this method, a limiter
is used to set the vertical eddy momentum diffusivity coeffi-
cient Km in Eq. (1) to zero from a certain level above the sur-
face zlevelx as Km(z. zlevelx )5 0. This level is set to the fourth

vertical level here, which is equivalent to ;260-m height

above the surface. This limiter effectively decreases the hurri-
cane boundary layer depth, making it more consistent with ob-
servations. For example, previous observational estimates showed
that the mixed-layer depth decreases to;250 m at the hurricane
eyewall based on the composite dropsonde data (Zhang et al.
2011). This method is validated in Matak and Momen (2023),
which showed that reducing the depth of the vertical diffusion in
the YSU scheme had superior performance (;44% average
intensity improvement) compared to reducing its magnitude
(;25% average intensity improvement) in different tested
major hurricane simulations.

This approach is called reduced diffusion (RD) modulation
hereafter. This method is also consistent with previous studies
(J. A. Zhang et al. 2017; Gopalakrishnan et al. 2013), where
lower vertical eddy diffusivities are found to be more accurate
for high-intensity hurricane simulations. The modified vertical
momentum and scalar exchange coefficient profiles are shown
in Figs. S1 and S2 in the online supplemental material, respec-
tively. Note that since the intensification of hurricanes occurs
over the ocean and they rapidly decay over land, this modifi-
cation is only applied for hurricanes when they are over the
ocean (Tang et al. 2018).

c. The suite of SWH simulations

To evaluate the hydrological performance in the selected
domains, a thorough stepwise calibration is initially conducted
for the WRF-Hydro model in uncoupled mode. The prelimi-
nary calibrated parameter values of NWM version 2.0 are
used to initiate this calibration for the selected study areas. A
total of 13 runoff, channel, vegetation, and soil parameters are
considered for calibration runs. 201 standalone WRF-Hydro (de-
noted by “SWH” hereafter) simulations are performed to assess
the sensitivity of these variables (please refer to Table S1 for a
list of all the WRF-Hydro calibration parameters). For instance,
“refkdt” is one of the important parameters calibrated in these
basins. The parameter refkdt is a scaling parameter for surface
runoff that controls the amount of runoff produced for a given
volume of precipitation (Cerbelaud et al. 2022). It considerably
impacts surface infiltration, hence partitioning total runoff into
surface and subsurface runoff (Schaake et al. 1996). Increasing

FIG. 2. Location of the USGS gauges (blue dots) within (a) Texas, (b) Louisiana, and (c) Florida for the considered subbasins of this study
(magenta color).
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refkdt decreases the simulated volume of hydrographs (surface
runoff) and vice versa. Prior studies have found refkdt to be a
very sensitive parameter (Lahmers et al. 2019; Rummler et al.
2022), which should be optimized for realistic channel flow and
soil moisture results.

The precipitation forcing of these uncoupled simulations is
provided by the hourly North American Land Data Assimila-
tion System phase 2 (NLDAS-2) dataset (Xia et al. 2014).
The Earth System Modeling Framework (ESMF) regridding
code is used to prepare the forcing data for the working reso-
lution of the WRF-Hydro model. The WRF-Hydro system is
configured based on the NWM configuration with 1-km ter-
rain routing and 250-m channel routing resolution (Gochis
et al. 2020). For all the cases, a spinup of 3 years is done in
WRF-Hydro before simulating the hurricane events. The last
year of the spinup period is also used to evaluate the calibra-
tion performance during the normal year period.

d. The suite of C-AWH simulations

In this study, a comprehensive sensitivity analysis of the
simulated hurricanes and their induced floods is conducted by
varying the PBL, microphysics, and cumulus schemes. Three
sets of WRF-ARW simulations are performed with a grid res-
olution of 8 km. In the first set, the YSU and MYJ PBL
schemes are used to assess the impacts of different PBL
schemes on WRF-ARW and WRF-Hydro simulations. In the
second suite of simulations, three different microphysics pa-
rameterization schemes, WRF single-moment 6-class (WSM6;
Hong and Lim 2006), Thompson (Thompson et al. 2008), and
WRF double-moment 6-class (WDM6; Lim and Hong 2010),
are considered for evaluating the influence of microphysics
parameterizations on hurricane-induced flood forecasts. Finally,
in the last suite, three cumulus schemes, the Kain–Fritsch (KF)
scheme (Kain 2004), the Grell–Freitas (GF) scheme (Grell and
Freitas 2014), and the Multiscale Kain–Fritsch (MSKF)
scheme (Zheng et al. 2016), along with a case with no cumu-
lus scheme, are used to simulate hurricanes. A summary of
all conducted C-AWH cases and their configurations is listed
in Table 2.

In Table 2, the Base case includes the YSU PBL scheme
(recommended by WRF for hurricane simulations), WSM6
microphysics scheme, and KF cumulus scheme, which is used

in all cases for intercomparison. In section 3b, the results of
the default WRF models will be presented. In section 3c, new
suites of simulations will be shown for the reduced diffusion
PBL scheme (shown as *_RD) for the three best cases in each
set aiming for improvement in hurricane intensity predictions. In
total, 4 3 9 5 36 coupled ARW-WRF-Hydro simulations are
conducted using a cumulus scheme with 8-km grid resolution.

Finally, to corroborate the generality of the findings, a grid
resolution sensitivity test is conducted with 2-, 8-, and 32-km
grid sizes for all considered hurricanes, which are shown in
supplemental material. This test is conducted by turning off
the cumulus parameterization (No_CU) since cumulus schemes
are not recommended for grid resolutions smaller than 4 km
(Li and Bou-Zeid 2014; Jeworrek et al. 2019). We chose the
2-km fine resolution to ensure it does not fall in the gray zone
for using the cumulus scheme (;3–10 km). For the four consid-
ered hurricanes, we did two diffusion cases (default and re-
duced) for each grid resolution, resulting in 4 (hurricanes) 3
2 (diffusion) 3 3 (resolutions) 5 24 additional NO_CU simula-
tions in total. Note that these eight 2-km grid resolution simula-
tions consumed about 2 million CPU core hours and 14 TB of
storage space, and thus, conducting all cases with such a fine res-
olution was out of our computational and storage resources.
Hence, all other cases were run using an 8-km grid resolution,
which will be shown to provide comparable and sufficient accu-
racy for the considered cases. A similar outcome was also dem-
onstrated in prior studies (Matak and Momen 2023).

For all cases, the WRF-ARW results are regridded into
WRF-Hydro forcing files with 1-km spatial resolution using
the ESMF regridding tool and used in WRF-Hydro simula-
tions. Restart files from the spinup period are used to initial-
ize WRF-Hydro simulations with the initial model state. The
forcing dataset for WRF-ARW simulations is generated using
the NCEP final (FNL) operational global analysis dataset us-
ing the WRF preprocessing system (WPS).

e. Evaluation metrics

To evaluate the accuracy of simulated streamflow forecasts
compared to the observation, three metrics will be used: Pearson’s
correlation coefficient R, Kling–Gupta efficiency (KGE),
and mean absolute percentage error (MAPE). The Pearson
correlation coefficient is used to assess the correlation

TABLE 2. The suite of C-AWH simulations for different PBL, MP, and CU parameterizations. Total number of simulations 5 9 3
4 5 36 using a CU scheme with 8-km grid resolution. For the grid sensitivity test, 24 No_CU simulations were conducted with 2-, 8-,
and 32-km resolutions. The boldface texts highlight the selected PBL, MP, and CU schemes for running the reduced diffusion cases.

Case name PBL MP CU Diffusion

Base YSU WSM6 KF Default
Base_RD YSU WSM6 KF Reduced
PBL_MYJ MYJ WSM6 KF Default
MP_Thom YSU Thompson KF Default
MP_Thom_RD YSU Thompson KF Reduced
MP_WDM YSU WDM6 KF Default
CU_GF YSU WSM6 GF Default
CU_GF_RD YSU WSM6 GF Reduced
CU_MSKF YSU WSM6 Multiscale KF Default
No_CU (grid sensitivity) YSU WSM6 No CU Default and reduced
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between the streamflow forecasts and observed data and is
calculated as follows:

R 5
∑
N

i51
(qis 2 qs )(qio 2 qo )

####################################

∑
N

i51
(qis 2 qs )

2∑
N

i51
(qio 2 qo )

2

√ , (2)

where qis and qio are streamflow from simulation and observa-
tion at time step i, respectively; the overbar denotes the sam-
ple mean, and N represents the number of samples for each
gauge. A high value of R . 0.5 shows that the simulation and
observation have a positive linear relationship, and R ’ 0
means there is no correlation. For streamflow observations, the
USGS gauges described in Table 1 and Fig. 2 are employed.

KGE is another commonly used metric (Gupta et al. 2009;
Jackson et al. 2019), which weighs correlation, bias, and vari-
ance errors equally and is calculated as follows:

KGE 5 1 2

##############################################
(R 2 1)2 1 qs

qo
2 1

( )2
1

ss

so
2 1

( )2
√

, (3)

where ss and so denote the standard deviations of simulated
and observed streamflow, respectively. When KGE is close to
one, it is considered optimal, and negative values of KGE in-
dicate poor performance.

The next metric that will be used for evaluating both
streamflow and hurricane intensity forecasts is MAPE. For
streamflow, MAPESF evaluates how well the simulations cap-
ture the total flow volume rate and is defined as

MAPESF 5
1
N
∑
N

i51

|qis 2 qio|
qo

3 100%: (4)

While this metric is sometimes called normalized mean absolute
error in the hydrology literature, we refer to it as MAPESF in this
paper for consistency with the intensity metric. For WRF-ARW
simulations, MAPEIntensity represents how well the simulations
predict the actual hurricane intensity as the following:

MAPEIntensity 5
1
N
∑
N

i51

|wsis 2 wsio|
wsio

3 100%, (5)

where wsis and wsio are the 10-m surface wind speeds from
simulation and observation, respectively.

Finally, the predicted track of hurricanes is evaluated using
the mean absolute error (MAE) since there is no universal
length scale to nondimensionalize hurricane track (Romdhani
et al. 2022). To this end, the distance between the best-observed
hurricane centerXo and the simulated hurricane centerXs is used
to calculate track error by establishing the followingMAETrack:

MAETrack 5
1
N
∑
N

i51
|Xi

s 2 Xi
o|, (6)

where the distance between the simulated and observed hurri-
canes is calculated using the haversine formula (Choudhury

and Das 2017). For intensity and track observations, the best-
observed reported data from the U.S. National Hurricane
Center (NHC) are used (Kidder et al. 2000; Klotz and
Uhlhorn 2014; Huffman et al. 2015).

3. Results

a. Calibrating WRF-Hydro parameters for the
selected regions

In this study, the WRF-Hydro stand-alone model is cali-
brated using a stepwise approach. First, 13 parameters are
chosen based on preliminary in-house tests and previous cali-
bration studies (Lahmers et al. 2019). Then, a thorough sensi-
tivity analysis is performed using the recommended range of
parameter values in all the domains separately. The calibra-
tions are evaluated for the considered hurricane events as
well as one normal year before each hurricane period to im-
prove the intrinsic streamflow pattern of the selected basins
and extreme event forecasts. In total, 201 simulations were
performed for each domain. A list of the 13 parameters along
with the details on this calibration can be found in Table S1.

Among all these parameters, the surface runoff parameter
(refkdt), the vegetation parameter (mp), Manning’s rough-
ness n, and saturation soil moisture content (smcmax) were
found to be the most sensitive ones, consistent with previous
studies (Kilicarslan et al. 2021; Lahmers et al. 2019; Abbaszadeh
et al. 2020). After an extensive parameter calibration test, refkdt
and mp appeared to be the main variables that their modifica-
tions could consistently outperform NWM’s default models in
the tested periods. Hence, a stepwise calibration is done for
each subbasin domain of Fig. 2 by focusing on adjusting
refkdt and mp values and maximizing the KGE in all the con-
sidered streamflow gauges in these regions. Table 3 summarizes
the suite of 88 conducted simulations for calibrating these pa-
rameters, their adjustment types, and calibrated parameter val-
ues for each domain.

The increase in refkdt increases the ground infiltration of
the overland flow and consequently decreases the channel
streamflow. Increasing Manning’s roughness increases the
surface friction and decreases the streamflow. All these
streamflow responses are shown as an example for Hurricane
Harvey in Fig. S3. Figure 3 shows the hydrographs of the cali-
brated model for three gauges from three subbasins. It dem-
onstrates that the calibrated model captures the timing and
magnitude of the streamflow peaks better than both NWM
models. NWM 2.0 overpredicts the streamflow prediction for
Hurricane Katrina in Louisiana (Fig. 3b), while it underpre-
dicts the discharge for Hurricane Irma in Florida (Fig. 3c) in
the considered gauges. Our calibrated model agrees more
with the observed USGS gauge measurement and works bet-
ter than these two versions of the NWMmodel.

To comprehensively analyze the performance of the cali-
brated model, the error statistics of all the considered USGS
gauges were calculated. Figure 4 presents the average perfor-
mance metric for all cases during the hurricane period and
one normal year before that averaged for the four considered
hurricane cases. As the figure indicates, the calibrated model
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outperforms both NWM models on average in the considered
regions. The calibrated model enhances the NWM 2.1’s
MAPESF forecast by ;24.1% in the normal year before the
hurricane (Fig. 4c) and by;15.9% during the hurricane event
(Fig. 4a). It also improves the NWM 2.0’s MAPESF and KGE
forecasts by ;18.4% and ;80.9%, respectively, in the 1 year
before the hurricane period (Figs. 4c,d) and by ;5.7% and
;37.8% during the hurricane period (Figs. 4a,b). Note that
while the calibration has some low sensitivity to the consid-
ered rainfall scenario (e.g., normal or hurricane), we used a
value that simultaneously improves all cases. The full calibra-
tion results for all the considered cases are shown in Table S2.
Furthermore, to evaluate the generality of the calibrated pa-
rameters, we tested them for Hurricanes Ike and Jeanne,
which are not included in the calibration process. It is found
that this calibration outperforms both default NWM cases for
these two separate hurricane events, validating its generality
(see Fig. S4). Hence, this calibrated WRF-Hydro model will
be used for the coupled C-AWH runs in the next section since
it consistently reduces the forecasting errors of the default
NWMmodels.

b. Coupled ARW-WRF-Hydro default cases

After calibrating the hydrological parameters in the se-
lected regions, the impacts of meteorological parameteriza-
tions on hurricane-induced floods are characterized by
coupling WRF-Hydro’s precipitation forcing with the WRF-
ARW atmospheric model. The coupling in this study is imple-
mented one way where the meteorological and precipitation
forcing data from the WRF-ARW are ingested into the WRF-
Hydro model. The reason for this is that compared to one-
way coupling, two-way coupled runs (feedback from surface
fluxes of WRF-Hydro over land to WRF-ARW) are found to
have a minimal influence on the total precipitation amount
and streamflow forecasts (Givati et al. 2016; Senatore et al.
2015; Rudisill et al. 2022). We also demonstrated that two-way
coupling had less than a 2% impact on hurricane intensity and
track error forecasts in four additional two-way coupled test runs
as shown in Fig. S5. Hence, given the considerable overhead
computational costs and complexities of two-way coupled runs
without significant impacts on the results, we conducted one-way
coupled simulations similar to most previous studies. First, the
performance of the default PBL, microphysics, and cumulus

TABLE 3. Selected calibration parameters for WRF-Hydro, including their adjustment type, calibration ranges, final calibrated
values, and the total number of simulations for all hurricane cases. Here, “}” means the parameter value is not calibrated by the
indicated method type (replacement or multiplication) for that region, and the alternate method is used.

Parameter Type Tested values/multipliers

Final calibrated value

Number of simulationsTexas Louisiana Florida

refkdt Multiplier 0.25, 0.33, 0.5, 0.66, 0.75, 1.5, 2 } 0.5 2 28
refkdt Replace 0.25, 0.33, 0.5, 0.66, 0.75, 1, 2, 3 3 } } 32
mp Multiplier 0.5, 0.8, 0.9, 1.1, 1.25, 1.6, 2 1.6 NWM 2.0 1.25 28

Total number of simulations 88

FIG. 3. Streamflow comparison between our calibrated model, NWM 2.0, NWM 2.1, and USGS gauge observation for (a) Hurricane
Harvey, (b) Hurricane Katrina, and (c) Hurricane Irma.
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schemes on hurricane intensity, track, and streamflow forecasts
is determined. In the next section, the effects of adjusting the ver-
tical diffusion on hurricane intensity and precipitation will be ex-
amined by conducting new runs.

Changing these schemes significantly impacts the simulated
hurricane track. Figure 5 presents the hurricane track results
of simulations with the base and CU_GF configurations. As
the figure indicates, altering the cumulus scheme can improve
or worsen the simulated track. For instance, the simulated
Hurricane Frances track considerably improves by changing
the cumulus scheme from KF [Fig. 5(a4)] to GF [Fig. 5(b4)].
Hence, these hydrometeorological schemes can distinctively
modulate a hurricane’s forecasted trajectory, which can

significantly impact hurricane landfall location and thus hurri-
cane-induced flood forecasts. Of note, while we refer to these
WRF simulations as forecasts, they are not real forecasts (es-
sentially hindcasts) since we do not use the actual operational
forecast products as the forcing dataset in WRF, such as the
outputs of the Global Forecast System (GFS; National
Centers for Environmental Prediction et al. 2015). We used
the NCEP FNL global analysis operational dataset to conduct
these runs, which has more observational assimilation
(;10%) compared to the GFS forecasts (Li et al. 2024), pro-
viding a more precise and realistic understanding of hurricane
dynamics. Note that the term forecast is often used in previ-
ous studies when using these data to conduct retrospective

FIG. 4. Error bar plots showing the average calibrated model forecasting skills: (left) MAPESF and (right) KGE
during (a),(b) the hurricane period and (c),(d) one normal year before the hurricane. The calibration metrics are col-
ored green and compared to the default NWM 2.0 and 2.1 results (gray).
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WRF simulations (Li and Chen 2022; Tien et al. 2013; Zhang
and Pu 2017; Nolan et al. 2021a; Li and Pu 2021).

Altering the WRF-ARW’s PBL, microphysics, and cumulus
schemes will impact not only the hurricanes’ track but also
the intensity of the simulated hurricanes. Both can affect the
location and intensity of hurricane-induced precipitation forc-
ing and thus streamflow forecasts of the C-AWH run. To
comprehensively analyze the impacts of these schemes on the
accuracy of hurricane-induced floods, the overall statistics of
hurricane intensity, track, and streamflow forecasts are calcu-
lated for the four considered hurricanes, and the average per-
formance metrics are summarized in Fig. 6.

Among all the considered cases, CU_GF showed the best
hurricane track performance (Fig. 6b). In terms of intensity
predictions, the YSU scheme outperformed the MYJ, MP_Thom
was better than MP_WDM, and CU_GF had superior perfor-
mance compared to CU_MSKF and NO_CU schemes on av-
erage in the four considered cases (Fig. 6a). In general, the
MP_Thommade the best hurricane intensity predictions in most
cases, with an ;8% relative average improvement compared to
the Base case. The hurricane intensity and track error metrics of
each hurricane case, which are used to calculate the averages in
Fig. 6, are presented in Table S3.

The WRF-ARW precipitation forcing outputs are then
used to conduct streamflow predictions with WRF-Hydro.
Figure 6 indicates that the Base (PBL_YSU), MP_Thom, and
CU_GF cases outperform their corresponding PBL, micro-
physics, and cumulus parameterizations based on average
KGE and MAPESF in the considered cases. Table S4 presents
the streamflow statistics of all the default C-AWH simula-
tions. Based on these results, we chose the best PBL, microphys-
ics, and cumulus schemes that had the best performance first
in intensity (Fig. 6a) and then in streamflow error MAPESF

(Fig. 6c) metrics, which were YSU (Base), MP_Thom, and
CU_GF, respectively. These cases will then be modified in
the new runs of the next section to further improve their
forecasts. The rationale for choosing the best intensity pre-
dictions is that our newly introduced adjustment (vertical dif-
fusion) will significantly impact hurricane intensity forecasts.
Hence, by choosing the best intensity cases, we would assess
our new modifications in the best existing parameterizations
in WRF-ARW and seek to further enhance their forecasts by
introducing our new adjustments. We note these schemes
performed best for the four considered hurricanes, and the
results may not be general for all tropical cyclone simula-
tions. Furthermore, the PBL_YSU (Base) case is the WRF’s
default configuration, which uses the recommended PBL and
microphysics schemes for hurricane simulations (Wang et al.
2018). In this study, we will focus on improving PBL parame-
terizations and their impacts on streamflow forecasts since it
is established in prior studies that diffusion in existing PBL
schemes is overly dissipative for rotating hurricane flows
(Momen et al. 2021; Romdhani et al. 2022). We will follow
the new approach introduced in Matak and Momen (2023) and
characterize its impacts on hurricane precipitation and stream-
flow forecasts in coupled hydrometeorological simulations.

c. The impacts of the new vertical diffusion adjustments
on simulated hurricane intensity

In this section, we present the impacts of adjusting the de-
fault vertical diffusion parameterization in WRF-ARW on
hurricane wind intensity forecasts. The newly applied diffu-
sion adjustments significantly improved the hurricane inten-
sity predictions compared to the default WRF-ARW runs.
Figure 7 shows the hurricane intensity time series for the Base
and CU_GF cases for the default and reduced diffusion

FIG. 5. The simulated hurricane tracks vs the best-observed track (black line) for all hurricanes with (a) Base (PBL_YSU) and
(b) CU_GF schemes in WRF-ARW.
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configurations. The figure clearly shows that reducing the de-
fault vertical diffusion (green lines in Fig. 7) remarkably im-
proved the hurricane wind intensity forecasts in all the
considered cases compared to the default runs (gray lines in
Fig. 7). For all considered hurricanes, this vertical diffusion
adjustment intensifies the simulated hurricanes and hence can
capture the best-observed maximum wind speed data (black
lines in Fig. 7) better than the default schemes.

Overall, this reduced diffusion adjustment improved the
hurricane intensity forecasts by reducing MAPEIntensity by
;21%–37% on average for all hurricanes. This result is consis-
tent with previous studies which have demonstrated using other
PBL codes that most of the current PBL schemes are overly
diffusive for simulating major hurricanes (Gopalakrishnan
et al. 2013; Zhang and Pu 2017; Tang et al. 2018; Zhang et al.
2015). The reason for this overestimation is that current
turbulence models typically do not consider the turbulence

suppression effects due to strong rotation in hurricanes.
These remarkably improved intensity forecasts can highly in-
fluence hurricane-induced precipitation and thus streamflow
forecasts in WRF-Hydro.

d. The impacts of the new vertical diffusion changes on
simulated hurricane vortex size

Altering the vertical diffusion will also impact the simulated
hurricane vortex size. To evaluate this effect, the 10-m wind is
averaged radially and is plotted for each hurricane in Fig. 8.
The figure indicates that the radius of maximum winds
(RMW) decreases when the vertical diffusion is reduced
(green lines) compared to the default cases (gray lines). This
is consistent with prior studies that showed a similar effect
that when the storms intensified their vortex size reduced
(Gopalakrishnan et al. 2013; Zhang and Pu 2017; Tang et al.
2018; Zhang et al. 2015). To evaluate the accuracy of these ra-
dial wind profiles, we compared them with the International
Best Track Archive for Climate Stewardship (IBTrACS) data
(Knapp et al. 2010) shown as black dots in Figs. 8a–d. The av-
erage RMW from reduced diffusion, default, and observation-
based data is shown in Fig. 8e. The figure shows that the
default cases significantly overestimate the size of the RMW
(;57% relative error), while the reduced diffusion cases re-
markably improve the vortex size forecasts (;27% relative
error). Moreover, as Fig. 8f indicates the average maximum
wind intensity of the reduced diffusion cases has a much
lower error (;4%) than the default cases (;33%) when
compared to observations.

e. Storm intensity improvement and its relationship with
the precipitation

Previous studies have indicated that hurricane intensity and
precipitation amount are related (Kanada et al. 2012). This is
significant for the streamflow response as it is shown to rely
more on the precipitation input during extreme hurricane
events than during regular seasons (Abbaszadeh et al. 2020).
Here, we characterize the relationship between simulated pre-
cipitation and hurricane intensity in default and reduced diffu-
sion PBL schemes. Figure 9 shows the simulated intensity and
precipitation distribution for Hurricane Katrina at 1200 UTC
29 August 2005. The darker red colors of Fig. 9b compared to
the default run of Fig. 9a indicate that reducing the vertical dif-
fusion intensifies the hurricane winds. Furthermore, it influen-
ces the size of hurricanes by reducing the hurricane vortex,
consistent with previous studies (Matak and Momen 2023). In-
creasing the intensity of the hurricane has substantial impacts
on the precipitation amount and distribution. Figure 9d shows
that when the hurricane intensifies, the maximum rate of pre-
cipitation increases (cf. darker colors of Fig. 9d with Fig. 9c),
and the areal extent of precipitation decreases. A similar
wind intensity–precipitation relationship is also apparent in Hur-
ricane Harvey which is shown in Fig. S6. We also compared the
generated wind and precipitation fields with available satellite
data from Hurricane Katrina and Harvey. It is found that the in-
tensity and size of the reduced diffusion cases agree more with
satellite observations (see Figs. S7 and S8). In the next section,

FIG. 6. The error performance metrics for all default C-AWH
simulations with different PBL, MP, and CU parameterizations,
averaged over four considered hurricanes. The error bar denotes
the 10th–90th percentile of performance metrics for each case. The
red and green dashed lines represent the worst and best values of
the corresponding metrics, respectively.
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the accuracy of these simulations will be extensively evaluated
using observations.

This hurricane intensity–precipitation relation can be
quantitatively characterized. Figure 10 depicts their correla-
tion by presenting the maximum hourly intensity for all four
simulated hurricanes against maximum hourly precipitation.
The positive intensity–precipitation relationship is apparent
in this figure as the higher precipitation occurs at greater
hurricane intensity. These results are also consistent with
Cerveny and Newman (2000), who showed that the average
rainfall amount rises with each category of hurricane wind speed.
Furthermore, the maximum intensity and precipitation amounts
for reduced diffusion schemes are greater than the default diffu-
sion cases (cf. green and gray dots in Fig. 10).

To further examine the relationship between the maximum
precipitation and intensity, a linear regression analysis is con-
ducted between these two variables. Table 4 denotes the lin-
ear regression parameters, including the Pearson correlation
coefficient R, slope, p value, and standard error. The average
R value of this linear regression for all the cases is 0.79 with a
low p value, which corroborates a high correlation between
these two variables. Furthermore, this table shows that as the
vertical diffusion is reduced, the maximum simulated intensity
and precipitation increase consistently in the considered

hurricane cases. We also examined this relationship sepa-
rately for the inner and outer rainbands. We found that this
linear relationship holds for the inner rainband (within 3 3
RMW, see Fig. S9); however, it does not necessarily hold for
the outer rainbands (not shown).

To evaluate the impacts of the reduced diffusion adjust-
ments on precipitation forcing, the average total rainfall for
all hurricanes is depicted in Fig. 11. The total precipitation is
calculated from the sixth hour of the simulation to the dissipa-
tion of each hurricane. Figure 11a shows the average total
precipitation inside the 75-km distance with the hurricane
eye, which is ;2 RMW in different cases and represents the
inner rainband (Li et al. 2017; Li and Wang 2012; Wang 2009;
Gao et al. 2020). This figure indicates that the total precipita-
tion in the inner rainband of the hurricanes is increased for re-
duced diffusion cases compared to the default WRF runs.
However, in the outer rainband, the total precipitation of the
default cases is higher than in the reduced diffusion cases
(Fig. 11b). This leads to a decrease in the total precipitation
of the reduced diffusion cases (Fig. 11c), which we will show
agrees more with observations. The reason for this total de-
crease is related to the decreased hurricane size for the re-
duced diffusion cases (Figs. 8 and 9), which leads to a lower
overall generated precipitation.

FIG. 7. The simulated hurricane wind intensity (maximum 10-m wind speed) time series vs the best-observed wind intensity for all hurri-
canes with (top) Base (PBL_YSU) and (bottom) CU_GF WRF-ARW configurations. The black solid line, gray solid line, and green dot-
ted line denote hurricane intensity from observation, default diffusion, and RD schemes, respectively.
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f. The impacts of changing the vertical diffusion on
accumulated precipitation

To characterize the effects of the new reduced diffusion
runs on the magnitude and spatial distribution of precipita-
tion, we compared our simulation’s precipitation forecasts
with the Stage IV analysis of observational data. To this end,
the average total precipitations of the considered cases over
land are calculated for both methods versus the Stage IV
data in Fig. 12a. In this figure, we included all three best con-
sidered PBL, microphysics (MP), and cumulus (CU) schemes
for Hurricanes Harvey, Katrina, and Frances to obtain an
ensemble average of the accumulated precipitation during
1 day over land. Hurricane Irma was not included in this
figure since the default diffusion cases do not properly make
landfall and have significant track errors (Table S5), which
can make this analysis more prone to track errors rather than
size and intensity impacts (a separate analysis of Irma will be
shown after this figure). The figure indicates that the default
cases overestimate the mean total precipitation over land

compared to the Stage IV data likely due to their overesti-
mated vortex size (Fig. 8e). On the other hand, our reduced
diffusion case (green bar) agrees more with the observed
data compared to the default case. To quantify the improve-
ments, MAPEPrecipitation is introduced to calculate the aver-
age of total precipitation error from Fig. 12a (see Table S6).
Figure 12b indicates that the reduced diffusion improves the
total precipitation forecasts of the default diffusion cases by
;29% on average. Finally, to evaluate the spatial distribu-
tion of the hurricane precipitation we calculated the grid-
wise MAE between the generated precipitation forcing maps
of the simulations and Stage IV observational data. This met-
ric is named MAEGrid and is shown in Fig. 12c. The figure
shows that the reduced diffusion cases also improve the spa-
tial distribution of the generated precipitation forcing by
;5% on average compared to the default cases. Therefore,
the generated precipitations from the reduced diffusion cases
agree more with the Stage IV observational data compared to
the default cases.

FIG. 8. (a)–(d) The radial profiles of the average surface wind speed for all hurricanes, (e) average RMW, and (f) average surface
maximum wind speed compared to observation-based data (IBTrACS).
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The precipitation forecast accuracy and the predicted
streamflow response for all hurricanes are nonlinearly depen-
dent on hurricane track and intensity. Changing the vertical
diffusion influences both the intensity and track of the simu-
lated hurricanes. Hence, the reduced vertical diffusion param-
eterization nonlinearly influences precipitation data due to
the complex interplay of hurricane track and intensity in rain-
fall location and peaks. For instance, Fig. 13 compares the
hourly accumulated precipitation amount simulated for Hur-
ricane Irma (Base) using the default and reduced diffusion
schemes with the Stage IV analysis dataset (Du 2023). This
figure shows that reducing the vertical diffusion considerably
improved Hurricane Irma’s accumulated precipitation extent
(Fig. 13d) when compared to the Stage IV dataset (Fig. 13b).
The reason that the default PBL scheme run (Fig. 13c) does
not predict the precipitation extent well is mainly due to its in-
accurate track prediction [Fig. 5(a3)], which does not make
landfall correctly perhaps because its intensity was underes-
timated and affected its trajectory. On the other hand, the
predicted track of Hurricane Irma in the reduced diffusion
case outperformed the default base case by ;22.8% (see
Table S5), leading to improved precipitation extent. This is

also evident from one USGS gauge data shown in Fig. 13a
in which the default diffusion case (gray) completely misses
the streamflow peak induced by Hurricane Irma, while the
reduced diffusion case (green) better agrees with the USGS
data (blue).

Hurricane intensity enhancements can also influence the
spatial precipitation extent by altering the maximum precip-
itation rate and size as described in the previous section.
For instance, while the track is not significantly improved in
some cases (e.g., CU_GF_RD of Frances), the streamflow
prediction of their reduced diffusion case outperforms the
default WRF-ARW case (e.g., ;11% improvement in
MAPESF for Frances). This improvement in the streamflow
forecasts is likely due to the improvement in the hurricane
intensity (Fig. 7) of the reduced diffusion case that outper-
forms the default case and captures the intensification of
this hurricane before landfall (see Table S5 for more de-
tails). Another similar example is shown for the Hurricane
Harvey CU_GF case in Fig. S10. While the track improve-
ment is minor in this case, the intensity forecast improved
by ;57%, which is likely the reason behind the improved
streamflow forecasts (Table S7). Therefore, both the intensity

FIG. 9. (a),(b) Wind intensity at 500-m altitude and (c),(d) induced precipitation for Hurricane Katrina at
1200 UTC 29 Aug 2005 with (left) default and (right) RD WRF-ARW configuration.
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and track of the simulated hurricanes can interplay in forecast-
ing hurricane precipitation. Furthermore, since the new reduced
diffusion cases alter both the intensity and track of hurricanes,
the impacts of the new diffusion adjustments on the accumu-
lated precipitation data are nonlinear and result from complex
interactions of both parameters. Thus, to further elucidate the
accuracy of the precipitation forcing of the newly adjusted re-
duced diffusion cases compared to the default cases, an exten-
sive statistical analysis of the streamflow prediction errors is
conducted in the next section.

g. The impacts of altering the vertical diffusion on the
accuracy of hurricane flood forecasts

To comprehensively determine the effects of vertical diffu-
sion on precipitation forcing, we calculated the statistics of all
three considered cases. Figure 14 shows the average perfor-
mance metrics of all the default and reduced diffusion cases.
Figures 14(a1)–(a3) indicate that reducing the default vertical
diffusion in different configurations consistently improves the
intensity of the simulated hurricanes as expected (cf. green
and gray bars in Fig. 14). The reduced diffusion cases have im-
proved MAPEIntensity on average by ;39.5% compared to
their default diffusion schemes. A summary of the obtained
improvements [(ErrorDefault 2 ErrorRD)3 100%/ErrorDefault]
in each configuration is listed in Table 5. The maximum observed
intensity improvement was for Hurricane Katrina with;51% im-
provement, and the lowest improvement was for Hurricane Fran-
ces by ;18%. Note that these considerably improved intensity
forecasts are obtained for the best-performing default PBL, cumu-
lus, and microphysics schemes (cf. gray and brown bars in Fig. 14).

In terms of hurricane trajectory forecasts, the overall
track error MAETrack of the reduced diffusion cases slightly
improved their corresponding default cases by ;5.2% on
average for all the considered cases. However, the track
forecasts do not consistently improve in all tested hurricanes
and configurations. The reason for this is that improving
hurricane track forecasts is generally a more challenging
task since it is not only influenced by the hurricane vortex
but also influenced by the environmental wind field (Velden
et al. 1992) and global scale weather processes (Fierro et al.
2009), which are provided as the boundary condition data of
our runs.

These improved hurricane simulations are then coupled
with WRF-Hydro to evaluate the performance of streamflow
forecasts compared to the USGS gauges. Figures 14(c1)–(c3)
indicate that reducing the vertical diffusion (green bars)
consistently improves the average MAPESF compared to the
default schemes (gray bars) in the three considered configura-
tions. Table 5 shows MAPESF was improved by ;15.8%
on average in all the considered cases. The lowest average
MAPESF improvement was for Hurricane Katrina by ;10%,
and the highest observed improvement was for Hurricane Irma
by ;30% compared to the default diffusion cases. The detailed

FIG. 10. Scatterplots of maximum hourly intensity and rainfall of
the Base case (PBL_YSU) within 500 km of the hurricane eye for
each case. The gray and green dots with blue and orange best-
fitting straight lines represent the default and RD simulation,
respectively.

TABLE 4. The linear regression analysis parameters for the default and reduced vertical diffusion cases of the hurricane simulations,
evaluating the relationship between maximum wind intensity and precipitation.

Hurricane Diffusion Max intensity (m s21) Max precipitation (mm) Slope R p value Standard error

Harvey Default 48.7 94.2 2.22 0.66 7.9 3 1023 0.71
Reduced 68.8 192.9 3.65 0.78 5.8 3 1024 0.81

Katrina Default 56.3 126.4 1.57 0.66 3.8 3 1024 0.37
Reduced 70.9 142.5 1.38 0.83 1.5 3 1027 0.19

Irma Default 60.4 123.9 3.15 0.83 1.3 3 1028 0.40
Reduced 73.5 154.7 2.40 0.89 2.4 3 10210 0.24

Frances Default 42.5 63.8 0.97 0.72 1.3 3 1022 0.31
Reduced 50.6 103.3 3.65 0.92 2.4 3 1025 0.50
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streamflow statistics for all the considered cases are presented in
Table S7.

To quantify the temporal prediction of the streamflow fore-
casts in addition to their bias error (MAPESF), the KGE and
correlation coefficient metrics of the simulations are calcu-
lated. It is found that the reduced diffusion cases improve
the KGE even more than the bias by an average of ;67.4%
(Table 5) compared to the default case. They consistently in-
crease KGE and even make it positive for some cases [cf.
green and gray bars in Fig. 14(d3)]. The KGE was increased
on average between 0.06 and 0.82 in different simulated cases
(Table S7). It has been shown that the KGE value above
20.4 means that the model improves the mean flow bench-
mark (Knoben et al. 2019). Reducing the vertical diffusion
increases the KGE values above this threshold in most of
our considered cases. Finally, the correlation coefficient of
the forecasted streamflow was improved on average when

reducing the default vertical diffusion [cf. green and gray
bars in Figs. 14(e1)–(e3)]. Table 5 shows that the reduced
diffusion cases increased the correlation of streamflow fore-
casts with the USGS data by ;34% on average compared to
the default cases.

The obtained results are general and grid resolution inde-
pendent. To corroborate the generality of the findings, we
performed a grid sensitivity test by varying the resolution of
WRF-ARW from 2 to 32 km (see Fig. S11). Both hurricane
intensity error and its simulated WRF-Hydro streamflow im-
proved with increasing grid resolution as expected. The aver-
age MAPEIntensity and MAPESF reduced by ;7%–20% and
;17%–30%, respectively, when increasing the grid resolution
from 32 to 8 km and from 8 to 2 km. Furthermore, for all the
considered grid resolutions, the reduced diffusion model gives
a more accurate prediction in terms of both hurricane inten-
sity and flood forecasts compared to the default diffusion
cases (see Text S8). Finally, we also investigated the forecast-
ing performance of this reduced diffusion model with the actual
GFS forecast forcing dataset rather than historical analysis data.
To this end, we performed eight additional simulations using
four hurricanes and PBL_YSU (base) and PBL_YSU_RD
cases. We observed a similar trend across all hydrometeorologi-
cal evaluation metrics for the considered hurricane cases (see
Fig. S12). The reduced diffusion model outperformed the de-
fault WRF model’s average MAPEIntensity and KGE by ;31%
and ;53%, respectively, confirming the generality and applica-
bility of our findings for operational frameworks.

Our results indicate that inaccurate predictions of hurricane
intensity will not only impact meteorological predictions but
can also significantly influence streamflow flood forecasts.
Previous studies have shown that current turbulence parame-
terizations in NWPs typically underestimate the intensity of
major hurricanes (Matak and Momen 2023; Romdhani et al.
2022; Gopalakrishnan et al. 2021) since they do not account
for turbulence suppression effects due to strong rotation in
hurricanes. In this study, we adjusted the vertical diffusion in

FIG. 11. The total hourly rainfall (mm) averaged for all hurricanes inside (a) 0–75, (b) 75–500, and (c) 0–500 km. The 75-km radius from
the hurricane eye is’1.5–2.53 RMW for the default and RD cases.

FIG. 12. Evaluation of the default and RD cases using stage IV
observation-based dataset: (a) mean precipitation, (b) average
MAPEPrecipitation, and (c) MAEGrid to compare their mean, abso-
lute bias, and spatial distribution performance with Stage IV analy-
sis datasets.

K HONDAKER AND MOMEN 1251AUGUST 2024

�"!���!���!���������$����! �������%��� ���������	��	������
�	������




WRF-ARW following Matak and Momen (2023) to improve
hurricane intensity predictions and showed how this change
can enhance streamflow forecasts. The findings indicate the
significance of PBL parameterizations on hurricane-induced
flood forecasts and motivate the development of more accu-
rate generalized schemes, which are specifically designed and
evaluated for extreme weather events such as hurricanes. This
will be particularly important since floods are one of the ma-
jor damages of hurricanes and improved streamflow forecasts
will be critical for precautionary actions.

4. Conclusions

Different NWP parameterizations can uniquely modulate
and influence hurricane-induced flood forecasts. In this paper,
we comprehensively characterized the impacts of various ex-
isting and adjusted PBL, microphysics, and cumulus schemes
on hurricane intensity, track, and streamflow predictions. This
was achieved by conducting 60 coupled ARW-WRF-Hydro
simulations for four category 4–5 hurricanes (Harvey, Katrina,
Irma, and Frances) in three U.S. coastal regions (Texas, Louisi-
ana, and Florida). Before running the coupled simulations, 201
stand-alone WRF-Hydro simulations were initially conducted
to comprehensively analyze and calibrate various hydrological
model parameters using a stepwise approach. Next, the first suite
of coupled simulations was performed by running 28 cases to
evaluate WRF’s seven different default schemes. Then, a second
suite of new simulations was conducted in which the default
vertical diffusion was reduced to improve the intensity of
hurricane forecasts. To this end, the best-performing schemes
were selected to run 12 more new reduced diffusion cases. Fi-
nally, a grid sensitivity test was conducted to corroborate the
generality of the findings (20 runs). In summary, the key find-
ings of this study are as follows:

1) The hydrological model parameters are typically cali-
brated for normal hydrometeorological events. Hence,

the validity of these models needs to be revisited for ex-
treme events such as hurricanes. Here, we examined the
sensitivity of 13 parameters and were able to improve the
NWM by calibrating the surface runoff parameter
(refkdt) and vegetation parameter (mp) in the three con-
sidered regions. Our calibrated WRF-Hydro model out-
performed NWM 2.0 (NWM 2.1) in KGE and MAPESF

during the hurricane period by ;38% (.100%) and
;6% (;16%) and in 1 year before the hurricane by
;81% (.100%) and ;19% (;24%), respectively.

2) The WRF-ARW atmospheric model was then coupled
with the calibrated WRF-Hydro model to simulate the
impacts of various WRF’s PBL, cumulus, and microphys-
ics parameterizations on hurricane-induced streamflow
forecasts. The results of a comprehensive sensitivity anal-
ysis of seven considered configurations indicated that the
YSU PBL, the Thompson microphysics, and the GF cu-
mulus schemes had a superior performance in terms of
hurricane intensity and streamflow forecasts for 8-km grid
resolution simulations.

3) All the default WRF-ARW models’ schemes underesti-
mated the best-observed intensities of the considered ma-
jor hurricanes. Hence, new adjustments were applied to
the vertical diffusion parameterization in WRF-ARW by
reducing the effective depth of the vertical eddy diffusiv-
ity in the best-performing parameterizations. The reduced
vertical diffusion cases significantly improved the hurri-
cane intensity forecasts (MAPEIntensity) in all cases by
;39.5% on average. A decrease in diffusion causes a de-
crease in angular momentum dissipation in the PBL and
leads to an increase in the hurricane’s inflow, spinup,
moisture convergence, and convection in the eyewall.
Hence, by effectively reducing the friction, this modifica-
tion is able to intensify hurricanes and enhance their fore-
casts. Furthermore, while hurricane track predictions are
more challenging due to their dependence on the

FIG. 13. Accumulated precipitation (mm) for Hurricane Irma from WRF-ARW simulations. (a) The streamflow prediction of default
and RD compared with USGS 02300500 gauge observation [star in (b)] is presented for Hurricane Irma. (c) Default and (d) RD WRF-
ARW simulations for Base cases are compared with (b) Stage IV observation-based data.
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FIG. 14. Bar plots showing the average enhanced model performance skills: (a) MAPEIntensity, (b) MAETrack, (c) MAPESF, (d) KGE,
and (e) Pearson’s correlation coefficient R for different (left) PBL, (middle) MP, and (right) CU parameterizations. The gray bar repre-
sents the default diffusion, and the green bar shows the performance of the RD parameterization.
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environmental global wind field, the reduced diffusion ad-
justment also slightly improved hurricane track forecasts
by ;5.2% on average.

4) The implications of this hurricane intensity improvement on
precipitation and streamflow forecasts were then character-
ized. It was shown that simulated hurricane intensity and
maximum precipitation are correlated and that reducing the
diffusion decreases the size of hurricanes and leads to more
intense local precipitations. This maximum precipitation–
intensity relationship is statistically quantified by a linear re-
gression model. The average R value of this linear regression
for all the considered cases is found to be 0.79, indicating a
high correlation between these variables in major hurricanes.
Compared to the Stage IV observation-based rainfall data,
the reduced diffusion showed an average of ;29% improve-
ment over default schemes for predicting the total accumu-
lated precipitation.

5) Finally, the impacts of hurricane intensity enhancements
on streamflow forecasts of WRF-Hydro were determined.
A comprehensive error analysis of the conducted runs in-
dicated that the streamflow performance metrics remark-
ably improved in the reduced diffusion cases by ;15.8%
in MAPESF, ;67.4% in KGE, and ;33.8% in R on aver-
age. Therefore, enhancing hurricane intensity forecasts
has a remarkable impact on hurricane streamflow predic-
tions and needs to be carefully considered for accurate
hurricane-induced flood forecasts.

Our results underscore the significance of turbulent diffu-
sion parameterizations not only on hurricane intensity dynam-
ics but also on hurricane-induced flood forecasts. These
findings and insights are useful for enhancing hurricane and
streamflow forecasts in hydrometeorological NWP models.
Accurate hurricane forecasts are essential for proper evacua-
tion orders and can reduce some damage from these extreme
weather events.
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Janjić, Z. I., 1994: The step-mountain eta coordinate model: Fur-
ther developments of the convection, viscous sublayer, and
turbulence closure schemes. Mon. Wea. Rev., 122, 927–945,
https://doi.org/10.1175/1520-0493(1994)122,0927:TSMECM.

2.0.CO;2.
Jeworrek, J., G. West, and R. Stull, 2019: Evaluation of cumulus

and microphysics parameterizations in WRF across the con-
vective gray zone. Wea. Forecasting, 34, 1097–1115, https://
doi.org/10.1175/WAF-D-18-0178.1.

K HONDAKER AND MOMEN 1255AUGUST 2024

�"!���!���!���������$����! �������%��� ���������	��	������
�	������


https://doi.org/10.1016/j.jhydrol.2020.125814
https://doi.org/10.1016/j.jhydrol.2020.125814
https://doi.org/10.1088/2515-7620/abc39e
https://doi.org/10.1175/JHM-D-20-0218.1
https://doi.org/10.1029/2022MS003088
https://doi.org/10.1007/s12040-017-0830-2
https://doi.org/10.1016/j.jhydrol.2022.128212
https://doi.org/10.1175/2007MWR2085.1
https://doi.org/10.5065/D6PG1QDD
https://doi.org/10.5065/D6PG1QDD
https://doi.org/10.1115/1.4004150
https://doi.org/10.5194/hess-25-5315-2021
https://doi.org/10.1038/nature03906
https://doi.org/10.1038/nature03906
https://doi.org/10.1175/BAMS-D-16-0134.1
https://doi.org/10.1175/BAMS-D-16-0134.1
https://doi.org/10.1175/2009MWR2946.1
https://doi.org/10.1007/s00376-020-9202-y
https://doi.org/10.3390/hydrology3020019
https://doi.org/10.3390/hydrology3020019
https://ral.ucar.edu/sites/default/files/public/projects/wrf-hydro/technical-description-user-guide/wrf-hydrov5.2technicaldescription.pdf
https://ral.ucar.edu/sites/default/files/public/projects/wrf-hydro/technical-description-user-guide/wrf-hydrov5.2technicaldescription.pdf
https://ral.ucar.edu/sites/default/files/public/projects/wrf-hydro/technical-description-user-guide/wrf-hydrov5.2technicaldescription.pdf
https://doi.org/10.1029/2020EA001422
https://doi.org/10.1029/2020EA001422
https://doi.org/10.1175/JAS-D-11-0340.1
https://doi.org/10.5194/acp-14-5233-2014
https://doi.org/10.5194/acp-14-5233-2014
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1175/2010JAMC2432.1
https://doi.org/10.1175/2010JAMC2432.1
https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.
https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.
https://doi.org/10.1016/j.envsoft.2019.05.001
https://doi.org/10.1016/j.envsoft.2019.05.001
https://doi.org/10.1016/j.advwatres.2021.104059
https://doi.org/10.1175/WAF-D-18-0178.1
https://doi.org/10.1175/WAF-D-18-0178.1


Kain, J. S., 2004: The Kain–Fritsch convective parameterization:
An update. J. Appl. Meteor., 43, 170–181, https://doi.org/10.
1175/1520-0450(2004)043,0170:TKCPAU.2.0.CO;2.

Kanada, S., A. Wada, M. Nakano, and T. Kato, 2012: Effect of
planetary boundary layer schemes on the development of in-
tense tropical cyclones using a cloud-resolving model. J. Geo-
phys. Res., 117, D03107, https://doi.org/10.1029/2011
JD016582.

Katsafados, P., G. Varlas, A. Papadopoulos, C. Spyrou, and
G. Korres, 2018: Assessing the implicit rain impact on sea
state during Hurricane Sandy (2012). Geophys. Res. Lett.,
45, 12 015–12 022, https://doi.org/10.1029/2018GL078673.

Khondaker, M. H., andM.Momen, 2024: Improving hurricane inten-
sity and streamflow forecasts in coupled hydro-meteorological
simulations by analyzing precipitation and boundary layer
schemes, Dataset, version 1. Harvard Dataverse, accessed
29 July 2024, https://doi.org/10.7910/DVN/PVZ9C7.

Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. DeMaria, J. F. W.
Purdom, C. S. Velden, N. C. Grody, and S. J. Kusselson,
2000: Satellite analysis of tropical cyclones using the Advanced
Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc.,
81, 1241–1260, https://doi.org/10.1175/1520-0477(2000)081
,1241:SAOTCU.2.3.CO;2.

Kilicarslan, B. M., I. Yucel, H. Pilatin, E. Duzenli, and M. T.
Yilmaz, 2021: Improving WRF-Hydro runoff simulations of
heavy floods through the sea surface temperature fields with
higher spatio-temporal resolution. Hydrol. Processes, 35,
e14338, https://doi.org/10.1002/hyp.14338.

Kim, K. Y., W.-Y. Wu, E. Kutanoglu, J. J. Hasenbein, and Z.-L.
Yang, 2021: Hurricane scenario generation for uncertainty
modeling of coastal and inland flooding. Front. Climate, 3,
610680, https://doi.org/10.3389/fclim.2021.610680.

Klotz, B. W., and E. W. Uhlhorn, 2014: Improved stepped fre-
quency microwave radiometer tropical cyclone surface winds
in heavy precipitation. J. Atmos. Oceanic Technol., 31, 2392–
2408, https://doi.org/10.1175/JTECH-D-14-00028.1.

Knabb, R. D., J. R. Rhome Jamie, and D. P. Brown, 2023: Tropical
cyclone report Hurricane Katrina, 23–30 August 2005, 43 pp.,
https://www.nhc.noaa.gov/data/tcr/AL122005_Katrina.pdf.

Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and
C. J. Neumann, 2010: The International Best Track Archive
for Climate Stewardship (IBTrACS). Bull. Amer. Meteor.
Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1.

Knoben, W. J. M., J. E. Freer, and R. A. Woods, 2019: Technical
note: Inherent benchmark or not? Comparing Nash–Sutcliffe
and Kling–Gupta efficiency scores. Hydrol. Earth Syst. Sci.,
23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019.

Lahmers, T. M., H. Gupta, C. L. Castro, D. J. Gochis, D. Yates,
A. Dugger, D. Goodrich, and P. Hazenberg, 2019: Enhancing
the structure of the WRF-Hydro hydrologic model for semi-
arid environments. J. Hydrometeor., 20, 691–714, https://doi.
org/10.1175/JHM-D-18-0064.1.

}}, C. L. Castro, and P. Hazenberg, 2020: Effects of lateral flow
on the convective environment in a coupled hydrometeorologi-
cal modeling system in a semiarid environment. J. Hydrome-
teor., 21, 615–642, https://doi.org/10.1175/JHM-D-19-0100.1.

}}, and Coauthors, 2021: Evaluation of NOAA national water
model parameter calibration in semi-arid environments prone
to channel infiltration. J. Hydrometeor., 22, 2939–2969,
https://doi.org/10.1175/JHM-D-20-0198.1.

Li, D., and E. Bou-Zeid, 2014: Quality and sensitivity of high-
resolution numerical simulation of urban heat islands. Environ.

Res. Lett., 9, 055001, https://doi.org/10.1088/1748-9326/9/5/
055001.

Li, M., J. A. Zhang, L. Matak, and M. Momen, 2023: The impacts
of adjusting momentum roughness length on strong and
weak hurricane forecasts: A comprehensive analysis of
weather simulations and observations. Mon. Wea. Rev., 151,
1287–1302, https://doi.org/10.1175/MWR-D-22-0191.1.

Li, Q., and Y. Wang, 2012: Formation and quasi-periodic behavior
of outer spiral rainbands in a numerically simulated tropical
cyclone. J. Atmos. Sci., 69, 997–1020, https://doi.org/10.1175/
2011JAS3690.1.

}}, }}, and Y. Duan, 2017: A numerical study of outer rain-
band formation in a sheared tropical cyclone. J. Atmos. Sci.,
74, 203–227, https://doi.org/10.1175/JAS-D-16-0123.1.

Li, S., and C. Chen, 2022: Air-sea interaction processes during
hurricane Sandy: Coupled WRF-FVCOM model simulations.
Prog. Oceanogr., 206, 102855, https://doi.org/10.1016/j.pocean.
2022.102855.

Li, X., and Z. Pu, 2021: Vertical eddy diffusivity parameterization
based on a large-eddy simulation and its impact on prediction
of hurricane landfall. Geophys. Res. Lett., 48, e2020GL090703,
https://doi.org/10.1029/2020GL090703.

Li, Z., J. Peng, L. Zhang, and J. Guan, 2024: Exploring the differ-
ences in kinetic energy spectra between the NCEP FNL and
ERA5 datasets. J. Atmos. Sci., 81, 363–380, https://doi.org/10.
1175/JAS-D-23-0043.1.

Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective
double-moment cloud microphysics scheme with prognostic
Cloud Condensation Nuclei (CCN) for weather and climate
models. Mon. Wea. Rev., 138, 1587–1612, https://doi.org/10.
1175/2009MWR2968.1.

Lin, P., L. J. Hopper Jr., Z. L. Yang, M. Lenz, and J. W. Zeitler,
2018a: Insights into hydrometeorological factors constraining
flood prediction skill during the May and October 2015 Texas
hill country flood events. J. Hydrometeor., 19, 1339–1361,
https://doi.org/10.1175/JHM-D-18-0038.1.

}}, Z.-L. Yang, D. J. Gochis, W. Yu, D. R. Maidment, M. A.
Somos-Valenzuela, and C. H. David, 2018b: Implementation
of a vector-based river network routing scheme in the com-
munity WRF-Hydro modeling framework for flood discharge
simulation. Environ. Modell. Software, 107, 1–11, https://doi.
org/10.1016/j.envsoft.2018.05.018.

Liu, M., G. A. Vecchi, J. A. Smith, and T. R. Knutson, 2019:
Causes of large projected increases in hurricane precipitation
rates with global warming. npj Climate Atmos. Sci., 2, 38,
https://doi.org/10.1038/s41612-019-0095-3.

Ma, Y., V. Chandrasekar, H. Chen, and R. Cifelli, 2021: Quantify-
ing the potential of AQPI gap-filling radar network for
streamflow simulation through a WRF-Hydro experiment. J.
Hydrometeor., 22, 1869–1882, https://doi.org/10.1175/JHM-D-
20-0122.1.

Maidment, D. R., 2017: Conceptual framework for the national
flood interoperability experiment. J. Amer. Water Resour.
Assoc., 53, 245–257, https://doi.org/10.1111/1752-1688.12474.

Mascaro, G., A. Hussein, A. Dugger, and D. J. Gochis, 2023:
Process-based calibration of WRF-Hydro in a mountainous
basin in southwestern U.S. J. Amer. Water Resour. Assoc., 59,
49–70, https://doi.org/10.1111/1752-1688.13076.

Matak, L., and M. Momen, 2023: The role of vertical diffusion pa-
rameterizations in the dynamics and accuracy of simulated in-
tensifying hurricanes. Bound.-Layer Meteor., 188, 389–418,
https://doi.org/10.1007/s10546-023-00818-w.

J OURNAL OF HYDROMETEOROLOGY VOLUME 251256

�"!���!���!���������$����! �������%��� ���������	��	������
�	������


https://doi.org/10.1029/2011JD016582
https://doi.org/10.1029/2011JD016582
https://doi.org/10.1029/2018GL078673
https://doi.org/10.7910/DVN/PVZ9C7
https://doi.org/10.1002/hyp.14338
https://doi.org/10.3389/fclim.2021.610680
https://doi.org/10.1175/JTECH-D-14-00028.1
https://www.nhc.noaa.gov/data/tcr/AL122005_Katrina.pdf
https://doi.org/10.1175/2009BAMS2755.1
https://doi.org/10.5194/hess-23-4323-2019
https://doi.org/10.1175/JHM-D-18-0064.1
https://doi.org/10.1175/JHM-D-18-0064.1
https://doi.org/10.1175/JHM-D-19-0100.1
https://doi.org/10.1175/JHM-D-20-0198.1
https://doi.org/10.1088/1748-9326/9/5/055001
https://doi.org/10.1088/1748-9326/9/5/055001
https://doi.org/10.1175/MWR-D-22-0191.1
https://doi.org/10.1175/2011JAS3690.1
https://doi.org/10.1175/2011JAS3690.1
https://doi.org/10.1175/JAS-D-16-0123.1
https://doi.org/10.1016/j.pocean.2022.102855
https://doi.org/10.1016/j.pocean.2022.102855
https://doi.org/10.1029/2020GL090703
https://doi.org/10.1175/JAS-D-23-0043.1
https://doi.org/10.1175/JAS-D-23-0043.1
https://doi.org/10.1175/2009MWR2968.1
https://doi.org/10.1175/2009MWR2968.1
https://doi.org/10.1175/JHM-D-18-0038.1
https://doi.org/10.1016/j.envsoft.2018.05.018
https://doi.org/10.1016/j.envsoft.2018.05.018
https://doi.org/10.1038/s41612-019-0095-3
https://doi.org/10.1175/JHM-D-20-0122.1
https://doi.org/10.1175/JHM-D-20-0122.1
https://doi.org/10.1111/1752-1688.12474
https://doi.org/10.1111/1752-1688.13076
https://doi.org/10.1007/s10546-023-00818-w


Mei, W., and S.-P. Xie, 2016: Intensification of landfalling ty-
phoons over the Northwest Pacific since the late 1970s. Nat.
Geosci., 9, 753–757, https://doi.org/10.1038/ngeo2792.

Ming, J., J. A. Zhang, X. Li, Z. Pu, and M. Momen, 2023: Ob-
servational estimates of turbulence parameters in the at-
mospheric surface layer of landfalling tropical cyclones. J.
Geophys. Res. Atmos., 128, e2022JD037768, https://doi.
org/10.1029/2022JD037768.

Momen, M., 2022: Baroclinicity in stable atmospheric boundary
layers: Characterizing turbulence structures and collapsing
wind profiles via reduced models and large-eddy simulations.
Quart. J. Roy. Meteor. Soc., 148, 76–96, https://doi.org/10.
1002/qj.4193.

}}, and E. Bou-Zeid, 2016: Large-eddy simulations and
damped-oscillator models of the unsteady Ekman boundary
layer. J. Atmos. Sci., 73, 25–40, https://doi.org/10.1175/JAS-D-
15-0038.1.

}}, and }}, 2017: Analytical reduced models for the non-
stationary diabatic atmospheric boundary layer. Bound.-
Layer Meteor., 164 , 383–399, https://doi.org/10.1007/
s10546-017-0247-0.

}}, }}, M. B. Parlange, and M. Giometto, 2018: Modulation
of mean wind and turbulence in the atmospheric boundary
layer by baroclinicity. J. Atmos. Sci., 75, 3797–3821, https://
doi.org/10.1175/JAS-D-18-0159.1.

}}, M. B. Parlange, and M. G. Giometto, 2021: Scrambling and re-
orientation of classical atmospheric boundary layer turbulence
in hurricane winds. Geophys. Res. Lett., 48, e2020GL091695,
https://doi.org/10.1029/2020GL091695.

Nasrollahi, N., A. Aghakouchak, J. Li, X. Gao, K. Hsu, and
S. Sorooshian, 2012: Assessing the impacts of different WRF
precipitation physics in hurricane simulations. Wea. Forecast-
ing, 27, 1003–1016, https://doi.org/10.1175/WAF-D-10-05000.1.

National Centers for Environmental Prediction/National Weather
Service/NOAA/U. S. Department of Commerce, 2015:
NCEP GFS 0.25 degree global forecast grids historical ar-
chive, https://doi.org/10.5065/D65D8PWK.

Nielsen-Gammon, J. W., F. Zhang, A. M. Odins, and B. Myoung,
2005: Extreme rainfall in Texas: Patterns and predictability.
Phys. Geogr., 26, 340–364, https://doi.org/10.2747/0272-3646.
26.5.340.

NOAA, 2022: U.S. billion-dollar weather and climate disasters,
https://doi.org/10.25921/stkw-7w73.

Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Devel-
opment and validation of a hurricane nature run using the
joint OSSE nature run and the WRF model. J. Adv. Model.
Earth Syst., 5, 382–405, https://doi.org/10.1002/jame.20031.

}}, B. D. McNoldy, and J. Yunge, 2021a: Evaluation of the sur-
face wind field over land in WRF simulations of Hurricane
Wilma (2005). Part I: Model initialization and simulation vali-
dation. Mon. Wea. Rev., 149, 679–695, https://doi.org/10.1175/
MWR-D-20-0199.1.

}}, }}, }}, F. J. Masters, and I. M. Giammanco, 2021b:
Evaluation of the surface wind field over land in WRF simu-
lations of Hurricane Wilma (2005). Part II: Surface winds, in-
flow angles, and boundary layer profiles. Mon. Wea. Rev.,
149, 697–713, https://doi.org/10.1175/MWR-D-20-0201.1.

Pal, S., F. Dominguez, M. E. Dillon, J. Alvarez, C. M. Garcia,
S. W. Nesbitt, and D. Gochis, 2021: Hydrometeorological ob-
servations and modeling of an extreme rainfall event using
WRF and WRF-Hydro during the RELAMPAGO field cam-
paign in Argentina. J. Hydrometeor., 22, 331–351, https://doi.
org/10.1175/JHM-D-20-0133.1.

Reed, K. A., M. F. Wehner, and C. M. Zarzycki, 2022: Attribution
of 2020 hurricane season extreme rainfall to human-induced
climate change. Nat. Commun., 13, 1905, https://doi.org/10.
1038/s41467-022-29379-1.

Romdhani, O., J. A. Zhang, and M. Momen, 2022: Characterizing
the impacts of turbulence closures on real hurricane forecasts:
A comprehensive joint assessment of grid resolution, hori-
zontal turbulence models, and horizontal mixing length. J.
Adv. Model. Earth Syst., 14, e2021MS002796, https://doi.org/
10.1029/2021MS002796.

}}, L. Matak, and M. Momen, 2024: Hurricane track trends and
environmental flow patterns under surface temperature
changes and roughness length variations. Wea. Climate Ex-
tremes, 43, 100645, https://doi.org/10.1016/j.wace.2024.100645.

Rudisill, W., K. E. Kaiser, and A. N. Flores, 2022: Evaluating long-
term one-way atmosphere-hydrology simulations and the im-
pacts of two-way coupling in four mountain watersheds. Hydrol.
Processes, 36, e14578, https://doi.org/10.1002/hyp.14578.

Rummler, T., A. Wagner, J. Arnault, and H. Kunstmann, 2022:
Lateral terrestrial water fluxes in the LSM of WRF-Hydro:
Benefits of a 2D groundwater representation. Hydrol. Pro-
cesses, 36, e14510, https://doi.org/10.1002/hyp.14510.

Sabet, F., Y. R. Yi, L. Thomas, and M. Momen, 2022: Character-
izing mean and turbulent structures of hurricane winds via
large-eddy simulations. CTR Proc. of the Summer Program
2022, Stanford, CA, National Science Foundation, 311–322,
https://web.stanford.edu/group/ctr/ctrsp22/v01_Sabet.pdf.

Schaake, J. C., V. I. Koren, Q.-Y. Duan, K. Mitchell, and F. Chen,
1996: Simple water balance model for estimating runoff at
different spatial and temporal scales. J. Geophys. Res., 101,
7461–7475, https://doi.org/10.1029/95JD02892.

Senatore, A., G. Mendicino, D. J. Gochis, W. Yu, D. N. Yates,
and H. Kunstmann, 2015: Fully coupled atmosphere-hydrology
simulations for the central Mediterranean: Impact of enhanced
hydrological parameterization for short and long time scales. J.
Adv. Model. Earth Syst., 7, 1693–1715, https://doi.org/10.1002/
2015MS000510.

}}, L. Furnari, and G. Mendicino, 2020: Impact of high-resolution
sea surface temperature representation on the forecast of small
Mediterranean catchments’ hydrological responses to heavy
precipitation. Hydrol. Earth Syst. Sci., 24, 269–291, https://doi.
org/10.5194/hess-24-269-2020.

Shastry, A., R. Egbert, F. Aristizabal, C. Luo, C.-W. Yu, and
S. Praskievicz, 2019: Using steady-state backwater analysis to
predict inundated area from national water model streamflow
simulations. J. Amer. Water Resour. Assoc., 55, 940–951,
https://doi.org/10.1111/1752-1688.12785.

Shearer, E. J., V. Afzali Gorooh, P. Nguyen, K.-L. Hsu, and
S. Sorooshian, 2022: Unveiling four decades of intensifying
precipitation from tropical cyclones using satellite meas-
urements. Sci. Rep., 12, 13569, https://doi.org/10.1038/
s41598-022-17640-y.

Skamarock, W. C., and Coauthors, 2019: A description of the Ad-
vanced Research WRF Model version 4.3. NCAR Tech.
Note NCAR/TN-5561STR, 145 pp., https://doi.org/10.5065/
1dfh-6p97.

Smith, A. B., 2021: 2021 U.S. billion-dollar weather and climate
disasters in historical context-hazard and socioeconomic
risk mapping. 34 pp., https://www.ncei.noaa.gov/monitoring-
content/billions/docs/billions-risk-mapping-2021-ams-forum.pdf.

Tang, J., J. A. Zhang, S. D. Aberson, F. D. Marks, and X. Lei,
2018: Multilevel tower observations of vertical eddy diffusiv-
ity and mixing length in the tropical cyclone boundary layer

K HONDAKER AND MOMEN 1257AUGUST 2024

�"!���!���!���������$����! �������%��� ���������	��	������
�	������


https://doi.org/10.1038/ngeo2792
https://doi.org/10.1029/2022JD037768
https://doi.org/10.1029/2022JD037768
https://doi.org/10.1002/qj.4193
https://doi.org/10.1002/qj.4193
https://doi.org/10.1175/JAS-D-15-0038.1
https://doi.org/10.1175/JAS-D-15-0038.1
https://doi.org/10.1007/s10546-017-0247-0
https://doi.org/10.1007/s10546-017-0247-0
https://doi.org/10.1175/JAS-D-18-0159.1
https://doi.org/10.1175/JAS-D-18-0159.1
https://doi.org/10.1029/2020GL091695
https://doi.org/10.1175/WAF-D-10-05000.1
https://doi.org/10.5065/D65D8PWK
https://doi.org/10.2747/0272-3646.26.5.340
https://doi.org/10.2747/0272-3646.26.5.340
https://doi.org/10.25921/stkw-7w73
https://doi.org/10.1002/jame.20031
https://doi.org/10.1175/MWR-D-20-0199.1
https://doi.org/10.1175/MWR-D-20-0199.1
https://doi.org/10.1175/MWR-D-20-0201.1
https://doi.org/10.1175/JHM-D-20-0133.1
https://doi.org/10.1175/JHM-D-20-0133.1
https://doi.org/10.1038/s41467-022-29379-1
https://doi.org/10.1038/s41467-022-29379-1
https://doi.org/10.1029/2021MS002796
https://doi.org/10.1029/2021MS002796
https://doi.org/10.1016/j.wace.2024.100645
https://doi.org/10.1002/hyp.14578
https://doi.org/10.1002/hyp.14510
https://web.stanford.edu/group/ctr/ctrsp22/v01_Sabet.pdf
https://doi.org/10.1029/95JD02892
https://doi.org/10.1002/2015MS000510
https://doi.org/10.1002/2015MS000510
https://doi.org/10.5194/hess-24-269-2020
https://doi.org/10.5194/hess-24-269-2020
https://doi.org/10.1111/1752-1688.12785
https://doi.org/10.1038/s41598-022-17640-y
https://doi.org/10.1038/s41598-022-17640-y
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.5065/1dfh-6p97
https://www.ncei.noaa.gov/monitoring-content/billions/docs/billions-risk-mapping-2021-ams-forum.pdf
https://www.ncei.noaa.gov/monitoring-content/billions/docs/billions-risk-mapping-2021-ams-forum.pdf


during landfalls. J. Atmos. Sci., 75, 3159–3168, https://doi.org/
10.1175/JAS-D-17-0353.1.

Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall,
2008: Explicit forecasts of winter precipitation using an im-
proved bulk microphysics scheme. Part II: Implementation of
a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115,
https://doi.org/10.1175/2008MWR2387.1.

Tien, D. D., T. Ngo-Duc, H. T. Mai, and C. Kieu, 2013: A study
of the connection between tropical cyclone track and inten-
sity errors in the WRF model. Meteor. Atmos. Phys., 122,
55–64, https://doi.org/10.1007/s00703-013-0278-0.

Tijerina-Kreuzer, D., L. Condon, K. FitzGerald, A. Dugger,
M. M. O’Neill, K. Sampson, D. Gochis, and R. Maxwell,
2021: Continental hydrologic intercomparison project, phase 1:
A large-scale hydrologic model comparison over the continental
United States. Water Resour. Res., 57, e2020WR028931, https://
doi.org/10.1029/2020WR028931.

Tritton, D. J., 1992: Stabilization and destabilization of turbulent
shear flow in a rotating fluid. J. Fluid Mech., 241, 503–523,
https://doi.org/10.1017/S0022112092002131.

Velden, C. S., C. M. Hayden, W. Paul Menzel, J. L. Franklin, and
J. S. Lynch, 1992: The impact of satellite-derived winds on
numerical hurricane track forecasting. Wea. Forecasting, 7,
107–118, https://doi.org/10.1175/1520-0434(1992)007,0107:
TIOSDW.2.0.CO;2.

Verri, G., N. Pinardi, D. Gochis, J. Tribbia, A. Navarra, G. Coppini,
and T. Vukicevic, 2017: Ameteo-hydrological modelling system
for the reconstruction of river runoff: The case of the Ofanto
river catchment. Nat. Hazards Earth Syst. Sci., 17, 1741–1761,
https://doi.org/10.5194/nhess-17-1741-2017.

Viterbo, F., and Coauthors, 2020: A multiscale, hydrometeorologi-
cal forecast evaluation of national water model forecasts of
the May 2018 Ellicott City, Maryland, flood. J. Hydrometeor.,
21, 475–499, https://doi.org/10.1175/JHM-D-19-0125.1.

Wang, W., and Coauthors, 2018: User’s guide for the Advanced
Research WRF (ARW) modeling system, version 4.2, 464 pp.,
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.2/
WRFUsersGuide_v42.pdf.

Wang, Y., 2009: How do outer spiral rainbands affect tropical cy-
clone structure and intensity? J. Atmos. Sci., 66, 1250–1273,
https://doi.org/10.1175/2008JAS2737.1.

Xia, Y., J. Sheffield, M. B. Ek, J. Dong, N. Chaney, H. Wei,
J. Meng, and E. F. Wood, 2014: Evaluation of multi-model
simulated soil moisture in NLDAS-2. J. Hydrol., 512, 107–125,
https://doi.org/10.1016/j.jhydrol.2014.02.027.

Xue, M., J. Schleif, F. Kong, K. W. Thomas, Y. Wang, and K. Zhu,
2013: Track and intensity forecasting of hurricanes: Impact of
convection-permitting resolution and global ensemble Kalman
filter analysis on 2010 Atlantic season forecasts. Wea. Fore-
casting, 28, 1366–1384, https://doi.org/10.1175/WAF-D-12-
00063.1.

Yang, L., J. Smith, M. Liu, and M. L. Baeck, 2019: Extreme
rainfall from Hurricane Harvey (2017): Empirical inter-
comparisons of WRF simulations and polarimetric radar
fields. Atmos. Res., 223, 114–131, https://doi.org/10.1016/
j.atmosres.2019.03.004.

Yin, D., Z. G. Xue, J. C. Warner, D. Bao, Y. Huang, and W. Yu,
2021: Hydrometeorology and hydrology of flooding in Cape
Fear River basin during hurricane Florence in 2018. J. Hy-
drol., 603, 127139, https://doi.org/10.1016/j.jhydrol.2021.
127139.

}}, D. F. Muñoz, R. Bakhtyar, Z. G. Xue, H. Moftakhari,
C. Ferreira, and K. Mandli, 2022a: Extreme water level simu-
lation and component analysis in Delaware estuary during
Hurricane Isabel. J. Amer. Water Resour. Assoc., 58, 19–33,
https://doi.org/10.1111/1752-1688.12947.

}}, Z. G. Xue, D. Bao, A. RafieeiNasab, Y. Huang, M. Morales,
and J. C. Warner, 2022b: Understanding the role of initial soil
moisture and precipitation magnitude in flood forecast using a
hydrometeorological modelling system. Hydrol. Processes, 36,
e14710, https://doi.org/10.1002/hyp.14710.

Yucel, I., A. Onen, K. K. Yilmaz, and D. J. Gochis, 2015: Calibra-
tion and evaluation of a flood forecasting system: Utility of
numerical weather prediction model, data assimilation and
satellite-based rainfall. J. Hydrol., 523, 49–66, https://doi.org/
10.1016/j.jhydrol.2015.01.042.

Zhang, F., and Z. Pu, 2017: Effects of vertical eddy diffusivity pa-
rameterization on the evolution of landfalling hurricanes. J.
Atmos. Sci., 74, 1879–1905, https://doi.org/10.1175/JAS-D-16-
0214.1.

}}, }}, and C. Wang, 2017: Effects of boundary layer vertical
mixing on the evolution of hurricanes over land. Mon. Wea.
Rev., 145, 2343–2361, https://doi.org/10.1175/MWR-D-16-
0421.1.

Zhang, J., P. Lin, S. Gao, and Z. Fang, 2020: Understanding the
re-infiltration process to simulating streamflow in north cen-
tral Texas using the WRF-Hydro modeling system. J. Hy-
drol., 587, 124902, https://doi.org/10.1016/j.jhydrol.2020.
124902.

Zhang, J. A., 2010: Spectral characteristics of turbulence in the
hurricane boundary layer over the ocean between the outer
rain bands. Quart. J. Roy. Meteor. Soc., 136, 918–926, https://
doi.org/10.1002/qj.610.

}}, R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On
the characteristic height scales of the hurricane boundary
layer. Mon. Wea. Rev., 139, 2523–2535, https://doi.org/10.
1175/MWR-D-10-05017.1.

}}, D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Eval-
uating the impact of improvements in the boundary layer pa-
rameterization on hurricane intensity and structure forecasts
in HWRF. Mon. Wea. Rev., 143, 3136–3155, https://doi.org/
10.1175/MWR-D-14-00339.1.

}}, R. F. Rogers, and V. Tallapragada, 2017: Impact of parame-
terized boundary layer structure on tropical cyclone rapid in-
tensification forecasts in HWRF. Mon. Wea. Rev., 145, 1413–
1426, https://doi.org/10.1175/MWR-D-16-0129.1.

Zheng, Y., K. Alapaty, J. A. Herwehe, A. D. Del Genio, and
D. Niyogi, 2016: Improving high-resolution weather forecasts
using the Weather Research and Forecasting (WRF) model
with an updated Kain–Fritsch scheme. Mon. Wea. Rev., 144,
833–860, https://doi.org/10.1175/MWR-D-15-0005.1.

Zhou, X., and B. Wang, 2009: From concentric eyewall to annular
hurricane: A numerical study with the cloud-resolved WRF
model. Geophys. Res. Lett., 36, L03802, https://doi.org/
10.1029/2008GL036854.

Zhu, P., B. Tyner, J. A. Zhang, E. Aligo, S. Gopalakrishnan,
F. D. Marks, A. Mehra, and V. Tallapragada, 2019: Role of
eyewall and rainband eddy forcing in tropical cyclone intensi-
fication. Atmos. Chem. Phys., 19, 14 289–14 310, https://doi.
org/10.5194/acp-19-14289-2019.

J OURNAL OF HYDROMETEOROLOGY VOLUME 251258

�"!���!���!���������$����! �������%��� ���������	��	������
�	������


https://doi.org/10.1175/JAS-D-17-0353.1
https://doi.org/10.1175/JAS-D-17-0353.1
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.1007/s00703-013-0278-0
https://doi.org/10.1029/2020WR028931
https://doi.org/10.1029/2020WR028931
https://doi.org/10.1017/S0022112092002131
https://doi.org/10.5194/nhess-17-1741-2017
https://doi.org/10.1175/JHM-D-19-0125.1
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.2/WRFUsersGuide_v42.pdf
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.2/WRFUsersGuide_v42.pdf
https://doi.org/10.1175/2008JAS2737.1
https://doi.org/10.1016/j.jhydrol.2014.02.027
https://doi.org/10.1175/WAF-D-12-00063.1
https://doi.org/10.1175/WAF-D-12-00063.1
https://doi.org/10.1016/j.atmosres.2019.03.004
https://doi.org/10.1016/j.atmosres.2019.03.004
https://doi.org/10.1016/j.jhydrol.2021.127139
https://doi.org/10.1016/j.jhydrol.2021.127139
https://doi.org/10.1111/1752-1688.12947
https://doi.org/10.1002/hyp.14710
https://doi.org/10.1016/j.jhydrol.2015.01.042
https://doi.org/10.1016/j.jhydrol.2015.01.042
https://doi.org/10.1175/JAS-D-16-0214.1
https://doi.org/10.1175/JAS-D-16-0214.1
https://doi.org/10.1175/MWR-D-16-0421.1
https://doi.org/10.1175/MWR-D-16-0421.1
https://doi.org/10.1016/j.jhydrol.2020.124902
https://doi.org/10.1016/j.jhydrol.2020.124902
https://doi.org/10.1002/qj.610
https://doi.org/10.1002/qj.610
https://doi.org/10.1175/MWR-D-10-05017.1
https://doi.org/10.1175/MWR-D-10-05017.1
https://doi.org/10.1175/MWR-D-14-00339.1
https://doi.org/10.1175/MWR-D-14-00339.1
https://doi.org/10.1175/MWR-D-16-0129.1
https://doi.org/10.1175/MWR-D-15-0005.1
https://doi.org/10.1029/2008GL036854
https://doi.org/10.1029/2008GL036854
https://doi.org/10.5194/acp-19-14289-2019
https://doi.org/10.5194/acp-19-14289-2019

