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Abstract
We introduce the kernel-elastic autoencoder (KAE), a self-supervised generative model based on the transformer architecture with 
enhanced performance for molecular design. KAE employs two innovative loss functions: modified maximum mean discrepancy 
(m-MMD) and weighted reconstruction (LWCEL). The m-MMD loss has significantly improved the generative performance of KAE when 
compared to using the traditional Kullback–Leibler loss of VAE, or standard maximum mean discrepancy. Including the weighted 
reconstruction loss LWCEL, KAE achieves valid generation and accurate reconstruction at the same time, allowing for generative 
behavior that is intermediate between VAE and autoencoder not available in existing generative approaches. Further advancements 
in KAE include its integration with conditional generation, setting a new state-of-the-art benchmark in constrained optimizations. 
Moreover, KAE has demonstrated its capability to generate molecules with favorable binding affinities in docking applications, as 
evidenced by AutoDock Vina and Glide scores, outperforming all existing candidates from the training dataset. Beyond molecular 
design, KAE holds promise to solve problems by generation across a broad spectrum of applications.
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Introduction
The advent of generative models has precipitated a revolutionary 
shift in the development of methods for drug discovery, revealing 
new opportunities to swiftly identify ideal candidates for specific 
applications (1–7). The variational autoencoder (VAE) model has 
emerged among these models as an approach with extraordinary 
capabilities that can be adapted for molecule generation via char-
acter, grammar, and graph-based representations (8–11).

Autoencoders (AEs) encode the input data by compression into 
a low-dimensional space (12). Though providing a high lower 
bound for accurate reconstruction, such space is not well struc-
tured and in some regions, the decoder does not generate output 
that resembles the training data, thereby limiting its generative 
capabilities. Sacrificing reconstruction performance, VAEs miti-
gate this disadvantage by enforcing encoded latent vectors to 
known prior distributions. Upon decoding samples from those dis-
tributions, VAEs generate outputs mimicking the training data. An 
outstanding challenge of great interest to drug discovery is to 
harness the power of VAEs to generate molecular candidates 
with optimal properties during the screening phase of molecular 

discovery while preserving AE’s high reconstruction rate for pre-
cise lead candidate optimizations.

Generative models are typically evaluated for molecule gener-
ation using novelty (N), uniqueness (U), validity (V), and recon-
struction (R) metrics. NUV-R metric, which is the product of 
them, captures the tradeoff between these four factors, the so- 
called NUV to R tradeoff, as a model with high reconstruction abil-
ity usually does not achieve high metrics for novelty, uniqueness, 
and validity.

Optimizing the design of molecules near a reference molecule 
requires robust reconstruction, as proximity in latent space 
should correlate with proximity in the value of the desired prop-
erty. Accurate reconstruction also allows for interpolation be-
tween molecular motifs with intermediate properties between 
promising lead compounds (13–16).

Kernel-elastic autoencoder (KAE) stands out as a new self- 
supervised generative model with a modified maximum mean dis-
crepancy and weighted reconstruction loss functions. Leveraged 
by the transformer architecture(17–20), KAE (Fig. 1)  effectively 
overcomes the NUV-R tradeoff by combining the merits of both 
autoencoder (AE) and variational autoencoder (VAE) models. 
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KAE’s loss function is a modified version of the maximum mean 
discrepancy (MMD), inspired by Refs. (21–23), that shapes the la-
tent space and enables better performance than using Kullback– 
Leibler (KL) divergence loss used in VAEs. When coupled to the 
weighted cross-entropy loss (LWCEL), KAE, without any checking 
for molecular grammar or chemical rules, outperforms both 
string and graphical-based models in generation tasks while ex-
hibiting nearly flawless reconstruction, as demonstrated on the 
ZINC250k testing sets. The freedom to adjust KAE’s behavior 
through the LWCEL gives the “Elastic” term in its naming.

When implemented to solve optimization problems, KAE 
outperforms the state-of-the-art by a substantial 28% (24). 

Additionally, KAE tackles the problem of molecular docking by 
finding suitable binding ligands with conditional generation, as 
demonstrated using the dataset from GFlowNet (5). Superior candi-
dates from the baseline and the training data are independently 
verified by both Autodock Vina (25) and Schrodinger Glide 
(26, 27), demonstrating its practicality.

Result
KAE performance
The overall performance of the KAE (Fig. 1) compared to state- 
of-the-art generative models is shown in Table 1. Described in 
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Fig. 1. CKAE architecture. KAE consists of six encoder layers, six decoder layers, and a latent space for conditional generations. During training, the 
condition is concatenated after positional embedding and provided as input to the 4-head attention encoder. The condition is also concatenated with the 
latent vector before a mixing layer. During training, Gaussian noise is added to the latent vectors. The decoder output is then passed through a linear 
layer and softmax function, producing the probabilities of output tokens for each character in the dictionary of size T.
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the Methods section, KAE combines a modified-MMD (m-MMD) 
loss and the weighted cross-entropy loss (LWCEL), with hyperpara-
meters λ and δ, and exhibits the generative capabilities of VAEs as 
well as the exact reconstruction objectives of AEs.

KAE was evaluated according to the fraction of generated mol-
ecules that are novel (N), unique (U), and valid (V). A molecule is 
considered novel if it is not included in the training dataset. 
Uniqueness is defined as the absence of duplicates in the set of 
generated molecules. A molecule is counted as valid if its 
SMILES representation is syntactically correct and passes the 
RDKit chemical semantics checks (32). Additionally, reconstruc-
tion (R) is successful if and only if the decoder regenerates the in-
put SMILES sequence matching every single token.

Maximum validity and reconstruction was achieved by using 
the LWCEL(λ, δ) defined by Eq. 4 where the hyperparameter δ con-
trols the AE-like objective (see supplementary material for a dis-
cussion of the effect of changing λ and δ). The best results for 
the NUV-R metric were obtained by using a combination of 
λ = 3.5 and δ = 1.

Learning behavior
We have analyzed the KAE behavior by comparing under the same 
architecture but with various loss functions (Fig. 2). The recon-
struction was evaluated from 1,000 molecules from the validation 
set at every epoch. Figure 2 shows the improvement in validity, 
uniqueness, novelty, and reconstruction along the training pro-
cess for models based on a loss that combines the LWCEL(λ,δ), de-
fined by Eq. 4, with m-MMD (m-MMD(λ), Eq. 11), s-MMD, Eq. 10, 
or KL-divergence. All models were trained with the ZINC250K da-
taset for 200 epochs, with λ = 1 and δ = −1. When λ = −δ, the 
weighted cross-entropy loss (LWCEL, Eq. 4) reduces to the standard 
cross-entropy loss (LCEL). Additionally, we examine the effect of 
noise while training with the m-MMD loss. The results (Fig. 2) in-
dicate that the KAE model using m-MMD loss with Gaussian noise 
added to the latent space exhibits the best performance. The mod-
els exhibit significant differences in their ability to generate valid 
SMILES strings and reconstruct input molecules. The m-MMD 
model trained with noise in latent space generated the highest 
percentage of valid SMILES strings, making it preferable to other 
models. For example, the model trained with KL-divergence ex-
hibited much lower validity and a significantly slower learning 
rate. The assessment of novelty and uniqueness also shows that 
s-MMD and m-MMD models trained with Gaussian noise added 
in latent space (noisy models) performed better than the 

corresponding models without noise. Another reason to add noise 
is to prevent the model from overfitting the latent vectors so that 
the decoder has to see the multitude of possible outcomes related 
to the region of the decoding latent vector. Further, the decision to 
add a Gaussian noise on top of confining the latent vector to the 
same Gaussian through m-MMD is to maximize the overlap of 
the distribution of all latent vectors with respect to the distribu-
tion of any individual latent vector. This approach is different 
from VAE as the VAE has the option to output small variances 
for some latent vectors which could reduce the probability of sam-
pling corresponding instances from its prior distribution.

Conditional-KAE
In this section, the performance of the conditional-KAE (CKAE) 
(Fig. 1) on the constraint optimization task is investigated.

CKAE generates new candidates conditioned on properties 
such as PLogP or docking scores. Here, we first demonstrate the 
capabilities of CKAE as applied to the PLogP values defined, as fol-
lows (9, 11):

PLogP(m) = LogP(m) − SA(m) − ring(m), (1) 

where LogP is the octanol–water partition coefficient of molecule 
m calculated using Crippen’s approach from the atom contribu-
tions (33). SA is the synthetic accessibility score (34), while 
ring(m) corresponds to the number of rings with more than six 
members for the molecule m.

To demonstrate that CKAE generates molecules that are 
strongly correlated to the conditioned value, we analyzed the cor-
relation between the properties of CKAE-generated molecules and 
the specified input condition. Figure 3 shows the mean PLogP val-
ue obtained from 1,000 CKAE-generated molecules, strongly cor-
related to the PLogP value used as a condition (correlation 
coefficient 0.9997). The distribution of PLogP values of the training 
set, rendered as a histogram in Fig. 3, shows the range of PLogP 
values used for CKAE training. We have also trained a separate 
model using the dataset from Lim et al. (35) who developed a 
conditional-VAE (CVAE) with recurrent neural network (RNN) ar-
chitectures to sample molecules given five distinct pharmaceutic-
ally relevant properties. The comparison between CKAE and CVAE 
from Lim et al. further shows that CKAE generates candidates cor-
relating to the asked conditions and outperforms the given base-
line by a wide margin (Table 2).

Instead of using regressors to navigate in the latent space 
(11, 24, 29, 36), a procedure called similarity exhaustion search 

Table 1. Comparison of performance of molecular generative models trained with the ZINC250K dataset.

Method N U V w/o V NUV R NUV-R

CVAE (9)a 0.980 0.021 0.007 N/A 0.0001 0.446 5e − 6
GVAE (10)a 1.000 1.000 0.072 N/A 0.072 0.537 0.039
JT-VAE (11)a 1.000 1.000 0.935 1.000 0.935 0.767 0.717
MoFlow (28) 1.000 0.999 0.818 1.000 0.817 1.000b 0.817
Rebalanced (29) 1.000 1.000 0.907 0.938 0.907 0.927 0.841
GraphDF (30) 1.000 0.992 0.890 1.000 0.883 1.000b 0.883
ALL SMILES (31)a 1.000 1.000 N/A 0.985 N/A 0.874 N/A
β-VAE (24) 0.998 0.983 0.983 0.988 0.964 N/A N/A
KAE (λ = 1, δ = −1) 0.998 0.994 0.863 N/A 0.856 0.992 0.849
KAE (λ = 3.5, δ = 1) 0.996 0.973 0.997 1.000 0.966 0.997 0.963

The bolded numbers represent the KAE and the best results. 
aResults obtained from sampling 1,000 vectors from latent space. bReconstruction rates were obtained on training datasets. Assessment of the capabilities of the 
models to generate novel (N), unique (U), valid (V), and properly reconstructed (R) molecules. Validity (V w/o) indicates that the generated strings have not been 
postprocessed using chemical knowledge to enforce corrections. NUV results were obtained from averaging over 5 iterations of sampling 10,000 random vectors from 
latent space, while the reconstruction rate was calculated using all molecules from the testing dataset. The two KAE models in the table were trained using loss 
functions with λ = 1 and 3.5 and δ = −1 and 1. The choice of δ = −1 is a special case of LWCEL and is equivalent to not using any AE objectives. Our validity check selects 
alternative candidates from the beam search.
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(SES) was developed for constraint optimizations. SES aims to find 
molecules that are both similar to the target molecule and have high-
er desired properties (e.g. PLogP) by using the same or slightly per-
turbed latent vector representations with gradually increasing 

Fig. 2. Comparison of learning rates for models trained with m-MMD loss, s-MMD loss, and KL-divergence loss. A) Validity evaluated at each epoch. B) 
Fraction of molecules properly reconstructed as a function of epochs. C) Novelty evaluated at each epoch. D) The uniqueness at each epoch. The model 
labeled as KL includes an extra layer that estimates the SD of each latent vector. The models labeled with m-MMD are trained with the loss 
LCEL + m-MMD(λ = 1), s-MMD with LCEL + s-MMD(λ = 1), and KL with LVAE = LCEL + KL(λ = 1). “no noise” in the legends means no noise is added to the latent 
vectors during training.

Fig. 3. CKAE correlation performance. The blue dots represent the mean 
PLogP values of 1,000 molecules generated by CKAE, as a function of the 
condition PLogP value. The error bars on each dot indicate the associated 
SD as estimations of errors. The black line shows the ground truth values. 
The histogram shows the underlying distribution of the training dataset 
over the entire range of PLogP values.

Table 2. Performance of CKAE compared to CVAE, as applied to 
conditional molecular generation.

Method Target Attempts Number of valid 
molecules

Success 
rate (%)

CVAE Lim et al. Aspirin 28,840 32,567 0.34
CVAE Lim et al. Tamiflu 15,960 34,696 0.62
CKAE Aspirin 4,743 4,743 2.11
CKAE Tamiflu 3,715 3,715 2.63
CKAE w. Beam Aspirin 671 4221 14.90
CKAE w. Beam Tamiflu 436 3927 22.94

We impose counting criteria for the CKAE statistics so that the proposed 
molecule is counted as an attempt only if it is valid, novel, and unique. 
Therefore, the number of valid molecules is equal to the number of attempts. 
To further compare to the CVAE method by Lim et al. where there is more than 
one valid molecule per attempt, we have applied beam search with a beam size 
of 10 (labeled CKAE w. Beam). When beam search is used, the number of valid 
molecules reports the number of valid, novel, and unique candidates derived 
from all attempts. The success rate is defined as 100 times the rate of finding a 
candidate within a 10% error range of each property per attempt. The result 
shows CKAE is better than CVAE with RNN architectures. Further, if beam 
search is applied, CKAE significantly outperforms the given baseline. 
The bolded numbers represent the KAE and the best results.
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conditions. Formally, f (z, c) ≈ f (z + ǻz, c + ǻc) for small values of ǻz 

and ǻc where f (z, c) is the decoding output function of latent vector 
z subject to the condition c (e.g. PLogP = c). When the generative mod-
el has high enough NUV-R values, it is able to pinpoint the exact la-
tent vector location and perform an exhaustive search for all 
possible ǻz. Therefore, SES combines beam search with iterative 
sampling under various conditions to identify chemically similar 
molecules that closely resemble the target compound in the latent 
space. The details of SES can be found in the supplementary 
material.

Table 3 shows (i) the results of optimizing the 800 lowest 
PLogP-valued molecules from the ZINC250K dataset to generate 
similar molecules (Tanimoto similarity ≤ 0.4) with larger PLogP 
values (39); (ii) the mean difference in PLogP values; and (iii) the 
Tanimoto similarity between the best candidate molecules and 
their starting molecules for each method. The success rate meas-
ures the percentage of molecules that achieved modifications 
with higher PLogP values within their similarity constraints.

Additionally, CKAE performance was assessed as compared to 
direct search from the ZINC250K training set. For each of the 800 
molecules, its similarity value with respect to all other 250 K entries 
was calculated, and the compound with the highest PLogP value 
that remained within the 0.4 Tanimoto similarity constraint was 
identified. This particular outcome is labeled “ZINC250K” in Table 3.

We further compared CKAE to direct search using randomly 
sampled latent vectors with different conditions (PLogP values 
from −10 to 10 scanned with a step size of 0.1). At each step, in-
stead of using encoder-provided latent vectors. Eight hundred 
vectors were randomly sampled from the latent space and de-
coded using beam search with a beam size of 15. The outcomes 
of this search are marked as “Random Search” in Table 3.

CKAE for ligand docking
Comparison to GFlowNet
Table 4 shows the performance of the CKAE model as applied to 
the generation of small molecule inhibitors that bind to the active 
site of the enzyme soluble epoxide hydrolase (sEH), as compared 
to results obtained with GFlowNet for the same active site (5, 41).

CKAE was trained using the same dataset of 3,00,000 molecules 
which GFlowNet (42) was trained from, each entry with a binding 
energy calculated using AutoDock (25) (see Glide anlysis section). 
Binding energies were converted to a reward metric, using a cus-
tom scaling function. Results in Table 4 correspond to the mean 
reward for the top 10, 100, and 1,000 best-scoring molecules 
from a pool of 106 NUV molecules generated by the CKAE model. 
Rewards were computed from the Autodock Vina binding scores. 
Average Tanimoto similarities were computed using a Morgan 
Fingerprint with a radius of 2.

Table 4 shows that CKAE achieves similar performance to 
GFlowNet in molecular docking, and generates molecules with 
higher rewards at the top 10, 100, and 1,000 thresholds, without 
significantly sacrificing the similarity score. In fact, CKAE was 
able to generate molecules scoring as high as 11.45, which exceeds 
the maximum reward of 10.72 in the training database itself. This 
demonstrates the capabilities of CKAE for generative extrapola-
tion, which allows for applications to generative dataset augmen-
tation including molecules with scoring values beyond the range 
of the original dataset.

Glide analysis
A comparison of the ligand–receptor interactions established by 
the top-scoring CKAE, TD, and GFlowNet candidates, respectively 
is shown in Fig. 4A. KAE’s top candidate exhibits superior docking 
performance compared to top-scoring candidates in both the 
training dataset and GFlowNet. In terms of fitting within the pock-
et, the top CKAE candidate occupies a substantially larger volume 
within the receptor binding region when compared to the other 
two. The improved fit is also evidenced by the broader array of sta-
bilizing interactions. These interactions include a series of π–π 
stacking and π–cation interactions. In addition to occupying the 
pocket entirely, the CKAE-generated molecules are devoid of un-
favorable clashes, further underscoring the effectiveness of the 
model in generating effective candidates in the context of molecu-
lar docking.

Figure 4A shows the analysis of the best-scoring molecules gen-
erated by CKAE and direct search from the training dataset (TD), 
as assessed by the Glide molecular docking program that is an in-
tegral part of the Schrödinger Suite of software (26, 27). Figure 4B 
thus provides an independent assessment of the quality of the 
best-scoring CKAE-generated molecules, showing that 
CKAE-generated molecules outperform the TD counterparts in 
terms of ranking as determined by the nature of the interactions 
established at the binding site.

The docking procedure employed an identical receptor grid size 
as used for Autodock Vina (25) calculations, and the candidates 
sourced from both the training dataset and CKAE, were docked 
onto the same receptor structure, using the highest scoring pose 

Table 3. Comparison of performance of various conditional 
generative models.

Methoda PLogP-improvement Tanimoto 
similarity

Success 
rate (%)

JT-VAE (11) 0.84 ± 1.45 0.51 ± 0.1 83.6
MHG-VAE (37) 1.00 ± 1.87 0.52 ± 0.11 43.5
GCPN (38) 2.49 ± 1.30 0.47 ± 0.08 100
Mol-CycleGAN (1) 2.89 ± 2.08 0.52 ± 0.10 58.75
MolDQboot (39) 3.37 ± 1.62 N/A 100
ZINC250K (this work) 4.64 ± 2.33 0.48 ± 0.16 97.88
MoFlow (28) 4.71 ± 4.55 0.61 ± 0.18 85.75
Random sample (this 

work)
4.78 ± 2.08 0.43 ± 0.03 81.75

MNCE-RL (40) 5.29 ± 1.58 0.45 ± 0.05 100
β-VAE (24) 5.67 ± 2.05 0.42 ± 0.05 98.25
CKAE (this work) 7.67 ± 1.61 0.42 ± 0.02 100

The bolded numbers represent the KAE and the best results. 
aTanimoto similarity constraint of 0.4. The table presents the average PLogP 
improvements computed for the set of 800 lowest ranking molecules from the 
ZINC250K dataset as well as the mean Tanimoto similarities of the best candidate 
molecules compared to their respective starting molecules (SDs reported after ±). 
The success rate indicates the percentage of molecules for which the algorithm 
successfully achieved modifications resulting in higher PLogP values within the 
specified similarity constraint. The ZINC250K result corresponds to the highest 
PLogP improvement obtained by searching within the ZINC250K dataset itself. 
Our approach outperforms the search against the training data and demonstrates 
the highest performance when combining our model with the SES method.

Table 4. Performance of the CKAE model on molecular docking as 
compared to GFlowNet.

Method Top 10 
reward

Top 100 
reward

Top 1,000 
reward

Top-1,000 
similarity

GFlowNet 8.36 8.21 7.98 0.44
Training data 9.62 8.78 7.86 0.58
CKAE (this work) 11.15 10.46 9.63 0.63

Top 10, 100, and 1,000 rewards are the averages of the docking scores of 
molecules generated at the corresponding thresholds. The Top-1,000 similarity 
is the mean of all pairwise similarities. Lower similarity between generated 
molecules indicates greater diversity, which is desirable. For docking, the 
higher rewards are better. 
The bolded numbers represent the KAE and the best results.
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derived from Autodock Vina (25) calculations, as described in 
Section 4.5.1.

A dataset comprised of 869 tautomers was curated with high 
structural similarity, including the top 10 CKAE-derived mole-
cules and the top 10 TD molecules, as well as a set of tautomers 
of the same molecules generated by changing protonation and en-
antiomeric states to analyze the quality of the top-performing hits 
relative molecular tautomers (molecules with different arrange-
ments of atoms and bond). The results shown in Fig. 4C revealed 
that the top-ranking candidates from both CKAE and TD outper-
formed other contenders (tautomers) when compared against 
the dataset of tautomers. These results confirmed that the highest 
scoring molecular structures obtained from CKAE and TD re-
mained superior, even when compared to a large number of struc-
turally similar alternatives, confirming the reliability and quality 
of molecules generated by CKAE.

As examined by both Autodock Vina (25) and Glide (26, 27), it is 
clear that CKAE-generated molecules that bind better to the active 

site of sEH than those of the training dataset. The generated high-
er scoring molecules can then be used for dataset augmentation, 
for retraining purposes, allowing the model to generate even high-
er scoring molecules.

Methods
Model architecture
KAE treats molecule generation as a natural language processing 
task. Phrases in the “source language” (i.e. SMILES strings) are en-
coded and compressed into latent vectors and then decoded into 
the target output with corresponding labels. Major components 
for KAE include the encoder, compression layer, mixing layer, 
and decoder.

Source and target masks are created with specified padding to-
kens to ensure that the encoder and decoder do not attend to pad-
ding tokens during training. The SMILES tokens are separately 
passed through embedding layers of the encoder and decoder to 

Fig. 4. Glide analysis of molecular inhibitors docked at the active site of sEH. A) Binding interactions of top-scoring molecules generated by CKAE (left), 
searched from the training dataset (middle) and generated by GFlowNet (right). B) Extra precision (XP) Glide score Boltzmann factors for the top 10 
candidates obtained from the CKAE and training dataset (TD) show that the top-ranking CKAE-generated outperform the top molecules from the TD 
ensemble. C) Histogram of Glide XP docking scores, showing that top-scoring inhibitors generated by CKAE or TD outperform 869 tautomers generated 
from the top 10 candidates of the two datasets.
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become vectors of size 128. They are then added to the corre-
sponding position embeddings of the same dimensions. 
Different from the original Transformer implementation that 
uses fixed sinusoidal functions in the representation, in this 
work, each positional token’s embedding is learned and updated 
during training.

The input is encoded by the Transformer encoder and com-
pressed into latent space. The compression layer is a single linear 
layer that applies to the sequence length dimensions. This layer 
takes in a dimension M, the maximum sequence length in the 
relevant dataset and outputs a dimension of 10. In the case of 
ZINC250k without using conditions, M is 113 dimensional. The re-
sulting latent tensor therefore has dimensions of 10 × E where E is 
the embedding size of 128. The latent vectors are then added with 
noise from a standard Gaussian distribution. In the CKAE variant, 
the conditions (i.e. molecule properties) are attached with 
additional embeddings. Condition-multiplied embeddings are 
concatenated with the input of the encoder and the latent re-
presentation along the sequence length dimension. This allows 
the model to generate molecules by either interpolating or ex-
trapolating with a desired condition value. The mixing layer is a 
linear layer that takes in the compressed tensors with the size 
(10 + number of conditions) × E and maps them back to 10 × E 
dimensions. These tensors are treated as the new encoder output 
which the decoder attends to without encoder masks. Each de-
coder layer attends to the encoder outputs through encoder– 
decoder multihead attention operations. The decoder outputs 
are contracted by a linear layer along the embedding dimension, 
producing a T-dimensional vector per token, where T is the diction-
ary size. This T-dimensional vector is then softmaxed, resulting in a 
probability distribution (P) for each possible character (c).

KAE loss
The KAE loss function is defined, as follows:

L λ, δ( ) = LWCEL(λ, δ) + m-MMD(λ), (2) 

where m-MMD(λ) is a modified version of the regularizing MMD 
loss, discussed in Section 4.3, and LWCEL is a weighted cross- 
entropy loss (LWCEL) obtained from outputs generated by decoding 
the latent vector with and without Gaussian noise added to the la-
tent vector. Based on the original definition of the cross-entropy 
loss (CEL):

LCEL = −
X

s

X

c
Ys,c log Ps,c

ˇ �
, (3) 

where Ps,c is the predicted softmax probability of token c at se-
quence position s and Ys,c is the ground truth label equal to one 
if the token belongs to class c at position s, or zero otherwise. 
Accordingly, we define LWCEL, as follows:

LWCEL(λ, δ) = −1
λ + δ + 1

X

s

X

c
Ys,c log Ps,c

ˇ �
"

+(λ + δ)
X

s

X

c
Ys,c log P⇤

s,c

⇣ ⌘#

,

(4) 

where Ps,c and P⇤
s,c are the predicted softmax values obtained upon 

decoding the latent vector with and without added Gaussian 
noise, respectively.

The hyperparameters λ and δ control the significance of the se-
cond term in the r.h.s. of Eq. 4 (AE behavior) as well as the relative 
weight between the m-MMD term and the weighted cross-entropy 
loss, according to Eq. 2. The function of λ is analogous to the β 

parameter in β-VAE (43). By adjusting λ and δ, the learning object-
ive can be positioned between the VAE and AE objectives. At the 
extremes, the objective becomes VAE-like (or AE-like) upon 
weighting more the term with (or without) noise. For example, 
when λ = 1 and δ = −1, L is like the VAE loss except that we use 
m-MMD instead of the KL-divergence. For AE-like behavior, we 
choose λ = 0 and δ = 1.

The inclusion of λ in the second term of Eq. 4 allows larger λ val-
ues to restrict the latent vectors closer together, penalized by the 
m-MMD loss. This effect increases the probability of sampling val-
id latent vectors but reduces distinctions between vectors. Further 
details on changing λ are presented in the supplementary 
material. The normalization factor of 1/λ + δ + 1 is derived on 
the basis to make a linear interpolation between the LCEL with 
and without noise.

During training, both the latent vector and the decoder outputs 
with and without noise are necessary for the calculation of the 
KAE loss. The latent vectors are penalized based on their differen-
ces from 1,000 randomly sampled Gaussian vectors ( ~Gi) using 
kernel-based metrics(21). During training, a noise vector ϵ ∈ RD, 
with D the dimension of the latent space, is added to the latent 
vector before passing it to the decoder. The noise vector is gener-
ated from a Gaussian normal distribution N (μ, σ2) with zero mean 
μ = 0 and unit variance σ = 1.

In the two passes of the latent vectors to the decoder, one pass 
resembles an AE-like behavior without noise, while the other pass 
resembles a VAE-like behavior with added noise to the latent vec-
tor before decoding. The reconstructions of both are penalized by 
LWCEL. The parameter λ controls the shape of the latent vector dis-
tribution and the relative weights between the MMD term and the 
cross-entropy loss. The parameter δ controls the relative weights 
between the AE and VAE objectives.

KAE m-MMD loss
The MMD loss (44), between two distributions having Nx and Ny 

samples, is defined as their squared distance calculated in a space 
F through the transformation ϕ:

MMD(~x, ~y ) = k ~μx − ~μyk2
F ,

= ~μx
T · ~μx + ~μy

T · ~μy

− ~μx
T · ~μy − ~μy

T · ~μx,

(5) 

where ~μx = 1
Nx

PNx
i ϕ(~xi). The space F is defined by its dot product 

which can be calculated using a kernel function K. Introducing 
the kernel

K(~xi, ~yj) = ~ϕ(xi)
T · ~ϕ(yj), (6) 

we can write the inner products, as follows:

~μx
T · ~μy = 1

NxNy

XNx

i

XNy

j

K(~xi, ~yj), (7) 

so

MMD(~x, ~y ) = 1
N2

y

XNy

i

XNy

j

K(~yi, ~y j)

+ 1
N2

x

XNx

i

XNx

j

K( ~xi, ~x j)

− 2
NxNy

XNx

i0

XNy

j0
K( ~xi0 , ~y j0 ),

(8) 
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where all ~y are sampled from the target Gaussian distribution, and 
the kernel is defined as follows:

K(~α, ~β) = exp
− 1

D
PD

d=0 (αd − βd)2

2σ2

0

B@

1

CA, (9) 

where D = 10 × E is the size of the latent dimension and σ =
ÅÅÅÅÅÅ
0.32

p

has been empirically chosen (see comparison in supplementary 
material).

The first term in the r.h.s. of Eq. 8 corresponds to ~μy
T · ~μy. It is 

typically dropped in the loss evaluations since this term does 
not contribute to the gradients of the loss with respect to the 
weights during backpropagation. So, the standard-MMD 
(s-MMD) loss is defined, as follows:

s-MMD(λ) = λ
1

N2
x

XNx

i

XNx

j

K(~xi, ~x j)

2

4

− 2
NxNy

XNx

i0

XNy

j0
K( ~xi0 , ~y j0 )

3

5.

(10) 

For a zero-minimum inner product, the minimum of the first term 
is achieved at ~μx equal zero. So, minimizing the first term pro-
motes all ϕ(~xi) to spread out in the space F , while the second 
term brings ϕ(~x) to be similar to the distribution of ϕ(~y).

Based on the s-MMD loss, introduced by Eq. 10, we define the 
m-MMD loss, as follows:

m-MMD(λ) = λ 1 − 1
NxNy

XNx

i

XNy

j

K( ~xi, ~y j)

2

4

3

5. (11) 

The constant 1 is added to make m-MMD range from 0 to 1 before 
the λ scaling.

Decoding methods
KAE’s generation process involves sampling a vector, ~v ∈ R10×E 

from a D-dimensional Gaussian distribution and decoding it. For 
conditional generation (CKAE), the sampled vector is concatenated 
with a condition C, following its multiplication by its corresponding 
embedding vector. The resulting vector is subsequently mingled by 
a fully connected layer, yielding ~L again in R10×E. The decoder then 
translates the SMILES string sequence, character by character, with 
decoder–encoder attention applied to ~L.

During decoding, the start-of-sequence token is initially sup-
plied. The decoder subsequently generates a probability distribu-
tion across T possible tokens for each input. One of the 
approaches is to continue the predictions using the token possess-
ing the maximum probability, incorporating the token into the 
next-round input sequence and reiterating the procedure to obtain 
the next most probable token. This process is repeated until the 
end-of-sequence token is produced or the sequence length limit 
is achieved. Besides retaining only the token of highest probability, 
KAE employed beam search, guided by the hyperparameter beam 
size, to derive a broader array of interpretations of the same vector, 
~L. In our implementation, with a beam size, B, where B ≤ T, a max-
imum of B outputs are produced from a single decoding procedure.

The beam search records the probability at each decoding step 
for each of the B sequences. For the first step, the top B most prob-
able tokens are selected. In subsequent steps, the model decodes 
from B input sequences concurrently. Given that each of the B se-
quences has T potential outcomes for the succeeding token, the 
total number of potential next-step sequences equates to B × T. 

These sequences are then ranked according to the sum of their 
probabilities for all S characters.

In a beam search, the probability of a sequence of tokens in-
dexed from s, s − 1, s − 2 · · · to 0 can be represented, as follows:

P(s, s − 1, s − 2, . . . , 0)
= P(s ∣ s − 1, s − 2, . . . , 0) × P(s − 1, s − 2, . . . , 0).

(12) 

This can be interpreted as the product of individual probabilities,

P(s, s − 1, s − 2, . . . , 0) = P(s ∣ s − 1, s − 2, . . . , 0)
× P(s − 1 ∣ s − 2, s − 3, . . . , 0). × · · · P(0)

(13) 

However, calculations of long sequences based on this equation 
yield impractically small numbers as every term is smaller than 
one. Therefore, we sum the log probabilities instead and these 
are also called the beam scores.

For the B × T sequences with equal sequence length S, the prob-
ability of the ith sequence at each position s is denoted as Pi,s. 
Excluding the probabilities of padding tokens, the sum of log prob-
abilities, Pi for the ith sequence is computed as

Pi = 1
ÅÅÅ
Ni

p
XS

s≠pad
Log(Pi,s). (14) 

Here, Ni represents the quantity of nonpadding tokens in se-
quence i.

To foster diversity in decoding, sequence lengths are factored 
into the computation of Pi. The 1/

ÅÅÅ
Ni

p
term counteracts the pref-

erence for shorter sequences over longer ones, as longer sequen-
ces typically yield smaller sums of log probabilities.

The top B most probable tokens are selected and serve as the in-
puts for the subsequent iteration, which continues until the max-
imum sequence length M is attained or all top B candidates have 
produced the end-of-sequence token, signaling the cessation of 
decoding.

Docking methods
The generated molecular structures were evaluated using 
Autodock Vina (25), following a procedure that ensures meaning-
ful comparisons to other molecular generation models, such as 
GFlowNet (5). All results were independently tested by using 
Glide docking from Schrodinger Inc. (26, 27) to ensure the results 
are robust across different docking software packages.

Autodock Vina is known for its efficiency and speed, making it 
suitable for high-throughput screening. It employs an empirical 
scoring function for accurate prediction of binding affinities. On 
the other hand, Glide utilizes a force field-based scoring function 
that is widely recognized for its accuracy. In particular, Glide ex-
cels at predicting binding poses with high precision and has 
undergone extensive validation. Its efficacy in handling large 
and flexible ligands has established it as the gold standard in 
the field. To ensure meaningful comparisons to GFlowNet (5), 
we followed the same procedure implemented for Autodock 
Vina calculations. Specifically, 20 conformers were used per lig-
and, exhaustiveness was set to 32, and a maximum of 10 binding 
modes were generated.

Glide calculations
The model protein receptor (PDB ID: 4jnc) was prepared by using 
the adept Protein Preparation Wizard tool in Maestro (45). The 
protonation states were defined at a neutral pH = 7.0. The protein 
was subsequently refined via energy minimization using the 
OPLS4 force field (46).
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The 3D grid representation of the receptor binding site was pre-
pared by using the Maestro Grid Generation tool, ensuring that the 
grid size and positioning was perfectly aligned with those used in 
GFlowNet calculations. All model structures for docking were pre-
pared using the LigPrep tool of Maestro. Utilizing the Pre-Dock tool 
in Maestro, the docked molecules were prepared and assigned 
charges and protonation states via the OPLS4 force field (46). 
The XP (26, 27) flexible docking protocol was then implemented, 
employing a range of settings designed to optimize the docking ac-
curacy and precision. These included a selection of all predefined 
functional groups for biased torsional sampling, the addition of 
Epik state penalties (47) to the docking scores (45), and the en-
hanced planarity setting for conjugated pi groups.

In the initial step of the docking procedure, 10,000 poses were 
filtered through the Glide screens, and the top 1,000 poses were se-
lected for energy minimization. The expanded sampling option 
was utilized to maximize pose flexibility during the search. 
Ultimately, a single pose was retained for each ligand. The final 
stage involved refining the best docking poses. Two consecutive 
refinement steps were performed, each consisting of a postdock-
ing energy minimization on the selected pose, eliminating the 
need for additional sampling. As a result, highly optimized and re-
liable docking poses were obtained and compared against those 
obtained with Autodock Vina (25) calculations.

Conclusion
KAE allows the integration of the strengths of both VAE and AE 
frameworks in applications to molecular design. The KAE loss, 
with hyperparameters λ and δ, controls varying degrees of VAE 
and AE features as needed for the specific applications.

In the context of molecule generation, KAE is the top performer 
in terms of generation validity without the need for any chemical 
knowledge-based checks, and is the only one that synchronously 
reporting reconstruction performance near 100% accuracy akin to 
the AE. With beam search decoding (48–50) multiple candidates 
per latent vector can be derived. This enriched KAE’s generation 
diversity and validity. In the context of conditional generation, 
CKAE generates molecules that exhibit excellent correlation 
with the input condition, including molecules with a desired prop-
erty (e.g. specific value of PLogP, or reward value upon docking to a 
specific binding site of a biological target).

In the constrained optimization task, the CKAE model exhibits 
significant improvements, with an average increase of 7.67 ± 1.61 
in PLogP units. CKAE achieves a 100% success rate, indicating that 
modifications leading to higher PLogP values were successfully 
achieved for all molecules within the defined similarity con-
straints. This improvement surpasses directly searching from 
the training dataset by over 65%. The comparison to “Random 
Search” shows the strength of KAE’s accurate reconstruction 
which makes searching around the molecules much more 
efficient.

Using Glide (26, 27), the validation for CKAE’s generated high 
binding affinity candidates reveals that they consistently outper-
form those from the training dataset as well as all structurally 
similar tautomers, demonstrating CKAE’s ability of extrapolation 
and the quality of the generated molecules.

As demonstrated in this article, KAE can be used to tackle mol-
ecule generation problems such as docking with binding affinity 
and constrained optimization with PlogP labels. Outside of the 
context for molecular designs, KAE can be effectively employed 
to address a wide spectrum of problems, especially for those 
that are labeled by example–property pairs.
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