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Abstract

As the rapidly evolving field of machine learning continues to produce incredibly useful tools and models, the potential for
quantum computing to provide speed up for machine learning algorithms is becoming increasingly desirable. In particular,
quantum circuits in place of classical convolutional filters for image detection-based tasks are being investigated for the ability
to exploit quantum advantage. However, these attempts, referred to as quantum convolutional neural networks (QCNNSs), lack
the ability to efficiently process data with multiple channels and, therefore, are limited to relatively simple inputs. In this work,
we present a variety of hardware-adaptable quantum circuit ansatzes for use as convolutional kernels, and demonstrate that
the quantum neural networks we report outperform existing QCNNSs on classification tasks involving multi-channel data. We
envision that the ability of these implementations to effectively learn inter-channel information will allow quantum machine

learning methods to operate with more complex data.

Keywords Quantum machine learning - Convolutional neural networks -

Supervised learning

1 Introduction

Quantum computers are devices that utilize quantum mechan-
ical phenomena such as superposition and entanglement to
solve problems that are infeasible with timescales provided
by classical computers. From the time quantum computers
were first pro- posed in 1982 (Feynman 1982), researchers
have been working to develop algorithms that provide quan-
tum advantage over classical algorithms (Grover 1996; Shor
1994; Deutsch and Jozsa 1992; Cleve et al. 1998; Bern-
stein and Vazirani 1997; Simon 1997; Kitaev 1995). The
main application challenges are related to noise, high gate
errors and short decoherence times (Preskill 2018), neces-
sitating the development of more efficient quantum circuit
ansatzes. In recent years, devices have demonstrated quan-
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tum supremacy such as those introduced by Google Al
Quantum (2019) (Arute et al. 2019), the University of Sci-
ence and Technology of China (2020) (Zhong et al. 2020),
and IBM (2021) (Chow et al. 2021).

Machine learning (ML) has been gaining significant atten-
tion in recent years for strongly influencing many important
fields of study and sectors of society. Image recognition (Pak
and Kim 2017; Wu and Chen 2015; Liu et al. 2020), nat-
ural language processing (Otter et al. 2020; Young et al.
2018; Li 2018), self-driving vehicles (Fujiyoshi et al. 2019;
Gupta et al. 2021; Rao and Frtunikj 2018; Rao and Frtunikj
2017; Mozaffari et al. 2020), robotics (Pierson and Gash-
ler 2017; Wang and Siau 2019; Kim et al. 2021; Lesort
et al. 2020; Kleeberger et al. 2020), and molecular bio-
chemistry (Choi et al. 2019; Bonetta and Valentino 2020;
Ballester and Mitchell 2010; Sino et al. 2021) are just
some of the fields that are being revolutionized by ML.
The most prominent example would be ChatGPT, a chatbot
built on top of OpenAl’s generative pre-trained transformer
(GPT)—3.5 and GPT-4 large language models that have
been fine-tuned for conversation using both supervised and
reinforcement learning from human feedback techniques
(OpenAl 2023a,b). In the natural sciences, Deepmind’s
Alphafold is able to accurately predict 3D models of pro-
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tein structures, and is accelerating research in nearly every
field of molecular biology and biochemistry (Jumper et al.
2021).

The advances in both quantum computing and ML inspire
the development of quantum ML (QML) methods to exploit
the speed of quantum computations and the predictive capa-
bilities of ML. There has been recent work demonstrating the
feasibility and advantages of substituting components of clas-
sical ML architectures with quantum analogs (Schuld et al.
2015; Biamonte et al. 2017; Zhang and Ni 2020; Cerezo et al.
2022), such as quantum circuits in place of classical convo-
lutional kernels in convolutional neural networks (CNNs)
(Cong et al. 2019; Henderson et al. 2019; Oh et al. 2020;
Chen et al. 2022; Hong et al. 2021; Jing et al. 2022; Mishra
and Tsai 2023; Mari 2021; Hur et al. 2022). Classical CNNs
are state-of-the-art for image, video, and sound recognition
tasks (Rawat and Wang 2017; LeCun et al. 2015) and also
have applications in the natural sciences (Jumper et al. 2021;
Gao et al. 2021; Wei and Chen 2019; Chen et al. 2018; Kyro
et al. 2023; Casey et al. 2020; Senior et al. 2020). CNNs that
incorporate quantum circuits to function as kernels, referred
to as Quantum CNNs (QCNNs), have performed well on
classification tasks involving simple data such as the MNIST
dataset of handwritten digits (Hur et al. 2022; Oh et al. 2020),
as well as multi-channel data such as the CIFAR-10 dataset
(Jing et al. 2022; Riaz et al. 2023).

The QCNN was introduced in 2019 by Cong et al. (2019),
and was applied to quantum phase recognition and quantum
error correction optimization. Since then, QCNNs have been
applied in areas ranging from high energy physics (Chen et al.
2022) to biochemistry (Hong et al. 2021). However, current
methods either do not effectively capture inter-channel infor-
mation, or require more qubits than are currently permissible,
and therefore lack the ability to efficiently process more com-
plex data with multiple channels.

With current QCNNSs, the number of required qubits scales
linearly with the length of the channel dimension of the input
data. This is a feasible approach for simple data that can be
modeled with small filters. For instance, Jing et al. demon-
strated the ability to use a 12- and 18-qubit circuit to function
asa?2 x 2and 3 x 3 convolutional filter, respectively, on low
resolution red-green-blue (RGB) images (three channels, one
for each color) (Jing et al. 2022). However, extension of this
approach to tasks involving data with more channels is pro-
hibited by current hardware limitations. As an attempt to
overcome this challenge, there has been much recent work
that performs a measurement on each channel individually,
collapsing the wavefunction after measuring a given channel
of the data and storing the measurement classically (Chen
et al. 2022; Hong et al. 2021; Oh et al. 2020; Mishra and Tsai
2023). Although the hardware requirements have no depen-
dence on the number of channels when using this method,
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much of the inter-channel information is lost, which is valu-
able for accurately modeling the data. In this work, we
propose several methods for operating with multi-channel
data that preserve inter-channel information and require a
number of qubits that is independent of the length of the
channel dimension of the input data.

2 Quantum computers for convolutional
neural networks

2.1 Basics of quantum computing

Qubits are two-level systems used in computations to exploit
the quantum mechanical phenomena of superposition and
entanglement. The state of a single qubit can be represented

by:

[¥) = «|0) + B|1)such that|e|® + |B]*> = 1 and &, B € C. (1)

The state of an n-qubit system is represented by the super-
position of all possible n-bit strings:

Y ) )

xef0,1}"

[¥) =

These qubit states are transformed via unitary operations.
For any single qubit unitary,

U— [Moo M01:| ’ 3)

uio U1

the matrix of a two-qubit controlled operation may be
expressed as

100 O
01 0 O
CU = 00 oo oy |- “)

00 u1o un

In a two-qubit controlled gate, if the control qubit is in the
|1) state, the unitary operation is applied to the target qubit.
If the control qubit is in the |0) state, the target qubit is unaf-
fected. Measurements on a quantum state are performed by
taking the expectation value of a Pauli operator, o as shown
in Eq. 5. Quantum circuits model the sequential manipulation
and measurement of qubits.

M = hb)ax,y,zhp) (%)
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Fig. 1 A general circuit for a quantum convolutional neural network
with 8 input qubits. The classical data is embedded, followed by
variational quantum circuits and pooling layers, concluded with a mea-
surement

2.2 The structure of quantum convolutional neural
networks

The traditional structure of QCNNSs consist of embed-
ding classical data in a quantum mechanical state, having
O (log (n)) convolutional and pooling layers for n initial
qubits, a measurement layer, followed by a classical fully-
connected layer. The “convolutional” component in this
quantum circuit is a variational quantum circuit (VQC).
A VQC is a series of gates such that they have learnable
parameters that are updated via backpropagation. The cir-
cuit architecture for a traditional QCNN is shown in Fig. 1.
While not a hard requirement, this hierarchical structure of
halving the number of qubits with each layer (analogous to
classical pooling in CNNs) circumvents the “barren plateau”
phenomenon and thus guarantees trainability. Oh et al. (2020)
provides a simple QCNN tutorial for a 2 x 2 filter, utilizing
a single VQC and pooling layer shown in Fig. 2. This struc-
ture was implemented (Menborong 2020) and is used as the
comparative “control" model with respect to this work.

2.3 Multi-channel data with quantum convolutional
neural networks

Previous works (Oh et al. 2020; Chen et al. 2022; Hong et al.
2021; Mishra and Tsai 2023) have performed VQCs on each
channel, while storing this information classically between

[Re (a00) HRzHRaHReHRe HA

Ry (ao1) . .

R:c (all) hd hd

Fig.2 The simple circuit for a quantum convolutional neural network
demonstrated by Oh et al. (2020) which inspired the Control model
(Menborong 2020)

channel convolutions and summing the result. Collapsing the
wavefunction with a measurement between channels breaks
any entanglement between them, hindering the model’s
ability to learn inter-channel patterns effectively. To our
knowledge, the only attempt at including all channel data into
a quantum circuit for convolutions was performed by Jing
et al. (2022). Jing takes an intuitive approach and increases
the number of qubits proportionally to the number of pix-
els covered by the filter. Thus, a 2 x 2 filter acting on an
image containing three color channels requires 12 qubits in
this approach, as shown in Fig. 3.

3 Extending QCNNs for multi-channel data
3.1 The channel overwrite method

The proposed Channel Overwrite (CO) method takes advan-
tage of a controlled phase gate applied to a single ancilla
qubit to entangle information between channels. In our case,
a single channel of classical data is encoded into a quantum
state and passed through a learnable set of unitary operations.
Quantum information from the working qubits is exchanged
onto the ancilla qubit via a controlled phase gate, where the
phase shift angle is a learnable parameter. The classical data
for the next channel is angle encoded onto the working qubits,
passed though the learnable set of unitaries, and has infor-
mation further exchanged with the ancilla using a controlled
phase gate. This process is repeated for each channel. After
processing all channels of the data, the ancilla qubit is mea-
sured, and the expectation value is used as the output of that
quantum convolution.

3.1.1 State preparation

The CO-QCNN method removes the dependency of the num-
ber of necessary qubits on the length of the channel dimension
of the data, and requires only FZ + 1 qubits, where F is the
length of a single dimension of the square filter. The working
qubits perform a convolution by executing a set number of
learnable unitary gates over one channel of an input signal.

Fig.3 The embedding and convolutional scheme for Jing et al. (2022)
implementation of a 2 x 2 filter on a color image. The twelve pixels
covered by the filter are flattened and angle encoded via a rotation about
the Pauli X axis, and then passed to a variational unitary block U
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The resulting state undergoes a phase shift controlled by the
ancilla qubit. The uninitialized quantum state and classical
input can be represented as follows:

o) = 10) ® [1h0) = 0) ® 10)%7" x10c € R¥™T (6)

where /, w, ¢ are the initial indices of an input 3D-tensor of
total length L, width W, and channels C, respectively, |Wy)
is the state of the total quantum system, and |y) is the state
of the working qubits. x; ,, . is a vector of the flattened nor-
malized input data covered by the filter for a single channel,
described by the expression:

X/, w,c = {xl,w,c’ Xl,w+l,cs " s XL w',cr XI+1,w,cs XI+1,w+1,c»

AL e )
where I” and w’ represent the final index covered by the filter
of the length and width dimensions.

!'=l1+F—1w=w+F—1 ®)

In this work, the input data is encoded into a quantum state
with angle encoding, as this method requires only a single
gate per qubit and permits a low circuit depth compared to
other encoding schemes. We encode all normalized data x
with a rotation about the Pauli-X axis by m x; radians. Addi-
tionally, we prepare the ancilla qubit by placing it into a state
of maximal superposition with a Hadamard transformation.
The matrix representation of the gates for a rotation about the
Pauli-X axis and a Hadamard transformation are described
in Egs.9 and 10, respectively.

0 . g
R, (0) |: cos (%) —sin (97)] ©)

—sin(3) cos ()

I [11
-l

Letting Ugrx . be the unitary block that embeds the
classical data of channel ¢, the prepared quantum state is
represented as follows:

F2
IW1) = |-4) ® [¥1) = H|0) ® Q)R (xi - ) [Y0)
i=1
= H|0) ® Urx,11%0) (11

3.1.2 Circuit construction

Let U be the set of y chosen unitaries to perform the quantum
convolution.

U= ]_[U, (12)

i=1
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After the classical data has been encoded and the deposi-
tion qubit has been placed into a state of maximal superpo-
sition, U is applied to the working qubits, transforming the
total state according to:

[W2) = |+) @ Ulyn) = [+) ® [¥2). 13)

Following this learnable unitary block, we parametrically
exchange phasic information from the entangled working
register and the prepared ancilla qubit. This is achieved via
a controlled phase gate, C P:

|W3) = CP(|+) ® [¥2)), (14)

where the matrix representation of the single qubit phase gate
is as follows:

P©) = [1 0 } (15)

0 ei@

It should be noted that this exchange of phasic informa-
tion with the ancilla qubit is ideally applied to each qubit in
the working register to retain as much information as pos-
sible. However, connecting all qubits to a single particular
qubit can be challenging depending on the available quan-
tum hardware. Unless otherwise stated, all results shown in
this work restrict the controlled operations to the ancilla qubit
and the first qubit of a given working register.

The working qubits are then overwritten with data from
the next channel, and the circuit proceeds as before. This
procedure of angle-encoding channel data and executing a
controlled phase gate with the ancilla is repeated for each
channel of the input data. Therefore, the final state W) of
the circuit is described by Eq. 16, and output of this circuit
is obtain via a measurement (Eq. 17) of the ancilla qubit in
the Hadamard basis. A sample circuit is shown in Fig. 4.

C

W) = (H cP-U- URX,C) |W3) (16)
c=2

M = (HV|o;[HY ) (17)

3.2 Parallel channel overwrite method

The Parallel Channel Overwrite-QCNN (PCO-QCNN) method
decreases the circuit depth compared to that which is used in
the CO-QCNN method. The PCO-QCNN operates simulta-
neously on R parallelized channels, where R is the number of
specified working registers. Information from these working
registers is exchanged with the ancilla and are all overwritten
with the next set of channel data as in the CO-QCNN method.
This method therefore requires RF2 + 1 qubits.
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3.2.1 State preparation

C/R I+R

The states of the working qubits in the PCO-QCNN method
are prepared similarly to the CO-QCNN method, with the
caveat of each register being encoded with a different channel
of the data The overall quantum state is initialized as done
in Eq. 18, where [y ) is the initial substate of qubits in a
given register. The data covered by the filter of R channels
is angle encoded as done in Eq. 19, and the ancilla qubit is
placed in a uniform superposition.

3.2.2 Circuit construction

The method of applying a controlled phase gate and over-
writing is extended to R working qubit registers in the
PCO-QCNN. First intra-channel data is entangled followed
by the entanglement of inter-channel data. This hierarchical
method of first entangling intra-channel data (Eq. 20) and
then inter-channel data (Eq. 21) is similar to the method used
in the HQConv circuit (Jing et al. 2022). Controlled phase
gates are performed between the ancilla qubit and the first
qubit of each working register in Eq. 22, and a measurement
is taken as previously done in Eq. 17. The state evolution of
the PCO-QCNN circuit is sequentially presented in Egs. 18-23.

|Wo) = |0>®®|w0r 10) ® [0) R (18)

R

®Q) (Urx.r (x - 7) Ito,r)) (19)

r=lI1

W) = \+>®®|¢1, =H|0)

R
W) = ®®U|w1r +) ® @) 1¥2.r) (20)
r=I1
1W3) = |[+) ® U, ®|¢2r +) ® |¥3) 1)
W) = CPR|ws3) (22)

) = HCPR U, ®U Urxs) | 192)  (23)

This circuit is visualized in Fig. 5. Although more qubits
are being used than in the CO-QCNN, the number of gates
and circuit depth have been reduced.

3.3 Parallel channel overwrite - Topologically
Considerate Method

The circuit construction put forth in Sect.3.2.2 is general-
izable to C channels and R registers; however, it becomes
difficult to control each register from the same ancilla qubit
as R becomes large. To account for this difficulty, we present
an additional method that mitigates the topological chal-
lenges of the hardware being used by introducing additional
ancilla qubits. In this method, the desired number of con-
trolled phase gates can be applied to each ancilla qubit. With
this Parallel Channel Overwrite - Topologically Consider-
ate (PCO-T-QCNN) method, the ancilla qubits are entangled
with learnable unitaries at the conclusion of all controlled
phase gates. The full circuit is pictured in Fig. 6. The total
number of qubits in this method is RF? + A, where A is the
number of ancilla qubits chosen to decrease the degree of
required connectivity.

3.4 Weighted expectation value method

The Weighted Expectation Value (WEV)- QCNN method
adds a hybrid component to classically learn inter-channel
features. The quantum convolutions are performed in the
traditional sense of passing the filter over each channel indi-
vidually. After the expectation values are acquired, we apply
a classical weight and bias before summing each value to
generate the corresponding output:

C

Xy o= Z>\I’i,j,c|az|\pi,j,c'> “Wi je+bije (24)
c=1

X;s,j» is a single classical output data point given by the quan-
tum convolution. W; ; is the wavefunction after the quantum
convolution. This method is ideal for few qubits, few gates,
and shallow circuit depth.
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3.5 Convolutional unitary blocks

The unitary blocks used to perform the convolutions are
designed to demonstrate the functionality of the proposed
methods. Unitary blocks Uj and U, are shown in Fig. 7, and
are based on Schuld et al. (2020) and Oh et al. (2020), respec-
tively. The gate X? represents a power of an X gate, and is
described by Eq. 25. The entangling unitary blocks U, and
U, used in the PCO and PCO-T circuits are detailed in the
Appendix.

_i.eﬁ si (HTG):| (25)

4 Methods
4.1 Hardware

All scripting was done in Python 3.9.13. The quantum sim-
ulation package (Cirq 2021) version 0.13.1 was used, as
well as Tensorflow 2.7.0 (Abadi et al. 2015) and Tensorflow
Quantum 0.7.2 (Broughton et al. 2020). An Intel i7-13700KF
CPU, 12GB Nvidia GeForce RTX 3080Ti GPU, and 64GB
of 3600MHz CL18 RAM were used for all computations.

4.2 Datasets

The CIFAR-10 dataset (Sect.5.2.1) was loaded with Tensor-
flow Keras, and the pixel values were normalized between O
and 1. The training and testing data were segregated by class,
and the first 500 data points in each class of the training data
were used as the training set. The first 100 data points in each
class of the test data were used as the test set. Both sets were
then shuffled using scikit-learn (Pedregosa et al. 2011). After
building the training and test sets, all images were downsized
from 32 x 32 x 3to 10 x 10 x 3 using bilinear interpolation.

The noisy color dataset (Sect.5.2.2) was created by mak-
ing a colored 10 x 10 - pixel square in Microsoft Paint using

Table 1 Noisy colors RGB

values Color RGB value
Blue 0, 0,255
Green 0, 255,0
Red 255,0,0
Cyan 0, 255,255
Magenta 255, 0, 255
Yellow 255,255,0
Light cyan 128, 255, 255
Pink 255, 128, 255
Light yellow 255, 255, 128

the RGB values specified in Table 1 and then images were
saved as PNG files. For each color, 400 replicas of the images
were loaded with Tensorflow, and 20% of the pixels were ran-
domly corrupted in each by setting the pixel value to 0, 0, 0.
The noisy colors with shapes dataset (Sect.5.2.3) was pre-
pared analogously, where the shapes were drawn by setting
the pixel values to white (255, 255, 255). Each channel in
both of these RGB synthetic datasets was normalized to %,
where c is the index of the channel and C is the total num-
ber of channels. This allows the model to better distinguish
between channels in the Bloch sphere.

The synthetic 12-channel dataset (Sect.5.2.4) was created
by initializing a 10 x 10 x 12 tensor, where all elements were
populated with uniformly distributed random values between
0 and 1. 0.5 was added to every element in the three specified
channels that comprised a class, where i class is defined by
adding 0.5 to channels i to i 4+ 2. 100 replicas of each class
were generated to serve as training data, and 20 replicas of
each class were generated to serve as test data.

4.3 Machine learning

The learnable parameters in the quantum circuits were initial-
ized using the Xavier method (Glorot and Bengio 2010). For
the CIFAR-10 and synthetic RGB datasets (all but the syn-
thetic 12-channel dataset), the classical weights and biases
associated with the expectation values in the WEV-QCNN
were initialized with a random normal distribution centered
at 1.0 and 0.0, respectively, with both distributions having a
standard deviation of 0.1. Xavier initialization was also used
for the classical weights and biases when training on the
synthetic 12-channel dataset. Categorical cross-entropy was
used as the loss function, and Adam optimizer (Kingma and
Ba 2014) was used to update the weights. A constant learn-
ing rate of 0.001 and was used for all datasets, except for
the synthetic 12-channel dataset which used a learning rate
of 0.01. The exponential decay rate for the first and second
moment estimations was set to 0.9 and 0.999, respectively for
all training. Epsilon was set to 1.0 x 10~7. The output of each
hidden layer in the model architecture was activated with
ReLU, and Softmax was applied to the final output layer to
obtain probabilities. The classical architecture was the same
for all models. Accuracy was calculated as the ratio of images
the model classified correctly to the number of total images
the model attempted to classify.

5 Results and discussion
5.1 Architecture

We evaluate the proposed quantum circuits as components
of a hybrid quantum-classical machine learning architecture

@ Springer
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Fig.8 Hybrid
quantum-classical machine
learning architecture used to
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Fig.9 Three representative
full-resolution (32 x 32 pixel)
images from the CIFAR-10
dataset

Fig. 10 Three representative
noisy color data points from the
data set. Each color in the figure
has a different number of
populated channels: red (255, 0,
0), cyan (0, 255, 255), and light
yellow (255, 255, 128)

(a) Red (b) Cyan (c) Light Yellow

M -5 & ae

(a) Blue, No design (b) Magenta, Cross (c) Red, X (d) Green, Rounded

Fig. 11 Each design shape of patterned noisy color from the dataset. The designs are created using white (255, 255, 255), and then subsequently
subjected to the random corruption
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Fig.12 Synthetic high-channel
data. Each element in the blue
colored channels are random
numbers between 0 and 1. Each
element in the red colored
channels are random numbers
between 0.5 and 1.5

(a) First class

for image classification. A quantum circuit is used to perform
the convolution over the embedded input pixels of the image.
This builds the output feature map, and a classical two-layer
feed-forward network is used to obtain the probabilities for
each possible class. This architecture is portrayed in Fig. 8.

5.2 Datasets

We utilize the CIFAR-10 dataset, as well as three sets of
synthetic data designed to isolate the ability of our circuits
to learn inter-channel information. All models are trained for
20 epochs and the hyperparameters used for each dataset are
not changed between models.

5.2.1 CIFAR-10

The Canadian Institute for Advanced Research, 10 classes
(CIFAR-10) (Krizhevsky 2009) is a dataset of images that
has become a prominent benchmark for image recognition
models. This dataset consists of 50,000 training and 10,000
testing RGB images of ten different classes: airplane, auto-
mobile, bird, cat, dog, deer, frog, horse, ship, and truck. Each
imageis 32 x 32 pixels (Fig. 9) (in this work, we rescale them
to 10 x 10 pixels). Unless otherwise specified, we train on
500 randomly selected images from each class, and test on
100 randomly selected images from each class that do not
appear in the training set.

5.2.2 Synthetic noisy colors

10 x 10 pixel images of nine colors are created (blue, green,
red, cyan, magenta, yellow, light cyan, pink, and light yel-
low), and 20% of these pixels are randomly selected and
corrupted by setting all channel values of the corrupted pixel
to 0. Three representative images are shown in Fig. 10. In
total, there are 400 images for each color (3600 total images),
where 80% of these images were used for training and 20%
are used for testing.

5.2.3 Synthetic noisy patterned colors

To demonstrate that this method also captures intra-channel
features, four different design shapes are drawn on the syn-

(b) Third class (C) Tenth class

thetic colors in white before corruption. In this dataset six
base colors (blue, green, red, cyan, magenta, and yellow)
are used, for a total of 24 classes, four of which are shown
in Fig. 11. We create 400 10 x 10 training images of each
class, and use 80% for training and 20% for testing.

5.2.4 Synthetic high-channel data

We create a 12-channel dataset consisting of tensors of shape
10 x 10 x 12 that are each populated with a uniform random
distribution of numbers € [0, 1). Each of the 10 classes is
defined by the addition of 0.5 to three distinct channels of
the data, and is shown in Fig. 12.

5.3 CIFAR-10 dataset results

All four proposed methods CO-QCNN, PCO-QCNN, PCO-
T-QCNN, and WEV-QCNN are tested against a control
QCNN. This control QCNN operates by passing the quantum
filter over each channel individually, acquiring an expecta-
tion value, and summing the expectation values to produce
the final output.

To comprehensively evaluate the proposed QCNNs on the
CIFAR-10 dataset, each model is evaluated on an n-member
classification task, where n (two - ten) classes (Table 2)
are contained in the training and test sets. We begin with
ten classes and iteratively remove the remaining class that
the CO-QCNN classifies with the least accuracy, perform-

Table2 Classes used in CIFAR-10

Number of classes Class that is added

frog, ship

2 + automobile
3 + truck

4 + airplane

5 + bird

6 + cat

7 + horse

NoRiNe RN B Y B N ]

8 + dog

—_
(=]

9 + deer
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F0.20 = 3 classes
0.10 2 classes
0.00 . y y
0 5 10 15 20
Epochs

ing a classification at each iteration. The PCO-QCNN using
U, achieves the highest binary accuracy of 94.5%, com-
pared to 85.0% with the control QCNN. When trained on
all ten classes, the CO-QCNN was able to achieve 34.9%
while the control QCNN produced 28.2% accuracy using
U;. The performance of each method on variable numbers
of classes is shown in Fig. 13. A comparison between each
circuit is displayed for each type of classification in Fig. 14.
For all classifications, the CO-QCNN, PCO-QCNN, and
WEV-QCNN outperformed the control QCNN and achieve
state-of-the-art accuracy compared to current quantum neu-
ral networks (Table 3).

(e) Control

5.4 Synthetic dataset results

In an attempt to demonstrate that the increased accuracy of
the CO-QCNN, PCO-QCNN, and WEV-QCNN models can
be attributed to their ability to extract features across the
channel dimension, all proposed methods and the control
QCNN are evaluated with synthetic datasets that emphasize
inter-channel relationships. These synthetic datasets place all
patterns to be learned in the channel dimension only, rather
than both the spatial and channel dimension of the data. In
an RGB image, the color is explicitly defined by the value of
each channel. In the synthetic 12-channel dataset, the classes

Fig. 14 Test set accuracy as a 1.00 0.40

function of training epochs for 0.90 0.35 ]
the Channel Overwrite (CO) 5, 0.80 pe——— 2550

quantum convolutional neural g 0.70 /;’(/W\/\/V— z '

network (QCNN), Parallel CO 5 0.60 5025

(PCO)-QCNN, PCO S 0.50 — CO 0 0.20 — CO
topologically considerate < 540 ' PCO < 0.7 e PCO
(PCO-T)-QCNN, weighted % 030 — PCOT 9 — PCO-T
expectation value 2 0.20 WEV i 0.10 WEV
(WEV)-QCNN, and a control 0.10 == Control 0.05 === Control
QCNN for binary and 0.00 0.00

ten-member classification. o 5 10 15 20 o 5 10 15 20
Quantum convolutions shown Epochs Epochs

are performed with U,

@ Springer

(a) CIFAR-2 Classification Accuracy

(b) CIFAR-10 Classification Accuracy



Quantum Machine Intelligence (2023) 5:41

Page110f 15 41

Table 3 Full 60,000 images

CIFAR-10 image recognition Quantum model

Test accuracy

Quanvolutional Neural Network! Mari (2021); Riaz et al. (2023)
Neural Network with Quantum Entanglement ! Riaz et al. (2023)
Flat Quantum Convolutional Ansatz 2 J ing et al. (2022)

CO-QCNN (U1/U2)
PCO-QCNN (U1/U2)
WEV-QCNN (U1/U2)
Classical Model
CNN 3

CNN-P 3

34.9%

36.0%

41.8%
43.1/45.1%
44.9/44.4%
44.0/44.3%
Test Accuracy
64.6%

51.2%

! Models make no attempt to learn inter-channel information, and instead converts the images to grayscale
2 Model is tested with images from the training data. This accuracy is a reproduction trained and tested on
the full CIFAR-10 data using their exact architecture and circuit

3 Both architectures are shown in Figs. 17 and 18 in the Appendix. CNN-P is a CNN with the same number

of parameters as our work

are determined by which channels contains higher values
than the others. By relegating all important learnable patterns
to the channel dimension, the proposed models’ abilities to
extract inter-channel features are demonstrated.

All proposed methods except PCO-T-QCNN are able to
achieve 98% accuracy, with CO-QCNN achieving 100%
accuracy on the synthetic 12-channel dataset. When predict-
ing the color of noisy RGB images, the proposed models
demonstrate the ability to learn, with the CO-QCNN and
PCO-QCNN achieving 100% accuracy. The control QCNN
is shown to perform much worse. The results for the noisy
colors with shapes dataset are similar to those of the noisy
color dataset (Figs. 15 and 16).

6 Conclusions

The proposed quantum circuits allow our QCNNSs to effec-
tively learn inter-channel information, as shown through
evaluation of the models on synthetic data that holds impor-
tant patterns in the channel dimension. Moreover, the CO-
QCNN, PCO-QCNN, and WEV-QCNN methods achieve
state-of-the-art performance on the CIFAR-10 dataset com-

pared to current quantum neural networks. In particular,
the CO-QCNN and WEV-QCNN methods achieve a greater
accuracy while being computationally cheaper (Table 4) in
both circuit depth and circuit width compared to this work’s
predecessor (Jing et al. 2022).

The poorer performance of the proposed PCO-T-QCNN
suggests better efforts must be made to effectively correlate the
multiple ancilla qubits. It is our hope that soon this method will
lose relevance, as fully connected quantum devices are begin-
ning to emerge, most recently Honeywell’s 32-qubit trapped-
ion quantum processor (Moses et al. 2023). As these models
possess a heightened ability to learn inter-channel patterns,
we wish to apply these to deeper layers in quantum-
hybrid neural networks. For the CO-QCNN, PCO-QCNN,
and PCO-T-QCNN, a controlled phase gate with only
the first qubit of each working register and the ancilla qubit(s)
is used. It is theorized higher accuracy may be achieved by
performing controlled phase gates targeting all qubits in the
working register. However as this work aims to create hard-
ware considerate circuits, this is left to future projects.

Since all expectation values are weighted in the WEV-
QCNN method, it is proposed that as this method is paral-

1.00

0.90
3o.ao
g o0
5 0.60
g 0.50
5 040
ﬁ 0.30

0.20

0.10

~

~

/ y

co
PCO
PCO-T
WEV
Control

2.50

0
=3
o

co

0.00
0 5 10 15 20

Epochs
(a) 12-Channel Dataset Accuracy

Fig. 15 Test set accuracy as a function of training epochs for the Chan-
nel Overwrite (CO) quantum convolutional neural network (QCNN),
Parallel CO (PCO)-QCNN, PCO topologically considerate (PCO-T)-

" —
& 1.50 = PCO
= — —— PCO-T
¥ 1.00 N, WEV
aQ
= \ === _Control
0.50 \\
—_|
0.00
5 10 15 20
Epochs

(b) 12-Channel Dataset Loss
QCNN, weighted expectation value (WEV)-QCNN, and a control

QCNN for the classification of synthetic 12-channel data. Quantum
convolutions shown are performed with U;
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1.00 2.50

0.90
5. 0.80 2.00
® 0.70 s CO " m— CO
5 0.60 = PCO 8 1.50 = PCO
3 0.50 — PCOT - —— PCOT
- 0.40 WEV 9 1.00 WEV

-

9 0.30 = Control & = Control
F o020 0.50

0.10 — |

0.00 0.00

0 5 10 15 20 5 10 15 20
Epochs Epochs
(a) Noisy Colors Accuracy (b) Noisy Colors Loss

1.00 2.50

0.90
5. 0.80 2.00
& 0.70 e CO " = CO
5 0.60 = PCO 8 150 = PCO
3 0.50 —— PCOT - —— PCOT
- 0.40 WEV 9 1.00 WEV
B 0.30 = Control = = Control
F0.20] 0.50

0.107,

0.00 0.00

0 5 15 20 5 15 20

10
Epochs
(C) Noisy Colors with Shapes Loss
Fig. 16 Test set accuracy as a function of training epochs for the Chan-

nel Overwrite (CO) quantum convolutional neural network (QCNN),
Paralle] CO (PCO)-QCNN, PCO topologically considerate (PCO-T)-

10
Epochs
(d) Noisy Colors with Shapes Loss

QCNN, weighted expectation value (WEV)-QCNN, and a control
QCNN for the classification of synthetic RGB data. Quantum convolu-
tions shown are performed with Uy

Table 4 Proposed quantum

circuit complexities Quantum model Dataset Circuit depth Circuit width
FQConv (Jing et al. 2022) CIFAR 25 12
CO-QCNN RGB images 19 5
High channel 73 5
PCO-QCNN RGB images 12 13
High channel 42 13
PCO-T-QCNN RGB images 13 15
High channel 40 15
WEV-QCNN RGB images 5 4
High channel 5 4
lelized across a quantum processing unit the classical weights ~ Appendix

will learn which qubits are better performing than others
and weight them less in the final output. This could serve
as a quantum error corrective technique inherent to the
WEV-QCNN method. Running this method on real quantum
hardware would test this theory. Beyond image recognition,
we envision that these methods can be applied to problems
in the natural and physical sciences.

Fig.17 CNN Architecture

10x10x3 => 9x9x32 =—> Zx8x64 —> 4x4x64 —> 3x3x128 = 1152 5010
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Fig. 18 CNN-P Architecture

10x10x3=>9x9x4 => Zx8x8 =—> 4x4x8 —> 3x3x16=>144 = 48 =10

I — e Xg

Fig. 19 Unitary block used to entangle the working registers in the
DRPC and DRPC-T methods

Fig.20 Unitary block used to entangle the ancilla register in the RPCT
method
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