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Abstract

While deep learning surpasses human-level performance
in specific vision tasks, it is fragile and overconfident in
its classification. For example, minor transformations in
perspective, illumination, or object deformation in the im-
age space can result in drastically different labeling. This
is especially apparent when adversarial perturbations are
present. Conversely, human visual perception is orders of
magnitude more robust to input stimulus changes. Neuro-
science research suggests that biological perception is a
dynamic process that converges over time, even for static
images and scenes. Almost all perception frameworks lack
this convergence property, which makes them vulnerable to
minor perturbations. Motivated by our human task results,
we introduce a novel framework for incorporating temporal
dynamics into static image understanding. We demonstrate
a biologically plausible model that decomposes a single im-
age into a series of coarse-to-fine images, mimicking the
integration of visual information in the human brain. Our
model utilizes this information “over time”, resulting in sig-
nificant improvements in its accuracy, robustness, and cost-
effectiveness over standard CNNs. We explicitly quantify
the adversarial robustness properties of our coarse-to-fine
framework through multiple studies. Our quantitative and
qualitative results convincingly demonstrate exciting and
transformative improvements over standard architectures.

1. Introduction

Human visual perception is remarkably slow. The mo-
ment an input stimulus is presented to the time of recog-
nition takes several hundred milliseconds [3, 19]. Neuro-
science experiments and recordings offer an explanation;
the visual system is performing recognition over time, even
for static and simple visual scenes [16,41]. In humans, per-
ceptual clarity increases as bottom-up signals and top-down
feedback mechanisms compete over time and converge to a
confident agreement. In fact, it is precisely this “slowness”
that makes human perception robust and accurate.

In contrast, standard deep learning classifiers typically
only implement a single feed-forward pass and can be opti-
mized in hardware to be orders of magnitude faster than hu-
man recognition. But this speed comes at a cost, i.e., there
is no top-down feedback loop nor any notion of predictive
coding feedback (expectation guiding perception) and lat-
eral competition. Thus, the idea of processing static images
and scenes holistically and over time is missing in state-
of-the-art deep learning models. We believe a more bio-
logically inspired model of “slowness” will ultimately pro-
vide mechanisms and solutions that are robust in the general
classification and especially effective against adversarial ex-
amples. Thus, in this work, we present a novel architecture
that utilizes the idea of classification over time for the ro-
bust classification of static images. In essence, the model
“sees” a gradual progression of the input signal over a gen-
erated time series of increasing perceptual clarity extracted
from a single input stimulus. The final classification is the
culmination of all the information integrated over time. Our
contributions are as follows:

- We demonstrate a coarse-to-fine perception framework
that integrates visual information over time to perform
more accurate and robust image classification.

- We propose a bio-inspired sparse model that reflects the
dynamic properties of human perception and outputs a set
of decompositions that capture the gradual progression of
static image resolution.

- To the best of our knowledge, this is the first study that
considers temporal dynamics in the form of coarse-to-fine
flow by incorporating low-, intermediate-, and high-level
feedback in the perception of static images.

- Our simple yet computationally-efficient perception
framework achieves superior performance compared with
the state-of-the-art methods in object classification and is
more robust to perturbations and adversarial attacks.

2. Related Work

Our perception of a visual scene changes rapidly over
time, even if the scene remains unchanged [16]. Although



we are far from fully understanding the changes in human
visual perception over time, some studies provide consider-
able evidence of the existence of temporal dynamics in vi-
sual recognition [19,26]. Psychophysical studies show that
around 150 ms after the stimulus onset, humans acquire the
“gist” of complex visual scenes, even when the stimulus is
presented very briefly. They require longer processing to
identify individual objects, and it may even take longer for
a more comprehensive semantic understanding of the scene
to be encoded into short-term memory [16]. Consistent with
the timing of perceptual understanding, many studies have
suggested that the visual system integrates visual input in a
coarse-to-fine (CtF) manner [3]. The CtF hypothesis states
that low-frequency information is processed quickly first,
which then projects to high-level visual areas. Critically, the
high-level areas generate a feedback signal that guides the
processing of the high-frequency input [32]. David Marr’s
work on a functional model of the visual system also em-
phasizes several levels of computation, e.g., primal sketch
to 2.5D to 3D representation, mimicked by the cortical areas
of the primate visual system [28].

Processing visual input in a CtF manner helps humans
achieve robust and accurate perception. Indeed, our own
experiences demonstrate that small changes in input do not
change our understanding dramatically (Section 3.4). Af-
ter some amount of information, there is a certain point in
time when our brains can detect and identify objects with
high certainty, but prior to this “aha” moment that occurs
hundreds of milliseconds after stimulus onset, we are (justi-
fiably) neither confident nor accurate in object recognition.

At the other end of the recognition spectrum, deep learn-
ing is very sensitive and fragile to small changes in the input
stimuli and overly confident in classification. Our study will
elucidate these points further (Section 3.4). Many studies
attempt to protect deep learning models from transforma-
tions, perturbations, and adversarial attacks by augmenting
training data [27], adding stochasticity to the hidden layers
[8], and applying preprocessing techniques [10, 14,22, 46].
While such techniques can improve image classification
models on specific tasks and data [38,42], even at the cost
of heavy computations, research has shown every defense
against adversarial attacks has eventually been found to be
vulnerable. Furthermore, solutions that are dependent on
providing a massive amount of data, attempting to reflect
true distribution, are not feasible in all studies, as true dis-
tribution is unknown or at least very expensive to achieve
in many applications. In another line of work, attention
mechanisms are employed in the vision domain to sim-
ulate feedback flows in the human brain [10, 13, 45, 47].
While such mechanisms are great in incorporating seman-
tic feedback with conventional feature extraction, they skip
intermediate-level feedback and their role in perception.
More precisely, such models have no “gist” understanding,

nor any gradual perception. Thus, even in attention-based
models, the convergence property is still missing as defined
for human perception. As such, there still is a monumen-
tal gap between human perception and the current state of
machine vision.

3. Methods

In this work, we take a neuro-inspired approach to robust
vision understanding. We simulate a series of reflections
from an input image and then demonstrate a model that pro-
cesses them over time (Figure 2b). The first step is to simu-
late the coarse-to-fine structure of a visual scene by generat-
ing components that represent the changes in visual percep-
tion over time. Furthermore, by generating these compo-
nents, we can investigate the robustness of available archi-
tectures and design a model inspired by the psychophysical
findings on dynamic components in perception over time.

3.1. Coarse-to-Fine (CtF) Decomposition

Image decomposition is the general process of separat-
ing an input stimulus into a combination of the genera-
tors (or causes) of the data. Decomposition methods have
been used in various computer vision applications such as
background subtraction [17] and moving object detection
[37]. They also have applications in image smoothing and
deblurring [12, 44]. In this paper, we introduce a sparse
coding model that can faithfully mimic CtF decomposition
over time. We also describe two other decomposition ap-
proximators of minimal biological fidelity, but more read-
ily available to the general public, e.g. JPEG and Gaussian
decompositions. While studies such as [21] show that bi-
ological models such as sparse coding are more robust to
perturbations than JPEG Compression ( [8]) and Gaussian
Smoothing ( [46]), we believe these methods can serve as
baselines and may be preferred over sparse coding in appli-
cations with computational constraints.

Sparse Coding. Sparse coding provides a class of algo-
rithms for finding sparse representations of stimuli, input
data. [30] introduced sparse coding to explain the sparse
and recurrent neural representations in the primary visual
cortex. Given only unlabeled data, sparse coding looks
for generating a minimal set of components that can recon-
struct each input signal as accurately as possible, resulting
in having a high representative capacity that surpasses the
capabilities of dense networks on pairing inputs and out-
puts. Also, it can leverage the availability of unlabeled
data. Unlike some other unsupervised learning techniques
such as [18,34,43], sparse coding can be applied to learn-
ing overcomplete basis sets, where the number of bases is
greater than the input dimension [25].

Sparse coding can be defined using the following objec-
tive function, where (") represents the input signal, and
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Figure 1. (a) Schematic of our sparse model (RSCD) for image decomposition over time. (b) Sample decomposed images with different
qualities using RSCD (1st row), JPEG compression (2nd row), and Gaussian smoothing (3rd row).
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Here, ® is an overcomplete dictionary containing all com-
ponents that share features to reconstruct the input, and
(™ = ®a(™ is the reconstructed form. A balances the
sparsity versus the reconstruction quality. = is a training
element, and there are a total of A training elements.

There are different solvers for Equation 1, and, among
them, there are some systems of nonlinear differential equa-
tions, including but not limited to Fast Iterative Shrinkage
and Thresholding Algorithm (FISTA) [+] and Locally Com-
petitive Algorithm (LCA) [33]. Here, we select the Lo-
cally Competitive Algorithm, a bio-inspired technique that
evolves the dynamical variables, the membrane potential of
the neuron, when an input signal is presented. In this model,
the activations of neurons compete and inhibit other units
from firing. The neuron’s excitatory potential is propor-
tional to the match between the input signal and the dictio-
nary element of that neuron. The inhibitory strength is pro-
portional to the similarity of elements/convolutional patches
between the current neuron and other competing neurons,
forcing it to decorrelate.

In the LCA algorithm, the active coefficients for a neu-
ron, m, with the membrane potential, i.e., the internal state,
u'™, can be defined as:

a™ =Ty(u™) = H(u™ — A)u™ (2)
where T is a soft-threshold function with threshold param-
eter, A, and H is the Heaviside function [1].

The differential equation below determines the dynamics

of a neuron, m, with an input signal, I.
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m
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where 7 is the time constant, —u™ is the internal state leak-
age term, a is the activation vector of all neurons, (®T7) is
the driver that charges up the state by the match between the
dictionary element and the input signal, here calculated by
the inner product between them. (®7 ®a — a™) shows the
competition between the set of active neurons proportional
to the inner product between dictionary elements, which
applies as a lateral inhibition signal. —a™ excludes self-
interactions, including self-inhibition.

In short, using LCA, neurons that are selective to the in-
put stimulus charge up faster, then pass a threshold of acti-
vation. Once they pass the threshold, they begin to compete
with other neurons to claim the representation. Thus, sparse
coding with LCA creates a sparse representation of selective
neurons that compete to represent stimuli [ 5,310,

Recurrent Sparse Coding Decomposition (RSCD). We
developed a biologically inspired recurrent model that uses
selectivity through competition, holistic processing, and
top-down feedback to generate image decomposition over
time using sparse coding. We call our model Recurrent
Sparse Coding Decomposition (RSCD) and use it to decom-
pose images in a CtF manner over ¢ = 400 time steps. The
interactions between layers and how they contribute to the
final reconstruction are presented in Equation 4,

K
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where £(") represents the final reconstruction / decomposi-
tion of input (™), which we can substitute into Equation 1
and dynamically solve using Equation 3. K is the number
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of layers in the sparse model. For RSCD, we have three lay-
ers, and k € {V'1, V2, IT} which simulates the brain areas
involved in the ventral pathway of the cortex used for form
recognition and object representation (Figure 1a).

The input images to the RSCD model have been resized
to 128 x128x ', where C is the number of channels, 3.
In ®y/4, dictionary of layer V1, there are 128 elements of
size 8x8xC. We set the same dictionary size for layer
V2, and expanded the number of neurons to 256 at the top
layer, IT. The receptive field of neurons increases by a
factor of 4 at each layer since we stride by 4 over the hi-
erarchy. More precisely, the receptive filed of neurons in
V1is 8x8, 32x32 in V2, and 128 x128 (the whole im-
age) in IT. Thus, the size of layers V1, V2, and IT are
32x32x 128, 8x8x 128, and 1x1x256, respectively (Fig-
ure la). For evaluation purposes, we empirically selected
a subset of 10 decomposed images generated by RSCD,
namely, ¢t € {10, 25, 50, 75,199, 150, 200, 250, 300, 400},
where ¢ is the timestep (Figure 1b, first row).

3.2. Approximate CtF Decomposition

While approximation methods do not decompose input
stimuli over time and are not biologically plausible, they
provide a reasonable CtF approximation and are gener-
ally fast. Among them, JPEG Compression and Gaussian
Smoothing have various image processing applications and
can be used as points of reference for our RSCD method.

JPEG Compression. We used the JPEG compression
technique in [7] to generate 95 different quality level im-
ages, in which scales 1 and 95 are the lowest and the
highest quality levels, respectively. We then selected a
subset of 10 qualities for each image to match the CtF
samples used in RSCD, empirically based on our human
subjects’ results. More specifically, we selected ¢ €
{1,2,4,6,8,12,16, 32,64, 95}, where ¢ is the quality scale
(Figure 1b, second row).

Gaussian Smoothing. Gaussian smoothing is widely
used in image processing applications to reduce noise and
other high-frequency details [46]. We applied 10 different
values for the standard deviation of the Gaussian kernel, o,
starting from 10 to 1, to match the CtF samples used in
RSCD and create 10 decomposed images (Figure 1b). We
would like to emphasize that although the mapping was se-
lected empirically based on the first set of volunteers, we
focus our experiments and results on the performance pat-
tern rather than minute differences in these decompositions.

3.3. Dataset

In this study, we focus on image classification since it has
become the leading task with a broad range of applications
in machine learning and computer vision. Among popu-
lar datasets available for image classification, ImageNet has
been widely used in evaluating cutting-edge models. Also,
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Figure 2. Baselines and CtF models’ architecture. Cells in light
gray use transfer learning from ResNet50 and are frozen during
training/fine-tuning. The CtF model takes Expert(); as its back-
bone and processes each input image in a CtF manner using a re-
current unit. ResNet50 illustration is borrowed from [36].

some prior studies have presented algorithms that could sur-
pass human-level performance on this dataset [35]. We used
two datasets sub-sampled from ImageNet for our experi-
ments. This approach allowed us to investigate the models’
behavior with high resolution and diverse data compared
to standard and smaller datasets such as CIFARI10 [24].
For the first set of experiments, including the off-the-shelf
models’ comparison and human subjects’ results, we hand-
picked 10 classes from ImageNet that were visually distinc-
tive, referred to as ImageNet10. We also randomly chose
20 classes of ImageNet, and added them to the 10 previ-
ously chosen classes, leading to 30 unique classes, referred
to as ImageNet30. To study the scalability of our proposed
algorithms and challenge existing models, the majority of
our experiments were carried out on ImageNet30. More
specifically, we used a subset of the ILSVRC-2012 valida-
tion set, [35], which contains 50 images per class resized to
128 x 128. We generate 10 different versions of each image
for our analyses (Section 1 Supplemental).

3.4. Motivation: Deep Learning vs. Human

Overconfident Deep Models. As a part of our motivation
experiment, we selected 4 off-the-shelf deep learning mod-
els with outstanding results on ImageNet, namely ResNet50
[15], ResNet152 [15], InceptionV3 [40], and Xception [6],
and examined their performance on decomposed images of



|y
)
-
=)

—=:- RSCD

—-- JPEG

—=-= Gaussian

— Original Images (Class: Hen)

o
m
o

Solid Lines: Original Images

—— Human, Gaussian
—— Human, JPEG
0.8{ —— Human, RSCD
—:- ResNet50, Gaussian

—=~ ResNet50
—= - ResNet152

°
2
o
o

—~ InceptionV3
—— Xception

—-- ResNet50, JPEG
—=-- ResNet50, RSCD

14
o

S
S
/
\.
/
N\,
o
IS

accuracy (ResNet50)
P
accuracy

_e=iAN.
ST TN
N, o N

-

)
N
o
N

o

e
2 _/‘”\ LT
MENNETEL

I
>

average accuracy

%
i
!

1 2 3 4

14

6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

quality quality range

(b) DL, Acc.

(c) Human vs. DL, Acc

=
°
=
=)

Solid Lines: Original Images

|y
°

o
©
o
©

e

14
®

o
>
o
o

T~
CaaTr—
—.

o
>
I
S

—=- ResNet50
—=- ResNet152
—=~- InceptionV3
—=~ Xception

e TN .
- Gaussian Se—r T, e

- JPEG

confidence (ResNet50)
°
o

prediction confidence

o
N

o

o
o

—— Human, Gaussian
—— Human, JPEG
” —— Human, RSCD
—:- ResNet50, Gaussian
—= ResNet50, JPEG
—:- ResNet50, RSCD

o
kS

average prediction confidence

o
N

—e-- RSCD
1

©f
-
Si
o
o

> 3 4 5 & i 3 3 &
quality

(d) ResNet50, Conf.

o

6 7 8 9 10 Y1 2 3 4 5 6 7 & 9§ 10

quality quality range

(e) DL, Conf.

(f) Human vs. DL, Conf.

Figure 3. [Motivation Experiment] Deep learning seems fragile and overconfident as it receives better-quality input. In contrast, humans
seem to have a systematic improvement in their perception while receiving better-quality images. (a),(d): ResNet50 performance averaged
on one class, “hen”. The magnified area in (d) shows ResNet50’s spiky confidence on an individual image even in a high-quality range
(t € [300,400]). (b),(e): Baseline models’ performance using the RSCD decomposition on one class, “hen”. (c),(f): Deep learning vs.

human: performance averaged over all classes of ImageNet10.

ImageNet10 over time. Based on the available neuroscience
studies, we initially expected the deep models to perform
with very low certainty and chance-level accuracy on the
first quality levels and achieve higher confidence and accu-
racy over time as the image quality improves. However, we
observed that the deep models performed completely unex-
pectedly in the following cases:

- At early timesteps, low-quality and unintelligible images
achieve confident but incorrect predictions as shown in
Figures 3a and 3d. Also, no steady increase is seen in the
accuracy or confidence on higher quality images.

- The classification accuracy, even on (19, is significantly
lower than the original images. Figures 3a and 3b show
deep models’ dependability to high-frequency informa-
tion than the actual concepts.

- Spiky confidence, even on high-quality images, due to
models’ sensitivity to unnoticeable perturbations. The
magnified area in Figure 3d shows ResNet50 unstable be-
havior on almost fully reconstructed images (¢t € [300 —
400]). Such a behavior is noticeable even when models’
performance is averaged over all images in one class (Fig-
ures 3a, 3b, 3d, and 3e). Occasionally, the models’ perfor-
mance drops at a higher quality (Figure 3b Q¢ and Q7).

Different Visual Trajectory in Humans. As the sec-
ond part of our motivation experiment, we conducted a
similar task on human participants to verify our original
hypothesis—confidence and accuracy increase over time—
and compared humans’ performance with that of deep

learning models. In doing so, we asked seven volunteers to
look at the images and type the main object they recognize
in each image and their confidence level in their recogni-
tion. For each decomposition method, one image was ran-
domly selected from each class of ImageNet10. All differ-
ent qualities of each image were shown to the participants,
in order, starting from the lowest quality (Section 2 Supple-
mental). We post-processed the participants’ answers to the
basic level category [5], employing the same structure used
in defining labels and hierarchies in creating ImageNet us-
ing the WordNet database [1 1]. We then used the same cat-
egories to determine the models’ performance.

Our results show humans’ confidence and accuracy in-
crease as the image quality increases. Unlike the deep learn-
ing models, there is almost no sudden change in human ac-
curacy or confidence; instead, both accuracy and confidence
increase gradually over time and quality. Figures 3c and
3f compare participants’ performance averaged over Ima-
geNet10 classes with that of ResNet50 for all three decom-
position methods. These results motivated us to design a
perception model that can close the gap between human re-
sults and deep models by taking advantage of CtF informa-
tion. We also expect such a perception model to be more
robust to minor perturbation and high-frequency data.

3.5. Our Solution to Perception Over Time

Sequential models such as 1-D convolutional neural net-
works (1-D CNNs) and recurrent neural networks (RNNs)
have shown interesting results in computer vision tasks that
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Figure 4. Baseline models performance on different quality decomposed images. While we see an increasing performance pattern on
higher-quality Experts, they still have a gap with ResNetF30. There is also a gap between prediction and true-class confidence.

involve sequences such as video recognition. Motivated
by [9,39] and the different visual trajectories we saw in hu-
mans and machines in Section 3.4, we designed two sequen-
tial models, namely CtF-CNN and CtF-LSTM, that can take
in information from static images over time and perform a
more robust and accurate perception of them. In doing so,
our framework utilized the decomposition methods in Sec-
tion 3.1 to generate a time component for static images and
then process them in a sequential manner.

Models. We transferred the weights from ImageNet
ResNet50 to a model and only fine-tuned the last 3 layers
on ImageNet30, keeping other layers frozen. We refer to
this model as ResNetF30. More specifically, we removed
the ResNet50 classification layer, added a global average
pooling layer (GAP), and a fully connected layer (FC) with
1024 nodes, followed by a classification layer containing
30 nodes (Figure 2a). Additionally, for each decomposi-
tion quality level, we create a model based on ResNetF30
and similarly fine-tune it on that quality level, leading to 10
baseline models. We call these models Ezpert();, where
i represents the quality level, ¢ € [1, 10]. Furthermore, we
take trained FxpertQ; as the backbone of our CtF-CNN
and CtF-LSTM models, to process static images in a CtF
manner over time (Figures 2a and 2b).

Our proposed coarse-to-fine architecture has two main
components. The first component generates decomposi-
tions for the temporal components, and the second part pro-
cesses Expert-extracted features which lead to a classifi-
cation output, recurrently. This architecture allowed our
model to extract meaningful features from the individual
decompositions and “calibrate” the final classification de-
cision based on all information over time. In Section 4, and
Section 3 of Supplemental, we show how such architectures
make the classification models more accurate and robust.

Adversarial Robustness. Existing defense mechanisms
for adversarial attacks in deep neural networks try to de-
fend against the adversaries by augmenting the training data
with adversarial examples [27], or adding some level of
stochasticity to the hidden layers [8]. Some studies apply
some preprocessing techniques to defend against such at-

tacks [14,22,46]. The main problem in deep neural net-
works is their tendency to learn surface-level predictability
of the data rather than extracting concepts and meaningful
information. While such techniques improve the models’
performance to some extent, they do not help models learn
concepts. Thus, such models are still prone to attacks that
may not have been discovered yet. However, in our sequen-
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Figure 5. CtF models performance on “gaining” and “losing” data.

tial models, we incorporate CtF visual processing observed
in human perception with the hope of overcoming a broader
set of high-frequency dependencies. We evaluate the ro-
bustness of the models by a gradient-based method, Pro-
jected Gradient Descent (PGD) [29], which was motivated
by [8,21,27] as a universal adversary that guarantees against
first-order attacks. We attack ResNetF30 using PGD to the
level that its prediction accuracy drops from 0.78 to 0.15. In
addition, we evaluated the models’ performance within the
context of black-box attacks with Square attack [2]. We col-
lect the attacked images and run the decomposition methods
to generate CtF attacked images. Our results show the ef-
fectiveness of our CtF models in the context of adversarial
examples; however, we would like to emphasize their im-
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plications extend to robust perception in general.

4. Experiments and Results

Classification Accuracy. To study the performance of the
models, we compare their classification accuracy on the de-
composed test images using all three decomposition meth-
ods. We refer to the performance of the models on un-
perturbed decomposed images as the standard performance,
i.e., Acc., and refer to their performance on the adversarial
perturbed images as “attacked”, i.e., Att.

Baseline. For the baseline analysis, we looked at the per-
formance of Fine-tuned ResNet, i.e., ResNetF30, as well
as Expert Models. See solid lines in Figure 4. For all de-
composition methods, ExpertQ; generally performed bet-
ter than E'xpert@;, where j < 7. The increasing pattern
in the accuracy is in line with previous studies using JPEG
compression and Gaussian smoothing [8,21]. Note that: 1.
We did not see such an increasing pattern when we exam-
ined deep learning models trained on the original images;
Figures 3b and 3e. 2. The decomposed images of qual-
ity Q10 are not fully reconstructed and have a visually no-
ticeable difference from the original images, especially in
RSCD and Gaussian smoothing. Thus, the standard accu-
racy of ResNetF30 is higher than Fxpert()i9. However,
EzxpertQqg is relatively less overconfident of its detection.
Furthermore, Expert Models perform significantly better on
the adversarial test images (the dashed lines in Figure 4).
Similar to the standard performance, we see an increasing
pattern in the attacked performance of Expert Models. We
also see that Expert Models are significantly less overcon-
fident on the adversarial images compared to ResNetF30.

CtF Models. We are interested in evaluating the key role
of CtF processing in visual perception. In doing so, we
compare the accuracy of the standard CNN models dis-
cussed in Section 3.4, ResNetF30, and FaxpertQo (EQ10),
with that of our proposed CtF models on unperturbed (Acc.)
and adversarial attacked (Acc. Att.) images which led to
the following impactful results. (1) Our results demonstrate
transformative accuracy improvements, almost perfect ac-
curacy, and >20% jump in accuracy over our most accurate
baseline, ResNetF30, on the same dataset. (2) The use of
our proposed models results in no penalty to the accuracy
on unperturbed images. CtF models on PGD attacks using
RSCD (76.8%) and JPEG (83.1%), and Square attacks us-
ing Gaussian (85.8%) perform on par (at times better) than
ResNetF30 even when tested on non-attacked images. Note
that here, CtF-CNN and CtF-LSTM have access to all level
decomposed images for their classification (Table 1).

Data Augmentation Ablation Experiments. To study
the effects of data augmentation and control data quantity

Table 1. Accuracy comparisons between baselines and our pro-
posed CtF framework. CtF-CNN is the strongest model. Our re-
sults suggest that the decomposition (approx.) method of choice
depends on the image conditions and potential attacks.

Model Acc. Att. PGD [29] Att. Square [2]
ResNet50 [15] 0.655 0.357 0.283
ResNet152 [15] 0.698 0.41 0.377
InceptionV3 [40] | 0.658 0.466 0.363
Xception [6] 0.652 0.461 0.386
ResNetF30 0.78 0.15 0.434
EQI10 0.613 0.624 0.396
Gaussian  CtF-CNN 0.922 0.6 0.858
CtF-LSTM 0.861 0.547 0.594
EQI0 0.663 0.733 0.306
JPEG CtF-CNN 0.989 0.831 0.773
CtF-LSTM 0.861 0.547 0.641
EQI0 0.613 0.583 0.429
RSCD CtF-CNN 0.989 0.768 0.768
CtF-LSTM 0.978 0.663 0.636

and quality, we evaluated the performance of the ResNet
model using two training scenarios.

Exp.1 Effects of data quantity: Fine-tuning ResNetF30 on
all quality levels and original images, and testing its perfor-
mance on original images (i.e., ResNet-[(Q)1-Q10],0rg).
Exp.2 Effects of data quality: Fine-tuning ResNetF30
only on higher quality (Qg, Q10) and original images, and
testing its performance on original images (i.e., ResNet-
[Q9,Q10],01g).

Our results in Table 2 demonstrate different quality im-
ages can easily fool ResNet, making it perform even worse
than standard training, i.e., on original images only (78%).
While using only higher quality images in Exp.2 results
in higher accuracy than Exp.1, the accuracy is still signif-
icantly lower than the standard training, on original images
only (78%). We also evaluated the effects of data augmenta-
tion on ResNet-Expert models by training them over larger
epochs (doubled epochs, to be precise), however, we did not
see any improvements. These results suggest that the way in
which a perception model processes data is more important
than the quantity and quality of the provided training data.

Table 2. The reason CtF outperforms ResNet does not lie in data
augmentation. Even when ResNet is trained on all or high quality
decomposed images, CtF framework outperforms.

RSCD JPEG Gaussian
ResNet-[(Q1-Q10],0rg (Exp.1)  0.513  0.455 0.359
CtF-CNN[Q1-Q10] 0.989 0.989 0.922
CtF-LSTM[Q1-Q10] 0.978 0.861 0.861
ResNet-[Q9,Q10],0rg (Exp.2)  0.619 0488  0.550
CtF-CNN[Q9,Q10] 0.88 0.901 0.762
CtF-LSTM[Q9,Q10] 0.85 0.847 0.717

We examined the role of each quality level and evalu-
ated CtF-CNN and CtF-LSTM in two main categories: (1)
“Gaining data”: receiving better quality images, one qual-
ity level at a time, until all qualities are seen. (2) “Losing
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Figure 6. Adversarial robustness of the CtF models on “gaining” and “losing” data. Unstable behavior of JPEG and Gaussian on “losing”.

data”: skipping the lowest quality images, until only Q1 is
left. These categories allow us to discover the role of each
quality level while interacting with other qualities in visual
perception. Our results demonstrate that the performance
of CtF-CNN and CtF-LSTM improve while “gaining” data
(following our observations in the human study), outper-
forming ResNetF30 using any of the decomposition meth-
ods (Figure 5a). We demonstrate the importance of coarse-
level data in visual perception and see a general decreasing
pattern in the accuracy of both models on all decomposition
methods, even when losing (); data (Figure 5b). We ob-
serve a sudden accuracy drop at ()3 for Gaussian smoothing
and at )2 and Q4 for JPEG compression on the adversar-
ial images. We believe this is caused by the poor ability
of these methods in approximating decomposition with no
artifacts. Another key finding is that the CtF models outper-
form ResNetF30 even by using limited quality level data.

Adversarial Robustness. In addition to the adversarial
study in Table 1, we evaluated our CtF models on the ad-
versarial images while “gaining” and “losing” data. Our
results show an increasing pattern in the accuracy on all de-
composition methods when gaining data, even on adversar-
ial attacked images, dashed lines in Figures 6a, 6b, and 6c¢.
We also see that our RSCD decomposition is more robust to
changes in the quality range and contrary to JPEG compres-
sion and Gaussian smoothing, there is no sudden drop in the
accuracy when “losing” one quality data (Figures 6d vs. 6e,
6f). See Section 5 Supplemental for additional details.

Limitations. Similar to other sparse coding algorithms,
the two main limitations of our RSCD method are increased
computation and memory costs. However, using neuromor-
phic hardware, sparse coding achieves orders of magnitude
computational and energy efficiency over its standard von

Neumann implementations. Furthermore, our CtF frame-
work has minimal trainable layers, which makes it compu-
tationally efficient (Section 3 Supplemental).

5. Conclusions

Static image classification forms the basis of many com-
puter vision problems such as machine vision, medical
imaging, and autonomous vehicles to name a few. Many
of these areas are not immune to perturbations and require
better trust and safety guarantees. Many studies have pro-
posed defense mechanisms that were eventually found to be
vulnerable, and our work may not be an exception to that.
However, our goal is to get inspiration from human percep-
tion to build a more robust static image understanding. We
find processing over time missing in many applications and
see that as a key to misleading immunity.

In this work, we created a sequential coarse-to-fine vi-
sual processing framework that is inspired by findings on
human perception and incorporates temporal dynamics in
static image understanding. We also proposed a novel
biology-inspired decomposition method, RSCD, to gener-
ate images in a CtF manner, and show such processing helps
the framework be accurate and robust even on adversar-
ial attacks. In addition, we evaluate the performance of
our CtF framework on approximated decomposition using
JPEG and Gaussian reconstruction. While these methods
do not decompose input over time and have noticeable ar-
tifacts, they are computationally efficient and may be pre-
ferred in various applications.
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