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ABSTRACT

The atmospheric boundary layer (ABL) is a highly turbulent geophysical flow, which has chaotic and often too complex dynamics to unravel
from limited data. Characterizing coherent turbulence structures in complex ABL flows under various atmospheric regimes is not
systematically well established yet. This study aims to bridge this gap using large eddy simulations (LESs), Koopman theory, and
unsupervised classification techniques. To this end, eight LESs of different convective, neutral, and unsteady ABLs are conducted. As the ratio
of buoyancy to shear production increases, the turbulence structures change from roll vortices to convective cells. The quadrant analysis
indicated that as this ratio increases, the sweep and ejection events decrease, and inward/outward interactions increase. The Koopman mode
decomposition (KMD) is then used to characterize their turbulence structures. Our results showed that KMD can reveal non-trivial modes of
highly turbulent ABL flows (e.g., transverse to the mean flow direction) and can reconstruct the primary dynamics of ABLs even under
unsteady conditions with only !5% of the modes. We attributed the detected modes to the imposed pressure gradient (shear), Coriolis (iner-
tial oscillations), and buoyancy (convection) forces by conducting novel timescale and quadrant analyses. We then applied the convolutional
neural network combined with the K-means clustering to group the Koopman modes. This approach is displacement and rotation invariant,
which allows efficiently reducing the number of modes that describe the overall ABL dynamics. Our results provide new insights into the
dynamics of ABLs and present a systematic data-driven method to characterize their complex spatiotemporal patterns.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0206387

I. INTRODUCTION
Real-world atmospheric flows exhibit highly chaotic and complex

dynamics due to the interaction of different forces acting on them.1

The chaotic motions of the atmospheric boundary layer (ABL) flows
stem from their highly turbulent nature, which is characterized by a
very high Reynolds number of !108.2 Accurate representation of tur-
bulence dynamics in these strongly nonlinear systems is becoming
increasingly critical for many applications such as the design of wings,
flow control, wind energy, and weather and climate models.3–7 It is
thus imperative to characterize the underlying dynamics of coherent
turbulent motions in airflows and develop predictive data-driven mod-
els that can guide us to forecast turbulence. In the absence of such
knowledge, engineering designs can fail to efficiently respond to turbu-
lence fluctuations, and numerical models will be unable to accurately
predict the evolution of ABLs.

In addition to the challenges posed by turbulent flows in general,
the ABL presents its own set of complexities. For decades, many stud-
ies attempted to detect and describe coherence in highly nonlinear
ABL flows.8,9 Many factors can simultaneously influence the dynamics
of real-world ABLs such as unsteadiness, baroclinicity, surface hetero-
geneity, rotation, and stratification.10–15 Stratification can greatly influ-
ence the transport of heat,16,17 turbulent mixing,18 the ABL height,19

and the inclination angle of turbulent structures.20 Rotation was also
shown to have a similar effect to stratification where it can alter the
size and orientation of turbulent eddies.21–24 The unsteadiness of the
ABL due to, e.g., variable surface heat flux25–27 or pressure gra-
dients,28,29 can significantly impact turbulence dynamics in these flows.
Baroclinicity can influence turbulence production in the ABL and lead
to different coherent turbulence structures as shown by our prior
studies.30,31
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Roll vortices and convection cells are two well-known coherent
turbulence structures in ABLs. Previous large eddy simulation (LES)8

and observational32 studies showed that under strong mean shear and
near-neutral conditions, horizontal rolls are organized in the ABL.
Nevertheless, recent LESs of atmospheric flows have demonstrated
that as the surface heat flux increases and mean shear decreases, open
cell structures form in convective ABLs.30,33 Depending on the stability
of ABLs, one of these turbulence structures can dominate or both can
coexist.34 Detecting such turbulence structures can be challenging in
real-world ABLs where both structures can coexist and other factors in
the ABL such as unsteadiness and surface heterogeneities can further
complicate the formation of the coherent structures.

The turbulent flow structures are often analyzed through mode
decomposition techniques.35 Given the strongly nonlinear nature of
atmospheric flows, there is presently no prevalent data-driven frame-
work for the general characterization and reconstruction of turbulence
dynamics and coherent structures in different ABL regimes. Common
methods for embedding large-scale dynamics in low-dimensional
space include proper orthogonal decomposition (POD) for nonlinear
flows5 and global eigenmodes for linearized dynamics.36 POD ranks
turbulence structures according to their energy content by diagonaliz-
ing the covariance matrix. Since this method averages in time, it may
not allocate one coherent structure to one mode. In some studies, for
the wake flows behind cylinders, higher POD modes were unable to
show significant physical mechanisms likely due to contamination
with uncorrelated structures.37

Koopman mode decomposition (KMD) is another technique that
has recently attracted attention in the fluid dynamics community.38–40

The Koopman operator,K, allows us to shift the focus of the flow anal-
ysis from nonlinear finite-dimensional dynamics to linear but infinite-
dimensional dynamics. The main advantage of such mapping is that
the linear systems can be simply solved and understood by linear oper-
ator theory and spectral decomposition.41 The main idea is that instead
of analyzing the original highly nonlinear system, by constructing a
Koopman operator, the flow dynamics can be evolved by trivially com-
puting the time dynamics of a linear system using the eigenvalues and
eigenfunctions ofK.

The capability of Koopman mode approximations in linearizing
the representation of many fluid dynamical systems has been demon-
strated in recent studies.36,42,43 KMD has been shown to decouple dif-
ferent frequency components in shear layers more effectively than
POD.36,37,44 Moreover, KMD was able to capture global modes in the
flow using local probe signal measurements.36 To obtain Koopman
modes directly from data, the dynamic mode decomposition (DMD)
algorithm is often used to approximate the Koopman operator with a
best-linear fit model.36,41 The Koopman operator then generates a lin-
ear flow map that approximates the full nonlinear dynamics.

Unraveling and classifying non-trivial dynamics and flow modes
in fluids can be a challenging task, especially for strongly nonlinear sys-
tems. In recent years, a method that has become popular is the utiliza-
tion of unsupervised machine learning techniques, such as K-means
clustering.45 K-means clustering has been successfully used to catego-
rize stress anisotropy46 and POD modes in the wake of wind tur-
bines.47 It is also shown that despite being sensitive to noise and
requiring careful selection of input parameters, this technique is capa-
ble of recognizing similarities and discrepancies in various flows,
thereby providing an understanding of the flow’s underlying

physics.48,49 Despite all challenges, machine learning techniques
exhibit significant potential in the analysis and classification of com-
plex turbulent flow structures.

Convolutional neural networks (CNNs) are a powerful machine
learning method that can be used to classify turbulence structures.
Deep CNNs have become a popular technique for automatically learn-
ing hierarchical features from images.50–52 CNNs have been success-
fully used in different atmospheric flow detection studies.53,54 In
this paper, we propose to leverage the power of CNNs along with the
K-means clustering method in a novel way to classify the Koopman
modes of turbulent ABL flows.

Although KMD has been used in previous studies to analyze fluid
flows,37,55,56 its application to detecting coherent turbulence structures
in high-Reynolds number ABL flows is not yet well established.
Furthermore, a data-driven unsupervised method to categorize the
obtained flow modes into reduced distinctive clusters that can ade-
quately describe the underlying dynamics is lacking. In this study, we
aim to bridge these knowledge gaps using a suite of LESs, and the
KMD approach in conjunction with the K-means clustering method.
By conducting different LESs of convective and neutral ABLs, we will
characterize the efficiency of these data-driven methods and use them
to detect distinctive turbulence structures in ABLs in a controlled
numerical environment. In particular, our research questions are as
follows:

1. How do coherent turbulence structures vary in convective ABLs
as the ratio of buoyancy to shear production increases?

2. How can KMD help us to better understand and detect the spa-
tiotemporal dynamics of coherent turbulence structures in ABLs
such as convective rolls and cells under steady and unsteady
mean forcing?

3. How can data-driven unsupervised clustering techniques along
with KMD reduce the amount of data needed to accurately
describe and characterize the overall turbulence structures in the
ABL?

The outline of this paper is as follows. In Sec. II, we review the
basics of the KMD approach and introduce the suite of conducted
LESs and evaluation metrics. In Sec. III, we present the LES results of
convective and neutral ABLs and characterize their turbulence fea-
tures. Next, the KMD is applied to these ABLs, and the obtained domi-
nant coherent structures in Koopman modes are discussed using
quadrant analysis, spatial correlation, and timescale assessment. Then,
we apply the K-means method to cluster the KMD modes by utilizing
CNNs. Finally, a summary of the key findings of the paper is presented
in Sec. IV.

II. METHODS
A. Overview of Koopman Mode Decomposition and
Clustering

Koopman spectral theory was first introduced for Hamiltonian
flows by providing an operator view to nonlinear dynamical systems.57

Koopman’s operator describes how the nonlinear dynamics of a sys-
tem could be analyzed with an infinite-dimensional linear operator on
the Hilbert space of observables. Consider a general dynamical system
evolving on a smooth manifoldM,

xkþ1 ¼ f xkð Þ; (1)
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where xk 2 M is a state variable. Alternatively, the continuous form
of this system _x ¼ f x tð Þð Þ can be studied; however, since we aim to
analyze the discrete-time data, we adopt the discrete-time dynamical
system in Eq. (1). The Koopman operator, K, is an infinite-
dimensional linear operator that acts on all scalar observable functions
h:M ! C such that

Kh xð Þ ¼ h f xð Þð Þ: (2)

The Koopman representation is a transformation of a nonlinear,
finite-dimensional state-space representation into a linear, infinite-
dimensional representation. This can be seen in Fig. 1 (top panels), in
which we depict a schematic of the Koopman operator applied on an
autonomous dynamical system. The solutions to the considered
dynamical system can be found using the spectral decomposition of
the Koopman operator. For this linear operator, we can consider the
following eigenvalue problem:

Kuj ¼ kjuj; (3)

where kj denotes the jth eigenvalue and uj xð Þ represents the jth eigen-
function of the Koopman operator. Consider a vector-valued observ-
able h(x) including q components that could represent any quantities
of interest such as velocity measurements. This vector may be
expressed in terms of Koopman eigenfunctions as follows:

h xð Þ ¼

h1 xð Þ
h2 xð Þ
:
:

hq xð Þ

2

66664

3

77775 ¼
X1

j¼1
uj xð Þvj; (4)

where vj denotes the Koopman mode associated with the eigenfunc-
tion uj and is given by the projection of the observable h onto the

eigenfunction uj. Hence, observables h(x) can be represented as a lin-
ear combination of Koopman eigenfunctions uj xð Þ with weight vj.
Now, instead of evolving the nonlinear system in the original space
(Fig. 1, top left), one can evolve it by trivially computing the time
dynamics using (2)–(4),

Kh xð Þ ¼ K
X1

j¼1

uj xð Þvj ¼
X1

j¼1

Kuj xð Þvj ¼
X1

j¼1

kjuj xð Þvj: (5)

The iterates of x0 can now be calculated as follows:

yk ¼ h xkð Þ ¼
X1

j¼1

Kkuj x0ð Þvj ¼
X1

j¼1

kj
kuj x0ð Þvj: (6)

In this paper, when only a finite number of modes (p) is used for
the reconstruction of the main flow field, we refer to it as Rp according
to

Rp &
Xp

j¼1
kjuj xð Þvj: (7)

An important feature of the Koopman operator is that it can capture
the entire dynamics of a nonlinear system. However, in many practical
cases, it is not possible to find all the modes and the associated eigen-
values of a dynamical system. To evaluate the Koopman modes
directly from data, the DMD algorithm can be used to approximate
the Koopman operator with a best-linear fit model.41 It has been
shown that the Koopman eigenvalues are the DMD eigenvalues if the
set of observables is sufficiently large, and the data are adequately
rich.36

An algorithm for using the data and DMD to approximate a
Koopman operator comes as follows. To apply the DMD in the space
of observables, first, the data matrices Y and Y0 can be created as

Y ¼
j

h x1ð Þ
j

j
h x2ð Þ
j

' ' '
j

h xm(1ð Þ
j

2

4

3

5; (8)

Y0 ¼
j

h x01
! "

j

j
h x02
! "

j
' ' '

j
h x0m(1

! "

j

2

4

3

5; (9)

where xk is an initial condition to Eq. (1) and x0k denotes the corre-
sponding temporal evolution output after Dt. Next, the DMD algo-
rithm can be performed to calculate AY¼Y0Y† along with the low-
rank counterpart ~AY, where y denotes the Moore–Penrose pseudoin-
verse. The eigenvalues and eigenvectors of AY can approximate
Koopman eigenvalues and modes. Eventually, the approximation of
Koopman modes is given by

UY ¼ Y0VR(1W; (10)

where W can be found from the eigenvalue problem ~AYW¼WL
and Y¼URV* (see Ref. 41 for more details). This procedure yields
approximate Koopman modes, amplitudes, and future time steps
in a linear evolution. The outcome of this process is shown as an
example in Fig. 1 (middle panels) whereby applying the DMD to
actual LES data, the spatiotemporal dynamics of the flow field is
represented by the KMD. These decompositions will be further
discussed in Sec. III.

FIG. 1. Schematic of the overall methodology used in this study to decompose the
LES data of ABL flows. The Koopman operator analysis through DMD is employed
(top) to obtain Koopman modes, amplitudes, and temporal dynamics (middle).
K-means clustering is then applied to cluster the resulting Koopman modes (bottom).
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When the input data are large, many Koopman modes will be
generated. However, the majority of the resulting Koopman modes do
not necessarily yield a physical insight and are sometimes interpreted
as a sign of chaos in data.58 The goal of this paper is to come up with a
reduced set of modes where they can reveal some non-trivial dynamics
about the ABL flows. To this end, after the completion of the KMD,
we use unsupervised clustering methods (e.g., K-means) to classify the
resulting Koopman modes into reduced sets where we can relate them
to the underlying physics. The schematic of applying the unsupervised
clustering method to Koopman modes is shown in the bottom row of
Fig. 1 and will be extensively discussed in Sec. III. This clustering
method enables us to focus on a reduced set of uncorrelated Koopman
modes rather than dealing with many outputted modes from the algo-
rithm described above, which can be similar to each other.

For the data analysis, we developed all Koopman mode decompo-
sition, reconstruction, and clustering framework codes for large data
(Fig. 1) in Python. A range of Python libraries were leveraged to facili-
tate our computations and data processing. For applying machine
learning algorithms, “tensorflow” and “sklearn.cluster” libraries were
used. Furthermore, “shutil” was utilized for file operations. All these
post-processing tasks were performed on supercomputers using Intel
Xeon G6252 CPU. The total computational cost for the KMD opera-
tions was !5000 CPU-core hours. The computational cost associated
with the K-means clustering and CNN feature extraction was notably
lower (!100 CPU-hours) compared to the KMD computations since
we employed pre-trained validated CNNmodels in this work.

B. Large eddy simulations
In this study, the LES technique is employed to simulate different

ABL flow regimes and generate data for the KMD method. LES is the
state-of-the-art method for resolving large turbulent eddies in high-
Reynolds number ABL flows.59 In LES, large energetic scales of motion
are resolved and the eddies smaller than the grid-filter size are parame-
terized using a sub-grid scale (SGS) model. The adopted LES code in
this paper solves the incompressible continuity equation,

@~ui

@xi
¼ 0: (11)

Navier–Stokes momentum conservation,

@~ui

@t
þ ~uj

@~ui

@xj
(
@~uj

@xi

 !
¼ ( 1

q
@~p)

@xi
(
@sij
@xj

þ g
~h
0

hr
di3

þ f Ug ( ~u1
! "

di2 ( f Vg ( ~u2
! "

di1; (12)

and the thermal energy conservation for potential temperature (~h),

@~h
@t

þ ~uj
@~h
@xj

¼ (
@pj
@xj

; (13)

where xi represents the position vector; ~ui ¼ (~u, ~v , ~w) is the resolved
velocity vector; ~p) is a modified pressure defined as
~p) & ~p þ 1

2q~uj
2 þ 1

3 qrkk, where the third term denotes the SGS
kinetic energy; sij is the deviatoric part of the SGS stress tensor; hr is
the reference potential temperature; f is the Coriolis parameter
(¼9:7* 10(5 s(1 here); q is a constant fluid density; g is the gravita-
tional constant; dij is the Kronecker delta; and pj is the SGS heat-flux

vector. To calculate the SGS eddy-viscosity for sij, a dynamic
Lagrangian scale-dependent (LASD) Smagorinsky model is used.60 For
calculating the SGS heat-flux, an eddy-diffusivity (!T ) based model is
employed as pj ¼ !T=PrSGSð Þ @h=@xj

! "
, where a constant Prandtl

number PrSGS ¼ 0:4 is used in the simulations.61 The employed LASD
SGS model has generated reliable velocity spectra and Smagorinsky
coefficients that were in good agreement with experiments.62 To evalu-
ate the spatial derivatives, a Fourier-based pseudospectral approach in
the horizontal directions and a second-order centered-difference
scheme in the vertical direction are employed. For numerical time inte-
gration, the fully explicit second-order Adams–Bashforth method is
used. In this study, the mean variable pressure forcing is expressed as a
geostrophic wind as follows:

Ug ; Vgð Þ & ( 1
f q

@p
@y

;
1
f q

@p
@x

# $
; (14)

where Ug and Vg denote the geostrophic wind velocity components in
the x and y direction, respectively. For the top boundary, a stress-free
and an impermeable boundary condition (w¼ 0) is used, and lateral
boundary conditions are periodic. In all the simulations, a sponge layer
with a Rayleigh damping method is used at the top of the domain to
damp all flow perturbations. For the bottom boundary, a local
logarithmic-wall model, with a Monin–Obukhov stability correction
for non-neutral conditions, based on the filtered velocities is employed
to impose the surface fluxes. For the surface, the aerodynamic rough-
ness length of z0¼ 0.1m is used. More details about the LES model,
and the diabatic simulation setups can be found in Refs. 25, 28, 29, 63,
and 64. This code has been extensively validated against many observa-
tional data under different atmospheric regimes.60,65–68

C. Suite of LESs
To evaluate the KMD method for detecting coherent turbulence

structures in high-Reynolds number ABL flows, we conducted a suite
of different LESs. To this end, ABLs with different stabilities are simu-
lated to generate two distinctive coherent structures. When buoyancy
production is dominant in the ABL, thermal plumes—aka cells—
become the dominant turbulence structures, while hairpin vortex
packets—aka rolls—become the major structures when shear produc-
tion dominates. Hence, we control the ratio between shear and buoy-
ancy turbulence productions by varying the magnitude of the imposed
geostrophic wind in convective ABLs. The summary of all the con-
ducted LESs is presented in Table I. In the first two cases, the geo-
strophic wind magnitude is set to 4 and 16m s(1 under the same
imposed surface heat flux of 0.16K m s(1 (200 w m(2) to vary the
ratio of shear to buoyant production. These unstable ABLs are named
U4, and U16 cases, respectively, according to the magnitude of their
imposed geostrophic wind (Table I). We also tested a completely neu-
tral ABL case denoted as N16 in which the geostrophic wind is set to
16m s(1, but the surface heat flux is set to zero. Furthermore, another
case is conducted under unsteady forcing conditions to assess the
KMD performance when the mean flow is transient. To this end, the
geostrophic forcing is suddenly changed from 16 to 8m s(1 under
neutral conditions, and the case is named N16_uns.

To evaluate the sensitivity of the KMDmethod to grid resolution,
we conducted all these LESs using two different grid resolutions
96* 96* 96 and 192* 192* 192. Thus, in total, eight different LESs
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were performed in this study. The domain height in all cases is Lz ¼
1250 m, and the horizontal domain sizes are Lx ¼ Ly ¼ 2pLz . For
these neutral and unstable ABLs, previous grid convergence tests of
our LES code indicated that Dz of 15.6 and 7.8m resulted in very simi-
lar mean profile results.69 Furthermore, the grid size of Dz+ 12.5m
for our LES code was shown to be adequate for convergence of higher-
order moments such as variance and skewness in convective ABLs.33

Hence, our chosen grid resolution of Dz+ 6.5 and 13m should be suf-
ficient for our considered cases. The initial temperature inversion layer
height is zi ¼ 1000 m in all cases. All the results of this study are non-
dimensionalized using the magnitude of the imposed geostrophic
wind G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

g þ V2
g

q
and zi. The inversion layer height will remain

constant for neutral cases, but it may vary for unstable cases as the
ABL evolves. Nevertheless, we use the initial imposed inversion layer
depth zi as a fixed value for non-dimensionalizing all our results to
facilitate their comparison in a dimensional framework especially for
experimentalists, consistent with previous ABL studies.30,69,70

All our cases are initialized by running the 963 resolution cases for
a spin-up period of three inertial timescales (3*sABL¼ 3* 2p/f+ 54h).
Following this phase, the simulation data were interpolated to a finer
1923 resolution and ran for an additional 2 h as warm-up to remove
interpolation effects. Subsequently, the last phase of the simulations is
conducted for a final sABL period (+18h), which are utilized and shown
in the paper. In the unsteady scenario, the N16 simulation is used as the
initial condition of N16_uns case. The N16 simulation is continued, but
the geostrophic wind is suddenly changed to 8m s(1 for a duration of
2*sABL (+36h). This leads to a sudden mean pressure gradient change
and generates unsteady flow conditions. We note that this spin-up
period is sufficiently large to remove major inertial oscillations in the
flow. Our spin-up time for the neutral case (54h) in terms of the large-
eddy turnover timescale (s) & zi=u)) becomes +134s), which remark-
ably exceeds the 20s) recommended spin-up time,71 and 60–80 s) com-
monly performed warm-up periods in previous ABL studies.4,72

The 1923 resolution simulations were conducted using 48 CPU
cores on an Intel Xeon G6252 CPU. Running one physical hour of each
1923 case required !1000 CPU-core hours. Given long simulation runs,
the total computational cost of the four cases in the final production
phase (excluding warm-up) was !96000 CPU-core hours. In total, we
used !10Terabytes of disk space to store the 3D LES data of all the
cases.

D. Evaluation metrics
The performance of the Koopman mode reconstruction is evalu-

ated by calculating two metrics: mean absolute error (MAE) and the
Pearson correlation coefficient (Corr).MAE is calculated as follows:

MAE ¼ 1
N

XN

i¼1
Rp ið Þ (MLES ið Þ
&& &&; (15)

where N is the number of samples (here the grids in one plane, e.g.,
N¼ 192* 192 or 96* 96, depending on the grid resolution), Rp
denotes the reconstructed flow field with the first p Koopman modes,
and MLES is the actual LES data. MAE indicates the sum of absolute
prediction errors, while the Pearson coefficient (between (1 and 1)
measures the linear correlation between the actual and predicted values
as follows:

Corr ¼
PN

i¼1 Rp ið Þ ( Rp
! "

MLES ið Þ (MLES

! "
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 Rp ið Þ ( Rp
! "2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 MLES ið Þ (MLES

! "2q ; (16)

where the overbar denotes the mean of the data. These metrics will be
used to evaluate the accuracy of the reconstructed wind velocity against
the LES flow field.

To evaluate the performance of the K-means method in cluster-
ing the KMD modes, the “Inertia” metric is employed. In this paper,
we used the within-cluster sum of squared error (WCSS) method to
calculate this metric.73,74 Inertia indicates how closely the data points
within a cluster are to one another, and how well separated the clusters
are from each other. This metric measures the degree of tightness of
the clusters and is defined as follows:

Inertia WCSSð Þ ¼
XK

k¼1

X
xi2Ck

xi ( lkj j2; (17)

where K is the number of clusters, Ck is the set of modes belonging to
the kth cluster, xi is the ith Koopman mode, and lk is the centroid of
the kth cluster.

III. RESULTS
A. The LES results of the convective and neutral ABLs

First, we describe the distinctions between the mean and turbu-
lence characteristics in the considered ABL cases. The normalized
mean wind speed profiles of the conducted LESs are shown in
Fig. 2(a). The vertical profiles in this figure are averaged in horizontal
directions as well as in time over the last inertial timescale sABL¼ 2p/
f + 18 h of the simulations. By increasing the buoyancy to shear pro-
duction ratio, the wind profiles show a stronger mean wind shear near
the surface. This is consistent with the Monin–Obukhov similarity the-
ory (MOST) prediction that unstable ABL wind profiles are concave
upward in a semi-log plot compared to neutral ABLs.2 Furthermore,
turbulent mixing in convective ABLs increases, and thus, the profiles
become more uniform compared to neutral ABLs.30 This increased
turbulent mixing and eddy viscosity in convective ABLs causes a
strong coupling of the ABL with the surface. Hence, due to this strong
vertical coupling with the surface and higher eddy diffusivity, the
mean wind profiles can decrease above the surface (z/zi! 0.3) in
unstable ABLs compared to the neutral case [compare blue and black
line in Fig. 2(a)]. In the neutral case N16, the atmosphere becomes sta-
bly stratified in the top imposed capping inversion layer. Hence, some
inertial oscillations may occur above the ABL (z/zi! 1) and can lead
to supergeostrophic jets near the top of our domain. However, such
inertial oscillations are very weak compared to the mean flow within
the ABL (z/zi" 1) for the N16 case since our spin-up period was long
enough (134s)) to remove such mean oscillations. These obtained

TABLE I. Details of the performed LESs of convective and neutral ABLs. All the
cases were conducted using two resolutions of 192* 192* 192 and 96* 96* 96
leading to eight total LESs.

Case name Ug (m s(1) Surface heat flux (K m s(1)

U4 4 0.16
U16 16 0.16
N16 16 0
N16_uns 16! 8 0
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wind profile results are also consistent and similar to previous LES
studies of convective and neutral ABLs.33 The profiles of wind velocity
components in the x and y directions can be seen in supplementary
material, Fig. S1.

The turbulence dynamics of the considered ABL cases are also
remarkably different. Figure 2(b) displays the averaged Reynolds stress
profiles in the conducted LES cases. By increasing the buoyancy to
shear production ratio, the non-dimensionalized Reynolds stress pro-
files increase. A similar trend can be seen in the shear production (SP)
term of the turbulent kinetic energy (TKE) budget (see Momen and
Bou-Zeid25 for more details about the TKE calculations). It is found
that while the absolute magnitude of the SP increases with increasing
shear, the normalized SP by the imposed geostrophic wind increases
as the ABL becomes more unstable (see supplementary material,
Fig. S2).

B. Turbulence characteristics and quadrant analysis of
the convective ABL cases

Turbulence production mechanisms have considerable differ-
ences between a neutral and a convective ABL. In a neutral ABL, the
turbulence is primarily produced by the shear production, while in a
strongly convective ABL, it is mainly produced by buoyancy. In our
considered cases, the ratio of shear to buoyancy is varied and this influ-
ences the turbulence properties in the ABL such as the wall shear
stress. This can be seen from the friction velocity, u), that has been cal-
culated and shown for the steady cases in Table II. The table indicates
that by increasing the imposed geostrophic wind speed (from U4 to
U16), u) also increases. Under the same geostrophic wind, convective
ABL case U16 has a higher u) than the corresponding neutral ABL
case N16. This is because both shear and buoyancy produce TKE in
the U16 case, while in N16 only shear produces TKE. Furthermore,
the higher vertical mixing in convective ABL leads to a higher surface
wind shear [compare blue and black lines in Fig. 2(a)] that

consequently leads to a larger u) in the U16 case than N16. The table

also shows the convective velocity scale w) & gziw0h0 s=h
h i1=3

, calcu-
lated for all cases. Since the imposed surface heat flux is the same for
both convective cases,w) is the same for both cases, while for the neutral
case, it is zero since there is no imposed surface heat flux in the ABL.

The ratio of shear to buoyancy forces is typically characterized by
the Obukhov length (L), which is a measure of the atmospheric stabil-
ity in the ABL community. The Obukhov length is defined as follows:

L & (u3)h
.

jgw0h0
; (18)

where j is the von Karman constant (here j ¼ 0:4) and w0h0 denotes
the heat flux. The values of L are calculated for our considered cases
and shown in Table II. As the table indicates, increasing the shear-to-
buoyancy ratio increases (L from 17.4m (U4 case) to 1 (N16 case).
The Richardson flux number (Rif ) is a common dimensionless num-
ber to determine the stability of the ABL. It represents the negative
ratio of the buoyancy to shear production of TKE and is defined as

Rif &
g=h
! "

w0h0

u0w0 @u
@z

# $
þ v0w0 @v

@z

# $ : (19)

FIG. 2. (a) Non-dimensionalized mean horizontal wind speed and (b) Reynolds stress profiles for the considered LES cases. The height is normalized with zi, which is 0.8 Lz in
our cases, and the wind velocities are normalized with G.

TABLE II. Friction velocity, convective velocity, Obukhov length, flux Richardson
number, and velocity fluctuation correlation for the considered steady LES cases.

Case
name

u)
(m s(1)

w)
(m s(1)

L
(m) Rif

u0–w0

correlation

U4 0.332 1.81 (17.4 (0.481 (0.11
U16 0.847 1.81 (288.4 (0.016 (0.42
N16 0.693 0 (1 0.000 (0.48
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A similar trend for this non-dimensional number can be seen in Table
II in which Rif¼ 0 in the neutral ABL, and as we increase the ratio of
buoyancy to shear production, the absolute magnitude of Rif increases
to+0.48. In this table, Rif is calculated in horizontal directions and
then averaged over the entire ABL depth. Note our simulated neutral
case is the conventionally neutral ABL75 since we also solve for the
potential temperature equation and impose a capping inversion layer
at the top of our domain. Hence, the ABL can be stable in this capping
inversion layer unlike other studies in which such layer is not imposed,
and the impacts of h are fully eliminated from LESs.28 Our simulated
conventionally neutral condition is more prevalent in real-world
ABLs.

To further characterize the turbulence structures in the consid-
ered cases, we conducted a quadrant analysis for the ABL flows.
Quadrant analysis is a simple yet powerful method76 that yields
insights into the Reynolds stress production mechanisms and contri-
butions of organized eddy motions to the TKE production and trans-
port. This technique categorizes the products of velocity fluctuations u0

and w0 into four quadrants as follows:77

• Quadrant 1 (Q1) where u0 > 0 and w0 > 0, indicating outward
interaction,

• Quadrant 2 (Q2) where u0 < 0 and w0 > 0, indicating ejection,
• Quadrant 3 (Q3) where u0 < 0 and w0 < 0, indicating inward
interaction, and

• Quadrant 4 (Q4) where u0 > 0 and w0 < 0, indicating sweep.

These are typically called the quadrants of the Reynolds shear
stress plane. The scatterplot of u0 and w0 has been shown near the sur-
face at height z¼ 85m (z/zi¼ 0.085) in Fig. 3. The figure shows that
for the neutral ABL, sweeps (Q4) and ejections (Q2) have the largest
contributions to the Reynolds shear stress. This is consistent with typi-
cal channel flow studies.78,79 However, as the magnitude of the Rif
increases, the contributions of sweeps and ejections structures decrease
[compare Figs. 3(a) and 3(c)].

To quantify the contributions of each quadrant, we calculated the
frequency of each of these events and showed them in Fig. 4. The per-
centage of the points that lie in Q2þQ4 for the neutral case N16 is
65.2%, while it is 55.5% for the convective case U4 at z¼ 85m. These
contributions can be further understood by analyzing the correlation
of u0 and w0 in Fig. 3. These correlations are calculated and shown in

Table II. As the table indicates, by increasing the buoyancy to shear
production ratio, the magnitude of the correlation between u0 and
w0 decreases. In the strongly unstable ABL U4 case, the correlation is
very low. The reason for this is mainly because, in near-neutral ABLs,
hairpin vortices exist that contribute to gradient-type motions, while
in convective ABLs, thermal plumes increase ABL mixing and
counter-gradient motions, consistent with previous studies.80 The
enhanced vertical mixing and counter-gradient motions (Q1 and Q3)
of such thermal plumes contribute to the observed scatter of the veloc-
ity fluctuations in Fig. 3(c). The increased turbulent motion variability
and decreased correlation of u0 and w0 in U4 case can also be linked to
the decreased efficiency of momentum transport as the convection
increases, which agrees with prior studies.33 These findings also agree
with prior research,81 which presented the vertical profiles of mean
flux contributions from the four quadrants.

C. Applying the KMDmethod to characterize turbulent
eddies in convective ABLs

In this study, the KMD method is applied to the horizontal snap-
shots (x–y plane) of the normalized wind speed and vertical velocity
separately, at different heights. The input data to the KMD method
(Fig. 1) are a two-dimensional matrix in which the first dimension is
related to the observables (here the velocity field) representing the spa-
tial grid points (e.g., 192* 192), and the second dimension denotes
the number of snapshots representing the temporal time steps. To cap-
ture the whole mean dynamics of the ABL cases, a full inertial cycle of
the LES data (sABL+ 18h) is extracted and ingested into the KMD
method. To save computational and storage resources, the 3D LES
data are averaged for 5 s and then outputted during the simulation
period. This leads to 12960 3D snapshots (1923) for one inertial cycle
of each run, which generated !10 Terabytes of data in total for all the
considered cases. Another reason for choosing dt¼ 5 s is that accord-
ing to the Nyquist sampling theorem, the maximum frequency that
KMD can resolve is 1

2dt, which in our case would be 0.1Hz. This fre-
quency is significantly higher than turbulent eddy turnover frequency
(u)/zi) in our LES cases. We also conducted a sensitivity to outputting
frequency and found that the choice of dt¼ 5 or dt¼ 10 s does not
remarkably affect the decompositions, especially the predominant
modes (see supplementary material, Fig. S3). On the other hand, the

FIG. 3. The scatterplot of u0 and w 0 for (a) N16, (b) U16, and (c) U4 case at z¼ 85m (z/zi¼ 0.085). The red points lie in the first and third quadrants (red color represents
counter-gradient-type motions), and the blue points lie in the second and fourth quadrants (blue color represents gradient-type motions). The points are colored with transpar-
ency so more points can be seen.
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smallest frequency of Koopman modes is proportional to the length of
the input dataset, which in our case would be 1/sABL. In this section,
we will present the results for the mode amplitudes, frequencies, and
temporal dynamics in capturing the LES results. In Sec. IIID, a com-
prehensive analysis of the decomposed modes and the spatial coherent
structures will be presented.

The mode amplitude corresponds to the magnitude or energy
content of the spatial mode structures. In Figs. 5(a)–5(c), Koopman
mode amplitude is shown vs the mode frequency for the first 1000
decomposed modes of three cases N16, U16, and U4 (the rest of the
modes have very small amplitudes and represent very low-energy
eddies). In this figure, the mode frequencies are shown in dimension-
less form using the Strouhal number, St&Mode frequency* zi/G. As
expected, lower frequencies have larger amplitudes implying that the
large eddies in the flow contain more energy compared to the smaller
scales. Moreover, the smaller amplitude modes have a shorter time-
scale (higher frequency) and sustain shorter in the flow field. This
result is consistent with Kolmogorov’s spectrum of velocity fluctua-
tions representing the source, inertial, and viscous dissipation ranges.
This similarity is shown in [Figs. 5(d)–5(f)] by computing the power
spectrum vs the wave number for the LES data of the same cases.
Furthermore, Figs. 5(a)–5(c) indicate that the Koopman modes in con-
vective case U4 have higher amplitudes compared to the near-neutral
U16 and neutral N16 cases. This suggests that the coherent spatial
structures decomposed in the convective ABL are more energetic than
in the near-neutral case. These more energetic structures in U4 are also
associated with lower frequencies, which indicate that the energy-
containing eddies in U4 are larger than U16 and N16 cases. A similar
trend can be seen when comparing the energy peak of the largest eddies
(lowest wave numbers) in the power spectrum [Figs. 5(d)–5(f)]. These
findings agree with other studies that showed that coherent turbulence
structures in convective ABLs are larger than neutral ABLs.69 We will
further characterize these spatial mode structures in Sec. IIID.

D. The strength of KMD in describing ABL dynamics
and interpretation of main Koopman modes via
timescale analysis

In this section, we will use the timescale analysis to identify and
interpret the characteristics of important Koopman modes. Different
forces, such as pressure gradient, Coriolis, friction, and buoyancy,
interact nonlinearly with each other to determine the dynamics of

ABLs. Our goal is to associate some of the Koopman modes with these
forces to better understand how they impact the ABL dynamics. To
this end, we first show the Koopman modes of the neutral cases, which
do not include surface buoyancy forces. Figure 6 depicts the Koopman
modes of the N16 case in which they are numbered according to their
amplitude magnitude.

We first considered the inertial timescale of the ABL, which is
associated with the Coriolis frequency. The closest mode to this
frequency is found to be mode 10 [blue dot in Fig. 6(a)]. Figure
6(b) displays the timeseries of the demeaned and normalized fluc-
tuations of horizontal wind speeds in this case. The figure shows
the actual LES results (black line) vs various selected Koopman
modes. In this figure, mode 10 is shown as a blue line where it cap-
tures the inertial oscillations of the ABL flow with a timescale equal
to sABL (+18 h here). The figure shows that this mode captures
mean flow fluctuations resulting from Coriolis effects. Figures
6(c)–6(e) depict the spatial structure of three selected modes. To
better compare the structure of each mode in a non-dimensional
space, they are normalized with their maximum values in each case,
e.g., max (mode 1, mode 3, mode 10)¼ (1.57, 1.49, 1.06). The spa-
tial structure in mode 10 [Fig. 6(e)] is slightly tilted horizontal
structures, which are aligned with the mean flow velocity direction
(compare the black arrow with the spatial structure of this mode).
This tilt in the mean flow and subsequently in this mode is due to
the Coriolis force effect that induces Ekman-like spirals in the
ABL.2

The next important timescale that we explored is related to the
turbulent eddy timescale, which can be found as z/u). The closest
decomposed Koopman mode to this timescale is interestingly mode 1,
which has the highest amplitude. This has been shown as a yellow dot
in Fig. 6(a) and as a yellow line in Fig. 6(b), which has a higher fre-
quency and larger magnitude oscillations compared to mode 10 (com-
pare blue and yellow lines in Fig. 6b). The other significant timescale is
related to the largest turbulent eddy in the ABL, which can be found as
zi/u) (+1443 s for this case). The closest Koopman mode to this time-
scale is found to be mode 3, which is shown as a green dot in Fig. 6(a)
and a green line in Fig. 6(b). The spatial structure of these two modes
is also shown in Figs. 6(c) and 6(d). Both structures indicate x-direc-
tion-oriented modes, which are likely induced by the imposed strong
pressure gradient via the geostrophic wind (Ug¼ 16m s(1). The size
of eddy structures in mode 1 seems to be smaller than mode 3, which

FIG. 4. Bar plot of the contribution of each quadrant to Reynolds shear stress for (a) N16, (b) U16, and (c) U4 case at z¼ 85m (z/zi¼ 0.085).
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could be associated with their difference in timescale (mode 1 has a
smaller timescale than mode 3).

Note to corroborate our discussion about these Koopman
modes, we also performed some sensitivity tests in which we
altered the domain size. We noticed that the frequency of the
major discussed modes did not change when altering the horizon-
tal domain size by doubling the Lx and Ly (not shown). In another
sensitivity test, we doubled the vertical domain size and zi. This
time, the frequency of zi/u) mode was changed indicating that the
timescale of this mode directly depends on zi. These results dem-
onstrate that these modes represent the underlying dynamics of
ABLs and are not numerical artifacts.

A strength of the KMD is that once we determine the Koopman
modes, we can reconstruct the nonlinear flow field by a linear combi-
nation of the obtained modes. To capture the prevailing flow dynam-
ics, we do not need to use all the obtained Koopman modes as higher
frequency modes represent smaller lower energetic eddies that do not
influence the overall flow field that much. To this end following Eq.
(7), we define Rs as the reconstruction of the flow field using all the
modes with frequencies smaller than 10u)/zi. This definition accounts
for all major turbulent eddy time scales as well as the nonlinear inter-
actions of the mean (inertial timescale here) and turbulence time
scales. In this case, Rs includes only !7% of all the decomposed
Koopman modes. The red dashed line in Fig. 6(b) indicates that the

reconstruction of the ABL flow using these Rs modes agrees well with
the LES results and captures its nonlinear fluctuations.

To further evaluate the accuracy of the Koopman mode recon-
struction, we also calculated the average error and spatial correlation
between the actual LES snapshots and reconstructed flow fields. The
time series of the correlation between the reconstructed flow and LES
data for three different sets of employed modes is presented in
Fig. 7(a) for the U4 case. Reconstructing the ABL flow using Rs
Koopman modes for the U4 case also shows more than 80% correla-
tion. For consistency, we further examined if by increasing the number
of Koopman modes, we could obtain the exact LES flow field. To this
end, we only reconstructed one snapshot at t¼ sABL/2 by increasing
the number of modes from 1 to 12 957 (all modes). As Fig. 7(b) indi-
cates, by increasing the number of modes, the correlation between the
reconstructed snapshot and the actual LES snapshot also increases rap-
idly and approaches 1 when !40% of the modes are used.
Furthermore, the average error of the reconstruction rapidly decreases
by increasing the number of used modes and reaches +0 when all the
modes are used for reconstruction [Fig. 7(c)].

E. The performance of the KMD in unsteady ABL flows
In this section, we will characterize the performance of the KMD

in detecting modes of an unsteady ABL under transient pressure

FIG. 5. (Top) The amplitude vs the frequency for the first 1000 Koopman modes for (a) N16, (b) U16, and (c) U4 case at height z¼ 345m. Each circle corresponds to one
mode, and the size of the circle corresponds to the mode amplitude. (Bottom) Power spectrum vs the wave number of the LES data at the same elevation for (d) N16, e U16,
and (f) U4 case for one time step in the middle of the simulations. The black lines in (d)–(f) indicate the (5/3rd Kolmogorov’s power law. The St here represents a non-
dimensional frequency, and k denotes a dimensionless wave number (wave number* zi).
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gradient forcing. To this end, we applied KMD to the N16_uns case
where the pressure gradient is suddenly decreased to half. Figure 8(a)
shows the Koopman mode amplitude vs frequency for this case. Upon
comparing the magnitude of the Koopman modes of this case
[Fig. 8(a)] vs the steady state case [Fig. 6(a)], we find that the
Koopman modes of the equivalent unsteady case have a larger ampli-
tude, especially at lower frequencies. This could be due to the fact that
the mean flow is varying in this case and Koopman modes represent
the mean variations, which are more energetic here than turbulence
fluctuations. The most energetic mode of this case (mode 1) has a fre-
quency close to the Coriolis frequency indicating that the prevailing

dynamics of this case is governed by inertial oscillations. This mode is
shown as a blue circle in Fig. 8(a) indicating a major peak. This is
unlike the steady state case where the Coriolis-related mode was mode
number 10 showing that the turbulence eddies have more energy than
inertial oscillations in such a steady mean ABL flow.

For the turbulence timescale, unlike the steady-state cases, u) and
relevant time scales are also varying in this case to reach an equilibrium
with the new imposed pressure gradient. Hence, a range of time scales
can represent turbulent eddies as they evolve in time. Nevertheless, we
considered u) of the average of an inertial cycle, and also found the
closest mode to turbulence timescale zi/u)+ 2564 s. This mode is

FIG. 6. (a) Koopman mode amplitude of case N16 vs frequency at elevation z¼ 710m. The vertical red line shows the frequency of 10* zi/u) (the maximum frequency used
to reconstruct the flow field in Rs). (b) Time series of the fluctuations in wind speed for LES, three important Koopman modes, and the reconstructed Koopman flow (Rs).
(c)–(e) The spatial structure of Koopman mode 1, mode 3, and mode 10 is shown. The black line in (e) depicts the mean flow velocity direction from LES data.
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shown as a cyan circle in Fig. 8(a), which has a local peak in the
Koopman magnitude.

The horizontally averaged timeseries of the wind fluctuations for
this case is shown in Fig. 8(b). The temporal behavior of the two iden-
tified modes is also shown in this figure. As the figure indicates, mode
1 that is related to the Coriolis frequency has significant oscillations
with the largest magnitude among the modes over the inertial time-
scale of sABL. On the other hand, mode 12 has smaller magnitude oscil-
lations but with a higher frequency (or a smaller timescale) related to
turbulence fluctuations. When compared with the LES data, the figure
indicates that the primary variations of the wind are related to the iner-
tial flow oscillations of mode 1.

To ensure that KMD is capable of reconstructing the unsteady
ABL flow, we also combined these modes by generating the recon-
struction as Rs explained above. The result of this reconstruction is
shown as the red dashed line in Fig. 8(b). As the figure indicates, this
reconstruction using !4% of the total Koopman modes agrees well
with the LES data [compare red dashed and black lines in Fig. 8(b)].
The spatial structure of this reconstruction is also shown in Fig. 8(c) vs
the actual LES data in Fig. 8(e) in the middle of the simulation. The fig-
ure shows that reconstructing the flow field using only !4% of the
total Koopman modes could capture the primary flow structures such
as large streaks while filtering some of the very small and high-
frequency flow fluctuations. As shown before, we expect the accuracy
of the reconstruction to increase with increasing the number of modes.
To demonstrate this, we used 50% of the Koopman modes to recon-
struct the flow field and displayed in Fig. 8(d). The figure exhibits a
very good agreement between the reconstruction [Fig. 8(d)] and actual
LES data [Fig. 8(e)] by capturing even tiny and high-frequency fluctua-
tions. These results underscore the capability of KMD to reconstruct
and capture complex ABL flow dynamics even under unsteady mean
flow conditions.

F. The strength of KMD in characterizing roll and cell
structures in ABLs

In this section, we will describe the performance of the KMD in
characterizing the convective cell and roll structures in ABL, and deter-
mine some prevailing Koopman modes that are responsible for these
coherent turbulence structures. To this end, we calculate the velocity

statistics from a conditionally averaged flow field. We first calculate the
2D spatial correlation for velocity fluctuations at a reference height, zref
(¼260m here) followingMomen et al.68 Then, a 3D spatial correlation
function is calculated with respect to that reference height by changing
z similar to previous studies.82,83 The results of these correlations for
two LES cases N16 and U4 are shown in Figs. 9(b) and 9(d) where the
regions of positive correlations are marked as red and negative correla-
tions are colored blue.

The results indicate that N16 case [Fig. 9(b)] includes roll vortices
and low- and high-momentum streamwise-elongated streaks, which
are the dominant flow mechanism of shear-induced boundary
layers.84,85 We also conducted a similar analysis using the Koopman
reconstruction Rs to evaluate the KMD performance in detecting these
structures as shown in Fig. 9(a). The figure clearly shows these large
streaks that flank each other in the cross-stream direction. The struc-
tures in Rs are smoother than in the actual LES case since we did not
use all the modes to create Rs and we did not consider higher-
frequency modes that are responsible for very small turbulence fluctua-
tions. This will also lead to larger cleaner correlations in the KMD Rs
case since the noisy data of very small-scale eddies are filtered. Note
again if we use all the Koopman modes, we will obtain almost exact
LES results as shown in supplementary material, Fig. S4.

Next, the 3D autocorrelation is applied to the convective case U4.
The results of LES case in Fig. 9(d) indicate a cell like structure unlike
the roll structure in N16. This cell structure is a characteristic of the
convective ABLs when the buoyancy over shear production of turbu-
lence increases. We also conducted the 3D autocorrelation using the
Koopman reconstruction Rs as shown in Fig. 9(c). The results show
this cell structure in the Koopman modes as well, but with a slightly
bigger structure and higher correlations similar to the previous case.
Hence, KMD is capable of detecting these coherent turbulence struc-
tures and will be very useful for detecting such large structures espe-
cially in very noisy data, e.g., real-world measurements.

G. Detecting Koopman modes related to roll and cell
structures in ABLs via quadrant analysis

In this section, we will use KMD in a novel way to distinguish
which prevailing modes correspond to roll and which to cell structures.
To this end, we will use quadrant analysis with timescale

FIG. 7. Correlation and mean average error of wind speed between the reconstructed flow and LES data are calculated using different numbers of modes for case U4 at
z¼ 345m. (a) The correlation is calculated using 5, 20, and Rs modes over one inertial timescale, (b) the correlation is calculated vs the number of modes used for reconstruc-
tion, and, (c) the MAE of wind speed is shown vs the number of modes used for reconstruction.
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interpretations of the Koopman modes. First, we show whether we
would obtain similar quadrant analysis findings as in Figs. 3 and 4
when we use Koopman reconstructed flow. Hence, we conducted
another KMD where we used the vertical velocity component in addi-
tion to the horizontal velocity as our observable datasets. After per-
forming the decomposition on the u–w dataset, and reconstructing u
and w separately, we performed quadrant analysis for the recon-
structed flow. The Koopman reconstruction of the flow field yielded a
similar result to the LES findings in Figs. 3 and 4, where the contribu-
tion of the Q2þQ4 to the total Reynolds stress tensor decreases by
increasing the ratio of buoyancy to shear production in the ABL (see
the supplementary material, Figs. S5 and S6).

We then use this feature of convective ABLs to detect the
Koopman modes that are responsible for roll- and cell-like structures.
For the near neutral case U16, the first Koopman mode is shown in
Fig. 10(a). The timescale of this mode is very close to the shear turbu-
lence timescale zi/u) (+1181 s for U16). Furthermore, we displayed the
quadrant analysis of this mode in Fig. 10(c). As the figure shows, this
mode mostly accounts for sweeps and ejection events in which
Q2þQ4 include more than 70% of the Reynolds shear stress tensor.
These quadrants indicate gradient-type motions, which are a charac-
teristic of typical shear-induced boundary layers or roll structures. The
shape of this structure in Fig. 10(a) is also parallel to the mean flow
direction [black arrow in Fig. 10(a)], which again shows this Koopman

FIG. 8. (a) Koopman mode amplitude of unsteady ABL case vs frequency; note that the amplitude is shown in logarithmic scale. (b) Time series of the fluctuations in horizontal
wind speed for LES, two important Koopman modes, and the reconstructed flow (Rs) are shown. (c)–(e) The spatial structure of Rs, R50%, and actual LES snapshot are
depicted in the middle of the simulation.
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mode 1 is responsible for generating roll structures in the near-neutral
ABL.

The spatial structure of Koopman mode 15 in convective case U4
is also shown in Fig. 10(b). We selected this mode because of the fol-
lowing two reasons. First, the timescale of this mode is close to
zi/w) (+551 s for U4 case), where w) is the convective velocity scale.
Second, unlike the previous mode, most of the Reynolds shear stress of
this mode is from counter-gradient motions by having more than 75%
of the velocity fluctuations in Q1þQ3 quadrants as shown in
Fig. 10(d). This figure demonstrates that most of the velocity fluctua-
tions of this mode are outward and inward interactions, which we
showed are higher in convective mixed ABLs. Hence, these two rea-
sons can attribute this mode to the creation of the convective cell struc-
tures. In fact, the spatial structure of this mode in Fig. 10(b) indicates
cell-like structures in the ABL. This structure has a non-trivial shape,

which is transverse to the mean flow direction [black arrow in
Fig. 10(b)]. Highly convective thermal plumes alter roll structures and
lead to the formation of cell structures in convective ABLs. Such trans-
verse turbulence structures in unstable cases can be associated with
these convective cell structures. Although this selected mode is not
necessarily the most energetic mode of this case, since its timescale is
close to the convective velocity timescale, and it displays counter-
gradient motions, it could be a good representative of cell structures.
Furthermore, we reconstructed the flow using all the modes with roll
and cell-like structure features among the first 20 largest amplitude
Koopman modes for both cases, and found similar quadrant analysis
and spatial structure results (see supplementary material, Fig. S7).
Therefore, these results indicate that the KMD along with the timescale
and quadrant analyses can provide significant new insights into the
underlying dynamics of coherent turbulence structures in ABLs.

FIG. 9. 3D spatial correlation of (b) and (d) LES cases vs (a) and (b) Koopman mode reconstructions. Here, red isosurfaces show positive correlations [>0.35 for (a) and (b)
and >0.5 for (c) and (d)], while blue isosurfaces show negative correlations [<(0.25 for (a) and (b)].
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H. Characterizing convective cells and rolls in vertical
velocity via KMD

The structure of convective cells and rolls in ABLs can be better
noticed from the vertical velocity components where they depict the
organization of updraft and downdraft motions.86 Figure 11 exhibits
the instantaneous snapshots of fluctuating normalized vertical velocity
contours for the U16 and U4 cases. The figure clearly shows roll vorti-
ces in near neutral U16 case (Fig. 11, top right panel), and as the ratio
of buoyancy to shear production increases, the convective cells form in
the ABL (Fig. 11, bottom right panel). These coherent turbulence
structures in the ABL can also be seen at other elevations as shown in
supplementary material, Figs. S8 and S9. The formation of these con-
vective rolls and cells in ABLs is also consistent with previous studies
that associated them with zi/L values.

30,33

The resulting KMD modes can be examined for these two dis-
tinctive coherent turbulence structures. Figure 11 shows the first and
second Koopman modes, as well as the reconstructed flow using Rs.
The first two Koopman modes in the near-neutral case U16 are aligned
with the mean wind direction (compare their direction with the black
arrow in the right panel of this figure), and thus represent the roll
structures. However, the first mode of the convective case U4 is slightly
tilted from the mean wind velocity direction (compare with the arrow
shown in the bottom right panel). Furthermore, for the convective case
U4, some Koopman modes are even transverse to the mean wind
direction. These transverse structures (e.g., mode 2 of U4) are associ-
ated with the existence of cell structures, and the presence of

convection in the ABL. In fact, all such modes together add up to give
rise to the cell structures in the U4 case. These coherent transverse
structures cannot be trivially noticed from the actual LES snapshots in
the right panels of Fig. 11. Hence, KMD can detect such non-trivial
turbulence structures in the ABL by decomposing the spatiotemporal
dynamics of the LES data. Similar roll and cell structures exist at other
elevations as shown in supplementary material, Figs. S8 and S9.

We also applied the KMD to the horizontal velocity components
of three N16, U16, and U4 cases and obtained a similar finding. In the
neutral and near-neutral cases, the primary Koopman modes were
related to the roll structures. However, in the convective ABL, some
non-trivial Koopman modes transverse to the mean flow direction
were observed. These results are shown for four elevations in supple-
mentary material, Figs. S10–S13.

To corroborate the generality of the findings for different grid res-
olutions, another set of LES cases was performed using a reduced grid
resolution of 96* 96* 96. First, to verify if the LES mean wind and
Reynolds stress profiles are well converged, we plotted Fig. 2 for both
resolutions on top of each other. We found that our chosen resolutions
are sufficiently converged (see the supplementary material, Fig. S14),
consistent with previous studies, which used a similar LES model to
our code.33,69,87 Subsequently, the KMD was applied to these coarse
resolution cases. Furthermore, the overall range of the obtained
Koopman mode amplitudes and frequencies of these two resolutions
agree with each other (see supplementary material, Fig. S15). The
results demonstrate that while the low-energy finer decomposed

FIG. 10. (a) and (b) Two important
Koopman modes for cases U16 and U4
and (c) and (d) the quadrant analysis of
these modes are presented at elevation
z¼ 345m. The percentage of the velocity
fluctuation points, which are in Q2þQ4
for mode 1 of the near neutral case U16,
is 77.8%, and for mode 15 of the convec-
tive case U4 is 23.5%.
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structures may vary between the two resolutions, the large-scale
energy-containing structures of the KMD modes remain consistent
with those obtained from the higher grid resolution of
192* 192* 192 (see supplementary material, Fig. S16). Therefore, the
obtained findings are not grid dependent based on the performed grid
dependence test. Hence, the KMD provides a general consistent
method for decomposing non-trivial turbulence structures in the ABL.

I. A novel data-driven approach to categorize
Koopman modes

One drawback of the KMD approach is that it produces many
modes (e.g., 12 957 modes in the considered cases) for which some of
them are correlated with each other. Hence, distinguishing the
Koopman modes and the underlying dynamics associated with them
becomes challenging. Moreover, sometimes a physically meaningful
mode may have a low amplitude and only appear in a high mode
number. Therefore, by investigating only the first few modes, we might
lose some important information about the flow dynamics. These
issues led us to perform a systematic data-driven method to classify all
the KMDmodes into smaller uncorrelated groups, so that we can attri-
bute them to primary flow dynamics. To this end, we use unsupervised
K-means clustering, which is a well-known method for clustering large
data without a priori training.88–90

First, we applied the K-means clustering to the spatial Koopman
mode data, resulting in the classification of modes into distinct, uncor-
related groups. The Koopman mode data are the spatial mode

structure (e.g., Fig. 11), which is represented as a matrix derived from
KMD. These matrices are then treated as high-dimensional vectors by
flattening them. Hence, each vector’s dimension is equal to the product
of the matrix’s dimensions (e.g., 192* 192 here). This process treats
each mode as a distinct data point, with the algorithm iterating to min-
imize the clustering error through centroid recalibration, by calculating
the distance of the high-dimensional vectors. The clusters were
ordered based on the largest mode amplitude within each group, yield-
ing physically meaningful results (please see supplementary material,
Text S8 and Fig. S17 for more information). Despite the effectiveness
of this method in revealing modes with similar spatial structures, such
as streamwise streaks and transverse structures, it exhibited several
issues. For example, this method does not account for the displace-
ment and rotation in structures. Hence, some structures with similar
physical dynamics were classified into separate groups. To overcome
these limitations, we used K-means clustering with deep convolutional
neural networks in a novel way. CNNs account for the displacement
and rotation of the spatial structures and hence will be very useful for
classifying the obtained Koopman modes.

We utilize the Inception V3 CNN architecture to extract features
from the set of Koopman modes. The Inception V3 network was intro-
duced in 2015 and has been widely used for various image recognition
tasks.53,91,92 This CNN is trained on the large ImageNet dataset, which
makes it a good candidate for transfer learning.93 This implies that it
can be fine-tuned on a smaller dataset for a specific task, such as object
detection or image segmentation, and still achieve a good performance.
This CNN reached a 93.7% top-5 accuracy for image classification of

FIG. 11. Contours of the first and second Koopman modes (first two columns), reconstructed flow using the first Rs Koopman modes (third column), and instantaneous snap-
shots of normalized fluctuating vertical velocity component (fourth column) for (top) U16 and (bottom) U4 cases at z¼ 189m. The black arrows in the right panels depict the
direction of the mean wind velocity vector.
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this large dataset.91 Furthermore, the idea behind developing Inception
V3 was to reduce the computational cost without compromising the
ability of the network to generalize at deeper levels. On the other hand,
its architecture is designed to be scalable, making it adaptable to differ-
ent datasets.91 This model had also the best performance among four
different tested CNNs for accurately detecting different weather
patterns.53

The input of the Inception V3 CNN is the images derived from
the spatial Koopman mode matrices. Each Koopman mode is con-
verted into an image format and is resized to 299* 299 pixels to align
with the standard input size of the Inception V3 architecture. Then,
the CNN determines the features of each image, and in the final aver-
age pooling layer of the network outputs 2048-dimensional feature
vectors for each mode. These feature vectors serve as a compact yet
comprehensive representation of the spatial patterns of the Koopman
modes. Finally, rather than the Koopman mode images, we provide
their corresponding feature vector space from CNN as inputs of the
K-means clustering method. This approach clusters the images into an
arbitrary number of distinct groups based on the similarity of their fea-
ture vectors. By calculating the inertia and using the elbow method,
four clusters appeared to be sufficient to categorize the resulting
Koopman modes in the considered cases (supplementary material,
Text S9 and Fig. S19). Figure 12 presents two representative modes of
each of the four clusters for U4 and U16 cases.

The resulting KMD clusters seem to be significantly different and
represent a distinctive flow dynamic. As the figure indicates, this tech-
nique resolves the issue of the previous method by accounting for dis-
placement and rotation in Koopman modes. For example, cluster A of
U16 (Fig. 12 top left) displays two displaced modes classified in one
cluster, while cluster A of U4 (Fig. 12 bottom left) shows two rotated
modes grouped into one cluster. Note that the clustering of displaced
modes into one group is consistent with the fundamental KMD basis.
Koopman modes will be displaced in space when evolving in time
because their spatial structures, encoded by the eigenfunctions, are
multiplied by exponential terms representing their temporal dynamics.
This causes the modes to shift or propagate spatially as time pro-
gresses, while they carry the same structure. Moreover, this approach
resolves the slow decrease in inertia in the previous method by ensuing
a quick decrease in inertia, which shows that four clusters are sufficient
to describe the overall structure of these KMD modes (supplementary
material, Figs. S18 and S19). The numbers in each box of Fig. 12 show
the number of Koopman modes that belong to that cluster. As the fig-
ure indicates unlike the previous method, there are considerably more
modes in each four clusters with a smoother distribution when using
CNN. Essentially, based on this approach, the modes are divided into
large (e.g., cluster A of U4), medium (e.g., cluster B of U4), and small-
scale (e.g., cluster D of U4) structures. The larger modes represent pri-
mary mean flow large-scale dynamics, such as convective rolls and
cells, while the smaller modes display small-scale turbulent fluctua-
tions. To further corroborate this finding, we analyzed the Koopman
amplitude and frequency of each of these four clusters (see supplemen-
tary material, Text S10 and Fig. S20). Our results show that the average
Koopman amplitude of cluster A is 0.012, cluster B 0.008, cluster C
0.005, and cluster D 0.003 for case U4, indicating a cascade of energy
content. Furthermore, the average frequency increases from clusters A
to D demonstrating that the timescale of the eddies decreases as we go
from clusters A to D. Similar results were found for case U16

corroborating our finding that cluster A represents large-energetic
eddies, B medium, and D small-scale eddies. Thus, by combining
KMD and CNN, the introduced approach is capable of disentangling
and classifying non-trivial coherent turbulence structures in a fully
data-driven approach, which can be used to improve our understand-
ing of the underlying dynamics in ABL flows.

IV. CONCLUSIONS
In this paper, coherent turbulence structures of neutral and con-

vective ABL flows were characterized using a combination of LES cases
and data-driven methods. In total, eight LESs were conducted by vary-
ing the ratio of the buoyancy to shear production of TKE and mean
flow forcing under two coarse and fine resolutions. Next, the KMD
method was applied to the LES results to determine the nonlinear spa-
tiotemporal dynamics of turbulent eddies in ABL flows. Then, using
unsupervised machine learning methods (K-means) in conjunction
with deep CNNs, the resulting Koopman modes were categorized into
a reduced number of clusters, which are associated with distinctive flow
dynamics. In summary, the key findings of this study are as follows:

1. The quadrant analysis of ABL flows indicates that unlike the neu-
tral cases in which sweeps and ejections (gradient type) are dom-
inant eddy motions (!65.2%), their contribution decreases in
convective ABLs (!55.5%), and the contribution of outward and
inward interactions (counter-gradient type) increases. This is due
to the thermal plumes in convective ABLs that impact hairpin
vortices and roll structures in neutral ABLs and lead to the for-
mation of convective cells.

2. The reconstructed flows using Koopman modes demonstrated
the KMD’s effectiveness in capturing the primary dynamics of
turbulent eddies in ABLs. The largest amplitude Koopman
modes were able to decompose unique dynamics in ABL flows
such as the imposed pressure gradient, buoyancy convection, and
Coriolis force. Using the time scale analysis, we determined
Koopman modes that were related to the inertial oscillations
(Coriolis frequency), shear turbulence fluctuations (zi/u)), and
convection (zi/w)). Moreover, the Koopman modes with fre-
quencies lower than 10* zi/u) were able to accurately recon-
struct the overall ABL flow field and 3D spatial correlation of
turbulent roll and cell structures in neutral and convective cases.

3. The efficacy of KMD in reconstructing unsteady ABL conditions
under transient pressure gradient forcing was also evaluated. The
reconstructed Koopman flow field was able to capture the highly
nonlinear mean-turbulence interactions under unsteady forcing.
The largest Koopman mode was associated with the inertial oscil-
lations (Coriolis frequency) in unsteady ABL conditions as
expected from the underlying dynamics. Using only !5% of the
Koopman modes, the reconstructed Koopman flow field agreed
well with the actual LES data.

4. KMD was shown to detect non-trivial turbulence structures in
ABLs. In strongly convective cases, some non-trivial modes were
obtained that are transverse to the mean wind direction. This
was associated with the formation of cell structures in convective
ABLs. To corroborate this, a quadrant analysis of the Koopman
modes was conducted in a novel way and modes that were asso-
ciated with roll and cell structures were characterized. The time
scale and spatial structure of the detected modes using this
approach further verified the findings.
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5. Using less than !10% of the Koopman modes yielded a recon-
struction with over 80% correlation with the LES data in the con-
sidered cases. This can help us to better understand the
underlying dynamics of complex ABL flows using a few reduced
modes. Furthermore, it can be used as a tool for reducing the
storage of large LES data by capturing the primary spatiotempo-
ral dynamics of turbulent flows.

6. A novel data-driven approach was also introduced to categorize
many obtained Koopman modes by combining K-means cluster-
ing with deep CNNs. The introduced method is rotation and dis-
placement free and can classify the spatial structure of the modes
with similar physics that are tilted or displaced into one cluster.
The resulting clusters of this method led to unique turbulence
structures in each cluster, representing different dynamics in the
ABL. The inertia of this method indicated that a few clusters
(here !4) could represent the primary dynamics of all the
Koopman modes in the considered ABL cases.

Overall, our findings underscore the potential strength of KMD
and data-driven techniques to better understand and determine the
complex dynamics of ABL flows. Using these methods, new insights

were provided into the coherent turbulence structures of neutral and
convective ABLs, and these nonlinear turbulent flows were recon-
structed using only a small number of Koopman modes. Our results
can be used to increase the understanding of ABL dynamics, character-
ize coherent turbulence structures in meteorological and wind energy
applications, and improve the parametrization of ABLs in weather/cli-
mate models.

SUPPLEMENTARY MATERIAL
See the supplementary material for figures that provide further

supporting details about the discussions, which include mean wind
velocity and shear production profiles, KMD dt sensitivity, Koopman
reconstructions of the spatial correlations and quadrant analysis, and
K-means clustering details of the Koopman modes.
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