Generalizable Reinforcement Learning-Based
Coarsening Model for Resource Allocation over
Large and Diverse Stream Processing Graphs

Lanshun Nie, Yuqi Qiu, Fei Meng
Harbin Institute of Technology

Abstract—Resource allocation for stream processing graphs
on computing devices is critical to the performance of stream
processing. Efficient allocations need to balance workload distri-
bution and minimize communication simultaneously and globally.
Since this problem is known to be NP-complete, recent machine
learning solutions were proposed based on an encoder-decoder
framework, which predicts the device assignment of computing
nodes sequentially as an approximation. However, for large
graphs, these solutions suffer from the deficiency in handling
long-distance dependency and global information, resulting in
suboptimal predictions. This work proposes a new paradigm
to deal with this challenge, which first coarsens the graph and
conducts assignments on the smaller graph with existing graph
partitioning methods. Unlike existing graph coarsening works,
we leverage the theoretical insights in this resource allocation
problem, formulate the coarsening of stream graphs as edge-
collapsing predictions, and propose an edge-aware coarsening
model. Extensive experiments on various datasets show that
our framework significantly improves over existing learning-
based and heuristic-based baselines with up to 56% relative
improvement on large graphs.

Index Terms—resource allocation, reinforcement learning,
stream processing, graph neural network

I. INTRODUCTION

Stream processing, which enables the analysis of online
arriving data, has been widely used in many industrial do-
mains, such as transportation, telecommunication, and data
analytics [1]-[4]. The incoming data flow of stream processing
consists of structured data items called data tuples. The
computation and communications in stream processing can
be represented as a Directed Acyclic Graph (DAG), where
the nodes represent the operators performing computation on
the incoming data tuples and the directed edges represent the
transmission of data tuples between operators. Online stream
processing receives a high rate of incoming data flow and
needs to return the computed results in real time. Thus, its
main performance objective is to achieve high processing
throughput on the available computing devices via good re-
source allocation for the operators.

Recently, machine learning solutions for resource allocation
have been developed [5]-[13]. Among them, some specifically

This research was supported, in part, by the National Science Foun-
dation (USA) CNS-1948457, National Key Research and Development
Project 2022YFB3305500, and National Natural Science Foundation of China
U20A6003. Lanshun Nie, Yuqi Qiu, and Fei Meng are co-first authors. Jing
Li is the corresponding author.

Mo Yu
IBM Research

Jing Li
New Jersey Institute of technology

1 P Ll
S
2 4
w ‘.‘o&
Q05 o7
o ,;7 - = Metis
4 |=*= Graph-enc-dec
0 .
0 5000 10000 0 5000 10000
Throughput Throughput

(a) Small graphs (4~26 nodes) (b) Big graphs (100~200 nodes)

Fig. 1. Cumulative Distribution Function (CDF) of throughputs of 300
stream processing graphs with different topologies under the resource alloca-
tion of Metis vs. Graph-encoder-decoder. In CDF, (5000, 0.5) means that 50%
of graphs have throughputs less than 5000/s. Thus, a curve with a smaller
Area-Under-Curve (AUC), i.e., more skewed towards the right, has higher
throughputs for stream graphs and shows better performance.

focus on stream processing [8], [9]. These studies mainly
follow an encoder-decoder framework — an encoder is used
to embed the computation graphs into node embedding so that
the topological contexts can be represented as vectors. Based
on the node embedding, the decoder assigns each node to a
device sequentially. The encoders and decoders can be made
graph-aware via graph networks [14], [15] to make the model
generalizable to various graph structures.

Although the encoder-decoder paradigm works well for
a single large graph (i.e., training and testing on the same
graph) [6], it faces challenges when learning a generalizable
resource allocation strategy for large graphs (i.e., testing
on large graphs with topologies unseen during training). Be-
cause the resource allocation problem is a joint optimization
with global dependency among nodes, large graphs make the
encoder-decoder models insufficient to capture such global in-
formation needed for optimal predictions. For example, a good
allocation for a stream graph with lightweight transmission
requires putting a balanced workload of stream processing
nodes on each device. This essentially requires the node
embedding to be aware of the whole graph, which is usually
beyond the receptive fields of existing graph encoders. Figure 1
verifies this issue with a pilot study of our implementation of
a graph encoder-decoder [9]. Compared with a non-learned
graph partitioning algorithm Metis [16], the graph-encoder-
decoder model changes from outperforming to underperform-
ing when the sizes of graphs increase from ~20 to ~150.

In this work, we propose a novel coarsening-partitioning

paradigm for learning a generalizable resource allocation strat-
egy over large stream graphs. The key idea is to coarsen a large
graph to a smaller one that is easier to handle for a partitioning
model. The coarsening model is trained with reinforcement
learning to maximize the throughputs of resource allocations
over the smaller coarsened graphs. In other words, the model
learns how to generate a coarsened graph that is representative
of the original graph in terms of resource allocation results.

Second, to make the coarsening process suitable for stream
graphs, we formulate it as an edge-collapsing prediction —
the coarsening model learns whether to merge the nodes con-
nected by an edge. This formulation leverages the theoretical
insights in stream processing that collapsing some edges can
better reduce the communication between merged nodes while
maintaining balanced computation loads of merged nodes. In
contrast, existing graph coarsening formulations, developed in
machine learning fields, cluster nodes into pre-defined groups.
Their formulation is less effective in the context of stream
processing, as the groups do not preserve specific meaning.

Third, we propose a new graph coarsening model with
edge-aware graph-encoding to make the edge-collapsing pre-
dictions. Our model encodes the graph using node and edge
features in an efficient and global manner to best capture
their impacts on throughput. To ensure that nodes are merged
largely because they can be allocated to the same device to
avoid heavy transmission in between without overloading the
device, we use the node embedding and edge features to build
our edge representation and perform the edge-collapsing pre-
dictions. The coarsening model is updated via policy gradients
to maximize the throughputs after partitioning.

Additionally, we propose a curriculum learning [17] frame-
work to handle the training difficulty over large graphs on
many devices. These graphs have large search spaces and are
thus unlikely to have optimal allocation results sampled during
training when the whole framework is trained from scratch.
Our curriculum solution addresses this severe challenge in two
folds. First, we train the whole framework starting from small
graphs on a few devices and gradually moving to larger ones
on more devices. Intuitively, when trained on the small graphs,
the model can quickly converge to model the relationship
between the input graphs and the required allocations with
desired throughputs. Then, continued training only needs to
help the model to fit the distribution of large graphs. Second, if
training using smaller graphs is not possible, we add the results
obtained by a heuristic algorithm (e.g., Metis) to the beam of
samples for training. This guided supervision signal helps the
model to more quickly get over the cold start stage, where
none of the sampled allocation results have good throughputs.

Finally, we conduct extensive experiments with various data
sets and compare our framework with state-of-the-art learning-
and heuristic-based methods. Results show that our framework
significantly outperforms all baselines in all settings with
up to 46%, 56%, and 40% improvements for graphs with
100~200, 400~500, and 1,000~2,000 nodes, respectively.
Our framework also leads to a huge improvement in a setting
with a realistic problem where the computing resources exceed

the requirement of the graphs — it learns to use a reasonable
subset of devices. Our coarsening model also demonstrates
great transferability and adaptability when deployed to graphs
vastly different from the training set. This indicates the poten-
tial of our approach to fit the changing real-world deployment
requirements and computation environments.

II. RELATED WORK

Resource Allocation of Stream Processing Graphs. Stream
processing systems have been extensively studied [18]-[24],
and many algorithms were proposed for the resource alloca-
tion problem. For example, Metis [16] is a heuristic-based
algorithm with graph coarsening and partitioning steps, which
requires users to adjust the coarsen scales and resources.
Amini et al. [25] applied a two-tiered approach that uses a
Linear Quadratic Controller for the flow control and requires
additional assumptions of the system. Fu et al. [26] instead
designed a congestion-aware scheduler using queue-theoretic
analysis and a fixed-size worker pool. Additional consid-
erations, such as data ingestion [27], dispersed computing
networks [28], energy saving [29], fault tolerance [30], and
meeting latency targets [31], [32], have also been studied.

Learning for Resource Allocation of Computation Graphs.
[5]-[8] are the first works that apply learning models to re-
source allocation of computation graphs. They used sequence-
to-sequence models to predict the device placement for op-
erations in a single TensorFlow graph. Using sequence-to-
sequence models limited their applications to unobserved
graphs, since the model can only rely on topological orders
to capture the graph structure. Therefore, for each graph they
consider, such as Inception-V3 for image classification, LSTM
for language modeling, and word count application for stream
processing, a graph-specific model is separately trained and
tested on the same individual graph.

To overcome the above generalization challenge, follow-
up works [9], [10] apply graph neural networks on top of
reinforcement learning [33], so that the same model can
handle different graph topologies. They adopt a graph-to-
sequence architecture. An LSTM-based encoder is still kept,
but predicting the resource allocation is based on the node
embedding from a graph neural network.

For larger unseen graphs, both the graph encoder and LSTM
decoder of these works become less efficient, despite their
successes in training and testing on one very large graph with
the same topology. Our graph coarsening model, which is
orthogonal to the development of graph-to-sequence models,
helps address this issue. Graph coarsening has been studied
in data mining applications [34]-[37]. Our coarsening model
generalizes the network design in [37], but we are fundamen-
tally unique in the specific formulation that handles the edge-
collapsing prediction task for coarsening stream graphs.

III. OUR PROPOSED FRAMEWORK

We first give a formal definition of the resource allocation
problem in stream processing, then show why it challenges
existing partitioning models for large graphs, and propose an

Coarsened
Original small graph
Iargt?1
grap -

Coarsening
| “oa =
—_—
—_—

Small graph with
device placement

Original graph
with device

Graph
partitioning
model
(Graph-enc-dec
or Metis)

Other calculated
up-stream information

Devices [l 2

. v
Node feature >
Node embedding h, | h.4

GCN with edge encoding

Directed graph =

embedding

Down-stream
convolution
(performed similarly)

Prob. of merge
~— nodes (u, v()]

MLP Edge MLP Merging

Node
= representation :>probabilities

Fig. 2. Overview of our coarsening-partitioning framework for device allocation and the proposed coarsening model architecture. Our model is composed of
graph encoding to learn the structured information of stream graphs for predicting whether to collapse an edge.

alternative solution to this problem by formulating the problem
as graph coarsening via edge-collapsing prediction.
Problem Definition. Our data consists of different stream
processing graphs {G,}, where each graph G, = (V. E)
as illustrated on the left of Figure 2. Each node v € V
represents an operator, characterized by its CPU utilization
(number of instructions required per second) and payload
(total size of tuples produced by the operator). Each directed
edge e = (Vin, Vout) € E represents the connection between
operators v;, and v, via which v, transmits its output
tuples to v,y as input. Each edge is characterized by its
communication cost, payload.

Given a graph G, and a set of devices (e.g., CPUs) D,
a resource allocation model M predicts a device placement
graph G, where an operator v € G, is assigned to a device
d, € D. The right of Figure 2 illustrates the target graph G|,
where each node in G, is appended with a new device id node
(the square nodes in the figure) depicting its allocation.

Motivation of a New Paradigm. Existing studies [9], [10]
usually perform direct partitioning — their models encode the
original graph, on top of which the placements are directly
predicted on each node. Direct partitioning is not efficient
for large graphs. Essentially, resource allocation for graphs
is a combinatorial search problem, with the prediction of each
node having dependencies on others. The dependencies may
have long distances across the whole graph. Intuitively, one
important factor for a good allocation is that the workload
on each device is balanced. This global dependency requires
the hidden states of the encoding results to have the reception
fields over the whole graph.

While most existing works try to overcome this challenge
with more powerful encoders with useful inductive biases, in
this paper, we propose an alternative paradigm — our key
idea is to coarsen the large graphs to small enough for an
existing partitioning method to handle them well. Moreover,
the coarsening step is achieved with a model that predicts what
edges to collapse and is optimized with reinforcement learning

to maximize the performance of placement over coarsened
graphs. The edge-collapsing prediction follows the theoretical
intuitions that communication costs of some edges are more
likely to be the bottleneck for maximizing the throughputs
of stream graphs. With reasonable node embeddings, such
information can be captured into edge representations without
global topological structures and thus easier to learn.

Our Coarsening-Partitioning Framework. We propose a
novel framework shown in Figure 2. Formally, a large input
graph G, is first fed into a coarsening model (detailed in
Section IV) to predict the edge e,, (connecting nodes u
and v) to collapse and obtain a smaller coarsened graph .S,.
As a result, this corresponds to a function F mapping each
v € G4 to a node v € S,. Because |S,| < |G|, a node
v’ € S, corresponds to a subset of nodes from G,. Second,
the coarsened graph .S, is fed into a partitioning model M,
e.g., existing device placement methods, to predict the coarse-
grained device placement from S, to Sy, where each v’ € S,
is assigned to a device d,» € D. The placement S, is mapped
back (i.e., nodes {v|F(v) = v’} assigned to device d,) to the
original graph to get the final allocation.

Training. In the resource allocation task, supervised learning
of models is in general not possible, because it is difficult,
if not infeasible, to get the ground truth allocation G, for
an input G,. However, the relative quality of an allocation
G, can be accessed by calculating its throughput. Therefore,
we optimize our model via reinforcement learning, with the
throughput of the predicted allocation graph as the reward r.

Specifically, we aim to maximize the relative throughput
r(Gy) = ?ég:)) as the reward. Here, T'(G,)) is the throughput
and I(G,) is the source tuple rate. Hence, the reward r ranges
from O to 1 — a high reward ensures that the tuple processing
rate (throughput) catches up with the source tuple rate, so there
is no backpressure due to bad resource allocation.

To speed up the reward calculation, we adopt a simulator
CEPSim for cloud-based complex stream processing [38] to

Fig. 3. An example of different graph coarsening results from the Metis coarsening algorithm (left) and our model (right). The transition load on the edge
is represented by thickness. When both are partitioned by the Metis partitioning algorithm, the former gives a throughput of 3,104/s, and ours gives 9,192/s.

evaluate each allocation sample. The fidelity of CEPSim has
been validated in [9], where the simulator can mimic the
behavior of the real streaming systems, with consistent relative
performance ranks between the throughout estimations of the
simulator and a real streaming platform.

We train our framework with the REINFORCE algo-
rithm [39] to compute policy gradients and learn net-
work parameters with Adam optimizer [40]: V(6)J(0) =
+ ZnN:1 Vlogm(GZ)[r(GZ) — b], where my is the policy
function outputting a distribution of possible G, — in our
case, its 6 is all the learnable parameters in our framework.
The baseline b is the average reward of the /N on-policy and
historically-found best samples, which is introduced to reduce
the variance of policy gradients.

IV. OUR EDGE-COLLAPSING COARSENING MODEL

This section discusses how our proposed edge-collapsing
formulation fits the resource allocation task for stream graphs
and introduces our design of the coarsening model.

Previous works on graph coarsening [34], [41], [42] usually
group nodes according to their similarity, which is essentially
node-level classifications to pre-defined group IDs. However,
this formulation does not fit our problem for two reasons.
(1) According to insights from scheduling theory, the goal
of coarsening is to collapse edges with large impacts on
the throughput of a stream graph, not to find similar nodes
(illustrated in Figure 3). (2) Previous coarsening models work
on groups for graphs like social networks, so their node groups
have specific meanings. However, there is no semantics of the
groups themselves for stream graphs. Experiments (Figures 5
and 6) verify that such node-level classification formulation
does not work well for our task.

Therefore, the coarsening of stream graphs for allocation
should rely on edge-level decisions instead of node-level
ones. The bottom of Figure 2 depicts the architecture of our
proposed coarsening model. Our design aims to address two
challenges: how to make full use of the edge information for
graph encoding (Section IV-A), as our inputs are directed
graphs with edge features different from existing coarsening
works; and how fo use both node and edge information for

the edge-collapsing prediction (Section IV-B) to balance the
impacts of computation load and communication costs.

Remark on generalizability. Our formulation also makes our
coarsening model more generalizable, because edge-collapsing
operations have similar semantics across different graphs and
computing environments (e.g., different numbers of devices).
Hence, our trained model can work well when directly applied
to a different setting (e.g., unseen larger graphs or evaluated on
a real platform instead of a simulated one) and can be further
fine-tuned with a small number of iterations.

A. Edge-Aware Stream Graph Encoding

The first step of graph coarsening is to encode the graph to
get its contextualized embedding. For the input directed graph
G, with edge features, the graph encoding should be edge-
aware. One way to achieve this is to apply edge convolution,
which requires a sparse edge set. In stream graphs, the edge
sizes are usually larger than the node sizes. Thus, we take a
different approach, with special treatment of edge directions
and features during node convolution, and perform edge-level
actions by constructing edge representations from the node
embeddings and edge features.

Specifically, we build our graph encoder on top of the graph
neural network (GNN) [14], [15], [43], following [9], [10]. The
GNN iteratively updates a node’s embedding (hidden states)
with its neighbors’ embeddings. We involve edge features in
this process as follows. We denote the embedding of node
v at the k-th iteration as hﬁ, where hg = f,, i.e., its node
feature vector containing the CPU utilization and payload
emitted from this node. This node embedding distinguishes
edge directions by its two sub-vectors, h’,jF and hﬁ4 e R™,
reflecting the effects of the upstream neighbors N (v) and
downstream neighbors N(v). The edge e, , has an edge
feature vector f,, ,,, which contains the weights of transmission
loads along this edge. Our GNN updates v’s embedding with
the following edge-aware steps, illustrated in Figure 2:

o Information aggregation: First, we aggregate the informa-
tion from v’s upstream and downstream neighbors separately.
Taking the aggregation of upstream neighbors as an example,

for each u € Ni(v), we take its current embedding h*_ and
edge feature f, ,, feed them to a non-linear transformation
h = tanh(W™nE, + W) g,),

edge U,V

where W(luP) € Rmx2m WS;‘;L € R™*4 and d is the dimen-
sion of edge features. Similarly, we aggregate the downstream

information as:

W% = tanh(WOV ™k, + WEE,)
e Node update: After getting all h{™ vy € N} (v), we take
the mean-pooling of the vectors and update the upstream-view
embedding of v as ([- : -] refers to vector concatenation):
(in)
Zue./\f - (v) huF)
N ()

The downstream-view embedding is obtained similarly.

Empirically, we use shared parameters W'~ and W
for upstream and downstream updates. The above steps are
repeated K times over all nodes in the graph. In our exper-
iments, we find that setting K to 2 can already obtain good
performance. Finally, for each v, we concatenate its upstream
and downstream embeddings h’ and hX as its final node
representation. We denote this vector as h, for short in the
following sections.

k+1 _ (up) [pk .
hitt = tanh(W3™ |h} -

B. Edge-Collapsing Prediction

We build our edge representation for the edge-collapsing
prediction. For each edge E,, ,, its information is represented
by its two nodes’ representations h,,, h, and edge feature f,, ,.
For a directed edge e, ,, the influences of head node v and
tail node v are different. Thus, for node embedding h, matrix
multiplication is performed with different weight matrices to
obtain the representations of head and tail nodes. The edge
representation is obtained via a fully connected network after
concatenating the node representations with edge features:

hheud _ W(head)h7 hlail — W(tail)h
hu,v _ ngerge) |:h2ead . hzxil : W(edge)fu’v)

Next, we get the probability of merging two nodes con-
nected by an edge via feeding the edge embedding to a
nonlinear transformation:

P(merge(u,v) = 1) = o (MLP(W{ "8,),

where o is the Sigmoid function. It produces a binary proba-
bility of merging nodes u and v for each edge e, ,.

C. Curriculum Learning for Large Stream Graphs

Graph coarsening is more challenging with larger graph
sizes, as larger graphs correspond to a larger search space
of coarsening operations for any coarsening approach. Hence,
during the cold-start stage, i.e., the beginning of the training
process, it is likely that all the samples give low rewards
so that none of them can provide good training signals. To
address this problem, we propose two curriculum learning

methods to guide our model training and help the model reach
convergence in a few epochs (1~3) with high throughputs.

Curriculum Based on the Levels of Graph Sizes. Curricu-
lum learning [17] mimics the education processes of humans
in the real world, where learning problems come in a sequence
from easy to difficult. In practice, the learning model is firstly
fed with easier tasks; then, starting with the local optima, the
models are further trained on harder tasks to adapt to a better
local optimum compared to training from scratch.
Specifically, in our work, we split tasks according to graph
sizes and numbers of devices. This gives three curriculum
levels, i.e., graphs with numbers of nodes between 100~200
on 10 devices, 400~500 on 10 devices, and 1,000~2,000
on 20 devices, as shown in Figures 5 and 6. For curriculum
learning, we start with 100~200 on 10 devices instead of 5
devices, as this setting is not hard for our model to learn from
scratch. The model is first trained on the first level directly.
Because both the training and testing graphs from the previous
level can be viewed as the (auxiliary) training data for the next
task, we then use the model obtained for the previous level
to continue training (i.e., fine-tuning) this model for the next
level. On each level, the model is trained until it achieves its
best performance. Empirically, compared to training the model
from scratch, this approach helps the model converge much
faster (1~3 epochs) and reach much higher performance.

Metis-Guided Training Signals. Our second approach is
to introduce Metis predictions to the sampled partitions in
REINFORCE. Metis can provide partitions regardless of graph
sizes. Though not optimal, these allocations are still more
informative compared to the random allocations from the
model at the start of the training. Therefore, they can provide
meaningful supervision signals for the model to quickly pass
the cold start stage, especially in cases where curriculum
learning using smaller graphs is not possible.

We process our training graphs with Metis before the model
training. These Metis partitions are added to the initial buffer
of best samples and used in the same way as the regular
historically-found best samples during policy gradient train-
ing. Once the model has explored enough higher throughput
partitioned graphs, the Metis-guided samples will be removed
from the beam and no longer affect model optimization.

To make use of Metis partitions, one obstacle to overcome
is to infer which edges have been collapsed by Metis, as the
algorithm does not decide for every edge whether to merge
and only gives the coarsened graphs. We apply the “maximum
spanning tree” algorithm to find out the collapsed-edge list.
For every original subgraph with n connected operators that
can map to a new operator in the Metis partition graph, we
choose the top n — 1 edges of the highest edge weight as the
collapsed-edge list while guaranteeing it is a spanning tree.

V. EXPERIMENTAL SETTINGS

We first introduce our evaluation benchmarks.

Data Set Generation. In addition to the data set with small
stream graphs in [9], we generate 1,500 graphs with 100~200

nodes per graph, 1,100 graphs with 400~500 nodes per graph,
and 1,500 graphs with 1,000~2,000 nodes per graph. For each
data set, we randomly select 300 graphs for testing and the
remaining graphs for training.

The graphs are generated to resemble the topological struc-
tures of real-world applications in stream processing systems.
Specifically, in most real-world stream applications with com-
plicated topological structures, their processing logic can be
recursively decomposed into simpler processing logic. Fol-
lowing research on applications of stream processing systems
[19]-[24], we summarize three basic types of stream sub-
graphs — linear, branch, and fully connected structures, as
shown in Figure 4. The more complicated processing logic,
such as linear chains, loops, trees, and multi-stages, can all be
represented as the combinations of the basic structures.

Fig. 4. Illustration of a graph generation. In each step, a newly added node
in the graph will be replaced by one of the three basic subgraphs of linear
topology, branch topology, or fully connected topology in the probability of
0.45, 0.45, and 0.1 in our settings. For each topology, the maximum lengths
are set to 5, 1, and 3; and the maximum widths are 1, 5, and 5. This process
will be recursively conducted until the node numbers meet the requirements.

We use the basic sub-graph structures to recursively con-
struct larger stream graphs. In particular, we start with a
simple graph and iteratively replace a node with a basic sub-
graph structure. Figure 4 depicts a step in the recursive graph
generation process. In addition to replacing a node with a basic
sub-graph, we can replicate a sub-graph for multiple times at
its original place. This gives representative stream processing
graphs with larger sizes and more complicated topologies.

There are two parameters of graph generation: the workload
of nodes, measured by CPU utilization, and payload on edges,
measured by data saturation rate. The CPU utilization of
an operator is calculated as (IPT-R)/MIPS, where IPT is the
number of instructions per tuple, R is the tuple rate of the
operator, and MIPS is one million instructions per second. The
data saturation rate at an edge is (P - R)/BW, where P is the
payload and BW is the link bandwidth. For operators generated
by replicating a sub-graph, their properties are replicated;
and the properties of other operators are randomly assigned.
For task settings with different graph sizes, we set the total
computing load for each graph in the data set to have the same
distribution, to ensure it is within the capacity of devices.

With this construction method, our data set covers various
streaming graph topologies, including a wide range of large
real-world streaming processing workloads [19]-[24].

Experiments with Graphs Having Different Properties.
With a large number of synthetically generated graphs having
diverse topologies, we are able to compare and evaluate our
framework with the following settings in the experiments.

o Small-Graph Setting from [9] where the graphs consist of
4~26 nodes. We take the data set as a sanity check, to show
that our approach also works for small graphs.

o Medium-Graph Setting — Graphs with 100~200 nodes that
we used in the motivating example in Figure 1(b).

e Large-Graph Setting — Graphs with 400~500 nodes that
are common in stream services, thus is our main setting.'

o X-Large-Graph Setting — Graphs with 1000~2000 nodes.
e Excess-Device Setting — We also consider a realistic setting
where the number of devices far exceeds the requirement of
the stream graphs. Modern stream processing services usually
consist of a large cluster of computing devices and support
stream graphs with different properties. Assigning nodes to
all the available devices may waste computing resources
and hurt performance due to increased communication costs.
Therefore, a resource allocation strategy needs the ability to
find a subset of devices that optimize the throughput. We
construct this setting by using the same typologies of the
Large-Graph Setting but reducing the nodes’ CPU utilization
and the network bandwidth by 33% and 33%, respectively.

Experimental Environment. Due to limited computing
resources, we do not have access to a distributed server cluster
or a supercomputer for executing large stream processing sys-
tems. Thus, we adopt the simulator CEPSim [38], which has
been shown to accurately reflect the behavior and relative per-
formance of a real cloud-based stream processing system [9].
We create a cluster in CEPSim with homogeneous devices.
The computing capacity of a device is 1.25E3 MIPS. The
link bandwidth between devices is 1000 Mbps for 100~200
and 1500 Mbps for 400~500, 1000~2000 nodes data sets.

VI. EXPERIMENTS

A. Baselines and Implementation Details

Baselines. We compare with the following baselines:

e Metis [16] is a graph partitioning library, which takes the
input graph, the computational cost of operators, the amounts
of data flowing through edges, and the number of partitions to
produce. We set the number of partitions to the same as the
number of available devices. Among its different heuristics,
we select the one with the best performance.

e Graph-enc-dec [9] is the state-of-the-art deep learning
approach for resource allocation on stream graphs. The model
learns a graph encoder to capture the different graph topology

'Unlike a TensorFlow graph where a node is one computing operation to
be assigned to one of the CPUs or GPUs, a node in a stream processing graph
represents an operator consisting of many computations to be assigned to one
of the distributed servers (called devices in this paper). Thus, a stream graph
is more coarse-grain and has fewer nodes than a typical TensorFlow graph.

P4
0.8 / 0.8 PR
1/ K
O O/
" w061 7 R : : w 0.6 oy . .
I} 8 I Hierarchical 8 g ’ Hierarchical
) 0.4 — GDP 04; L/ — GDP
==== Graph-enc-dec YRl ===» Graph-enc-dec
0.2 == Metis 02} pif == Metis
== Coarsen+Metis ‘:,l == Coarsen+Metis

0 1000 2000 3000 4000 5000

Throughput
(a) Tuple rate: SK/s, #Device: 5

2000 4000 6000 8000 10000
Throughput

(b) Tuple rate: 10K/s, #Device: 5

0
0 2000 4000

6000 8000 10000
Throughput

(c) Tuple rate: 10K/s, #Device: 10

Fig. 5. Throughput Cumulative Distribution Function (CDF) under our approach and various baseline methods in settings with 100~200 nodes per graph,
different tuple rates and available devices. The overall throughput is better if the CDF plot is more skewed towards the right (i.e., smaller Area-Under-Curve).

information and an LSTM decoder to generate the device
placements for nodes sequentially.

e GDP [7] also follows the direct placement paradigm. It
uses a graph-encoder followed by a sequence-to-sequence
placement network based on Transformer-XL.

e Hierarchical [6] uses a hierarchical model to assign oper-
ators to groups and uses a sequence-to-sequence model for
placement on the coarsened graph. We set the number of
groups to 25, which has the best performance.
Hyperparameters. The number of hops K in graph embed-
ding is 2. Empirically, we find that ' = 2 gives the model the
best performance. The lengths of node and edge embeddings
are 512 and 128, respectively. We train the network for 20
epochs using Adam with a learning rate of 0.001. For the
Large Graphs and Extra-Large Graphs, we perform fine-
tuning for 10 and 3 epochs, respectively. At each training step,
one graph is fed to the network, and 3 on-policy samples plus
up to 3 samples from the memory buffer are taken.

B. Evaluation Results on Various Data Sets

Main Results. We compare our approach with baselines in
multiple settings that vary in tuple rates, number of devices,
and number of operators per graph. Note that, unlike other
systems where an application only runs once and the goal is to
minimize its makespan (i.e., runtime), stream processing con-
tinuously processes incoming data nonstop, so achieving high
throughput is its main performance objective for each stream
graph. To compare the generalizability and performance of
different resource allocation strategies over a large number
of stream graphs, we present the Cumulative Distribution
Function (CDF) curve of throughputs. The quantitative and
statistical performance comparison is further made by calcu-
lating the Area-Under-Curve (AUC) of CDF curves. Here, a
smaller AUC means that more stream graphs achieve higher
throughput, i.e., better performance. Table I summarizes the
performance of different approaches via Area-Under-Curve
(AUC) scores, as well as the relative improvement of the best
baseline and our framework with regard to Metis. Note that
for large graphs (with >100 nodes), Metis becomes the best
baseline that beats existing learning-based solutions.

Table I. Area-Under-Curve and relative improvement of our framework with

respect to Metis for (Tuple rate, #Device, #node/graph).

AUC Imp. wrt Metis

Metis (10K/s, 5 devices, 4~26 nodes) 1983 -
Graph-enc-dec (best baseline) 1021 -
Coarsen+Metis 786 60%
Metis (5K/s, 5 devices, 100~200 nodes) 1973 -
Coarsen+Metis 1082 45%
Coarsen+Graph-enc-dec 1060 46%
Metis (10K/s, 5 devices, 100~200 nodes) 6778 -
Coarsen+Metis 5564 17%
Coarsen+Graph-enc-dec 5790 13%
Metis (10K/s, 10 devices, 100~200 nodes) 6949 -
Coarsen+Metis’ 5200 25%
Coarsen+Graph-enc-dec 5481 21%
Metis (10K/s, 10 devices, 400~500 nodes) 6060 -
Coarsen+Metis (direct prediction with ¥) 3036 50%
Coarsen+Metis (+curriculum)? 2681 56%
Coarsen+Metis-oracle (+curriculum) 1974 67%
Metis (10K/s, 20 devices, 1K~2K nodes) 6167 -
Coarsen+Metis (direct prediction with) 4135 33%
Coarsen+Metis (+curriculum) 3682 40%

First of all, we observed that on the small-graph bench-
mark [9] used in previous research, i.e., with 4~26 nodes, our
coarsening-based framework already outperforms the previous
best learning-based approach (Graph-enc-dec) and becomes
the new state-of-the-art. Secondly, when the graphs become
larger, while previous learning-based approaches lag behind
Metis, our framework is the only one that manages to signifi-
cantly improve over Metis. Thirdly, when the graphs become
further larger (i.e., over 400 nodes), our curriculum learning
strategy (see Section IV-C) gives a huge boost on top of
our standard framework, leading to a 56% improvement over
Metis. Finally, we find that using Metis or Graph-enc-dec for
partitioning in our framework does not show much difference
(see Table II for details). Intuitively, given well-coarsened
small graphs, allocating nodes to devices becomes a simpler

1
0.8 Rt 0.8 0.8
R
0.6 :: :/ 7 0.6 0 0.6
W 39 4 W &5 &
[a) R a - Q !
o J ,’ Hierarchical o O = Metis-Oracle O H
0.4 Vs - GDP 0.4 =»+= Coarsen-Fromscratch 0.4 'l
3 ===« Graph-enc-dec ... Coarsen-Fromscratch 4 -
.F == Metis +Metis-sample I. == Metis)
o2r k J = Metis-Oracle 02 —— Coarsen+Metis 0.2 b —— Coarsen+Metis
A ,I ___Coarsen+Metis ___Coarsen+Metis _Co'arsem.-Metls
0 Y +Finetuning 0 +Finetuning 0 +Finetuning
0 5000 10000 0 5000 10000 0 5000 10000

Throughput
(a) 400~500 nodes, #Device: 10, baseline

Throughput
(b) 400~500 nodes, #Device: 10, ablation

Throughput
(c) 1000~2000 nodes, #Device: 20

Fig. 6. Generalizability of different methods. All learning-based models, except for Coarsen-Fromscratch and Coarsen-Fromscratch+Metis-sample, are trained
by data with smaller graphs while all methods are evaluated on larger graphs. In (a) and (b), they are trained by data with 100~200 operators per graph, 10K
tuple rate, and 10 devices, while evaluated by data with 400~500 operators per graph, 10K tuple rate, and 10 devices. In (c), they are trained by data with
400~500 operators per graph, 10K tuple rate, and 10 devices, while evaluated by data with 1000~2000 operators per graph, 10K tuple rate, and 20 devices.

problem where heuristic-based methods can already work well.

Comparison on Medium Graphs. Next, we take a closer
look at the performance of different baselines. Figure 5 shows
the results in the three settings with 100~200 nodes from
Table 1. As discussed earlier, the previous model, Graph-enc-
dec, fails to capture the topology information of graphs with
such sizes. The Hierarchical and GDP also fail to handle
the resource allocation of large graphs well. In all settings
with medium graphs, the classical graph partitioning algorithm
Metis outperforms all neural baselines; and our proposed
coarsening+partitioning framework clearly beats all baselines.

Moreover, it is worth mentioning that Hierarchical follows
the same coarsening+partitioning framework but performs
badly, despite its success in minimizing the makespan of one
very large TensorFlow graph. In addition to the difference be-
tween makespan minimization for TensorFlow and maximiz-
ing throughput for stream processing, there is a fundamental
difference between optimizing the performance of a single
graph and learning a generalizable model for unobserved
graphs with varying topologies.

Specifically, the general-purpose coarsening formulations,
including the one used by Hierarchical, essentially predict each
node’s cluster label and require the clusters to have predeter-
mined meanings across the dataset. However, the coarsened
nodes do not have predetermined meanings in resource allo-
cation. Only when the dataset consists of a single graph, may
it be possible to obtain consistent meanings of the coarsened
nodes. When applying Hierarchical to multiple graphs, we
have tried various extensions to Hierarchical, but none of them
improves its performance. For example, to better represent
the coarsened nodes, we tried to add the CPU and payload
information of the coarsened nodes as features. We also tried to
change its loss function to the one used in our framework, but
the results remained the same. Similarly, training the Grouper
and Placer of Hierarchical together or alternatively does not
affect its performance. This result validates that the graph
coarsening task in this work is much more challenging and
demands a novel formulation and model.

Comparison on Large and Extra Large Graphs. Similarly,
Figure 6(a) compares all the methods in the settings with
400~500 nodes. All learning-based baselines suffer from
further performance degradation compared to Metis, while
our model with curriculum learning achieves a 56% rela-
tive improvement. Figure6(b) further provides an ablation
of our curriculum learning method. Our framework trained
from scratch still outperforms Metis, showing the strength
of our coarsening-partitioning framework. On top of it, our
curriculum approach gives further performance boost, with
the best result achieved from graph size-based curriculum.
Moreover, it is found that even directly applying our model
trained on graphs with 100~200 nodes gives a 50% relative
improvement with regard to Metis. This demonstrates the
strong transferability of our coarsening framework. A similar
trend is observed for extra-large graphs, as show in the bottom
of Table I and Figure 6(c). The results show that our model
can transfer well to the unseen larger graphs, especially with
few-iteration adaptation. Such ability can be beneficial when
transferring from simulated to real-platform throughputs.

Comparison in the Setting with Excess Devices. Finally, we
conduct experiments and analysis in a realistic setting where
the number of available devices can be larger than the number
of devices used in the optimal allocation. Figure 7(a) shows
that our framework with curriculum learning far exceeds all
the baselines. Moreover, it even significantly outperforms the
oracle setting for Metis, where we enumerate all the numbers
of used devices for Metis and use the one that achieves
the highest throughput (Metis-Oracle). This confirms that our
model successfully learns the best number of devices to use
and the good resource allocation on these devices adaptively.

Note that when making direct inferences without fine-tuning
on the target graphs (Coarsen+Metis), our model is still better
than all the baselines but lags behind the Metis-Oracle. This is
as expected, because the model trained on small graphs with
fully utilized devices and directly transferred to large graphs
with excess devices is unaware of the excess resources before
fine-tuning for the target setting. Thus, it tends to use more

o 200
0.8 .o“
R «vex Graph-enc-dec | £ 450
0.6 s ph-enc-dec &

E -= Metis @
Oua = Coarsen+Metis © 100
) = Metis-Oracle 2

Coarsen+Metis E 50
0.2) . z
v +Finetuning
5/
(e 0
0 5000 10000

Throughput
(a) Throughput CDFs

1 72 W3 W4 W5 Mg M7 N3 H9 W10

Coarsen+Metis+Finetuning

Coarsen+Metis Metis-Oracle
Number of used devices

(b) Device usage histogram

Fig. 7. Generalizability of different methods in the Excess Setting. All learning-based models are trained by data with 100~200 operators per graph, 10K/s
tuple rate, and 10 devices, while all methods are evaluated by data with 400~500 operators per graph, 10K tuple rate, and 10 devices.

devices than necessary, as revealed in the histogram of used
devices in Figure 7(b). We can see that for Metis, the oracle
number of devices varies with graphs. Because Metis cannot
produce the best allocation on a given number of devices, it
tends to use fewer devices to reduce network traffics. However,
this underutilizes the devices and results in lower throughput.

To validate this hypothesis, we calculate the average utiliza-
tion of devices that are allocated with computation load. Our
Coarsen+Metis+Finetuning has an average device utilization
(and standard deviation) of 0.12 (0.16) and average bandwidth
utilization (and standard deviation) of 0.11 (0.12), while Metis-
Oracle has 0.18 (0.21) and 0.16 (0.15), respectively. Both the
average utilization and standard deviation of Metis-Oracle are
higher than those of Coarsen+Metis+Finetuning, confirming
that our method achieves better load balancing.

Finally, we also run the experiment using our model
with Metis-oracle, i.e., Coarsen+Metis-oracle (+curriculum)
in Table I. Results show that using Metis-oracle can further
improve performance compared to using Metis only. Together
with Metis-oracle, our framework can produce high-quality
allocation using a reasonable number of devices.

C. Performance Analysis

When Our Model Outperforms Metis. We conduct a
detailed comparison between our best model, Coarsen+Metis,
and the best baseline, Metis, to investigate the sources of
our improvement. Figure 8 gives the relation between graph
throughputs and their compressed ratios. The ranges of com-
pressed ratios are chosen such that Metis roughly has the
same number of graphs in each range. The boxplots show that
our model performs better on graphs compressed 4x times or
larger. Figure 9 compares the distributions of data saturation
rate (i.e., the amount of data flowing through the link over link
bandwidth) of coarsened graphs. We can see that more edges
of graphs coarsened under our proposed model have lower data
saturation rates than those under Metis. This suggests that our
model can find the best edges to collapse globally to reduce
the network flows and improve throughput.

Ablation of Coarsening Model. As our graph network
architecture mainly differs from previous GNNs in the use
of edge features, we investigate the results with these features

10000 _ . —
— Metis - T 1 :
: .
8000} ; T _ N T
LT T
5 . A : o
2 6000 T ° Do : ; : :
()] T 1] !
5 v i ;
£ 4000 H. I BI H
= j
20000 L1 : ! ! E :
0 1.9-3.8 3.8-5.0 5.0-6.7 6.7-8.9 8.9-14.5 14.6-73.5
Compressed ratio
Fig. 8. Impacts of compressed ratios of coarsened graph.
0.25
" A Metis
o 0.2
%D 7 M Coarsen
« 0.15 g 1 B
7 B 7
Y 01 ﬁ ’ ’ ’ Dl
7 71 ¥
8 AR /R VB VR VR Ve 7
= A AN
s, AN AR ROl B o
a
02 06 1 14 18 22 26 3 34 38

Data saturation rate

Fig. 9. Amount of data flowing between nodes of coarsened graphs under
the coarsening of Metis vs. Coarsening model.

removed from our best-performed model (Coarsen+Metis) in
Table II. Removing edge features from the graph-encoding or
edge-collapsing modules degrades the performance. It plays a
more critical role in the edge-collapsing module.

Ablation of Coarsening-Partitioning Framework. The
Coarsen-only approach directly uses our coarsening model for
device placement without the partitioning model. It merges
graphs with our model until the number of remaining nodes
equals the number of devices. This baseline investigates the
necessity of our proposed coarsening-partitioning pipeline. As
hypothesized in Section IV, our coarsening model works by
grouping local sub-graphs that can run on the same device.
However, since sub-graphs using the same device can be
distributed in different places of the input graph, it is not

Table II. Ablation study with Tuple rate: 5K/s, #Device: 5, 100~200 nodes.
The two ablation results correspond to removing the edge features in the
graph-encoding or edge-collapsing modules. Coarsen-only corresponds to

removing the partitioning module in our framework.

AUC Improv. wrt Metis

Metis 1973 -

Our best model (Coarsen+Metis) 1082 45%
Our best model w/o edge-encoding 1295 34%
Our best model w/o edge-collapsing 1229 38%
Coarsen+Graph-enc-dec 1060 46%
Coarsen-only 1771 10%
Graph-enc-dec 2332 -

Table III. Average inference time (second) of different methods for datasets
with 100~200 and 400~500 nodes, 10K/s Tuple rate, and 10 devices using
a GeForce RTX 2060 8G GPU.

100~200 nodes 400~500 nodes

Coarsen+Metis 0.286 0.315
Metis 0.001 0.003
Hierarchical 0.178 0.172
GDP 2.486 2.274
Graph-enc-dec 2.306 3.086

suitable to directly merge all these unconnected sub-graphs
to a single node. Hence, a partitioning step is necessary.

The result in Table II (last row) confirms our hypothesis.
Without the partitioning module, Coarsen-only still largely
outperforms the Graph-enc-dec model, but only slightly out-
performs Metis. This result suggests: (1) the advantage of our
novel coarsening-partitioning framework; (2) our graph coars-
ening formulation is more effective compared to the previous
encoder-decoder formulation. The comparison between using
Metis and graph-encoder-decoder as the placement model
in Table II shows that when introducing our compression
model, the selection of the placement model does not result
in significant differences. With high-quality coarsened graphs,
the placement problem becomes relatively simple.

Qualitative Examples. Figure 3 gives an example where our
model predicts superior coarsened graphs. Each dashed circle
indicates a merged node. To arrive at the pre-defined coars-
ening ratio used by its coarsening algorithm, Metis greedily
and local-optimally decides edge-collapsing, which leads to
cutting off some heavy edges. In contrast, our model is based
on global topology information and automatically decides
the coarsening ratio. When predicting whether to collapse an
edge, the embeddings, which capture wider contexts of nodes
and edges, help the model balance the workload in different
coarsened nodes and avoid cutting heavy edges.

Complexity and Efficiency of Our Model. The theoretical
complexity of our model is O(Nm? + Em?), where N is
the number of nodes, E is the number of edges, and m is
the size of the hidden states. The computation can run in
parallel on GPUs. We measured the average inference time of
coarsen model and other baselines in different datasets using
an GeForce RTX 2060 8G GPU, as shown in Table III. Note

10

that our model is trained offline. Upon deployment in stream-
processing systems, the trained model can directly perform
inference (i.e., no online training). The average inference time
for 300 graphs, each with 400 to 500 nodes, is 0.315s. In
comparison, the heuristic-based Metis is much faster (3ms).
However, most stream-processing systems, once deployed,
continuously process incoming data flow from the same graph
for hours. Thus, the inference overhead is negligible.

Time Cost of Training, Finetuning and CEPSim. During
training and finetuning, each epoch (containing 800 different
graphs) takes about 108min for graphs with 400~500 nodes.
The major cost of 98min comes from evaluating the allocation
using the CEPSim simulator. When training from scratch for
graphs with 100~200 nodes, the model takes 14 epochs to
converge. In contrast, when finetuning for graphs with 1k~2k
nodes using the model trained on smaller graphs, the model
takes just 3 epochs to converge.

VII. CONCLUSION

We propose a new coarsening-partitioning paradigm to
handle the challenges of resource allocation for large stream
graphs. A learnable graph coarsening model is proposed to
group the nodes, resulting in a smaller graph suitable for
existing graph partitioning approaches. Then, the partitioning
module generates the resource allocation for the coarsened
graph and maps the allocation back to the original graph.
Extensive experiments for various data sets show that our
framework has clear advantages over all baseline approaches.
In the future, we plan to extend the proposed model to
heterogeneous devices and other resource allocation problems.

ACKNOWLEDGMENT

We thank Qiqing Luo for the works that initiate this paper.

REFERENCES

(1]
[2]
[3]

IBM, “IBM Streams,” https://ibmstreams.github.io, 2019.

A. Flink, “Apache Flink,” http://flink.apache.org, 2019.

L. Hoang, R. Dathathri, G. Gill, and K. Pingali, “Cusp: A customizable
streaming edge partitioner for distributed graph analytics,” in IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2019, pp. 439-450.

P. Carbone, M. Fragkoulis, V. Kalavri, and A. Katsifodimos, “Beyond
analytics: The evolution of stream processing systems,” in ACM SIG-
MOD international conference on Management of data, 2020, pp. 2651—
2658.

A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement op-
timization with reinforcement learning,” in Proceedings of International
Conference on Machine Learning (ICML), 2017, pp. 2430-2439.

A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and J. Dean, “A
hierarchical model for device placement,” in International Conference
on Learning Representations, 2018.

Y. Zhou, S. Roy, A. Abdolrashidi, D. Wong, P. C. Ma, Q. Xu, M. Zhong,
H. Liu, A. Goldie, A. Mirhoseini et al., “Gdp: Generalized device
placement for dataflow graphs,” arXiv preprint:1910.01578, 2019.

T. Li, Z. Xu, J. Tang, and Y. Wang, “Model-free control for distributed
stream data processing using deep reinforcement learning,” Proceedings
of the VLDB Endowment, vol. 11, no. 6, pp. 705-718, 2018.

X. Ni, J. Li, M. Yu, W. Zhou, and K.-L. Wu, “Generalizable resource
allocation in stream processing via deep reinforcement learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
2020, pp. 857-864.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in Proceedings of the ACM Special Interest Group on Data Communi-
cation, 2019, pp. 270-288.

P. Zhang, J. Fang, T. Tang, C. Yang, and Z. Wang, “Auto-tuning streamed
applications on intel xeon phi,” in IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2018, pp. 515-525.

Y. Zhou, X. Li, J. Luo, M. Yuan, J. Zeng, and J. Yao, “Learning to
optimize dag scheduling in heterogeneous environment,” in 23rd IEEE
International Conference on Mobile Data Management, 2022, pp. 137—
146.

G. Zhou, W. Tian, and R. Buyya, “Deep reinforcement learning-based
methods for resource scheduling in cloud computing: A review and
future directions,” arXiv preprint arXiv:2105.04086, 2021.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1024-1034.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359-392, 1998.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning, 2009, pp. 41-48.

U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. Heaphy,
and L. A. Riesen, “Hypergraph-based dynamic load balancing for
adaptive scientific computations,” in IEEE International Parallel and
Distributed Processing Symposium, 2007, pp. 1-11.

R. Stephens, “A survey of stream processing,” Acta Informatica, vol. 34,
no. 7, pp. 491-541, 1997.

R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. Wolf, K.-L. Wu,
H. Andrade, and B. Gedik, “Cola: Optimizing stream processing applica-
tions via graph partitioning,” in International Conference on Distributed
Systems Platforms and Open Distributed Processing, 2009, pp. 308-327.
Z. Wang and M. F. O’Boyle, “Partitioning streaming parallelism for
multi-cores: a machine learning based approach,” in Proceedings of the
19th international conference on Parallel architectures and compilation
techniques, 2010, pp. 307-318.

S. Markidis, 1. B. Peng, R. Iakymchuk, E. Laure, G. Kestor, and
R. Gioiosa, “A performance characterization of streaming computing
on supercomputers,” Procedia Computer Science, vol. 80, pp. 98-107,
2016.

T. Buddhika and S. Pallickara, “Neptune: Real time stream processing
for internet of things and sensing environments,” in /IEEE international
parallel and distributed processing symposium (IPDPS), 2016, pp.
1143-1152.

M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” Journal of Network and Computer Applications,
vol. 103, pp. 1-17, 2018.

L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure, “Adaptive
control of extreme-scale stream processing systems,” in 26th IEEE
International Conference on Distributed Computing Systems (ICDCS),
2006, pp. 71-71.

X. Fu, T. Ghaffar, J. C. Davis, and D. Lee, “EdgeWise: A better
stream processing engine for the edge,” in USENIX Annual Technical
Conference (ATC), 2019, pp. 929-946.

11

(27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

O.-C. Marcu, A. Costan, G. Antoniu, M. Pérez-Hernandez, B. Nicolae,
R. Tudoran, and S. Bortoli, “Kera: Scalable data ingestion for stream
processing,” in IEEE International Conference on Distributed Comput-
ing Systems (ICDCS), 2018, pp. 1480-1485.

P. Rahimzadeh, J. Lee, Y. Im, S.-C. Mau, E. C. Lee, B. O. Smith, F. Al-
Duoli, C. Joe-Wong, and S. Ha, “Sparcle: Stream processing applications
over dispersed computing networks,” in IEEE 40th International Confer-
ence on Distributed Computing Systems (ICDCS), 2020, pp. 1067-1078.
M. Danelutto, D. De Sensi, and M. Torquati, “Energy driven adaptivity
in stream parallel computations,” in Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing. 1EEE, 2015,
pp. 103-110.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,”
in ACM symposium on operating systems principles (SOSP), 2013, pp.
423-438.

B. Lohrmann, P. Janacik, and O. Kao, “Elastic stream processing with
latency guarantees,” in IEEE International Conference on Distributed
Computing Systems (ICDCS), 2015, pp. 399-410.

L. Xu, S. Venkataraman, I. Gupta, L. Mai, and R. Potharaju, “Move
fast and meet deadlines: Fine-grained real-time stream processing with
cameo,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2021, pp. 389—405.

S. Munikoti, D. Agarwal, L. Das, M. Halappanavar, and B. Natarajan,
“Challenges and opportunities in deep reinforcement learning with
graph neural networks: A comprehensive review of algorithms and
applications,” arXiv preprint arXiv:2206.07922, 2022.

R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
arXiv preprint arXiv:1806.08804, 2018.

H. Gao and S. Ji, “Graph u-nets,” in international conference on machine
learning. PMLR, 2019, pp. 2083-2092.

J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Interna-
tional Conference on Machine Learning. PMLR, 2019, pp. 3734-3743.
T. Ma and J. Chen, “Unsupervised learning of graph hierarchical
abstractions with differentiable coarsening and optimal transport,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 10, 2021, pp. 8856-8864.

W. A. Higashino, M. A. Capretz, and L. F. Bittencourt, “Cepsim:
Modelling and simulation of complex event processing systems in cloud
environments,” Future Generation Computer Systems, vol. 65, pp. 122—
139, 2016.

R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229-256, 1992.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical repre-
sentation learning for networks,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, no. 1, 2018.

A. Loukas, “Graph reduction with spectral and cut guarantees.” J. Mach.
Learn. Res., vol. 20, no. 116, pp. 1-42, 2019.

K. Xu, L. Wu, Z. Wang, M. Yu, L. Chen, and V. Sheinin, “Exploiting
rich syntactic information for semantic parsing with graph-to-sequence
model,” in Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, 2018, pp. 918-924.

