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Abstract

We introduce the kernel-elastic autoencoder (KAE), a self-supervised generative model based on the transformer architecture with
enhanced performance for molecular design. KAE employs two innovative loss functions: modified maximum mean discrepancy
(m-MMD) and weighted reconstruction (LwcgL). The m-MMD loss has significantly improved the generative performance of KAE when
compared to using the traditional Kullback-Leibler loss of VAE, or standard maximum mean discrepancy. Including the weighted
reconstruction loss Lwce, KAE achieves valid generation and accurate reconstruction at the same time, allowing for generative
behavior that is intermediate between VAE and autoencoder not available in existing generative approaches. Further advancements
in KAE include its integration with conditional generation, setting a new state-of-the-art benchmark in constrained optimizations.
Moreover, KAE has demonstrated its capability to generate molecules with favorable binding affinities in docking applications, as
evidenced by AutoDock Vina and Glide scores, outperforming all existing candidates from the training dataset. Beyond molecular

design, KAE holds promise to solve problems by generation across a broad spectrum of applications.
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Significance Statement

Kernel-elastic autoencoder (KAE) is a powerful computational tool for molecular design that extends the capabilities of variational
autoencoders (VAEs) as applied to drug discovery. With the widespread use of VAEs and the growing interest in generative models,
KAE bears the potential to advance the field of generative modeling. Beyond applications of molecular designs, KAE introduces a gen-
erative approach that allows the enhancement of all VAE-based models, offering a practical and versatile solution for the broader

machine learning community.

Introduction

The advent of generative models has precipitated a revolutionary
shiftin the development of methods for drug discovery, revealing
new opportunities to swiftly identify ideal candidates for specific
applications (1-7). The variational autoencoder (VAE) model has
emerged among these models as an approach with extraordinary
capabilities that can be adapted for molecule generation via char-
acter, grammar, and graph-based representations (8-11).
Autoencoders (AEs) encode the input data by compression into
a low-dimensional space (12). Though providing a high lower
bound for accurate reconstruction, such space is not well struc-
tured and in some regions, the decoder does not generate output
that resembles the training data, thereby limiting its generative
capabilities. Sacrificing reconstruction performance, VAEs miti-
gate this disadvantage by enforcing encoded latent vectors to
known prior distributions. Upon decoding samples from those dis-
tributions, VAEs generate outputs mimicking the training data. An
outstanding challenge of great interest to drug discovery is to
harness the power of VAEs to generate molecular candidates
with optimal properties during the screening phase of molecular

discovery while preserving AE’s high reconstruction rate for pre-
cise lead candidate optimizations.

Generative models are typically evaluated for molecule gener-
ation using novelty (N), uniqueness (U), validity (V), and recon-
struction (R) metrics. NUV-R metric, which is the product of
them, captures the tradeoff between these four factors, the so-
called NUV to R tradeoff, as a model with high reconstruction abil-
ity usually does not achieve high metrics for novelty, uniqueness,
and validity.

Optimizing the design of molecules near a reference molecule
requires robust reconstruction, as proximity in latent space
should correlate with proximity in the value of the desired prop-
erty. Accurate reconstruction also allows for interpolation be-
tween molecular motifs with intermediate properties between
promising lead compounds (13-16).

Kernel-elastic autoencoder (KAE) stands out as a new self-
supervised generative model with a modified maximum mean dis-
crepancy and weighted reconstruction loss functions. Leveraged
by the transformer architecture(17-20), KAE (Fig. 1) effectively
overcomes the NUV-R tradeoff by combining the merits of both
autoencoder (AE) and variational autoencoder (VAE) models.
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Fig. 1. CKAE architecture. KAE consists of six encoder layers, six decoder layers, and a latent space for conditional generations. During training, the
condition is concatenated after positional embedding and provided as input to the 4-head attention encoder. The condition is also concatenated with the
latent vector before a mixing layer. During training, Gaussian noise is added to the latent vectors. The decoder output is then passed through a linear
layer and softmax function, producing the probabilities of output tokens for each character in the dictionary of size T.

KAE’s loss function is a modified version of the maximum mean
discrepancy (MMD), inspired by Refs. (21-23), that shapes the la-
tent space and enables better performance than using Kullback-
Leibler (KL) divergence loss used in VAEs. When coupled to the
weighted cross-entropy loss (Lwcrr), KAE, without any checking
for molecular grammar or chemical rules, outperforms both
string and graphical-based models in generation tasks while ex-
hibiting nearly flawless reconstruction, as demonstrated on the
ZINC250k testing sets. The freedom to adjust KAE's behavior
through the LycpL gives the “Elastic” term in its naming.

When implemented to solve optimization problems, KAE
outperforms the state-of-the-art by a substantial 28% (24).

Additionally, KAE tackles the problem of molecular docking by
finding suitable binding ligands with conditional generation, as
demonstrated using the dataset from GFlowNet (5). Superior candi-
dates from the baseline and the training data are independently
verified by both Autodock Vina (25) and Schrodinger Glide
(26, 27), demonstrating its practicality.

Result

KAE performance

The overall performance of the KAE (Fig. 1) compared to state-
of-the-art generative models is shown in Table 1. Described in
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Table 1. Comparison of performance of molecular generative models trained with the ZINC250K dataset.

Method N U Vw/o v NUV R NUV-R
CVAE (9)® 0.980 0.021 0.007 N/A 0.0001 0.446 5e-6
GVAE (10)? 1.000 1.000 0.072 N/A 0.072 0.537 0.039
JT-VAE (11)® 1.000 1.000 0.935 1.000 0.935 0.767 0.717
MoFlow (28) 1.000 0.999 0.818 1.000 0.817 1.000° 0.817
Rebalanced (29) 1.000 1.000 0.907 0.938 0.907 0.927 0.841
GraphDF (30) 1.000 0.992 0.890 1.000 0.883 1.000° 0.883
ALL SMILES (31)® 1.000 1.000 N/A 0.985 N/A 0.874 N/A
B-VAE (24) 0.998 0.983 0.983 0.988 0.964 N/A N/A
KAE (2=1,6=-1) 0.998 0.994 0.863 N/A 0.856 0.992 0.849
KAE (4=3.5,6=1) 0.996 0.973 0.997 1.000 0.966 0.997 0.963

The bolded numbers represent the KAE and the best results.

@Results obtained from sampling 1,000 vectors from latent space. PReconstruction rates were obtained on training datasets. Assessment of the capabilities of the
models to generate novel (N), unique (U), valid (V), and properly reconstructed (R) molecules. Validity (V w/o) indicates that the generated strings have not been
postprocessed using chemical knowledge to enforce corrections. NUV results were obtained from averaging over 5 iterations of sampling 10,000 random vectors from
latent space, while the reconstruction rate was calculated using all molecules from the testing dataset. The two KAE models in the table were trained using loss
functions withA=1and 3.5 and 6 = —1 and 1. The choice of 6 = —11is a special case of Lycg and is equivalent to not using any AE objectives. Our validity check selects

alternative candidates from the beam search.

the Methods section, KAE combines a modified-MMD (m-MMD)
loss and the weighted cross-entropy loss (Lwcer), with hyperpara-
meters 4 and J, and exhibits the generative capabilities of VAEs as
well as the exact reconstruction objectives of AEs.

KAE was evaluated according to the fraction of generated mol-
ecules that are novel (N), unique (U), and valid (V). A molecule is
considered novel if it is not included in the training dataset.
Uniqueness is defined as the absence of duplicates in the set of
generated molecules. A molecule is counted as valid if its
SMILES representation is syntactically correct and passes the
RDKit chemical semantics checks (32). Additionally, reconstruc-
tion (R) is successful if and only if the decoder regenerates the in-
put SMILES sequence matching every single token.

Maximum validity and reconstruction was achieved by using
the Lwcer(4, ) defined by Eq. 4 where the hyperparameter § con-
trols the AE-like objective (see supplementary material for a dis-
cussion of the effect of changing 4 and ). The best results for
the NUV-R metric were obtained by using a combination of
A=35andsé=1.

Learning behavior

We have analyzed the KAE behavior by comparing under the same
architecture but with various loss functions (Fig. 2). The recon-
struction was evaluated from 1,000 molecules from the validation
set at every epoch. Figure 2 shows the improvement in validity,
uniqueness, novelty, and reconstruction along the training pro-
cess for models based on a loss that combines the Lycgr(4,9), de-
fined by Eq. 4, with m-MMD (m-MMD(2), Eq. 11), s-MMD, Eq. 10,
or KL-divergence. All models were trained with the ZINC250K da-
taset for 200 epochs, with A=1 and §=-1. When i=-4, the
weighted cross-entropy loss (Cwecer, EqQ. 4) reduces to the standard
cross-entropy loss (Lcrr). Additionally, we examine the effect of
noise while training with the m-MMD loss. The results (Fig. 2) in-
dicate that the KAE model using m-MMD loss with Gaussian noise
added to the latent space exhibits the best performance. The mod-
els exhibit significant differences in their ability to generate valid
SMILES strings and reconstruct input molecules. The m-MMD
model trained with noise in latent space generated the highest
percentage of valid SMILES strings, making it preferable to other
models. For example, the model trained with KL-divergence ex-
hibited much lower validity and a significantly slower learning
rate. The assessment of novelty and uniqueness also shows that
s-MMD and m-MMD models trained with Gaussian noise added
in latent space (noisy models) performed better than the

corresponding models without noise. Another reason to add noise
is to prevent the model from overfitting the latent vectors so that
the decoder has to see the multitude of possible outcomes related
to the region of the decoding latent vector. Further, the decision to
add a Gaussian noise on top of confining the latent vector to the
same Gaussian through m-MMD is to maximize the overlap of
the distribution of all latent vectors with respect to the distribu-
tion of any individual latent vector. This approach is different
from VAE as the VAE has the option to output small variances
for some latent vectors which could reduce the probability of sam-
pling corresponding instances from its prior distribution.

Conditional-KAE

In this section, the performance of the conditional-KAE (CKAE)
(Fig. 1) on the constraint optimization task is investigated.

CKAE generates new candidates conditioned on properties
such as PLogP or docking scores. Here, we first demonstrate the
capabilities of CKAE as applied to the PLogP values defined, as fol-
lows (9, 11):

PLogP(m) = LogP(m) — SA(m) — ring(m), (1)

where LogP is the octanol-water partition coefficient of molecule
m calculated using Crippen’s approach from the atom contribu-
tions (33). SA is the synthetic accessibility score (34), while
ring(m) corresponds to the number of rings with more than six
members for the molecule m.

To demonstrate that CKAE generates molecules that are
strongly correlated to the conditioned value, we analyzed the cor-
relation between the properties of CKAE-generated molecules and
the specified input condition. Figure 3 shows the mean PLogP val-
ue obtained from 1,000 CKAE-generated molecules, strongly cor-
related to the PLogP value used as a condition (correlation
coefficient 0.9997). The distribution of PLogP values of the training
set, rendered as a histogram in Fig. 3, shows the range of PLogP
values used for CKAE training. We have also trained a separate
model using the dataset from Lim et al. (35) who developed a
conditional-VAE (CVAE) with recurrent neural network (RNN) ar-
chitectures to sample molecules given five distinct pharmaceutic-
ally relevant properties. The comparison between CKAE and CVAE
from Lim et al. further shows that CKAE generates candidates cor-
relating to the asked conditions and outperforms the given base-
line by a wide margin (Table 2).

Instead of using regressors to navigate in the latent space
(11, 24, 29, 36), a procedure called similarity exhaustion search
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Fig. 2. Comparison of learning rates for models trained with m-MMD loss, s-MMD loss, and KL-divergence loss. A) Validity evaluated at each epoch. B)
Fraction of molecules properly reconstructed as a function of epochs. C) Novelty evaluated at each epoch. D) The uniqueness at each epoch. The model
labeled as KL includes an extra layer that estimates the SD of each latent vector. The models labeled with m-MMD are trained with the loss
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Fig. 3. CKAE correlation performance. The blue dots represent the mean
PLogP values of 1,000 molecules generated by CKAE, as a function of the
condition PLogP value. The error bars on each dot indicate the associated
SD as estimations of errors. The black line shows the ground truth values.
The histogram shows the underlying distribution of the training dataset
over the entire range of PLogP values.

Table 2. Performance of CKAE compared to CVAE, as applied to
conditional molecular generation.

Method Target Attempts Number of valid Success
molecules rate (%)
CVAELimetal. Aspirin 28,840 32,567 0.34
CVAELimetal. Tamiflu 15,960 34,696 0.62
CKAE Aspirin 4,743 4,743 211
CKAE Tamiflu 3,715 3,715 2.63
CKAE w. Beam  Aspirin 671 4221 14.90
CKAE w. Beam  Tamiflu 436 3927 22.94

We impose counting criteria for the CKAE statistics so that the proposed
molecule is counted as an attempt only if it is valid, novel, and unique.
Therefore, the number of valid molecules is equal to the number of attempts.
To further compare to the CVAE method by Lim et al. where there is more than
one valid molecule per attempt, we have applied beam search with a beam size
of 10 (labeled CKAE w. Beam). When beam search is used, the number of valid
molecules reports the number of valid, novel, and unique candidates derived
from all attempts. The success rate is defined as 100 times the rate of finding a
candidate within a 10% error range of each property per attempt. The result
shows CKAE is better than CVAE with RNN architectures. Further, if beam
search is applied, CKAE significantly outperforms the given baseline.

The bolded numbers represent the KAE and the best results.

(SES) was developed for constraint optimizations. SES aims to find
molecules that are both similar to the target molecule and have high-
er desired properties (e.g. PLogP) by using the same or slightly per-
turbed latent vector representations with gradually increasing
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Table 3. Comparison of performance of various conditional
generative models.

Table 4. Performance of the CKAE model on molecular docking as
compared to GFlowNet.

Method? PLogP-improvement Tanimoto  Success Method Top 10 Top 100 Top 1,000 Top-1,000

similarity ~ rate (%) reward reward reward similarity
JT-VAE (11) 0.84 +1.45 051+01 83.6 GFlowNet 8.36 8.21 7.98 0.44
MHG-VAE (37) 1.00 + 1.87 0.52+0.11 435 Training data 9.62 8.78 7.86 0.58
GCPN (38) 249 +1.30 0.47 +0.08 100 CKAE (this work) 11.15 10.46 9.63 0.63
Mol-CycleGAN (1) 2.89 +2.08 0.52 +0.10 58.75
MolDQboot (39) 3.37 +£1.62 N/A 100 Top 10, 100, and 1,000 rewards are the averages of the docking scores of
ZINC250K (this work) 464 +2.33 0.48 +0.16 97.88 molecules generated at the corresponding thresholds. The Top-1,000 similarity
MoFlow (28) 471+ 455 0.61 + 0.18 85 75 is the mean of all pairwise similarities. Lower similarity between generated
Random sample (this 478 %208 043+ 0.03 8175 molecules indicates greater diversity, which is desirable. For docking, the

= - higher rewards are better.
work) The bolded numbers represent the KAE and the best results.

MNCE-RL (40) 529+158 0.45 +0.05 100
B-VAE (24) 5.67 +2.05 042 £0.05 9825 ) )
CKAE (this work) 7.67 +1.61 0.42 +0.02 100 CKAE was trained using the same dataset of 3,00,000 molecules

The bolded numbers represent the KAE and the best results.

@Tanimoto similarity constraint of 0.4. The table presents the average PLogP
improvements computed for the set of 800 lowest ranking molecules from the
ZINC250K dataset as well as the mean Tanimoto similarities of the best candidate
molecules compared to their respective starting molecules (SDs reported after +).
The success rate indicates the percentage of molecules for which the algorithm
successfully achieved modifications resulting in higher PLogP values within the
specified similarity constraint. The ZINC250K result corresponds to the highest
PLogP improvement obtained by searching within the ZINC250K dataset itself.
Our approach outperforms the search against the training data and demonstrates
the highest performance when combining our model with the SES method.

conditions. Formally, f(z, ¢) = f(z + A;, c + Ac) for small values of A,
and A. where f(z, c) is the decoding output function of latent vector
zsubject to the condition ¢ (e.g. PLogP = ). When the generative mod-
el has high enough NUV-R values, it is able to pinpoint the exact la-
tent vector location and perform an exhaustive search for all
possible Az. Therefore, SES combines beam search with iterative
sampling under various conditions to identify chemically similar
molecules that closely resemble the target compound in the latent
space. The details of SES can be found in the supplementary
material.

Table 3 shows (i) the results of optimizing the 800 lowest
PLogP-valued molecules from the ZINC250K dataset to generate
similar molecules (Tanimoto similarity < 0.4) with larger PLogP
values (39); (ii) the mean difference in PLogP values; and (iii) the
Tanimoto similarity between the best candidate molecules and
their starting molecules for each method. The success rate meas-
ures the percentage of molecules that achieved modifications
with higher PLogP values within their similarity constraints.

Additionally, CKAE performance was assessed as compared to
direct search from the ZINC250K training set. For each of the 800
molecules, its similarity value with respect to all other 250 K entries
was calculated, and the compound with the highest PLogP value
that remained within the 0.4 Tanimoto similarity constraint was
identified. This particular outcomeis labeled “ZINC250K” in Table 3.

We further compared CKAE to direct search using randomly
sampled latent vectors with different conditions (PLogP values
from —10 to 10 scanned with a step size of 0.1). At each step, in-
stead of using encoder-provided latent vectors. Eight hundred
vectors were randomly sampled from the latent space and de-
coded using beam search with a beam size of 15. The outcomes
of this search are marked as “Random Search” in Table 3.

CKAE for ligand docking
Comparison to GFlowNet

Table 4 shows the performance of the CKAE model as applied to
the generation of small molecule inhibitors that bind to the active
site of the enzyme soluble epoxide hydrolase (sEH), as compared
to results obtained with GFlowNet for the same active site (5, 41).

which GFlowNet (42) was trained from, each entry with a binding
energy calculated using AutoDock (25) (see Glide anlysis section).
Binding energies were converted to a reward metric, using a cus-
tom scaling function. Results in Table 4 correspond to the mean
reward for the top 10, 100, and 1,000 best-scoring molecules
from a pool of 10° NUV molecules generated by the CKAE model.
Rewards were computed from the Autodock Vina binding scores.
Average Tanimoto similarities were computed using a Morgan
Fingerprint with a radius of 2.

Table 4 shows that CKAE achieves similar performance to
GFlowNet in molecular docking, and generates molecules with
higher rewards at the top 10, 100, and 1,000 thresholds, without
significantly sacrificing the similarity score. In fact, CKAE was
able to generate molecules scoring as high as 11.45, which exceeds
the maximum reward of 10.72 in the training database itself. This
demonstrates the capabilities of CKAE for generative extrapola-
tion, which allows for applications to generative dataset augmen-
tation including molecules with scoring values beyond the range
of the original dataset.

Glide analysis

A comparison of the ligand-receptor interactions established by
the top-scoring CKAE, TD, and GFlowNet candidates, respectively
is shown in Fig. 4A. KAE's top candidate exhibits superior docking
performance compared to top-scoring candidates in both the
training dataset and GFlowNet. In terms of fitting within the pock-
et, the top CKAE candidate occupies a substantially larger volume
within the receptor binding region when compared to the other
two. The improved fit is also evidenced by the broader array of sta-
bilizing interactions. These interactions include a series of ==
stacking and z—cation interactions. In addition to occupying the
pocket entirely, the CKAE-generated molecules are devoid of un-
favorable clashes, further underscoring the effectiveness of the
model in generating effective candidates in the context of molecu-
lar docking.

Figure 4A shows the analysis of the best-scoring molecules gen-
erated by CKAE and direct search from the training dataset (TD),
as assessed by the Glide molecular docking program that is an in-
tegral part of the Schrddinger Suite of software (26, 27). Figure 4B
thus provides an independent assessment of the quality of the
best-scoring  CKAE-generated molecules, showing that
CKAE-generated molecules outperform the TD counterparts in
terms of ranking as determined by the nature of the interactions
established at the binding site.

The docking procedure employed an identical receptor grid size
as used for Autodock Vina (25) calculations, and the candidates
sourced from both the training dataset and CKAE, were docked
onto the same receptor structure, using the highest scoring pose
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Fig. 4. Glide analysis of molecular inhibitors docked at the active site of sEH. A) Binding interactions of top-scoring molecules generated by CKAE (left),
searched from the training dataset (middle) and generated by GFlowNet (right). B) Extra precision (XP) Glide score Boltzmann factors for the top 10
candidates obtained from the CKAE and training dataset (TD) show that the top-ranking CKAE-generated outperform the top molecules from the TD
ensemble. C) Histogram of Glide XP docking scores, showing that top-scoring inhibitors generated by CKAE or TD outperform 869 tautomers generated

from the top 10 candidates of the two datasets.

derived from Autodock Vina (25) calculations, as described in
Section 4.5.1.

A dataset comprised of 869 tautomers was curated with high
structural similarity, including the top 10 CKAE-derived mole-
cules and the top 10 TD molecules, as well as a set of tautomers
of the same molecules generated by changing protonation and en-
antiomeric states to analyze the quality of the top-performing hits
relative molecular tautomers (molecules with different arrange-
ments of atoms and bond). The results shown in Fig. 4C revealed
that the top-ranking candidates from both CKAE and TD outper-
formed other contenders (tautomers) when compared against
the dataset of tautomers. These results confirmed that the highest
scoring molecular structures obtained from CKAE and TD re-
mained superior, even when compared to a large number of struc-
turally similar alternatives, confirming the reliability and quality
of molecules generated by CKAE.

As examined by both Autodock Vina (25) and Glide (26, 27), it is
clear that CKAE-generated molecules thatbind better to the active

site of sEH than those of the training dataset. The generated high-
er scoring molecules can then be used for dataset augmentation,
for retraining purposes, allowing the model to generate even high-
er scoring molecules.

Methods

Model architecture

KAE treats molecule generation as a natural language processing
task. Phrases in the “source language” (i.e. SMILES strings) are en-
coded and compressed into latent vectors and then decoded into
the target output with corresponding labels. Major components
for KAE include the encoder, compression layer, mixing layer,
and decoder.

Source and target masks are created with specified padding to-
kens to ensure that the encoder and decoder do not attend to pad-
ding tokens during training. The SMILES tokens are separately
passed through embedding layers of the encoder and decoder to
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become vectors of size 128. They are then added to the corre-
sponding position embeddings of the same dimensions.
Different from the original Transformer implementation that
uses fixed sinusoidal functions in the representation, in this
work, each positional token’s embedding is learned and updated
during training.

The input is encoded by the Transformer encoder and com-
pressed into latent space. The compression layer is a single linear
layer that applies to the sequence length dimensions. This layer
takes in a dimension M, the maximum sequence length in the
relevant dataset and outputs a dimension of 10. In the case of
ZINC250k without using conditions, M is 113 dimensional. The re-
sulting latent tensor therefore has dimensions of 10 x E where E is
the embedding size of 128. The latent vectors are then added with
noise from a standard Gaussian distribution. In the CKAE variant,
the conditions (i.e. molecule properties) are attached with
additional embeddings. Condition-multiplied embeddings are
concatenated with the input of the encoder and the latent re-
presentation along the sequence length dimension. This allows
the model to generate molecules by either interpolating or ex-
trapolating with a desired condition value. The mixing layer is a
linear layer that takes in the compressed tensors with the size
(10 + number of conditions) x E and maps them back to 10 x E
dimensions. These tensors are treated as the new encoder output
which the decoder attends to without encoder masks. Each de-
coder layer attends to the encoder outputs through encoder—
decoder multihead attention operations. The decoder outputs
are contracted by a linear layer along the embedding dimension,
producing a T-dimensional vector per token, where T is the diction-
ary size. This T-dimensional vector is then softmaxed, resultingin a
probability distribution (P) for each possible character (c).

KAE loss

The KAE loss function is defined, as follows:

ﬁ(/{, (5) = »CWCEL (ﬂ, 5) + m-MMD(&), (2)

where m-MMD(%) is a modified version of the regularizing MMD
loss, discussed in Section 4.3, and Lwcer 1s a weighted cross-
entropy loss (Lwcer) obtained from outputs generated by decoding
the latent vector with and without Gaussian noise added to the la-
tent vector. Based on the original definition of the cross-entropy
loss (CEL):

Lcpr =— Z Z Ys,c log(Ps,c): (3)

where P, is the predicted softmax probability of token c at se-
quence position s and Vs, is the ground truth label equal to one
if the token belongs to class ¢ at position s, or zero otherwise.
Accordingly, we define Lycgr, as follows:

pl +_()1+ 1 [Z XC: Ys.c log(Ps.)
e DX vclog(e) |

where Ps and P; are the predicted softmax values obtained upon
decoding the latent vector with and without added Gaussian
noise, respectively.

The hyperparameters 1 and ¢ control the significance of the se-
cond term in the r.h.s. of Eq. 4 (AE behavior) as well as the relative
weight between the m-MMD term and the weighted cross-entropy
loss, according to Eq. 2. The function of 4 is analogous to the g

LyceL (4, 6) =
4)

parameter in B-VAE (43). By adjusting 4 and J, the learning object-
ive can be positioned between the VAE and AE objectives. At the
extremes, the objective becomes VAE-like (or AE-like) upon
weighting more the term with (or without) noise. For example,
when 2=1 and §=-1, £ is like the VAE loss except that we use
m-MMD instead of the KL-divergence. For AE-like behavior, we
choose 1=0and d=1.

The inclusion of 2in the second term of Eq. 4 allows larger 4 val-
ues to restrict the latent vectors closer together, penalized by the
m-MMD loss. This effect increases the probability of sampling val-
id latent vectors but reduces distinctions between vectors. Further
details on changing 4 are presented in the supplementary
material. The normalization factor of 1/A+d6+ 1 is derived on
the basis to make a linear interpolation between the Lcg with
and without noise.

During training, both the latent vector and the decoder outputs
with and without noise are necessary for the calculation of the
KAE loss. The latent vectors are penalized based on their differen-
ces from 1,000 randomly sampled Gaussian vectors (G;) using
kernel-based metrics(21). During training, a noise vector € € RP,
with D the dimension of the latent space, is added to the latent
vector before passing it to the decoder. The noise vector is gener-
ated from a Gaussian normal distribution AV (g, ¢2) with zero mean
«=0 and unit variance ¢ = 1.

In the two passes of the latent vectors to the decoder, one pass
resembles an AE-like behavior without noise, while the other pass
resembles a VAE-like behavior with added noise to the latent vec-
tor before decoding. The reconstructions of both are penalized by
LweeL. The parameter 4 controls the shape of the latent vector dis-
tribution and the relative weights between the MMD term and the
cross-entropy loss. The parameter § controls the relative weights
between the AE and VAE objectives.

KAE m-MMD loss

The MMD loss (44), between two distributions having Ny and Ny
samples, is defined as their squared distance calculated in a space
F through the transformation ¢:

MMD(X, 7) = Il - £; 7,
=" i+ 1T )
— i gy = iy i
where iy =N%Z§VX #(Xi). The space F is defined by its dot product
which can be calculated using a kernel function K. Introducing
the kernel

K(E,5)=9(x)" - 907 ©)
we can write the inner products, as follows:

Ny Ny

SO

Ny Ny

NQZZK@“ yJ
NQZXZXM ®)

xNy

NXNyZZ’CXV y]

ir ’

MMD(X,
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where all yare sampled from the target Gaussian distribution, and
the kernel is defined as follows:

1
Y2 (=)

K(@, ) =exp 57 : ©)

where D = 10 x E is the size of the latent dimension and o = +/0.32
has been empirically chosen (see comparison in supplementary
material).

The first term in the r.h.s. of Eq. 8 corresponds to ;" - 4i;. It is
typically dropped in the loss evaluations since this term does
not contribute to the gradients of the loss with respect to the
weights during backpropagation. So, the standard-MMD
(s-MMD) loss is defined, as follows:

Ny Ny

s-MMD(}) ={B}ZZ 3K %)
X i }

2
_—NXNy E E ’C(Xi’:yj’) .
v ]'

For a zero-minimum inner product, the minimum of the first term
is achieved at yy, equal zero. So, minimizing the first term pro-
motes all ¢(x;) to spread out in the space F, while the second
term brings ¢(X) to be similar to the distribution of ¢(y).

Based on the s-MMD loss, introduced by Eq. 10, we define the

m-MMD loss, as follows:

N, Ny
m-MMD(1) ;{1 - N:Ny Z ZIC(XT, ¥;) } (11)
i

The constant 1 is added to make m-MMD range from O to 1 before
the 1 scaling.

Decoding methods

KAE's generation process involves sampling a vector, U e RO
from a D-dimensional Gaussian distribution and decoding it. For
conditional generation (CKAE), the sampled vector is concatenated
with a condition C, following its multiplication by its corresponding
embedding vector. The resulting vector is subsequently mingled by
a fully connected layer, yielding L again in R'®*. The decoder then
translates the SMILES string sequence, character by character, with
decoder-encoder attention applied to L.

During decoding, the start-of-sequence token is initially sup-
plied. The decoder subsequently generates a probability distribu-
tion across T possible tokens for each input. One of the
approaches is to continue the predictions using the token possess-
ing the maximum probability, incorporating the token into the
next-round input sequence and reiterating the procedure to obtain
the next most probable token. This process is repeated until the
end-of-sequence token is produced or the sequence length limit
is achieved. Besides retaining only the token of highest probability,
KAE employed beam search, guided by the hyperparameter beam
size, to derive a broader array of interpretations of the same vector,
L In our implementation, with a beam size, B, where B < T, a max-
imum of B outputs are produced from a single decoding procedure.

The beam search records the probability at each decoding step
for each of the B sequences. For the first step, the top B most prob-
able tokens are selected. In subsequent steps, the model decodes
from B input sequences concurrently. Given that each of the B se-
quences has T potential outcomes for the succeeding token, the
total number of potential next-step sequences equates to BxT.

These sequences are then ranked according to the sum of their
probabilities for all S characters.

In a beam search, the probability of a sequence of tokens in-
dexed froms, s—1,s—2---to 0 can be represented, as follows:

P(s,s-1,5=2,...,0)

12
=P(s|s-1,5-2,...,0)xP(s=1,5s-2, ...,0). (12)

This can be interpreted as the product of individual probabilities,

P(s,s-1,5—=2,...,0)=P(s|s-1,5-2,...,0)

XPs—-1|s-2,5=3,...,0).%x---P(0) (13)

However, calculations of long sequences based on this equation
yield impractically small numbers as every term is smaller than
one. Therefore, we sum the log probabilities instead and these
are also called the beam scores.

For the B x T sequences with equal sequence length S, the prob-
ability of the ith sequence at each position s is denoted as Ps.
Excluding the probabilities of padding tokens, the sum of log prob-
abilities, P; for the ith sequence is computed as

1 S
Pi=—= ) Log(Piy). (14)
\/B_Ifs;epad

Here, N; represents the quantity of nonpadding tokens in se-
quence i.

To foster diversity in decoding, sequence lengths are factored
into the computation of P;. The 1/,/N; term counteracts the pref-
erence for shorter sequences over longer ones, as longer sequen-
ces typically yield smaller sums of log probabilities.

The top Bmost probable tokens are selected and serve as the in-
puts for the subsequent iteration, which continues until the max-
imum sequence length M is attained or all top B candidates have
produced the end-of-sequence token, signaling the cessation of
decoding.

Docking methods

The generated molecular structures were evaluated using
Autodock Vina (25), following a procedure that ensures meaning-
ful comparisons to other molecular generation models, such as
GFlowNet (5). All results were independently tested by using
Glide docking from Schrodinger Inc. (26, 27) to ensure the results
are robust across different docking software packages.

Autodock Vina is known for its efficiency and speed, making it
suitable for high-throughput screening. It employs an empirical
scoring function for accurate prediction of binding affinities. On
the other hand, Glide utilizes a force field-based scoring function
that is widely recognized for its accuracy. In particular, Glide ex-
cels at predicting binding poses with high precision and has
undergone extensive validation. Its efficacy in handling large
and flexible ligands has established it as the gold standard in
the field. To ensure meaningful comparisons to GFlowNet (5),
we followed the same procedure implemented for Autodock
Vina calculations. Specifically, 20 conformers were used per lig-
and, exhaustiveness was set to 32, and a maximum of 10 binding
modes were generated.

Glide calculations

The model protein receptor (PDB ID: 4jnc) was prepared by using
the adept Protein Preparation Wizard tool in Maestro (45). The
protonation states were defined at a neutral pH =7.0. The protein
was subsequently refined via energy minimization using the
OPLS4 force field (46).
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The 3D grid representation of the receptor binding site was pre-
pared by using the Maestro Grid Generation tool, ensuring that the
grid size and positioning was perfectly aligned with those used in
GFlowNet calculations. All model structures for docking were pre-
pared using the LigPrep tool of Maestro. Utilizing the Pre-Dock tool
in Maestro, the docked molecules were prepared and assigned
charges and protonation states via the OPLS4 force field (46).
The XP (26, 27) flexible docking protocol was then implemented,
employing a range of settings designed to optimize the docking ac-
curacy and precision. These included a selection of all predefined
functional groups for biased torsional sampling, the addition of
Epik state penalties (47) to the docking scores (45), and the en-
hanced planarity setting for conjugated pi groups.

In the initial step of the docking procedure, 10,000 poses were
filtered through the Glide screens, and the top 1,000 poses were se-
lected for energy minimization. The expanded sampling option
was utilized to maximize pose flexibility during the search.
Ultimately, a single pose was retained for each ligand. The final
stage involved refining the best docking poses. Two consecutive
refinement steps were performed, each consisting of a postdock-
ing energy minimization on the selected pose, eliminating the
need for additional sampling. As a result, highly optimized and re-
liable docking poses were obtained and compared against those
obtained with Autodock Vina (25) calculations.

Conclusion

KAE allows the integration of the strengths of both VAE and AE
frameworks in applications to molecular design. The KAE loss,
with hyperparameters 4 and ¢, controls varying degrees of VAE
and AE features as needed for the specific applications.

In the context of molecule generation, KAE is the top performer
in terms of generation validity without the need for any chemical
knowledge-based checks, and is the only one that synchronously
reporting reconstruction performance near 100% accuracy akin to
the AE. With beam search decoding (48-50) multiple candidates
per latent vector can be derived. This enriched KAE'’s generation
diversity and validity. In the context of conditional generation,
CKAE generates molecules that exhibit excellent correlation
with the input condition, including molecules with a desired prop-
erty (e.g. specific value of PLogP, or reward value upon docking to a
specific binding site of a biological target).

In the constrained optimization task, the CKAE model exhibits
significant improvements, with an average increase of 7.67 + 1.61
in PLogP units. CKAE achieves a 100% success rate, indicating that
modifications leading to higher PLogP values were successfully
achieved for all molecules within the defined similarity con-
straints. This improvement surpasses directly searching from
the training dataset by over 65%. The comparison to “Random
Search” shows the strength of KAE's accurate reconstruction
which makes searching around the molecules much more
efficient.

Using Glide (26, 27), the validation for CKAE'’s generated high
binding affinity candidates reveals that they consistently outper-
form those from the training dataset as well as all structurally
similar tautomers, demonstrating CKAE'’s ability of extrapolation
and the quality of the generated molecules.

As demonstrated in this article, KAE can be used to tackle mol-
ecule generation problems such as docking with binding affinity
and constrained optimization with PlogP labels. Outside of the
context for molecular designs, KAE can be effectively employed
to address a wide spectrum of problems, especially for those
that are labeled by example-property pairs.
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