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ABSTRACT: We present an algorithm based on the quantum-
mechanically exact tensor-train thermo-field dynamics (TT-TFD)
method for simulating cavity-modified electron transfer dynamics
on noisy intermediate-scale quantum (NISQ) computers. The
utility and accuracy of the proposed methodology is demonstrated
on a model for the photoinduced intramolecular electron transfer
reaction within the carotenoid—porphyrin—Cg, molecular triad in
tetrahydrofuran (THF) solution. The electron transfer rate is
found to increase significantly with increasing coupling strength
between the molecular system and the cavity. The rate process is
also seen to shift from overdamped monotonic decay to under-
damped oscillatory dynamics. The electron transfer rate is seen to
be highly sensitive to the cavity frequency, with the emergence of a
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resonance cavity frequency for which the effect of coupling to the cavity is maximal. Finally, an implementation of the algorithm on

the IBM Osaka quantum computer is used to demonstrate how
accurately on NISQ_ computers.

xploring the potential of light-matter interactions to

influence chemical reactions has captivated the attention
of physical chemists for many years.' "' Recent experimental
advancements showcased the possibility of utilizing these
interactions to control various chemical and physical
phenomena, including electronic energy and charge transfer,
chemical reactions and photocatalysis.'”>~** The proposed
mechanisms for those observations often invoke strong
coupling between the optical cavity modes and the electronic
and vibrational degrees of freedom (DOF) of molecules placed
within these cavities.

These experimental advances call for the development of
accurate computational methods for simulating the dynamics
of molecular matter inside cavities, toward revealing the
fundamental mechanisms underlying them and predicting the
effect on reaction yields and rates. So far, most dynamical
simulations have been based on classical, semiclassical,
quasiclasscial and mixed quantum classical (MQC) methods,
which might not describe quantum effects properly within the
part of the system which is treated as classical-like.*”**~”” An
attractive alternative is offered by recently developed quantum-
mechanically exact numerical methods that are applicable to
systems with a few tens to a few hundreds nuclear and
photonic DOF.”*”* Implementing those methods on
quantum computing platforms®* ™" can further extend their
range of applicability to even more complex chemical systems,
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TT-TED-based electron transfer dynamics can be simulated

which would be necessary for bridging the gap between
simulation and experiment.

In this work, we report results obtained by using the tensor-
train thermo-field dynamics (TT-TFD) method’ =™ to
perform a quantum-mechanically exact simulation of the
electron transfer dynamics within a molecular system confined
within an optical cavity. Utilizing our recently proposed
scheme based on the Sz.-Nagy dilation protocol”*” for the
purpose of simulating nonunitary open quantum dynamics on
quantum computers, *”” we also propose and implement an
algorithm for simulating the aforementioned quantum
dynamics on currently available IBM Noisy Intermediate-
Scale Quantum (NISQ) computers.

For the sake of concreteness, we showcase the methodology
in the context of a model designed to capture the essential
physics underlying photoinduced intramolecular electron
transfer in a carotenoid—porphyrin—Cg, molecular triad
dissolved in liquid tetrahydrofuran (THF) (see Figure 1).
To this end, we investigate the effect on intramolecular
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Figure 1. Illustration of the THF-solvated carotenoid—porphyrin—
Cgo molecular triad in cavity. Adapted with the permission from ref
101. Copyright 2024 AIP Publishing.

electron transfer dynamics of placing the molecular system
inside a lossless optical cavity. While it would be desirable to
consider the effect of cavity losses on the cavity-modified
charge transfer rates, particularly for studies that might aim to
provide comparisons to data from specific experiments, our
study employs a lossless cavity to enable direct comparisons to
an extended literature of recent studies focused on models that
neglect the effects of the cavity finite lifetime, as outlined in the
review article by Mandal et al.®® Furthermore, we quote from
the same review article that studies investigated the effect of
cavity loss have found that “while cavity loss may sometimes be
a hindrance to enhancing reactivity on polaritonic surfaces, it
may also serve to improve the desired reactivity and even act as
another tunable knob to control photochemical reactivity”.”®
Therefore, the effect of cavity loss is system dependent. The
lossless cavity model investigated allows us to make meaningful
comparisons to earlier simulations that employed the same
lossless cavity model as in a recent paper demonstratinég the
utility of RPMD for calculating cavity modified rates,” and
three recent papers that demonstrate the utility of LSC-based
methods for calculating cavity modified rates®' and to develop
a theory for cavity-modified FGR and Marcus theory charge
transfer rate constants.””'?° Therefore, the model of a lossless
cavity is ideally suited to demonstrate the usefulness of TT-
TFD to calculate cavity-modified charge transfer rates on
NISQ computers as directly compared to recent theoretical
studies. We find that the dynamics can be significantly
modified by changing the frequency of the cavity, as well as
the strength of the light-matter interaction. Our numerically
exact results are also compared to calculations based on the
approximate ring-polymer molecular dynamics (RPMD)
methodology,” and showed that it provides qualitatively
reliable ultrafast population dynamics for the studied model
system.

We consider the following Hamiltonian of a molecular
system capable of undergoing an electron transfer reaction
while being coupled to a lossless optical cavity:

A = —elA)(Al + A(ID)(Al + IAYDI) + A, + H. (1)

In the contest of this study, ID) and |A) denote the zz* and
CT1 diabatic states of the solvated triad, respectively, —€ =
—532 meV is the reaction free energy and A = 24 meV is the
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electronic coupling coefficient.'** Hj describes the bath, while
Hj describes cavity-molecule coupling.

The bath Hamiltonian Hg, is given in terms of the mass-
weighted bath coordinates and momenta {ﬁj, 13]-}, associated
with the corresponding set of nuclear harmonic modes:

50 [ p2 2
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2 2
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Here, the bath frequencies {wj} and coupling constants {cj} are
obtained by discretizing the following Ohmic spectral density:

50 2
J0) =% Y b - ) = o
2 = mw:
j=1 "3 (2)

where @, = 6.57 meV, and 1 = 1.066 X 10° au are chosen so
that the discretized vibrational frequencies roughly cover the
range of normal-mode frequencies for the carotenoid—
porphyrin—Cg4,/THF system under consideration, as previ-
ously calculated by molecular dynamics simulations.'*®

The couplings {c;} are then scaled with a constant a, such
that the values of the scaled & = ca correspond to the

calculated molecular reorganization energy for the triad
molecule in the bent conformation, namely 4 = 515 meV:'**

3)

Finally, H describes the coupling of the optical cavity mode
with the molecular system:

A = hwya)a, + hg,(ID)(Al + lA)(DI)(a; + &,)

(4)

Here, 4, and &; are the photonic annihilation and creation

operators, respectively. The values of the light-matter coupling
strength (gp) and the cavity frequency (a)p) determine the
effect of the cavity and will be varied below to evaluate their
effect on the electron transfer dynamics.

The time evolution of the density operator that describes the
state of the overall system, p(t), is described by the quantum
Liouville equation:

d.o\ Qs
p(0) = 18, ()] ©

where H is as in eq 1. The TT-TFD method solves this
equation in vectorized form, as follows:

d ‘g
V(B D) = ——Hy(B, 1) (6)

with H = H ® I. Here, ly(f,t)) is the thermal wave function
from which the density operator p(t) can be obtained as
follows:

p(8) = T lw (B, D) w(B, D1} )

with p(0) obtained from eq 7 with the initial thermal
distribution:

https://doi.org/10.1021/acs.jpclett.4c02220
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ly (0, B)) = z'? Z e_/jE”/Zln) i)
n (8)

This transformation effectively recasts eq S into eq 6, which
has the form of a time-dependent Schrédinger equation
(TDSE) for the thermal wave function, ly(f,t)). Note that
according to eq 8, the thermal wave function is defined in a
double Hilbert space H ® H, including states I7i) that are

identical copies of states ln) in a Hilbert space ¥ that is an
exact copy of the physical Hilbert space H.

The preparation of the initial state lw(5,0)) (see eq 8)
requires imaginary time propagation, which could be computa-
tionally costly. However, when the bath Hamiltonian is
harmonic, as is the case here, we can define the Hamiltonian,
as follows:

e e 3 e
H=AQ®I-1® ) ois

j ©)
As a result, the aforementioned imaginary time propagation
can be circumvented by utilizing the thermal Bogoliubov
transformation:

0(8)) = eI0,0) (10)

where

A _ s atot
G =i ) 0(ag — aa))

j (11)
with F)j:arctanh(e_ﬂ“’f/z) and 4, &; (a, dj) the physical
(fictional) bosonic creation and annihilation operators for

the jth degree of freedom.
Substituting eqs 10 and 11 into eq 6, we obtain

dyB, ) i

T - _EHF;"W()(:B) t)) (12)
where:

H, = O

Iy,(B, 0)) = ¢Cly(B, 0)) = 10,0) (13)

For a system that involves many nuclear DOF, the thermal
wavepacket is a high-dimensional tensor whose full represen-
tation faces the curse of dimensionality. The tensor train (TT)
decomposition®' ~** is a numerically exact data compression
strategy that allows one to cast a moderately entangled wave
function in terms of a train of 2- or 3-dimensional tensors, such
that they can be stored and computed efficiently. TT-TFD
expresses |0,0) as a rank-1 tensor train, and propagates eq 12 to
obtain lyy(f, t)). Th gropagation can be carried out with the
TT-KSL intAegrator.gz‘ * The expectation value of physical
observables A are obtained, as follows:

(A1) = (yy(B, DIAylyy (B, 1)) (14)
where A, = ¢“Ae ™ and A = A ® I.

Numerically exact TT-TFD simulations of the model
carotenoid—porphyrin—Cg,/THF molecular system confined
to an optical cavity were performed based on the protocol
outlined above. In the following, we describe the quantum
computing procedure used for obtaining the time evolution of
the electronic donor and acceptor states of the model system.

Our propagation scheme is based on the so-called
population-only Liouville space propagator, P*(t), defined by

6P(t) = PP(£)67(0) (15)

Here, 6(t) = Trnp[ﬁ(t)] is the reduced electronic density

operator, obtained by partially tracing p(t) over the nuclear/
photonic Hilbert space (designated by Tr,,). Whereas &(t) is
represented by a 2 X 2 matrix whose diagonal and off-diagonal
elements correspond to the donor and acceptor populations
and off-diagonal elements correspond to the coherence
between them, 67°P(t) = (c,0(t), 6,,(t))" includes only the
diagonal elements of 5(t), necessary for describing the electron
transfer dynamics. The preparation of the superoperator
PPP(t) according to the TT-TFD generated population
dynamics is described in Appendix E of ref 104.

To perform quantum electron transfer dynamics simulations
based on eq 15, we first transform PP°P(t) into a unitary matrix
using the Sz.-Nagy dilation theorem,” as follows:”>'

(Llpporl(t)

0 JT — PPR(EPP? (1)

V1= PR pee() - pro(e)

(16)
The initial state is dilated by appending it with ancillary zero
elements, as follows:

6P0P(0) = (0-00(0)! 0'11(0))T - 5P0P(0)
= (O-OO(O); 611(0), 0, O)T (17)

The dilated time-updated population-only density matrix is
obtained, as follows:

G7P(t) = Uprr(t)57°P(0) (18)

The dilation scheme thus provides the unitary matrix
Uprs(t) governing the time-evolution of 67°(t), the first two
elements of which coincide with the sought after donor and
acceptor populations as a function of time, 67°P(t). Therefore,
eqs 18 and 15 describe the same dynamics, with eq 18 allowing
for simulations on a NISQ quantum computer. For the two-
state model under consideration, Uprr(t) is a 4 X 4 unitary
matrix that can be transpiled onto a quantum circuit given in
terms of a sequence of 1-qubit and 2-qubit gates.

Figure 2 compares the time evolution of the donor
population in the carotenoid—porphyrin—Cg,/THF system
under consideration at different values of g,, with the cavity
frequency @, held fixed at a value close to resonance (see
below) and g, = 0 corresponding to the cavity-free case. No
significant electron transfer dynamics occurs on the ~120 fs
time scale shown in the cavity-free case, which is consistent
with previously obtained estimates based on Fermi’s golden
rule (FGR), according to which cavity-free electron transfer
rates for this system occurs on a picosecond time scale.'’”
However, coupling to the cavity mode is seen to give rise to
significant electron transfer dynamics on this time scale, which
is highly sensitive to the values of g, More specifically,
increasing g, modifies the electron transfer dynamics
qualitatively from overdamped monotonic decay to under-
damped oscillatory dynamics. The fact that the frequency of
the oscillations coincides with g, implies that its appearance is a

https://doi.org/10.1021/acs.jpclett.4c02220
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Figure 3. Time-dependent population of the (zz*) donor state
following the photoexcitation of the carotenoid—porphyrin—Cg,
molecular triad solvated in tetrahydrofuran (THF) prepared in a
geometry relaxed bent configuration in an optical cavity. The cavity
frequency is changed in the @, = 200—400 meV range as indicated in
the inset. The light—matter interaction strength is set at g, = 20 meV.
The temperature is set at T = 300 K. The calculations are based on
TT-TFD simulations with a propagation time-step 7 = 1 au.

under consideration at different values of @, (with the coupling
strength g, the same except for the cavity-free case, for which g,
= 0). The electron transfer rate is seen to be very sensitive to
the value of ,, and the dependence of the electron transfer
rate on @, is seen to be nonmonotonic. The effect of the cavity
on the electron transfer dynamics is seen to be maximal when
hw, ~ 400 meV, which is consistent with previous estimates
based on FGR according to which the resonance cavity
frequency in this system is w, = 510 meV.”

Figure 4 compares the quantum-mechanically exact time

evolution of the donor population obtained for model III in ref

9538

under consideration obtained via TT-TFD on a classical
computer to that obtained via TT-TFD on a the IBM Osaka
quantum computer. The results show that the quantum
computing scheme is able to produce accurate results within
about 1% error.

Results shown in Figures 2—5 indicate that the cavity
lifetimes can be significant because it could affect reactions in
the tens of femtoseconds. Our finding is consistent with the
reported observations that the cavity can modify reaction rates
on a wide range of time scales well beyond tens of
femtoseconds, including reactions times as long as seconds
to minutes.”’> These observations indicate that there is no
direct relation between the time-scale of cavity losses and the
time-scale of the rate processes impacted by placing the
reacting chemical system inside the optical cavity.

To summarize, the modification of rates of chemical and
physical processes via coupling to optical cavity modes is an
area of significant current interest and promise. In this letter,
we proposed a general-purpose quantum mechanically exact
computational methodology for simulating cavity-modified
electron transfer dynamics. The proposed method is based on

https://doi.org/10.1021/acs.jpclett.4c02220
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Figure S. Time-dependent population of the (z7*) state during the
early time relaxation after photoexcitation of the carotenoid—
porphyrin—Cgy, molecular triad solvated in tetrahydrofuran (THF)
prepared in a geometry relaxed bent configuration in an optical cavity
obtained with the IBM Osaka quantum computer. The cavity
frequency is fixed at @, = 500 meV. The light—matter interaction
strength is set at g, = 20 meV. Matrix-free measurement mitigation is
performed for readout error mitigation, as implemented in Qiskit. The
blue dots are averages over 10 calculations following eq 18, each
obtained with 2000 measurements. The error bar shows the highest
and lowest values among the 10 runs.

TT-TED, and extends its range of applicability from cavity-free
systems to systems strongly coupled to an optical cavity. The
accuracy and utility of the new approach was demonstrated on
a model system parametrized to capture the essential physics
underlying photoinduced electron transfer dynamics in the
carotenoid—porphyrin—Cg,/ THF system. Significant enhance-
ment of the electron transfer rate was found with increasing
coupling between the molecular system and the cavity, as well
a qualitative shift from overdamped monotonic decay
dynamics to under-damped oscillatory dynamics. A strong
nonmonotonic dependence of the electron transfer rate was
also observed with respect to the cavity frequency, with the
emergence of a resonance cavity frequency for which the effect
of coupling to the cavity is maximal. Finally, we demonstrated
how the TT-TFD electron transfer dynamics can be accurately
simulated on NISQ computers.

We have demonstrated quantum computing simulations of
electron transfer modulated by the effect of coupling to a
polaritonic cavity mode, using a model lossless cavity
employed by earlier studies, allowing for direct comparisons
to recent RPMD simulations,* LSC-based methodologies51
and studies based on Marcus theory.””'* These simulations
on lossless cavities also allow for comparisons to an extended
literature on polaritonic cavity models where the optical cavity
is assumed to have a perfect internal reflectance and no loss of
electromagnetic energy to the outside world.”” The model is
generic. It is not parametrized according to the experimental
setup of a specific polaritonic cavity, and relies on a number of
approximations that include restricting the model to two
electronic states, assuming that the molecular system has no
permanent dipole moment, and that is coupled to a single
mode of a lossless cavity, while a typical experimental scenario
might involve a weaker coupling to the cavity mode, or
collective coupling of a large number of molecules to multiple
modes of a lossy cavity, beyond the single molecule analysis.
Work on extending the modeling beyond those restrictive
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approximations is currently underway and will be reported in
forthcoming publications.
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