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ABSTRACT: Toxicity is a roadblock that prevents an inordinate
number of drugs from being used in potentially life-saving
applications. Deep learning provides a promising solution to finding
ideal drug candidates; however, the vastness of chemical space

coupled with the underlying O(n’) matrix multiplication means these
efforts quickly become computationally demanding. To remedy this,
we present a hybrid quantum-classical neural network for predicting
drug toxicity utilizing a quantum circuit design that mimics classical
neural behavior by explicitly calculating matrix products with
complexity O(n?). Leveraging the Hadamard test for efficient inner
product estimation rather than the conventionally used swap test, we
reduce the number of qubits by half and remove the need for
quantum phase estimation. Directly computing matrix products
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quantum mechanically allows for learnable weights to be transferred from a quantum to a classical device for further training. We
apply our framework to the Tox21 data set and show that it achieves commensurate predictive accuracy to the model’s fully classical

O(n*) analogue. Additionally, we demonstrate that the model continues to learn, without disruption, once transferred to a fully
classical architecture. We believe that combining the quantum advantage of reduced complexity and the classical advantage of noise-
free calculation will pave the way for more scalable machine learning models.

B INTRODUCTION

The quest for novel pharmaceuticals is fraught with the
challenge of ensuring drug safety. With 90% of drug candidates
failing in clinical trials and 30% of these failures being
attributed to toxicity," the cost to create a successful drug can
exceed $2 billion USD,” making the early detection of
toxicological properties in drug candidates crucial.

Machine learning (ML) has revolutionized the field of drug
discovery,” offering a powerful tool to handle and interpret
the complex data sets that are characteristic of pharmaceutical
research. By leveraging algorithms that can learn from and
make predictions on data, ML has enabled significant
advancements in identifying new drug candidates” ® and
predicting drug toxicity. ~'* As ML continues to amaze
researchers, they are always searching for new computational
tools to bolster the tractability and performance of their
models.

Quantum computing, with its inherent capability to handle
certain complex computations more efficiently than classical

computing, has emerged as a promising solution. Leveraging Received: April 1, 2024
the principles of superposition and entanglement, quantum Revised:  May 10, 2024
computing offers a new framework that potentially expands Acce_Pted‘ May 13, 2024
computational boundaries for ML. Recent work suggests that Published: May 25, 2024
quantum ML (QML) models are more learnable and

generalize better to unseen data than classical networks.'>718
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In pursuit of these potential advantages, researchers have built
numerous QML models to address a range of chemical and
biological problems.'”~** More specifically, there have been
several QML works that are trained to predict toxicity.'”***°
Despite the success of these QML models, the limitations that
plague noisy intermediate-scale quantum (NISQ) devices, such
as decoherence and gate errors, are still a sobering reality.
While noise is not a concern for classical computing, it is not
without its bottleneck either. Every year, as developers create
deep learning models more powerful than the last, we are
seeing a swift increase in the number of parameters.”’ This
escalation in parameter count introduces a consequential
challenge: the need for significantly more computing power
and the development of more efficient algorithms. Matrix
multiplication lies at the heart of neural networks. The

standard method of matrix multiplication has complexity O(n*)
, and while subcubic algorithms do exist such as the Strassen

https://doi.org/10.1021/acs.jctc.4c00432
J. Chem. Theory Comput. 2024, 20, 4901—-4908


https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Anthony+M.+Smaldone%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Victor+S.+Batista%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.4c00432&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00432?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00432?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00432?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00432?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00432?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jctcce/20/11?ref=pdf
https://pubs.acs.org/toc/jctcce/20/11?ref=pdf
https://pubs.acs.org/toc/jctcce/20/11?ref=pdf
https://pubs.acs.org/toc/jctcce/20/11?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00432?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

algorithm32 O(n**™) and the recording-setting algorithm by

Williams et al.>® O(n**'6), these methods suffer from
numerical instability,34 high memory usage, or have a
complexity prefactor that makes them galactic algorithms,
rendering them impractical for tractable computation.

In response to these computational challenges, this study
introduces a hybrid quantum-classical neural network model
designed to leverage the strengths of both quantum and
classical computing paradigms and apply the framework to
drug toxicity prediction. Utilizing the Hadamard test, our
model employs quantum circuits that replicate the forward
functionality of classical neural networks, allowing it to
efficiently calculate discrete inner products. Assuming efficient
state preparation, the swap test has been shown to be the most
computationally favorable algorithm™® for matrix multiplication

with complexity O(n*) and has been suggested for use in a
quantum neuron.’*"*° Our use of the Hadamard test achieves
the same complexity, one quantum circuit for each dot product
while using half the working qubits and without the need for
quantum phase estimation. This QML approach allows for
“classical weights” to be easily derived from the quantum
model, which can then be transferred to a classical machine to
be fine-tuned without the presence of noise and errors, which
is characteristic of current NISQ devices. All previous works of
quantum transfer learning are either classical-to-quantum**~*
or simply use the initial quantum component as a feature
extractor that is nonlearnable after transferring.*” To the best
of our knowledge, this framework of fine-tuning weights
classically that were initially embedded in a quantum circuit is
a novel contribution to this growing field of quantum transfer
learning.

In an effort to realize these potential quantum advantages,
we investigate our model’s performance on drug toxicity
prediction using the Tox21 data set"”** with a convolutional
neural network (CNN). We present the effectiveness of a
quantum CNN (QCNN), which replaces the filter with a
quantum circuit to compute the dot product. Additionally, we
illustrate that a classical convolution filter can seamlessly
continue the training process initially started by its quantum
counterpart. Furthermore, we demonstrate that both the
hybrid quantum-classical model and fully classical equivalents
exhibit comparable performance levels for drug toxicity
prediction.

B QUADRATIC MATRIX MULTIPLICATION

Swap Test. The swap test,” shown in Figure 1, has been
suggested for use in a quantum neuron and as a convolutional
filter.***” This idea is manifested by encoding the input data
into one working register of qubits and by applying a
parameterized quantum circuit to another register. When the
controlled swap between the two states of these registers is
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Figure 1. Swap test.
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executed, the expectation value of the ancilla qubit will
produce the squared modulus of the inner-product between

the two states |{@ly)I* with error € in O( é) repetitions. In this

sense, the amplitudes of the parameterized qubit register can
be thought of analogously as the “weights”. These “weights”
are being multiplied together with the input data and summed
when the swap test is conducted and the ancilla is measured.
However, since the swap test only reveals the fidelity between
two quantum states, it is directionless. The lack of the dot
product’s sign is problematic for flexible ML and places
additional difficulty on the learning procedure. A remedy to
this is quantum phase estimation (QPE), but the extra ancilla
qubits required in QPE place an additional overhead on the
resources required to run this algorithm.

Hadamard Test. The Hadamard test, shown in Figure 2, is
another cornerstone quantum algorithm®® that has found use
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Figure 2. Hadamard test.

in calculating inner products for fields ranging from
chemistry,”” to physics,”® to mathematics.*” The test allows

one to determine Re(ylUly) with error € in O (é) repetitions.

However, by choosing the correct U, we can use this algorithm
to produce the inner product between the two vectors of
choice, Re(yig). Since this gives a direction with the inner
product unlike the swap test, we may dispense with the need
for QPE as well as the need for separate quantum registers for
the input data and parametric “weights”. Equations 1—4 show
how U can be chosen for input data, I¢), and “weights”, ly).

U,10)®"=ly) (1)
U;10)®"=lgp) @)
U=y, 3)
Re(y|Uly) = Re(wlU,Uly) = Re(ylU, U U, 10)*"

= Re(ylp) (4)

Equation 4 shows that if U is chosen to be the product of the
unitary matrix that prepares the quantum state whose
amplitudes act as the “weights” and the adjoint of the unitary
that prepares the input data, the real part of the desired inner
product is obtained when performing the Hadamard test. This
circuit is visualized in Figure 3.

We note that the fully complex-valued inner product (yl¢)
may easily be obtained. The Hadamard test may be slightly
modified to include an S’ gate after the first Hadamard gate on
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Figure 3. Quadratic matrix multiplication with the Hadamard test.
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Figure 4. Quantum-classical neural network architecture.
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the ancilla qubit to produce Im(yl¢). Summing the expect-
ation values of these two different Hadamard tests yields the
complex-valued inner product Re(ylgp) + iIm(yplpp) = (ylg).
As with the swap test, only one quantum circuit needs to be
run for each resulting entry (or two circuits for complex-valued
input data) when finding the product of two matrices and thus

scales O(n”). While this method uses significantly fewer qubits
than the swap test, it may come at the expense of deeper
circuitry due to the controlled unitary gate U,L, required to
uncompute the input state. To this point, we note that both
the swap test and the proposed Hadamard test method for
multiplying arbitrary matrices with O(n*) complexity rely on
the assumption of efficiently prepared quantum states.’> As
state preparation techniques become more refined, qubit
control improves, and quantum devices become more
coherent, the fulfillment of this assumption will also satisfy
the concerns of the deeper circuitry possessed by this
Hadamard test method. Concurrently, the computational
overhead of more than double the number of qubits and the
requirement for QPE associated with the swap test will not be
alleviated as these are fundamental to the algorithm and are
not dependent on quantum hardware.

B ARCHITECTURE AND DATA SET

Hybrid Architecture. CNNs have been found to be
successful for use in toxicity prediction tasks in the
literature’*™>> and are very popular QML analogues of
classical architectures.” >’ The popularity of QCNNs partly
stems from only needing to operate on small sections of input
data at a time, rendering them feasible for NISQ devices. We
employ a quantum-classical architecture where the first
convolutional layer is replaced by a quantum circuit and is
subsequently followed by classical pooling, a classical convolu-
tional layer, and a fully connected layer, as depicted in Figure
4.

Tox21 Data Set. The Tox21 10k data set**** is frequently
used as a benchmark for evaluating ML models based on their
binary predictive ability for toxicity. This data set comprises
approximately 10,000 molecules represented as SMILES
strings, each tagged with binary labels according to their
response to 12 distinct assays. The Tox21 data set suffers from
a significant imbalance, and although techniques such as
SMOTE® can enhance performance, the primary objective of
this study is to showcase the synergy between quantum and
classical ML frameworks rather than attaining the highest level
of predictive accuracy. We specifically choose to create a sparse
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binary feature map from each SMILES string in order to
reduce overhead on the quantum component of the model.
The computational benefit of binary features in a CNN is
visually depicted in Figure S. For each filter composed of w

110]0 1101]0 1{0]0 1{0]0
11011 1101 101 1 1
1 1 1101 1101]1 1101

Figure 5. Binary data in a CNN. The red and green sections of this
example input data will result in an identical output, and thus, only
one of the two dot products needs to be computed. Since the number
of unique dot products for binary data is 2", where w is the number of
weights in a filter, for our input data of size 400 X 57 and a single 2 X
2 filter, there are only 2% different filters that will produce a unique
dot product. Therefore, since the number of unique dot products is
not dependent on the size of the input data, we only need to execute
15 circuits (the all-zero vector need not be computed) rather than the
traditional 22,344 for each molecule. We note that the removal of
nonunique calculations is applicable to both classical and quantum
CNNs; however, as quantum circuits are inherently more expensive
than classical computations in the NISQ era, this process of removing
duplicates becomes particularly valuable for QCNNSs.

weights, there can exist a maximum of 2" unique convolutions
for binary data. Thus, for a single 2 X 2 filter, there are only 16
unique dot products that are required to fully stride across
input data of any size. Additionally, the sparsity condition
allows for the use of state-preparation techniques that do not
scale exponentially,””®’ which is a necessity along the road to
achieving implementable quadratic complexity for matrix
multiplication.

In this study, we utilize the binary-encoded SMILES
approach,®® whereby each character within the SMILES string
is depicted as a bit vector. Twenty-seven bits are used to
encode the SMILES symbols and alphabet, and 30 bits are
used to encode atomic properties. The vector of each character
is joined with all other character vectors, forming a grid, and is
padded to the longest string in the data set. The descriptors
used to create this length 57 vector for each SMILES character
are detailed in Table 1.

Quantum Transfer Learning. After training the quantum
neural network (QNN), the real parts of the first column of the
unitary matrix Uy that prepares the learned state l¢p’) are the
classical weights that may be used to further train the model on
a classical device. This is the case since Uy always operates on |
0)®", which yields only the first column of U. Since the input
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Table 1. Feature-Encoding Scheme for Each SMILES
Character

feature type element bit(s)

symbol in 0O 2
SMILES

[] 2

1

1

= 1

# 1

\ 1

/ 1

@ 1

+ 1

- 1

. 1

number in atom charge (2—7) 6
SMILES

ring being (yes/no) 1

ring end (yes/no) 1

atom type C, H, O, N, others S

others surrounding hydrogen number (0—3) 4

atom formal charge (-1, 0, 1) 3

valence (1—S5, other) 6

ring atom (yes/no) 1

degree (1—4, other) S

aromaticity (yes/no) 1

chirality (R/S/others) 3

hybridization (sp, sp?, sp, sp’d, sp>d?, 7

unspecified, otherg
total 57

data used in each quantum circuit must be L2 normalized to
represent a valid quantum state, the corresponding classical
component of the model must also work with normalized data
to ensure a seamless transfer process. With regard to a CNN,
this entails normalizing the data covered by a filter before
taking the convolution with the weights and is shown in eq S.

Ixl, is the normalized input data, x; is the kth element of the n-
dimensional input data vector, and w is the weight vector from
the flattened convolutional filter.

n
Output = Ixl,-w = Z o,/ |-w
k=1

(5)

The workflow of training and transferring our Hadamard
test-based model from a hybrid QNN to a fully classical
network is demonstrated in Figure 6. The details of the
quantum components of the hybrid architecture are shown in
Figure 7.

B METHODS

Hardware. All scripting was done in Python 3.9.18. The
quantum simulation package PennyLane61 version 0.35.0 was
used, as well as PyTorch®® version 2.1.0 with CUDA Toolkit**
11.8. An Intel i7—13700KF CPU, 12GB Nvidia GeForce RTX
3080Ti GPU, and 64GB of 3600 MHz CL18 RAM were used
for all computations.

Data Set. The Tox21 data set was downloaded from the
National Institute of Health.** RDKit version 2023.09.1 was
used to load the SMILES string and calculate the atomic
features shown in Table 1. SMILES strings with invalid valence
shells and deuterium isotopes were discarded. 80% of each
assay data set was used for training and 20% for the test set. To
ensure that all binary-encoded SMILES files were of the same
dimension, they were padded with zeros for a final shape of
400 X §7.

Machine Learning. Binary cross-entropy was used for the
loss function, and weights were updated with the Adam
0ptimizer.64 A learning rate of 0.001 was used. Quantum
weights were initialized from a uniform distribution between 0
and 27. To ensure fair comparisons between the quantum and
classical models, all other classical parameters were randomly
initialized and copied to be identical between the models. The
exponential decay rate for the first and second moment

Sparse
Features

( SMILES ’ - [7 Quanfum

J= (i) ~ ==

’ g [ Convolution

Classical

Quantum-Classical

t Update quantum and classical parameters '

Hybrid Model

| After n epochs, replace quantum components I

Derive classical Continue with

convolutional weights existing classical

Re|¢p) > w weights
Fully Classical Model l' l ‘
Sparse Classical Classical oo
[ SMILES ] = ‘ Features } = ‘ Convolution [ Convolution - nd

Figure 6. Quantum-to-classical neural network transfer pipeline. The convolutional weights are derived from the learned unitary matrix U, by
operating this on the ground state, as shown in eq 2. The real part of the amplitudes of the evolved state l¢) are identical to the normalized weights
of a classical convolutional filter. The yellow classical convolutional block inherits the derived weights from the quantum state amplitudes. In order
to maintain a mathematically exact learning transition between quantum and classical computations, this classical convolution L2-normalizes the
input data covered by each filter. SLP indicates a single-layer perceptron. The exact architecture details are presented in Figure 4.
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Figure 7. Variational quantum circuit used in the Hadamard test to calculate the real part of the inner product between an input data vector ly) and
a learnable weight vector I¢). The unitary matrix of the Rot gate is shown in eq 8.

estimations was set to 0.9 and 0.999, respectively, for all
training. Epsilon was set to 1.0 X 107%. The bias component of
the quantum convolution layer was trained classically. The
output of each hidden layer in the model architecture was
activated with ReLU. Given the imbalanced nature of the
binary data set, we find it appropriate to measure performance
with the area under the curve of the receiver operating
characteristic (ROC—AUC).®® This metric calculates the area
under the curve of the plot of the true positive rate (eq 6)
versus the false positive rate (eq 7). An ROC—AUC score of
1.0 indicates that the model predicts all samples correctly,
while a score of 0.5 indicates that the model is no better than
random chance.

true positive

TPR =
true positive + false negative (6)
false positive
FPR =
false positive + true negative (7)

Quantum Computing. Quantum states were prepared
with the algorithm presented by Mottonen et al.°® available in
PennyLane; however, in practice, with this feature map, the
algorithms by de Veras et al.*” and Gleinig and Hoefler®
would be better suited for use with NISQ devices. The
variational component of the quantum circuit used three layers
from PennyLane’s StronglyEntanglingLayers, inspired by Schuld
et al.”” The unitary matrices comprising the general rotation
gates are shown in eqs 8 and 9.

ROt(al ﬂ) 7) = RZ(Y)RY(:B)RZ<“) (8)
e—i(z/Z 0
RZ(a) = 0 o/ !
cos(é) — sin(é)
2 2
RY(p) =
sin(é) cos(é)
2 2 9)

The expectation value of the ancilla qubit in the computa-
tional basis was used as the input to the subsequent
convolutional layer.

B RESULTS AND DISCUSSION

We compare our results to a fully classical model with identical
architecture except where the quantum convolutional filter is
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replaced by a classical filter of the same dimensions. It is shown
in Table 2 that the hybrid QNN and fully classical neural

Table 2. Tox21 Test ROC—AUC

assay QNN CNN QNN transferred to CNN
nr-ahr 0.619 0.632 0.619
nr-ar 0.725 0.764 0.727
nr-ar-lbd 0.800 0.847 0.800
nr-aromatase 0.724 0.722 0.726
nr-er 0.677 0.674 0.676
nr-er-lbd 0.641 0.623 0.640
nr-ppar-gamma 0.636 0.586 0.626
sr-are 0.701 0.708 0.701
sr-atadS 0.682 0.644 0.679
sr-hse 0.677 0.668 0.675
sr-mmp 0.722 0.698 0.721
sr-pS3 0.692 0.689 0.691
average 0.692 0.689 0.691

network (CNN) perform similarly for each assay. On the
overall data set, the quantum and classical models achieved
ROC—-AUC values of 0.692 and 0.689, respectively. These
results demonstrate that the same accuracy as the fully classical

O(n*) neural network can be achieved by the more efficient

QNN with the O(n*) quantum component.

Additionally, we demonstrate that the fully classical model is
able to resume the training process started by the quantum
model. As shown in Figure 8ab, the training continues
seamlessly after S epochs, where weights for the classical
convolutional filter were derived from eq 2. The training curves
for all assays are made available in the Supporting Information.

The first convolutional layer transferred from quantum
training to classical training contains only a small portion of
the model’s total parameters. Despite this, the first layer of
feature extraction plays a crucial role in the model’s overall
performance, and improperly computing the weights during
the transfer procedure will have a demonstrable impact. To
validate our framework of properly transferring these weights,
we show the resulting model’s performance after randomly
initializing the weights from the first convolutional layer while
copying the remaining learned weights. Epoch 6, the first
epoch after transferring to a fully classical architecture, shows a
spike in cross-entropy loss and a decrease in ROC—AUC in
Figure 8c,d. Despite having so few parameters, this ablation
study is indicative that our framework correctly transfers these
weights to be fine-tuned classically.

https://doi.org/10.1021/acs.jctc.4c00432
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Figure 8. Model performance before and after weight transfer and ablation study results. (a) Transfer learning loss; (b) transfer learning ROC—
AUG; (c) ablation study loss; (d) ablation study ROC—AUC. The yellow shading (epochs 1—5) indicates where the model was trained with
quantum convolutions. The green shading (epochs 6—10) indicates where the model was trained with classical convolutions. The ablation study
(c,d) shows the model’s performance where the weights from the quantum layer were initialized to random values instead of deriving them from

U¢ .

B CONCLUSIONS

In summary, we present the first quantum-to-classical transfer
learning framework in which weights initially learned from a
quantum circuit can be fine-tuned classically. Assuming
efficient state preparation, we show a theoretical quantum
advantage by reducing the complexity of calculating matrix

products from O(n*) to O(n*) using a modified version of the
Hadamard test, which uses half the qubits of the previously
proposed swap test for a quantum neuron and without the
need for quantum phase estimation. We apply these methods
to toxicity prediction using the Tox21 data set and show that
our frameworks perform equivalently to a fully classical model
with approximately the same number of parameters. As
quantum devices improve and the assumption of efficient
state preparation becomes fulfilled, we hope this framework
will provide an implementable polynomial speedup for ML
networks and consequently more efficiently navigate the
chemical space to find life-saving pharmaceuticals.
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