
IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 8, AUGUST 2024 1983

Effective Huge Page Strategies for TLB Miss
Reduction in Nested Virtualization

Weiwei Jia , Jiyuan Zhang , Graduate Student Member, IEEE, Jianchen Shan ,
and Xiaoning Ding , Member, IEEE

Abstract—Huge page strategies, such as Linux Transparent
Huge Page (THP), have become a prevalent solution to mitigate
the performance bottleneck caused by increasingly high memory
address translation overhead. However, in cloud environments,
virtualization presents a two-fold challenge, exacerbating address
translation overhead and undermining the effectiveness of huge
page strategies. To effectively reduce address translation over-
head, huge page strategies in the host and guest virtual machines
(VMs) must work in concert for “proper huge page alignment”,
i.e., huge pages in guest VMs being backed by host huge pages.
This requires a cross-layer coordinating mechanism, which has
been designed targeting non-nested virtualization settings. The
paper introduces XGEMINI as an efficient solution targeting
nested virtualization settings, where addressing these issues is
particularly challenging, given the additional obstacles in creating
synergy between host and guest VMs, due to an extra layer of
page mappings by guest hypervisors. XGEMINI addresses these
challenges by improving the shadow paging mechanism. Evalu-
ation based on the KVM/Linux prototype implementation and
diverse real-world applications shows XGEMINI greatly reduces
TLB misses and enhances application performance in nested
virtualization.

Index Terms—TLB, nested virtualization, huge pages, memory
management.

I. INTRODUCTION

IN modern computer systems, translation lookaside buffer
(TLB) capacity cannot scale at the same rate as memory

capacity [1]. Many workloads, particularly big memory work-
loads, suffer frequent TLB misses, making virtual-to-physical

Manuscript received 4 August 2023; revised 4 March 2024; accepted
19 April 2024. Date of publication 9 May 2024; date of current version 11 July
2024. The work of Weiwei Jia was supported in part by the NSF Grant CRII-
SHF-2348066. The work of Jianchen Shan was supported in part by the NSF
Grant CNS-2324923. Recommended for acceptance by H. Jiang. (Weiwei Jia
and Jiyuan Zhang contributed equally to this work.) (Corresponding author:
Jianchen Shan.)

Weiwei Jia is with the Electrical, Computer, and Biomedical Engineering
Department, The University of Rhode Island, Kingston, RI 02881 USA
(e-mail: weiwei.jia@uri.edu).

Jiyuan Zhang is with the Department of Computer Science, Uni-
versity of Illinois Urbana-Champaign, Urbana, IL 61801 USA (e-mail:
jiyuanz3@illinois.edu).

Jianchen Shan is with the Computer Science Department, Hofstra Univer-
sity, Hempstead, NY 11549 USA (e-mail: Jianchen.Shan@hofstra.edu).

Xiaoning Ding is with Computer Science Department, New Jersey Institute
of Technology, Newark, NJ 07102 USA (e-mail: xiaoning.ding@njit.edu).

Digital Object Identifier 10.1109/TC.2024.3398498

address translations a serious performance bottleneck [2]. This
bottleneck becomes even more pronounced on virtualized plat-
forms, such as clouds, because address translations take much
longer time than those on bare-metal platforms. The use of
hardware-assisted address translation for memory virtualization
(i.e., nested paging) requires a two-dimensional page walk per-
formed upon each TLB miss on virtualized systems, which can
be up to 6 times more costly than the one-dimensional page
walks in bare-metal systems [3].

To reduce TLB misses, a practical and widely adopted so-
lution is huge page strategies, with Linux Transparent Huge
Page (THP) being one of them. They use multiple page sizes
simultaneously in the same system and store large data chunks
in huge pages [1]. Correspondingly, the virtual-to-physical page
mappings utilized in address translations also have multiple
granularities, one for each page size. For the two typical page
sizes in mainstream systems, i.e., 4KB base pages and 2MB
huge pages, two types of page mappings are used in address
translations: huge page mappings between virtual and physical
pages of 2MB, and base page mappings between virtual and
physical pages of 4KB. For the data saved in a huge page,
one huge page mapping is used to translate all the addresses
within this huge page. When this mapping is cached in the
TLB, visiting any addresses within this huge page does not incur
TLB misses.

The effectiveness of huge page strategies relies on 1) estab-
lishing huge page mappings in page tables and 2) installing and
caching huge page mappings in the TLB. Existing huge page
strategies focus only on the former, assuming that the latter
will be achieved automatically with the former. This assumption
only holds on bare-metal systems, where huge page mappings
maintained in page tables are loaded directly to the TLB when
the corresponding pages are accessed.

However, the assumption does not hold on virtualized sys-
tems, where the page mappings used in the TLB are synthesized
during the aforementioned two-dimensional page walks. For
brevity, we call them direct page mappings, since they can be
directly used to translate virtual addresses used by applications
into physical addresses used by hardware to locate data in
the memory. Each is synthesized from two component page
mappings, one from the Guest Page Table (GPT) on the guest
(i.e., VM), and the other from the extended page table (EPT) on
the host, allowing the direct mapping from a guest virtual page
(GVP) to a host physical page (GPP). If one of these component

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7725-7133
https://orcid.org/0000-0002-2067-8914
https://orcid.org/0000-0003-2780-8803
https://orcid.org/0000-0002-9947-0437
mailto:weiwei.jia@uri.edu
mailto:jiyuanz3@illinois.edu
mailto:Jianchen.Shan@hofstra.edu
mailto:xiaoning.ding@njit.edu

1984 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 8, AUGUST 2024

page mappings is a base page mapping and the other is a huge
page mapping, the synthesis cannot generate a TLB cache-able
page mapping. The reason is straightforward: a mapping can
only map a virtual page to a physical page of the same size;
hardware does not handle complex mappings that map multiple
virtual pages to the same physical page or a virtual page to
multiple physical pages.

We name this issue Huge Page Misalignment (HPM)
Problem, since a huge page is not backing or is not being
backed by another huge page, i.e., misalignment of huge pages
at two layers. Misaligned huge pages do not contribute to re-
ducing TLB misses; instead, they increase TLB misses since
they prevent the generation of TLB cache-able page mappings.
Existing huge page strategies independently create huge pages
(i.e., huge page mappings) within individual layers. Some huge
pages are aligned and help reduce TLB misses, and some others
are mis-aligned and increase TLB misses. Because there is not
a cross-layer mechanism to reduce the number of mis-aligned
huge pages, their overall effectiveness in reducing TLB misses
is low.

Our previous work designs GEMINI as a solution to coordinate
the huge page strategies in the host and guests, and make them
mutually cooperative to “properly align” huge pages (i.e., the
huge pages within a guest being backed by huge pages on
the host). With GEMINI, the guest has the information about
which memory regions are being backed by the host with huge
pages, and with the information, it preferentially allocates or
promotes huge pages in these regions; meanwhile, the host
has the information about which memory regions in the guest
are huge pages, and tries to use huge pages (via allocation or
promotion) to back these memory regions.

GEMINI has proven to be effective in non-nested virtu-
alization environments, where guest VMs run directly on
the host hypervisor (host for brevity). This paper introduces
and evaluates XGEMINI as a solution designed specifically
for nested virtualization contexts, where guest VMs run on
guest hypervisors and guest hypervisors run on the host.
Nested virtualization has become an indispensable configura-
tion and is now offered in most public clouds, including Azure,
Google Cloud, and Amazon AWS. It is used to support some
important scenarios, such as micro-services in cloud-native
environments [4], organizing and migrating multiple VMs to-
gether [5], using special purpose hypervisors, e.g., Hyper-
V for running legacy applications in Microsoft Windows 11
[6], as well as formally-verified hypervisors for improved VM
security [7].

Given the essential role of nested virtualization, it is impera-
tive to address the issues associated with the huge page strate-
gies in these environments, so as to reduce TLB misses and
consequently enhance application performance. GEMINI creates
synergy only between the guest and the host in synthesizing
direct huge page mappings. It is not effective under the nested
virtualization settings, where the synergy of all three system
layers is required, because a direct page mapping has to be the
combination of three component page mappings, one from each
layer, i.e., guest page table (GPT), guest hypervisor EPT, and
host hypervisor EPT, as shown in Fig. 1 (left part). Base page

Fig. 1. The concept of pseudo huge page.

Fig. 2. Cross-layer cooperation in Gemini, a Naive solution, and xGemini.

mappings at any of these layers can prevent the synthesis of
direct huge page mappings.

Creating the synergy of three layers (XGEMINI) is signifi-
cantly more complex than creating the synergy between two
layers (GEMINI), as the number of interactions, conflicting ob-
jectives, and constraints all grow. To reduce the complexity,
rather than ensuring that all three layers are mutually coop-
erative, XGEMINI minimizes cross-layer cooperation and only
maintains the following cooperation (shown in Fig. 2).

• The mutual cooperation between the guest and the host:
direct huge page mappings map huge guest virtual pages
to huge host physical pages, requiring huge pages formed
and aligned in both the guest and the host. Thus, the mutual
cooperation between these two layers is indispensable.

• The cooperation of the host towards the guest hypervisor:
This is to ensure the synergy of all three layers. Even if
the guest hypervisor uses base pages to back a huge page
in a guest, the host can intervene and rectify the situation
by remapping these base pages in the guest hypervisor to
the huge page on the host, such that the huge page in the
guest is essentially backed by the host page on the host,
as shown in Fig. 1.

This design is partially motivated by two system designs
for nested virtualization. One is the Direct Virtual Hardware
(DVH) architecture [6], where the host directly provides virtual
hardware to guest VMs bypassing guest hypervisors. The other

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: EFFECTIVE HUGE PAGE STRATEGIES FOR TLB MISS REDUCTION IN NESTED VIRTUALIZATION 1985

is xPlace [8], where the host cooperates towards both guest
hypervisors and guests in page placement mechanisms.

In addition to reduced complexity and overhead, this design
brings multi-folds of other benefits. First, this design avoids the
changes to guest hypervisor, which might not be feasible for
closed-source or formally-verified hypervisors, or are intrusive
even if they are feasible. Second, the guest components GEMINI

can be reused in XGEMINI. These components are to achieve
cooperation towards the host (shown on the top of Fig. 2(c)).
This not only simplifies the design but also allows the same
guest to run on both GEMINI and XGEMINI platforms. Third,
this design mirrors the de facto memory virtualization solution,
simplifying its implementation on mainstream systems. To sup-
port multi-dimensional paging (i.e., EPT-on-EPT [5]), because
only one EPT can be used in mainstream hardware at a time, a
shadow EPT [9] is created to compress the EPTs in the guest
hypervisor and the host hypervisor to allow direct mapping from
GPA to HPA in the nested virtualization environments, as shown
in Fig. 1 (middle part). XGEMINI can leverage and enhance
the shadow ETP mechanism to achieve the cooperation of the
host towards guests in synthesizing direct huge page mappings
(shown at the bottom of Fig. 2(c)).

The above XGEMINI design does need to address a major
challenge: some inherent flaws in the existing shadow EPT con-
cept and designs impede the host from being cooperative with
the guests in forming huge page mappings. First, the existing
shadow EPT mechanisms are huge-page unfriendly. They either
do not support huge pages (i.e., synthesizing only base page
mappings, e.g., that in Xen) or cannot effectively synthesize
huge page mappings (e.g., that in KVM). With these designs,
the host cannot effectively generate huge page mappings to
cooperate towards guests. More importantly, in existing system
designs, shadow EPTs are created and utilized as the synthesis
of the EPTs in guest hypervisors and the EPTs in the host hy-
pervisors. With this concept, the sizes of the mappings (base vs.
huge) in a shadow EPT are dependent on the page allocations in
the guest hypervisor. As shown in Fig. 1 (left and middle parts),
if the guest hypervisor allocates base pages, the mappings in the
shadow EPT have to be base page mappings.

To remedy these flaws, XGEMINI first substantially renovates
the shadow EPT concept. In XGEMINI, the shadow EPT is built
as a special data structure that book-keep the address map-
pings between the guest physical pages and the corresponding
host physical pages by introducing a concept of “pseudo huge
pages”. A pseudo huge page is a huge-page-sized region in the
host’s physical memory space that can be used to back a huge
page in the guest. As shown in Fig. 1 (right part), although this
region may consist of base pages and cannot be combined into
a real huge page from the perspective of a host EPT (because
virtual pages are not contiguous), the shadow EPT can treat this
region as a huge page to create a huge page mapping, which
is then used by the MMU to form a huge page mapping from
GVAs to HPAs.

To maintain pseudo huge pages, XGEMINI host components
need to detect and respond to the changes in guest hypervisor
EPTs. When a guest hypervisor attempts to change a page
mapping that may affect a pseudo huge page (e.g., the dotted
arrow shown in the guest hypervisor EPT in Fig. 1), the host

Fig. 3. Address translation in the native environment.

needs to change the host EPT accordingly (e.g., the dotted arrow
shown in the host EPT in Fig. 1). This design is shown in Fig. 2
as the cooperation of the host towards the guest hypervisor.

With the above renovations, the granularities of the mappings
in shadow EPTs can be completely controlled by the guests and
the host. Thus, the huge page misalignment problem can be
solved using a similar approach as GEMINI. However, different
from the host components in GEMINI, the host components in
XGEMINI need to use both shadow EPTs and host EPTs as pri-
mary data structures when allocating or promoting pseudo huge
pages. Specifically, to form well-aligned huge pages, XGEMINI

periodically scans the guest page table and the shadow EPT to
identify and rebuild the overlooked huge page mappings by up-
dating the host EPT and shadow EPT. This is shown in Fig. 2(c)
as the cooperation of the host towards the guest. Note that
both XGEMINI and GEMINI aim to form more direct huge page
mappings that are cache-able in TLB without requiring any
changes to how multiple page granularities are implemented in
TLB hardware.

The paper makes the following contributions. First, it ana-
lyzes and identifies the unique challenges in addressing the huge
page misalignment problem in the nested virtualization envi-
ronments. Second, it proposes XGEMINI as an effective solution
that can efficiently reduce TLB misses and the address trans-
lation cost for nested virtualization; XGEMINI addresses a few
technical challenges in implementing XGEMINI in nested virtu-
alization environments. Finally, we have implemented XGEMINI

based on KVM in Linux kernel 4.19 and tested it with diverse
applications in the nested virtualization environments. Our tests
show XGEMINI can significantly reduce TLB misses and effec-
tively improve application performance and system efficiency.

II. BACKGROUND

A. Address Translation in Native Environment

Most modern architectures use radix tree data structures
known as page tables, to perform address translation. On native
x86 systems, as shown in Fig. 3, a standard page table has four
levels and can map a 48-bit virtual address space. Each virtual
address is 48 bits in size, with the lower 12 bits (bit 0∼bit 11)
being the page offset and the upper 36 bits (bit 12∼bit 47) being
the virtual page number. These 36 bits are further divided into
four 9-bit fields.

To translate a virtual address, the page walker navigates from
the radix tree’s root node to a leaf node. This process is known

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

1986 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 8, AUGUST 2024

Fig. 4. Address translation in the non-nested virtualization environment.
Each blue square represents one possible memory access. Host EPT is rotated
by 90 degrees.

as a page walk. Each node is a memory page that includes an
index table with 512 (i.e., 29) entries. The CR3 register stores
the root node’s location, while the locations of intermediate
or leaf nodes are determined by selecting an entry from the
index table of an upper-level node, using the respective 9-bit
field from the virtual address, as shown with the blue squares
in Fig. 3. In the last step of the page walk, the physical page
number is obtained as the result of the page walk from the leaf
node using the lowest 9-bit field. The complete physical address
is then formed by appending the page offset (bits 11:0 of the
VA) to the physical page number.

With a 4-level page table, a page walk may incur 4 memory
accesses. To support emerging applications with terabytes of
memory, architectures including x86 have started to support
5-level page tables, where a page walk may incur 5 memory
accesses.

B. Address Translation in Non-Nested Virtualization

With hardware supports (e.g., Intel EPT [3] and AMD NPT
[10]), nested paging is used for address translation on virtu-
alized platforms. It allows guests and the host to each manage
and map memory independently using their own page tables. A
guest OS maintains guest page tables (GPTs) mapping guest
virtual addresses (GVAs) to guest physical addresses (GPAs),
and the host manages extended page tables (EPTs) mapping
GPAs to host physical addresses (HPAs).

On virtualized systems, the address translation is to obtain
the HPA for a given GVA. This involves the use of two map-
pings maintained in a GPT and an EPT in a two-dimensional
(2D) page walk, as illustrated in Fig. 4. We use circular boxes
to denote the steps in EPT (01–04 , 06–09 , 11–14 , 16–
19 , and 21–24), and rectangle boxes to denote the steps in
GPT (05 , 10 , 15 , and 20). First, to obtain the GPA from
GVA, the hardware needs to walk over each level of the GPT,
from the guest page global directory (GPGD) to guest page
table entry (GPTE), i.e., the rectangle boxes (Steps 5, 10, 15,

Fig. 5. Address translation in nested virtualization.

and 20). However, each of these steps needs to use the corre-
sponding HPA, to obtain which a conventional page walk is
incurred in EPT from host page global directory (HPGD) to
host page table entry (HPTE), i.e., the circular boxes (Steps 1–4,
6–9, 11–14, or 16–19). Second, to obtain the final HPA from
GPA, the hardware needs to walk over the EPT for one more
time (Steps 21–24) to locate the PTE and obtain the physical
page number.

For 4-level radix page tables, the 2D page table walk requires
up to 24 sequential memory accesses [11], as shown in Fig. 4.
With 5-level page table enabled on both guest and host, it takes
up to 35 sequential memory accesses.

C. Address Translation in Nested Virtualization

In nested virtualization, guest hypervisors run in VMs to
host guest VMs inside VMs [5]. Nested virtualization has
been offered by major cloud vendors to enable important use
cases for higher cost-effectiveness, compatibility [5], [6], or
security [12]. For instance, Microsoft Windows 11 provides
virtualization-based kernel integrity protection [13] and oper-
ating system interoperability [14]; Linux also has a similar
implementation in progress [15]. Nested virtualization must be
enabled to run these systems in guest VMs [6].

Nested virtualization requires multi-dimensional paging. A
popular solution is EPT-on-EPT [5], as shown in Fig. 5. L2, L1,
and L0 refer to the guest, guest hypervisor, and host hypervisor
layers throughout the paper, respectively. At L1, to run a guest
VM (L2), a L1 EPT is emulated to translate GPA to the guest
hypervisor physical address (GHPA). At L0, to run a guest
hypervisor (L1), a L0 EPT is emulated to translate GHPA to
HPA. The address translation requires a three-dimensional page
walk across 3 layers of page tables (i.e., GPT, L1 EPT, and
L0 EPT).

Currently, hardware cannot support such page walks, which
are untenable due to excessive memory accesses for each
address translation. Existing solutions use a combination of
hardware-assisted nested paging and software-assisted shadow
paging [16], [17]. They map three layers of page tables onto
two layers and leverage 2D-page walks for address translation
(described in Section II-B). Specifically, the page table in the
guest hypervisor (i.e., L1 EPT) and the page table in the host
hypervisor (i.e., L0 EPT) are squashed into one shadow EPT,
Then, a 2D page walk can translate a GVA to HPA using the
GPT and the shadow EPT. To keep consistency between the

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: EFFECTIVE HUGE PAGE STRATEGIES FOR TLB MISS REDUCTION IN NESTED VIRTUALIZATION 1987

emulated EPTs and shadow EPTs, the host needs to monitor
any changes to the emulated EPTs.

D. Translation Lookaside Buffer (TLB)

To minimize page walks, modern processors use translation
lookaside buffers (TLBs) to cache and reuse the results of earlier
page walks, i.e., the mappings between the virtual page numbers
and the physical page numbers, the virtual page numbers being
the keys/tags for TLB look-ups and physical page numbers
being the values returned by the look-ups and used to assemble
physical memory addresses. Upon a memory access, when the
mapping required for the address translation is already cached
in the TLB (i.e., a TLB hit), no page walk is needed. Oth-
erwise (i.e., a TLB miss), a page walk must be conducted to
locate the PTE and load the virtual-to-physical page mapping to
the TLB.

TLBs usually have small sizes to keep the address translation
latencies low. TLB misses are a serious performance bottleneck
on many systems. To reduce this overhead, various techniques
have been integrated, such as page walk cache (PWC) for
caching the intermediate results of page walks, host TLB for
caching guest physical to host physical mapping, and caching
page table entries in L2 and L3 caches. But TLB misses still
can take up to 50% of application execution time under nested
paging [18].

E. Huge Page Strategies

Huge pages (e.g., 2MB pages on x86 platforms), sometimes
also called superpages, can reduce address translation overhead
in two ways. First, huge page mappings can reduce TLB misses
in TLB lookups. A TLB entry for a huge page mapping can
be used to translate addresses for an increased amount of data
(e.g., 2MB with a huge page PTE vs. 4KB with a base page
PTE). This significantly increases TLB coverage and reduces
TLB misses. Second, huge page mappings can reduce the steps
in a page walk and the corresponding memory references. In
this paper, unless specified otherwise, the huge page refers to a
2MB page. Thus, for an address in a huge page, its lower 21 bits
are the page offset, and the rest 27 bits are 3 fields, 9-bit each.
Thus, a page walk needs only 3 steps (i.e., at most 3 memory
accesses), one for each field.

To leverage huge pages to reduce address translation over-
head, huge page mappings must be established. This can be
achieved by directly allocating huge pages upon page faults or
“assembling” base page mappings into a huge page mapping
through a process called huge page promotion. Huge page
allocation starts by having a huge virtual page, which is then
mapped to a huge physical page. Huge page promotion starts
by having 512 base virtual pages that are sequentially orga-
nized in memory, with the starting address aligned to 2MB. If
these pages are directly mapped to physical pages in the same
sequential order, with the starting address also 2MB aligned,
then an in-place huge page promotion can be performed. This
involves merging these base virtual pages into one huge virtual
page and similarly combining the physical pages into one huge
physical page, followed by updating the mappings in the page

Fig. 6. An example of a misaligned huge page. Note that an actual 2MB
huge page contains 512 base pages.

table accordingly. If the physical pages cannot meet the above
criteria, an out-of-place huge page promotion is required. This
involves remapping the base virtual pages to physical pages
that do meet the criteria, transferring the data, and then per-
forming the same steps as in an in-place promotion. When a
huge page is under-utilized, huge page demotion can reverse
the promotion operation and split a huge page back into base
pages. Huge page promotions and demotions, particularly out-
of-place promotions, are expensive because costly operations,
such as memory copying and TLB flushing, are involved. Thus
they are typically executed asynchronously in the background
to minimize the impact on system performance, as seen with
Linux’s khugepaged daemon.

Applications can request huge page allocation or promotion
via system calls (e.g., madvise). However, most applications
rely on system-level huge page strategies, such as Transparent
Huge Page (THP) support in Linux and FreeBSD, to automat-
ically manage the allocation and promotion of huge pages and
enhance performance transparently without the need of code
changes from the applications.

III. RESEARCH PROBLEM AND CHALLENGES

A. Huge Page Misalignment in Virtualized Systems

On a native system, when accessing the data in any huge
pages, the mappings between the virtual and physical huge
pages can be cached in TLB to reduce TLB misses. Thus,
the more huge pages are created and used, the more address
translation overhead can be reduced. However, on virtualized
platforms, guests and hosts have their own huge page strategies.
They manage huge page allocation and promotion indepen-
dently using different page tables. Thus, the same guest virtual
page may be backed at different layers by physical pages of
different sizes. For example, a huge page in the guest may
be backed by base pages in the host, as shown in Fig. 6. In
this case, for this guest virtual page, there is no direct page
mapping that can be used to translate the addresses within this
page directly to host physical addresses. Depending on specific
designs, a TLB may choose not to cache a direct mapping
in this case or cache direct mappings in a smaller granularity
(i.e., at the size of base pages [10]). Either way, huge page
mappings formed at individual layers cannot help reduce TLB
misses. With fewer mappings being cached, the former design

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

1988 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 8, AUGUST 2024

Fig. 7. Well-aligned huge pages can effectively reduce address translation
overhead. Throughput is normalized to that of vanilla Linux/KVM.

would even increase TLB misses. The paper refers to such
huge pages as misaligned huge pages and this problem as huge
page misalignment problem. Using huge pages can reduce TLB
misses only when a virtual huge page is backed by a physical
huge page at both the guest and the host layers. For brevity, we
refer to such huge pages as well-aligned huge pages.

On virtualized platforms, the huge pages may still be “well-
aligned”. However, it is largely by chance. Though this chance
increases when more huge pages are created in every layer,
the pressure to reduce the adverse effects of huge pages (e.g.,
space waste and paging overhead) caps the chance, limiting the
effectiveness of huge page strategies.

Though the misaligned huge pages still can help reduce
page walk overhead, they increase TLB misses. Thus, they can
hardly reduce address translation overhead when the benefits
of reducing page walk overhead is largely offset by increased
misses. Using well-aligned huge pages can substantially im-
prove performance by reducing both TLB misses and page
walk overhead.

Our previous work, GEMINI [19], identifies this huge page
misalignment problem and analyzes the causes. It reveals and
experimentally confirms that only huge guest pages backed
by huge host pages can effectively reduce address translation
overhead. Existing huge page strategies only aim to increase
huge pages at each layer, and fail to consider this cross-layer
requirement on the alignment of huge pages.

To show how virtualization affects the effectiveness of huge
page management, we measure the performance of a micro-
benchmark when misaligned huge pages and well-aligned huge
pages are used, respectively. We show the results in Fig. 7.
The micro-benchmark running in a virtual machine randomly
accesses a data set. When the data set is small, well-aligned
huge pages show similar performance as the baseline; how-
ever, the performance of misaligned huge pages is even worse
than the baseline. This is because misaligned huge pages incur
more TLB misses compared to the baseline. When the data
set is large, well-aligned huge pages can greatly improve per-
formance, because they can reduce TLB misses and address
translation overhead. Misaligned huge pages can hardly im-
prove performance compared to the baseline, as the benefits
of reducing page walk overhead are largely offset by increased
TLB misses.

To address this issue, GEMINI designs a cross-layer solution
for non-nested virtualization environments. It guides the alloca-
tion and promotion of huge pages in guests and the host. With
GEMINI, the guest has the information about which memory
regions are being backed by the host with huge pages, and with
the information, it preferentially allocates or promotes huge
pages in these regions; meanwhile, the host has the information
about which memory regions in the guest are huge pages, and
tries to use huge pages (via allocation or promotion) to back
these regions. Because huge pages are preferentially formed and
allocated from these regions and less from other regions, more
well-aligned huge pages can be formed without aggravating
the adverse effects incurred by excessive huge pages. However,
GEMINI cannot be directly applied in nested virtualization as we
will explain below. Our evaluation also shows directly applying
GEMINI in nested virtualization cannot effectively resolve the
huge page misalignment problem (see Section V).

B. Research Challenges in Nested Virtualization

To address the huge page misalignment problem in nested
virtualization environments, we need to overcome three main
challenges. The first major challenge is the interposition of
guest hypervisors between the guest OS and the host OS. Under
non-nested virtualization environments, the host can directly
control the memory page allocations to VMs to facilitate the
creation of well-aligned huge pages with GEMINI. However,
this becomes very challenging in nested virtualization environ-
ments. Theoretically, we can apply two Gemini systems to three
layers in the nested environment (i.e., Gemini guest component
in the nested VM, paring with Gemini host component in the
guest hypervisor, and another Gemini guest component in the
guest hypervisor, pairing with another Gemini host component
in the host hypervisor) as shown in Fig. 2(b). With slight
changes, the two separate Gemini systems can communicate
and coordinate to make well-aligned huge pages across three
layers. However, this design is not viable for two reasons. First,
it requires the changes of guest hypervisors (not possible for
closed-source hypervisors or prohibitive for formally verified
hypervisors). Second, coordinating three layers is inherently
more challenging and costly than coordinating two layers. It
is harder to reach an agreement since the huge page alignment
made by one Gemini system between two layers may not be
ideal for the other Gemini system to enforce alignment between
the other two layers. For example, one Gemini system may
make a huge page in the nested VM backed by a huge page
in the guest hypervisor which, however, is backed by base
pages that are not contiguous on the host. In such a case, the
other Gemini system has to perform costly out-of-place huge
page promotion using page migration to let the huge page in
the guest hypervisor be backed by a huge page on the host.
Moreover, frequent changes would be made to the guest hyper-
visor EPT, triggering expensive VMexits to update the shadow
EPT. The high overhead would offset the benefits of reduced
TLB misses.

The second major challenge is that the shadow EPT used
for nested virtualization does not well support huge pages. To

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: EFFECTIVE HUGE PAGE STRATEGIES FOR TLB MISS REDUCTION IN NESTED VIRTUALIZATION 1989

our knowledge, some hypervisors do not support huge pages
in their shadow page table mechanisms [20]. Other hypervisors
may support huge pages only when a guest hypervisor huge
page is backed by a host hypervisor huge page, such that the
huge page mappings in both guest hypervisor EPT and the host
hypervisor EPT can be merged into the shadow EPTs without
incurring any issues. This may miss some opportunities when
a guest huge page is mapped to multiple guest hypervisor base
pages that are actually backed by a huge page or base pages in
a huge page aligned and sized region in the host. In this case,
the shadow EPT should also form a well-aligned huge page to
translate guest physical address to host physical address.

The last major challenge is how to fully unlock the perfor-
mance benefits of XGEMINI. Nested virtualization incorporates
four layers of address space, including guest virtual address
(GVA) space, guest physical address (GPA) space, guest hyper-
visor physical address (GHPA) space, and host physical address
(HPA) space, as shown in Fig. 5. If guest virtual addresses of
an application is not allocated and aligned with huge pages,
it cannot benefit from the well-aligned huge pages created by
XGEMINI. To make guest virtual addresses aligned with huge
pages, we need to improve the application’s virtual memory
allocation mechanisms (malloc) by modifying the guest OS
because GVAs are initiated by the application and actually
allocated by the guest OS. Modern OS usually uses virtual
memory areas (VMAs) to organize application virtual address
space. VMA is an OS abstraction of contiguous regions in the
virtual address space of a program. Each VMA contains a set
of virtual pages with the same protection, representing a local
data section (e.g., code, data, heap, stack, or a memory-mapped
file).It has a base virtual address and size of the mapped region,
along with other metadata. Collectively, VMAs in a program
constitute the program’s working set [21]. It is challenging
to modify guest OS to allocate huge page aligned VMAs to
maximize the performance of XGEMINI.

IV. XGEMINI DESIGN

A. System Overview

Fig. 8 shows XGEMINI’s system architecture. XGEMINI is de-
signed for nested virtualization and built based on GEMINI [19]
that was designed for non-nested virtualization. XGEMINI in-
cludes three new components (highlighted with blue in Fig. 8):
1) Huge Aligner (HA) allocates huge page aligned guest virtual
memory for application data to maximize XGEMINI’s perfor-
mance; 2) Nested Enhanced Memory Allocator (NEMA) en-
hances the memory allocator to create huge pages from the
memory regions reserved by the Huge Booking in the nested
virtualization environments. 3) Nested Well-aligned Huge Page
Creator (NWHPC) scans the guest page table and the shadow
EPT to identify the misaligned huge pages and create well
aligned huge pages by modifying the corresponding mappings
in the host hypervisor EPT and the shadow EPT.

XGEMINI reuses some components from GEMINI, such as
Huge Booking and Misaligned Huge Page Promoter, as rep-
resented by the orange boxes in Fig. 8. Huge Booking tem-
porarily reserves well-aligned huge-page-sized memory regions

Fig. 8. XGEMINI system overview.

Fig. 9. Huge aligner.

between the guest and the host upon the VMA being touched
for the first time in a non-nested virtualized environment.
Misaligned Huge Page Promoter preferentially promotes mis-
aligned huge pages in guest- and host-level in non-nested virtu-
alization environments. Next, we detail the three newly added
components in XGEMINI and explain their interactions with the
reused GEMINI components.

B. Huge Aligner

The application running in guest VM invokes malloc (or
other memory allocation interfaces) to allocate guest virtual
address space. To allocate the GVA space, the OS returns virtual
memory areas (VMAs), which are contiguous regions in the
virtual address space of the application. VMAs are dynami-
cally changed. For instance, a small VMA of one application
can be expanded into a larger one as the workload executes
and requests.

Fig. 9(a) shows how default guest virtual address space is
allocated for an application. The application first requests some
virtual memory space and the OS returns the requested VMA, as
highlighted with blue in Fig. 9(a). Later, the application wants
more GVA space by calling the system call (e.g., mremap) to
expand the VMA; and the OS expands the VMA, as highlighted

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

1990 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 8, AUGUST 2024

with orange in Fig. 9(a). Such VMA expansion may bring
a serious issue. Once the huge page aligned virtual memory
region is all allocated, it needs to pay a high cost to form a huge
page (i.e., out-of-place huge page promotion) [22]. The main
reason for the high overhead is that the out-of-place huge page
promotion incurs costly memory copy, as base pages backing
the huge page aligned guest virtual memory region need to
be copied to another huge page sized physical memory region
for promotion.

To address the problem and create more well aligned huge
pages in nested virtualization, XGEMINI proposes Huge Aligner,
as shown in Fig. 9(b). The main idea is to allocate the whole
huge page aligned guest virtual memory region when it is
touched for the first time. XGEMINI’s Nested Enhanced Memory
Allocator allocates corresponding guest physical memory and
host physical memory aligned with the guest virtual memory
allocation while reserving the corresponding padding regions,
such that the huge page promotion cost can be eliminated, as
we will explain in Section IV-C. The solution is practical and
effective (confirmed in Section V), albeit it may waste some
guest virtual memory space. However, we argue that the virtual
memory space of an application is usually large and we have
not found any issues in our implementations and evaluations.
Moreover, if this may be an issue, we may consider some mech-
anisms to allocate the whole huge page aligned guest virtual
memory region only when the size of the memory allocation
space is larger than a threshold (e.g., 70%).

C. Nested Enhanced Memory Allocator

The main goal of the Nested Enhanced Memory Allocator
(NEMA) is to form well-aligned huge pages without changing
the guest hypervisor in the nested virtualization environments.
The number of well-aligned huge pages can be significantly
increased, if HPA, GPA, and GVA are well aligned to huge
pages when the VMA is touched for the first time. We do not
need to align the guest hypervisor physical address (GHPA) to
huge pages because hardware only supports two-dimensional
page walks by walking the guest page table and the shadow EPT
to realize three dimensional page walks for nested virtualiza-
tion, as introduced in Section II-C. We show how NEMA works
in Fig. 10.

Thanks to the Huge Aligner, NEMA only needs to align GPA
and HPA to GVA upon the first page fault to the virtual memory
area (VMA). This is because Huge Aligner makes the VMA
in the GVA space already aligned with huge pages. When the
VMA (highlighted with blue in GVA in Fig. 10) is touched at
GVA2 for the first time, NEMA allocates guest physical memory
space starting at GPA2. GPA2 is aligned to GVA2 based on
huge pages.

Particularly, NEMA guest component first locates the starting
address of the Huge Page Aligned and Sized (HPAS) region
(GVA1 in Fig. 10) that the VMA’s starting address (GVA2) be-
longs to. Then, NEMA finds a free HPSA region in GPA that can
fit the VMA. Next, NEMA locates the starting address of the free
HPSA region found in GPA (GPA1). Finally, NEMA calculates
the offset between GVA1 and GPA1 (i.e., GuestOffset =

Fig. 10. Nested enhanced memory allocator (NEMA).

GV A1 − GPA1) to maintain a one-to-one mapping between
the HPSA regions in GVA and GPA, facilitating any allocation
in that HPSA region in GVA in calculating where to allocate
GPA (e.g., GPA2).

Subsequently, the guest hypervisor would respond to the page
fault by modifying the guest hypervisor EPT, which triggers a
VM exit trapping to the host where NEMA host component can
find a corresponding free HPSA region in HPA. The starting ad-
dress of HPA is fault at HPA2 that is aligned to GPA2 using the
offset in the host level that is calculated in the same way as it is
in the guest level (i.e., HostOffset = GPA1 − HPA1). For
forthcoming memory allocations, GuestOffset is used as the
guest level offset to calculate where to allocate GPA; HostOffset
is used as the host level offset to calculate where to allocate
HPA. These two types of offset are calculated and maintained
individually by the NEMA guest and host components. There is
no need to pass the GuestOffset to the host or verse-visa. This
process is transparent to the guest hypervisor and the memory
management in the guest hypervisor is untouched. Please note
that XGEMINI does not allocate a huge page if the touched
memory space is smaller than a huge page. The memory size
allocated by XGEMINI depends on the size of the touched mem-
ory space in the VMA (e.g., memory space marked as blue in
GPA and HPA, respectively). The Huge Booking component
[19] is used to temporarily reserve these HPSA regions to form
well-aligned huge pages.

Host memory allocations are triggered in two ways. First,
when the guest hypervisor physical page is touched for the
first time without being backed by host physical memory page,
host conducts the aforementioned procedure to allocate host
physical HPSA memory region and modifies the shadow EPT
to reflect such change. Second, the guest hypervisor physical
page is touched for the first time and has been backed by
the host physical memory page. This may happen because, in
the virtualization environments, the address mapping between
GHPA and HPA remains as long as the guest hypervisor is
alive or until the host OS reclaims it [23], [24]. In this case,
when the guest hypervisor modifies the guest hypervisor EPT,
it traps to the host to update the shadow EPT, as the GHPT is

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: EFFECTIVE HUGE PAGE STRATEGIES FOR TLB MISS REDUCTION IN NESTED VIRTUALIZATION 1991

TABLE I
CONFIGURATIONS OF THE EVALUATION PLATFORM

Parameter Configuration
Machine Type Dell EMC PowerEdge T630

L0 Processor Intel® Xeon® E5-2620 v4 @ 2.10GHz (2 sockets)
L0 Memory 32GB DDR4 2400 MT/s (2 per socket, 128GB total)
L0 Kernel Linux 4.19.60
L0 Host Hypervisor QEMU/KVM

L1 VM Processor 32 vCPU
L1 VM Memory 110 GB
L1 Kernel Linux 4.19.60
L1 Guest Hypervisor QEMU/KVM

L2 VM Processor 32 vCPU (Single VM) / 16 vCPU (Colocated VMs)
L2 VM Memory 100 GB (Single VM) / 50 GB (Colocated VMs)
L2 Kernel Linux 4.19.60

write-protected. If this is the first fault for the corresponding
VMA, the aforementioned host physical memory allocation is
conducted. This may need to modify the mapping between the
GPA space to the HPA space by allocating new host HPSA
memory region to accommodate and create well-aligned huge
pages (i.e., pseudo huge pages as shown in Fig. 1) but the
overhead is acceptable (confirmed in Section V) as it does not
involve data copying.

D. Nested Well-Aligned Huge Page Creator

This component is used to further increase the rate of well-
aligned huge pages without incurring extra overhead in the
nested virtualization environments. With the aforementioned
mechanisms, huge pages at the guest level backed by huge
pages at the host level may still not form well-aligned huge
pages. This is because the shadow EPT is formed by combining
the guest hypervisor EPT and the host hypervisor EPT; and if
a guest huge page is backed by guest hypervisor base pages,
it may not form well-aligned huge pages in the shadow EPT.
Even worse, shadow EPTs in some hypervisors do not support
huge pages [20]. To address this issue, we propose Nested
Well-aligned Huge Page Creator (NWHPC). Specifically, NWHPC
periodically scans the guest page table and the shadow EPT and
forms well-aligned huge pages only when a guest-level huge
page is backed by a host-level pseudo huge page. This is doable
because the shadow EPT is used to map a guest physical address
to a host physical address.

V. EVALUATION

We have implemented XGEMINI prototype based on our pre-
vious work, GEMINI [19]. We added and modified around 800
LoC mainly in the Linux kernel memory management and
KVM kernel module. We conducted our evaluation on a Dell
PowerEdge machine as shown in Table I where the details, such
as the guest VM kernel, guest hypervisor, and host hypervi-
sor are listed. The evaluation is conducted under three huge
page strategies:

• Vanilla Nested Linux/KVM: As ineffective huge page
strategies can hurt the performance, to show the effective-
ness of the proposed huge page strategy, the transparent

TABLE II
WORKLOADS USED IN THE EVALUATION

Name Suite Usage Domain
Img-dnn Tailbench Latency, Throughput Image recognition
Masstree Tailbench Latency, Throughput Key-value store
Moses Tailbench Latency, Throughput Real-time translation
Silo Tailbench Latency, Throughput In-memory database
Specjbb Tailbench Latency, Throughput Java middleware
Sphinx Tailbench Latency, Throughput Speech recognition
Xapian Tailbench Overhead Online search

Canneal PARSEC Latency, Throughput Simulated annealing
Facesim PARSEC Throughput Motion simulation
Raytrace PARSEC Throughput Real-time raytracing
Streamcluster PARSEC Throughput Online clustering
Dedup PARSEC Throughput Data deduplication
x264 PARSEC Throughput Video encoding
FFT PARSEC Throughput Scientific computation
Ferret PARSEC Overhead Content search

huge page is disabled in this setting to serve as the baseline.
Although applications can still allocate huge pages by
invoking the madvise interface, most applications do not
use that interface.

• GEMINI: We deploy a dual GEMINI setup as shown in
Fig. 2(b). One GEMINI guest component is in the nested
VM, paring with GEMINI host component in the guest
hypervisor, and another GEMINI guest component is in
the guest hypervisor, pairing with another GEMINI host
component in the host hypervisor. The two components at
the guest hypervisor layer can communicate and coordi-
nate to make well-aligned huge pages across three layers.
Though we still call this scenario GEMINI for brevity, note
that deploying a single GEMINI is ineffective in reducing
TLB misses.

• XGEMINI: XGEMINI is deployed to guest and host only.
No change is made to the guest hypervisor. GEMINI was
built for non-nested virtualization. A comparison between
XGEMINI and dual GEMINI can illustrate the superior ef-
fectiveness of XGEMINI in nested virtualization.

The objective of our evaluation is three-fold: 1) to show
that XGEMINI can improve the throughputs of throughput-
oriented workloads compared to vanilla nested Linux/KVM and
GEMINI (Section V-A), 2) to show that XGEMINI can reduce
mean and tail latencies of latency-sensitive workloads com-
pared to vanilla nested Linux/KVM and GEMINI (Section V-B),
and 3) to evaluate the applicability and overhead of XGEMINI

(Section V-C).
A diverse set of workloads are used in our evaluation, as

listed in Table II. Specifically, we evaluated XGEMINI with
TLB-sensitive workloads in Tailbench [25] and PARSEC [26]
benchmark suites. To test XGEMINI’s applicability and over-
head, we use two TLB-nonsensitive workloads, i.e., Xapian
and Ferret. In our evaluation, each nested VM encapsulates
one workload.

We categorized the benchmarks into two types: throughput-
oriented benchmarks (provided by the PARSEC benchmark
suite) and latency-critical benchmarks (provided by the Tail-
bench benchmark suite). We tested the workloads with memory

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

1992 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 8, AUGUST 2024

Fig. 11. Throughputs of GEMINI and XGEMINI. Throughput is normalized to that of vanilla nested Linux/KVM.

Fig. 12. TLB misses of GEMINI and XGEMINI. TLB miss is normalized to that of vanilla nested Linux/KVM.

fragmentation and without memory fragmentation, respectively.
We care more about XGEMINI’s performance when memory
is fragmented because previous works [22], [27] show that
memory quickly fragments in multi-tenant virtualized cloud
environments. We first measured the throughputs of the
throughput-oriented workloads. Then, we collected average and
tail latencies reported by the latency-sensitive workloads. Since
Tailbench workloads also report throughputs, we show them in
the figures related to throughput-oriented workloads. The per-
formance results may vary significantly across different work-
loads. When we present these results in figures, for clarity,
we normalized the performance results of XGEMINI and Dual
GEMINI against those of vanilla nested Linux/KVM, as indi-
cated in the figures.

A. Experiments With Throughput-Oriented Workloads

Fig. 11 shows the throughputs of all the evaluated workloads,
when the three systems are tested with memory fragmentation
and without memory fragmentation, respectively.

Without memory fragmentation, XGEMINI offers 16.5%
more throughput on average, compared to vanilla nested
Linux/KVM; this is because XGEMINI reduces TLB misses
by 35.0% on average relative to vanilla nested Linux/KVM,
as shown in Fig. 12. With memory fragmentation, XGEMINI

increases throughput by 18.8% and reduces TLB misses by
53.8%, compared to vanilla nested Linux/KVM. On aver-
age, GEMINI outperforms vanilla nested Linux/KVM by 16.6%
and 3.5% with memory fragmentation and without memory
fragmentation, respectively. The main reason is that GEMINI

increases more huge pages in each virtualization layer, such
that the TLB misses are reduced, albeit this also incurs much
overhead.

In comparison to GEMINI, XGEMINI improves throughput by
9.4% and decreases TLB misses by 3.7% on average when
memory is not fragmented. With memory fragmentation, on
average, XGEMINI provides 15.3% more throughput and 37.7%
lower TLB misses relative to GEMINI. There are two main
reasons. First, XGEMINI increases the number of well aligned
huge pages through better huge page management mecha-
nisms specifically designed for nested virtualization, which
can significantly reduce TLB misses and improve application
throughput especially when memory is fragmented. Second,
by aligning huge pages across different virtualization layers,
XGEMINI makes different virtualization layers work on the same
huge page, mitigating redundant page faults and thus reducing
shadow paging overhead, which is mainly generated by the
VMExits upon handling nested page faults [6].

For some applications (e.g., Silo and Sphinx), XGEMINI

outperforms GEMINI but shows more TLB misses in the non-
fragmentation environments. This is due to GEMINI’s extra
control at the guest hypervisor layer. When a workload leads
to constant changes to the guest hypervisor EPT, XGEMINI

has to constantly modify the host hypervisor EPT to main-
tain the direct huge page mappings. On the contrary, the dual
Gemini setup can well control the guest hypervisor EPT to
reduce the misalignment in such a case by creating more huge
pages in the guest hypervisor, possibly leading to fewer TLB
misses. However, GEMINI provides worse throughput compared
to XGEMINI due to the extra overhead. For instance, producing

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: EFFECTIVE HUGE PAGE STRATEGIES FOR TLB MISS REDUCTION IN NESTED VIRTUALIZATION 1993

Fig. 13. The mean and tail latencies of GEMINI and XGEMINI. Latency is normalized to that of vanilla nested Linux/KVM.

more huge pages leads to frequent changes to guest hypervisor
EPT, triggering expensive VMexits to update the shadow EPT.
XGEMINI forms well-aligned huge pages without creating more
huge pages and incurring much overhead thanks to the direct
coordination between the guest and the host.

B. Experiments With Latency-Sensitive Workloads

Fig. 13 shows the mean and tail latencies of different systems
when they are tested with memory fragmentation and without
memory fragmentation. Relative to vanilla nested Linux/KVM,
XGEMINI reduces the mean latency by 28.0% and the 99th
tail latency by 28.4% on average, when memory is not frag-
mented. With memory fragmentation, XGEMINI offers 26.1%
lower mean latency and 28.5% lower 99th tail latency on av-
erage compared to vanilla nested Linux/KVM. Compared to
GEMINI, XGEMINI reduces the mean latency by 25.7% and
the 99th tail latency by 28.0% on average, when memory
is fragmented.

To understand why XGEMINI provides lower mean and tail la-
tencies compared to vanilla nested linux/KVM and GEMINI, we
profile the TLB misses when the three systems are tested with
memory fragmentation and without memory fragmentation. We
show the test results in Fig. 12. On average, XGEMINI reduces
the TLB misses by 35.0% without memory fragmentation and
53.8% with memory fragmentation, compared to vanilla nested
linux/KVM. This is consistent with the latency test results and
also shows XGEMINI’s effectiveness in reducing the latency for
latency-sensitive workloads as well as the overhead of TLB
misses. XGEMINI shows lower latencies compared to GEMINI

because XGEMINI forms more well aligned huge pages in nested
virtualization, such that it can further reduce the mean and tail
latencies through decreasing TLB misses and address transla-
tion cost.

To understand whether XGEMINI causes more memory frag-
mentation compared to vanilla nested Linux/KVM, we measure
their fragmentation using the free memory fragmentation in-
dex (FMFI) [1], [28] while testing the benchmarks. FMFI is a
value between 0 (unfragmented) and 1 (heavily fragmented).
We show the test results in Fig. 15. Compared to vanilla nested
Linux/KVM, XGEMINI increases the fragmentation by 2% on
average. XGEMINI incurs negligible extra memory fragmenta-
tion because it reuses the booking timeout adjustment algo-
rithm, as described in Algorithm 1 in GEMINI [19]. The main

Fig. 14. Throughputs of GEMINI and XGEMINI when multiple nested VMs
are colocated together. Throughput is normalized to that of vanilla nested
Linux/KVM.

Fig. 15. Fragmentation caused by XGEMINI. Fragmentation index is normal-
ized to that of vanilla nested Linux/KVM.

idea of the algorithm is to reduce memory fragmentation with-
out decreasing the effectiveness of forming well-aligned huge
pages in virtualization environments.

C. Applicability and Overhead

To evaluate XGEMINI’s applicability, we co-locate two nested
virtual machines (VMs) on the same server. We want to test
XGEMINI’s performance when multiple nested VMs are co-
located together, as VM co-location is pervasive in clouds. We
show our test environment in Table I.

Fig. 14 shows throughputs of colocated workloads when they
are tested with different systems. XGEMINI outperforms vanilla
nested Linux/KVM and GEMINI by 7.6% and 12.2% on average,

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

1994 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 8, AUGUST 2024

Fig. 16. Overhead of XGEMINI. We leverage TLB non-intensive workloads
to measure XGEMINI’s overhead. Throughput is normalized to that of vanilla
nested Linux/KVM.

respectively. This shows XGEMINI can improve application per-
formance when multiple nested VMs are collocated on the same
server. Surprisingly, vanilla nested Linux/KVM performs better
than GEMINI when nested VMs are colocated together. The main
reason might be that resource contention increases alignment
efforts and associate overhead in GEMINI. This also shows
XGEMINI performs better than GEMINI as XGEMINI can effi-
ciently avoid overhead by simplifying the alignment in nested
virtualization environments.

To evaluate XGEMINI’s overhead, we tested the throughputs
of two TLB non-intensive workloads, i.e., Xapian and Ferret,
when they are executed with vanilla nested Linux/KVM and
XGEMINI, respectively. We show the test results in Fig. 16.
When workloads are TLB non-intensive, XGEMINI cannot pro-
vide performance benefits by reducing TLB misses. Interest-
ingly, we find XGEMINI can still improve their performance
(4.0% on average) as it can reduce the shadow paging over-
head. In all our evaluations, we didn’t observe XGEMINI incurs
high overhead.

VI. RELATED WORK

Huge Pages. Many research proposals focus on optimizing
huge page mechanisms to reduce address translation overhead.
Ingens [1] addresses several issues of Linux THP. HawkEye
[28] further optimizes Ingens. Illuminator [29] proposes to
manage movable, unmovable, and hybrid memory regions sep-
arately to address memory fragmentation. Navarro et al. [2] pro-
pose to control memory fragmentation with several huge page
optimizations. Zhu et al. [30] propose Quicksilver to optimize
memory bloat and fragmentation problems. Temeraire [31] ag-
gressively allocates 2MB and 1GB huge pages based on appli-
cation memory allocation patterns. Perforated page [32] enables
huge pages for fragmented physical memory by allowing holes
in huge pages and providing alternative mappings for the holes.
Gemini [19] forms well-aligned huge pages between guest and
host to improve TLB efficiency for non-nested virtualization
environments.
Hardware Approaches. Some prior works reduce address
translation overhead by prefetching [18] or caching [21], [33],
[34] translation entries. ASAP [18] prefetches page table en-
tries through the mappings formed between virtual addresses
and page table entries. PTEMagnet [35] preserves CPU cache

locality for page table entries by reserving contiguous guest
physical memory space for page table entries. POM-TLB [33]
proposes to use part of DRAM space as a very large level-3 TLB
to reduce address translation overhead. Midgard [21] proposes
a new virtual cache mechanism that maps the virtual address to
a single intermediate Midgard address space in the system. Barr
et al. [34] study different designs of MMU caches and conclude
that the most effective one is the translation cache (e.g., page
walk caches). Hashed page tables [36] challenge this conclusion
and propose to use the hashing scheme to shorten the page
walk latency.

Some other approaches increase TLB reach by merging mul-
tiple TLB entries into one [37] or storing application data on
contiguous physical memory [23], [38], [39], [40]. As TLB
capacity does not increase at the same rate as DRAM capacity,
these approaches may not be scalable. Today’s big memory
workloads still result in frequent TLB misses. RMM [40] en-
ables ranges of an arbitrary number of virtually and physically
contiguous pages to increase TLB reach. TLB Coalescing [37]
increases TLB efficiency by merging multiple TLB entries into
one. Gandhi et al. [38] propose to apply direct segment [39]
in virtualized systems. It requires large contiguous physical
memory space to store the application’s entire data set. CA-
paging [23] mitigates the address translation overhead through
software and hardware collaboration.

Other works on improving the translation leverage hashed
page tables [36], [41], flattened page tables [42], [43], or com-
bined nested and shadow page table [16], [17] to accelerate ad-
dress translation. FPT [42] merging adjacent page table layers.
Agile Paging [16] combines the advantages of nested paging
and shadow paging to speed up address translation. SHSP [17]
proposes to use nested paging and shadow paging for different
workloads. Flat nested page table [43] flattens the nested page
table. Mosaic pages [41] verifies the feasibility of the Iceberg
hashing [44].

VII. CONCLUSION AND FUTURE WORK

Nested virtualization becomes increasingly important in to-
day’s clouds, as it can be used to improve application and
system reliability and security and many others. However, due
to the huge page misalignment issue, using huge pages becomes
ineffective in reducing TLB misses in nested virtualization en-
vironments. This reduces the performance of memory intensive
applications, such as scientific computing programs [45], and
hampers the adoption of nested virtualization in modern clouds.
This work proposes XGEMINI as an effective system solution
to address the problem in the nested virtualization environ-
ments. To realize XGEMINI, we address several technical chal-
lenges such as how to form well-aligned huge pages without
modifying the guest hypervisor. Our evaluations confirm that
XGEMINI can greatly reduce TLB misses and improve appli-
cation performance through forming more well-aligned huge
pages. In future work, we plan to test XGEMINI on ARM servers.
As ARM servers have become popular in clouds, memory-
intensive workloads running in VMs on these servers may also

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: EFFECTIVE HUGE PAGE STRATEGIES FOR TLB MISS REDUCTION IN NESTED VIRTUALIZATION 1995

suffer from TLB ineffectiveness and application performance
degradation.

VIII. ACKNOWLEDGMENT

We sincerely thank the anonymous reviewers for their in-
sightful suggestions. We are equally grateful to Zhaoxi Shi for
his help in the manuscript revision.

REFERENCES

[1] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated
and efficient huge page management with Ingens,” in Proc. 12th USENIX
Symp. Operating Syst. Des. Implementation (OSDI), 2016 , pp. 705–721.

[2] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, transparent
operating system support for superpages,” ACM SIGOPS Operating Syst.
Rev., vol. 36, 2002, pp. 89–104.

[3] “Intel 64 and IA-32 architectures developer’s manual.” Intel. Accessed:
Mar. 4, 2024. [Online]. Available: https://www.intel.com/content/www/
us/en/architecture-and-technology/64-ia-32-architectures-software-
developer-manual-325462.html

[4] H. Huang et al., “PVM: Efficient shadow paging for deploying secure
containers in cloud-native environment,” in Proc. 29th Symp. Operating
Syst. Princ., 2023, pp. 515–530.

[5] M. Ben-Yehuda et al., “The turtles project: Design and implementation
of nested virtualization,” in Proc. 9th USENIX Symp. Operating Syst.
Des. Implementation (OSDI), 2010, pp. 423–436.

[6] J. T. Lim and J. Nieh, “Optimizing nested virtualization performance
using direct virtual hardware,” in Proc. 25th Int. Conf. Archit. Support
Program. Lang. Operating Syst. (ASPLOS), 2020, pp. 557–574.

[7] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: Retrofitting
protection of virtual machines in multi-tenant cloud with nested virtu-
alization,” in Proc. T23rd ACM Symp. Operating Syst. Princ. (SOSP),
2011, pp. 203–216.

[8] X. Shang, W. Jia, J. Shan, X. Ding, and C. Borcea, “Reestablishing page
placement mechanisms for nested virtualization,” IEEE Trans. Cloud
Comput., vol. 11, no. 3, pp. 3239–3250, Jul.–Sep. 2023.

[9] J. Nakajima, “Making nested virtualization real by using hardware
virtualization features,” LinuxCon Jpn., p. 11, 2013. Available: https://
events.static.linuxfound.org/sites/events/files/cojp13_nakajima.pdf

[10] “AMD64 architecture programmer’s manual.” AMD. Accessed: Mar.
4, 2024. [Online]. Available: https://developer.amd.com/resources/
developer-guides-manuals/

[11] D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas, “Elastic cuckoo
page tables: Rethinking virtual memory translation for parallelism,” in
Proc. 25th Int. Conf. Archit. Support Program. Lang. Operating Syst.
(ASPLOS), 2020, pp. 1093–1108.

[12] Z. Mi, D. Li, H. Chen, B. Zang, and H. Guan, “(Mostly) exitless {VM}
protection from untrusted hypervisor through disaggregated nested vir-
tualization,” in Proc. 29th USENIX Secur. Symp. (USENIX Secur. 20),
2020, pp. 1695–1712.

[13] “Virtualization-based security (VBS).” Microsoft. Accessed: Mar. 4,
2024. [Online]. Available: https://learn.microsoft.com/en-us/windows-
hardware/design/device-experiences/oem-vbs

[14] “Frequently asked questions about Windows subsystem for Linux.”
Microsoft. Accessed: Mar. 4, 2024. [Online]. Available: https://learn.
microsoft.com/en-us/windows/wsl/faq

[15] J. M. Thara Gopinath, M. Salaün, “Hypervisor-enforced kernel integrity
(Heki).” Microsoft. Accessed: Mar. 4, 2024. [Online]. Available: https://
lpc.events/event/17/contributions/1515/attachments/1353/2717/LPC_
2023_LVBS.pdf

[16] J. Gandhi, M. D. Hill, and M. M. Swift, “Agile paging: Exceeding
the best of nested and shadow paging,” in Proc. 43rd Annu. Int. Symp.
Comput. Archit. (ISCA), 2016, pp. 707–718.

[17] X. Wang, J. Zang, Z. Wang, Y. Luo, and X. Li, “Selective hard-
ware/software memory virtualization,” ACM SIGPLAN Notices, vol. 46,
no. 7, 2011, pp. 217–226.

[18] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
address translation,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Mi-
croarchit. (MICRO), 2019, pp. 1023–1036.

[19] W. Jia, J. Zhang, J. Shan, and X. Ding, “Making dynamic page
coalescing effective on virtualized clouds,” in Proc. 18th Eur. Conf.
Comput. Syst. (EuroSys), 2023, pp. 298–313.

[20] “Xen does not support huge pages in shadow page tables.” Xen.
Accessed: Mar. 4, 2024. [Online]. Available: https://wiki.xenproject.org/
wiki/Huge_Page_Support

[21] S. Gupta, A. Bhattacharyya, Y. Oh, A. Bhattacharjee, B. Falsafi, and
M. Payer, “Rebooting virtual memory with Midgard,” in Proc. 48th
Annu. Int. Symp. Comput. Archit. (ISCA), 2021, pp. 512–525.

[22] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Translation ranger:
Operating system support for contiguity-aware TLBs,” in Proc. 46th Int.
Symp. Comput. Archit., 2019, pp. 698–710.

[23] C. Alverti et al., “Enhancing and exploiting contiguity for fast memory
virtualization,” in Proc. 47th Annu. Int. Symp. Comput. Archit. (ISCA),
2020, pp. 515–528.

[24] X. Shang, W. Jia, J. Shan, and X. Ding, “Coplace: Effectively mitigating
cache conflicts in modern clouds,” in Proc. 30th Int. Conf. Parallel
Archit. Compilation Techn. (PACT), 2021, pp. 274–288.

[25] H. Kasture and D. Sanchez, “Tailbench: A benchmark suite and evalu-
ation methodology for latency-critical applications,” in Proc. IEEE Int.
Symp. Workload Characterization (IISWC), 2016, pp. 1–10.

[26] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton Univ., Princeton, NJ, USA, 2011.

[27] J. Araujo, R. Matos, P. Maciel, R. Matias, and I. Beicker, “Experimental
evaluation of software aging effects on the eucalyptus cloud computing
infrastructure,” in Proc. Middleware Industry Track Workshop, 2011,
pp. 1–7.

[28] A. Panwar, S. Bansal, and K. Gopinath, “HawkEye: Efficient fine-
grained OS support for huge pages,” in Proc. 24th Int. Conf. Archit.
Support Program. Lang. Operating Syst. (ASPLOS), 2019, pp. 347–360.

[29] A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages actually
useful,” in Proc. 23rd Int. Conf. Archit. Support Program. Lang. Oper-
ating Syst. (ASPLOS), 2018, pp. 679–692.

[30] W. Zhu, A. L. Cox, and S. Rixner, “A comprehensive analysis of
superpage management mechanisms and policies,” in Proc. USENIX
Annu. Tech. Conf. (USENIXATC 20), 2020, pp. 829–842.

[31] A. Hunter, C. Kennelly, P. Turner, D. Gove, T. Moseley, and P.
Ranganathan, “Beyond malloc efficiency to fleet efficiency: A hugepage-
aware memory allocator,” in Proc. 15th USENIX Symp. Operating Syst.
Des. Implementation (OSDI), 2021, pp. 257–273.

[32] C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer, and
J. Huh, “Perforated page: Supporting fragmented memory allocation
for large pages,” in Proc. 47th Annu. Int. Symp. Comput. Archit.
(ISCA), 2020, pp. 913–925.

[33] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking TLB designs
in virtualized environments: A very large part-of-memory TLB,” ACM
SIGARCH Comput. Archit. News, vol. 45, no. 1, 2017, pp. 469–480.

[34] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching:
Skip, don’t walk (the page table),” ACM SIGARCH Comput. Archit.
News, vol. 38, no. 3, 2010, pp. 48–59.

[35] A. Margaritov, D. Ustiugov, A. Shahab, and B. Grot, “PTEMagnet: Fine-
grained physical memory reservation for faster page walks in public
clouds,” in Proc. 26th ACM Int. Conf. Archit. Support Program. Lang.
Operating Syst. (ASPLOS), 2021, pp. 211–223.

[36] I. Yaniv and D. Tsafrir, “Hash, don’t cache (the page table),” ACM
SIGMETRICS Perform. Eval. Rev., vol. 44, no. 1, 2016, pp. 337–350.

[37] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid TLB coalescing:
Improving TLB translation coverage under diverse fragmented memory
allocations,” in Proc. 44th Annu. Int. Symp. Comput. Archit. (ISCA),
2017, pp. 444–456.

[38] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient memory
virtualization: Reducing dimensionality of nested page walks,” in Proc.
47th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), 2014.

[39] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” ACM SIGARCH Comput.
Archit. News, vol. 41, no. 3, 2013, pp. 237–248.

[40] V. Karakostas et al., “Redundant memory mappings for fast access to
large memories,” ACM SIGARCH Comput. Archit. News, vol. 43, no.
3S, 2015, pp. 66–78.

[41] K. Gosakan et al., “Mosaic pages: Big TLB reach with small pages,” in
Proc. 28th ACM Int. Conf. Archit. Support Program. Lang. Operating
Syst. (ASPLOS), 2023, pp. 433–448.

[42] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer, “Every
walk’s a hit: Making page walks single-access cache hits,” in Proc.
27th ACM Int. Conf. Archit. Support Program. Lang. Operating Syst.
(ASPLOS), 2022, pp. 128–141.

[43] J. Ahn, S. Jin, and J. Huh, “Revisiting hardware-assisted page walks
for virtualized systems,” in Proc. 39th Annu. Int. Symp. Comput. Archit.
(ISCA), 2012, pp. 476–487.

[44] M. A. Bender, A. Conway, M. Farach-Colton, W. Kuszmaul, and
G. Tagliavini, “All-purpose hashing,” 2021, arXiv:2109.04548.

[45] R. S. Jia et al., “Suppressing non-stationary random noise in micro-
seismic data by using ensemble empirical mode decomposition and
permutation entropy,” Appl. Geophys., vol. 133, pp. 132–140, 2016.

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://events.static.linuxfound.org/sites/events/files/cojp13_nakajima.pdf
https://events.static.linuxfound.org/sites/events/files/cojp13_nakajima.pdf
https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/windows/wsl/faq
https://learn.microsoft.com/en-us/windows/wsl/faq
https://lpc.events/event/17/contributions/1515/attachments/1353/2717/LPC_2023_LVBS.pdf
https://lpc.events/event/17/contributions/1515/attachments/1353/2717/LPC_2023_LVBS.pdf
https://lpc.events/event/17/contributions/1515/attachments/1353/2717/LPC_2023_LVBS.pdf
https://wiki.xenproject.org/wiki/Huge_Page_Support
https://wiki.xenproject.org/wiki/Huge_Page_Support

1996 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 8, AUGUST 2024

Weiwei Jia received the Ph.D. degree in computer
science from New Jersey Institute of Technology.
He is an Assistant Professor with the Department of
Electrical, Computer, and Biomedical Engineering,
University of Rhode Island. His research inter-
ests include computer systems, including operat-
ing systems, edge and cloud computing, virtual-
ization, memory and storage systems, and systems
architecture.

Jiyuan Zhang (Graduate Student Member, IEEE)
received the B.S. degree in computer science from
New Jersey Institute of Technology in Newark, New
Jersey, in 2022. He is currently working toward the
master’s degree with the University of Illinois at
Urbana-Champaign. His research interests include
computer systems, memory and storage system, and
computer architecture. He is a Student Member of
IEEE Computer Society.

Jianchen Shan received the Ph.D. degree in
computer science from New Jersey Institute of
Technology. He is an Assistant Professor with the
Computer Science Department, Hofstra University.
His research interests include cloud systems, paral-
lel and distributed systems, and operating systems.

Xiaoning Ding (Member, IEEE) received the Ph.D.
degree in computer science and engineering from
Ohio State University. He is an Associate Profes-
sor with New Jersey Institute of Technology. His
research interests include experimental computer
systems, such as distributed systems, virtualization,
operating systems, and storage systems.

Authorized licensed use limited to: Hofstra University. Downloaded on September 29,2024 at 01:59:51 UTC from IEEE Xplore. Restrictions apply.

