THE SELECTIVITY AND COMPETITION OF THE MIND’S EYE IN VISUAL PERCEPTION

Edward Kim' Maryam Daniali®

Jocelyn Rego* Garrett T. Kenyon®

! Department of Computer Science, Drexel University, PA
2 Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, PA
3 Los Alamos National Laboratory, NM

ABSTRACT

Research has shown that neurons within the brain are selec-
tive to certain stimuli. For example, the fusiform face area
(FFA) region is known by neuroscientists to selectively acti-
vate when people see faces over non-face objects. While the
exact mechanisms by which the primary visual system directs
information to the correct higher levels of the brain are cur-
rently unknown, there are high-level neural mechanisms of
perception that we can incorporate in a novel computational
model - ones that utilizes lateral and top down feedback in the
form of hierarchical competition. We demonstrate that these
neural mechanisms provide the foundation of a novel classifi-
cation framework that rivals traditional supervised learning in
computer vision. Additionally, we show that the innate priors
built into our architecture support out of distribution general-
ization on the application of face detection.

Index Terms— Multiscale Sparse Coding, Dictionary
Learning, Competition Pathways, Robust Classification

1. INTRODUCTION

In 2017, a 26-year old patient at Asahikawa Medical Univer-
sity was being treated for intractable epilepsy. This patient
had subdural electrodes placed on a specific part of the brain
known as the fusiform face area (FFA) [1]. When researchers
artificially stimulated neurons in the FFA, the patient halluci-
nated faces or face parts in non-face, everyday objects. The
FFA region is known by neuroscientists to selectively activate
when people see faces, specifically upright faces, compared to
the activations elicited by non-face objects [2]. Additional ev-
idence exists revealing that the visual processing of faces and
objects occur in different pathways. Exploring deeper into the
cerebral cortex, we can see that the FFA is one of many spe-
cialized, high level areas within the brain. The FFA exists in
the Inferior Temporal (IT) Cortex, the part of the brain crit-
ical for visual object memory and recognition, colloquially
referred to as the Mind’s Eye. Other specialized areas within
the temporal cortex include selectivity for visual scenes or
buildings (parahippocampal place area, PPA), for body parts
(extrastriate body area, EBA), and for reading words (visual
word form area, VWFA).

How do the low-level, primary visual areas of the brain
know where to send visual input information? This would
imply that the low level areas have already done some sort of
recognition of the input stimulus to route the information cor-
rectly to the higher levels in IT. Some have hypothesized that
there exists some low level gating mechanism that performs
a rough detection and then forwards the information to spe-
cialized expert models, e.g. gating with a mixture of experts
model [3]. Others used a category template model that could
roughly match an input stimulus [4].

In our work, we develop a novel classification framework
that can outperform traditional supervised learning by mim-
icking high-level neural mechanisms of perception. Here, we
demonstrate that our novel algorithm and framework that in-
corporates lateral and top down feedback in the form of hier-
archical competition can perform category level image clas-
sification with improved performance over supervised neural
networks. We demonstrate our results on the problem of face
detection bias that has been uncovered in deep learning.

2. BACKGROUND

Selectivity in the visual cortex can be achieved through
competition. Research has shown that neurons within the
brain are selective to certain stimuli. Early work by Hubel
and Wiesel demonstrated that cat V1 neurons were sensitive
to the placement, orientation, and direction of movement of
oriented edges [5]. We see similar patterns of stimulus selec-
tivity at higher levels of the brain i.e. in the inferior temporal
gyrus or IT, where regions are selective to specific objects,
faces, body parts, places, and words. Also neurons selective
for different objects mutually inhibit each other in the pres-
ence of their preferred stimulus [6], evidenced by a measured
reduced blood oxygen level during competitive interactions
among stimuli. As a result, we observe that given a specific
stimulus, only a highly selective, small subset of neurons will
activate [7].

Faces are processed in a unique pathway. The area re-
sponsible for face processing was first discovered by Sergent
et al. [8]. This area was later named the fusiform face area
and shown to activate more when people see faces rather than
general objects [2]. It is important to note that while faces



activate specialized areas with the brain, these areas are not
completely silent when non-face objects are viewed. Instead,
the cortical response for the preferred category is about twice
that for the non-preferred category as consistently observed
in most normal individuals [9].

Faces are processed in a holistic, coarse-to-fine man-
ner. In addition to the unique pathway for face processing,
the holistic manner by which the face is recognized has also
been discovered. Maurer et al. [10] notes that face stimuli are
processed as a gestalt, and holistic processing occurs with the
internal structure of the face and with the external contour.
Even simple circles containing three curved lines, if shaped
like a smiling face, triggered a holistic face response. The
holistic response was thought to contribute to an early stage
process so that one could distinguish faces from other com-
peting objects [11].

The holistic approach of face recognition is also consis-
tent with a related theory where research shows that the vi-
sual system integrates visual input in a coarse-to-fine man-
ner (CtF) [12], i.e. low frequency information is processed
quickly first, which then projects to high level visual areas.
Critically, the high level areas generate a feedback signal that
guides the processing of the high frequency (details) of the
image. These dynamics suggest a feedback or competitive
process resulting in a winner-take-all situation [3].

In computer vision, there are only a few works that have
addressed lateral and top-down feedback explicitly in a
model. In one case, top-down feedback was implemented
using a parallel neural network to provide feedback to a stan-
dard CNN [13]. Elsayed et al. [14] showed that adversarial
examples can fool time-limited humans, but not no-limit
humans, stating no-limit humans are fundamentally more
robust to adversarial examples and achieve this robustness
via top-down or lateral connections. Given both inhibitory
and excitatory top-down feedback in a generative model,
immunity to adversarial examples was demonstrated [15].

3. METHODOLOGY

3.1. Sparse Coding for Selectivity and Competition

The main algorithm that underlies our framework is sparse
coding. Sparse coding was first introduced by Olshausen and
Field [16], in order to explain how the primary visual cor-
tex efficiently encodes natural images. Sparse coding seeks
a minimal set of generators that most accurately reconstruct
each input image. Each generator adds its associated feature
vector to the reconstructed image with an amplitude equal to
its activation.

Mathematically, sparse coding can be defined as follows.
Assume we have some input variable z(™ from which we are
attempting to find a latent representation (™) (we refer to as
“activations”) such that (") is sparse, e.g. contains many
zeros, and can reconstruct the input, (M with high fidelity.
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Fig. 1. Our multipath deconvolutional competitive algorithm
(MDCA) model consists of two distinct pathways, one for
faces and one for general objects. Not only do the neurons
in each of the layers compete to represent an input stimuli,
every hierarchical layer in both pathways compete in the re-
construction of the input image.

The sparse coding algorithm is defined as,

N

1
min Y min = [z — ®a™|2 4 X[|a™ |, (D)
® Lo 2

Where ® is the overcomplete dictionary, and ®a(® =
2" the reconstruction of z(™. The A term controls the
sparsity penalty, balancing the reconstruction versus sparsity
term. N is the total training set, where n is one element of
training. ® represents a dictionary composed of small kernels
that share features across the input signal.

There are a number of solvers for Equation 1, but we se-
lected the solver that is biologically informed. This solver is
the Locally Competitive Algorithm (LCA) [17] that evolves
the dynamical variables (neuron’s membrane potential) when
presented with some input stimulus. Of particular importance
is that the activations of neurons in this model compete and
laterally inhibit units within the layer to prevent them from
firing. The input potential e.g. excitatory drive to the neu-
ron state is proportional to how well the image matches the
neuron’s dictionary element, while the inhibitory strength is
proportional to the similarity of the current neuron and com-
peting neuron’s convolutional patches, forcing the neurons to
be decorrelated. The LCA model is an energy based model
similar to a Hopfield network where the neural dynamics can
be represented by a nonlinear ordinary differential equation.

3.2. Construction of Face and Object Pathways

In the context of face recognition, there is strong suggestive
evidence that some component of face processing is innate to
the human visual system. Thus, for our model, we choose



to pre-train each pathway to reflect the propensity of neural
pathways we see in the visual cortex. One pathway is tuned
to reconstruct faces, and the other pathway tuned to recon-
struct general objects. The pathway consists of a 3-layer hi-
erarchical, multiscale, convolutional sparse coding network
as shown delineated by the dotted lines in Figure 1. The
training procedure involved showing 10,000 images from the
ImageNet [18] dataset and 10,000 images from the Celeb-A
[19] dataset to the respective pathways. At the pre-training
stage, the pathways are independent from each other and do
not compete.

The images shown to the network have been resized to
128x128x3. The dictionary sizes, activation maps, and ar-
chitecture are identical in the two pathways. There are 128,
8x8xC, (C being the number of input channels), dictionary
elements in each of the respective V1 layers, ®;; and $o
in Figure 1. We stride by 4 throughout the hierarchy, thus
increasing the receptive field of neurons by a factor of 4x
at each layer. We keep the same size dictionary patches for
V2, but at the top layer, FFA and IT, we expand the num-
ber of neurons to 256. While this number is empirically cho-
sen, it does have a biological connection as it has been shown
that faces can be linearly reconstructed using responses of ap-
proximately 200 face cells [20]. Self-supervised learning of
features can be obtained by taking the gradient of the recon-
struction error with respect to ®, resulting in a biologically
plausible local Hebbian learning rule. The dictionary can be
updated via Stochastic Gradient Descent (SGD). Examples of
the dictionary learned can be seen in Figure 2(a)(c).

(c) Obj VI, ®11 (d) Activity avg of the top (IT) layer object pathway.

Fig. 2. Visualization of the learned dictionary elements at
V1 and activity triggered averages of our top level (b) face
and (d) object pathway. The face pathway was shown images
from Celeb-A and the object pathway was shown ImageNet.

3.3. Multipath Deconvolutional Competitive Algorithm
(MDCA)

We combine paths together in a multiscale, hierarchical com-
petitive structure that we refer to as the Multipath Decon-

SFRNNNAANAAAAAD

Fig. 3. Illustration of the coarse-to-fine reconstruction over
400 timesteps. (Row 1) shows the total reconstruction at the
given timestep. (Row 2) is the summed contribution from V1
in both pathways. (Row 3) is the summed contribution V2 in
both pathways, and (Row 4) is the summed contribution of
FFA and IT. The numbers in the bottom right corner indicate
the timestep of the each column.

voloutional Competitive Algorithm (MDCA). The learning of
elements at multiple scales was explored by [21] and used for
image and video restoration. Our network consists of a deep
deconvolutional sparse coding network similar to the work of
Zeiler [22] and Paiton [23].

At a conceptual level, our model is implementing the fol-
lowing process illustrated in Figure 1. An input stimulus is
presented, and very quickly sent up the hierarchy of both
pathways. One could think of this initial step as a feed for-
ward pass in a typical deep learning model. Each neuron
in every layer is “charged up” by the input stimulus, where
neurons at higher levels have larger receptive fields, and neu-
rons at the top level see the entire input stimulus. As each
neuron passes threshold, they add their respective feature to
the reconstruction via deconvolution. Thus, the reconstruc-
tion layer is not only influenced by fine, high-frequency fea-
tures from the lower layer, but also guided by the large, low
spatial-frequency activated features of the higher layer. As the
stimulus is reconstructed over time, the network computes the
error between the input and reconstruction at each timestep.
This error is then forwarded up the hierarchy, driving the neu-
rons to compete for the remaining residual representation. In
our experiments, we evolve our recurrent network over t=400
timesteps. Mathematically, we define the reconstruction, Z,
in our Multipath Deconvolutional Competitive Algorithm as
the following,

M
i =3 S ([ @ma)al) 2)
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where m € M is the number of paths, and [,k € K is the
number of multiscale layers in the neural network. In our
case shown in Figure 1, we have M = 2 e.g. object pathway
and face pathway, and three multiscale layers, K = 3.
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Fig. 4. We plot the (a) magnitude of response and (b) per-
cent of active neurons in all of the MDCA layers over 400
timesteps. The magnitude of response at the V1 and V2 lev-
els are similar; however, there is over a 4x response in the
Face FFA region compared to the Object IT region in (a).

4. EXPERIMENTS AND RESULTS

4.1. Coarse-to-fine Information Flow

In our first experiment, we investigate the activity of the
MDCA network as it processes input stimuli. Given an input
image, the objective of the network is simply to minimize
reconstruction error. We can visualize the process of recon-
struction in Figure 3, and quantify the response at all levels in
all pathways of our network (Figure 4). In the reconstruction,
we can see that our MDCA network is reconstructing the
image in a holistic, coarse-to-fine manner, consistent with
the CtF neuroscience literature [12]. We can clearly visualize
that low frequency information is processed quickly first and
high level areas generate a competitive feedback signal that
guides the processing of the high frequency (details) of the
image [24].

4.2. Ablation of Pathway Competition

We perform an ablation study to confirm that the selectivity of
the neurons in our network is mainly due to the competition
of multiple pathways. In Figure 4(a) we see the magnitude of
response of the FFA increases nearly 2x, and suppresses the
IT response on its preferred stimulus. We see a similar pattern
with Object IT when presented its preferred stimulus. From
these results, we gain insight on how the model (as well as the
visual cortex) is able to respond to a specific stimulus.

4.3. Robust Category Level Classification

We challenged our MDCA model to generalize in the task of
face detection out of distribution. We compared our frame-
work to a standard deep learning CNN model and fine-tuned,
off the shelf modles (ResNet-50 [25], VGG16[26], Vision
Transformer ViT [27]) trained with data from the FairFace
dataset [28] and ImageNet. The FairFace dataset contains
images of people from seven ethnicity groups, across a wide
range of variations.

Specifically, for the custom CNN, we built a 3-layer CNN
binary classifier (face/not face) that matches the architec-
ture, size, and parameters of a single pathway of our MDCA
model. We trained with a biased and unbalanced dataset
consisting of 800 White-Male faces and 10,000 ImageNet
images. Our in-distribution test set contained 200 White-
Male faces and 1,000 ImageNet images. We trained the CNN
for 35 epochs, fine-tuned ResNet50, Vision Transformer, and
VGG16 for 35 epochs, and pre-trained the MDCA pathways
with the same images and for an approximately equivalent
number of image impressions.

For the in-distribution test set, the custom CNN, ResNet50,
VGG16, ViT, and MDCA performed very well as expected,
97.17%, 99.67%, 99.83%, 98.57%, and 98.25% respectively.
However, as noted in previous literature, the deep learning
models struggled to generalize their understandings in face
detection of one ethnicity and gender to other categories, fail-
ing in over 36% of the cases on Black males in the custom
CNN, and more than 2.8%, 5.5%, 4.6% drop in ResNet50,
VGG16, ViT respectively. MDCA, on the other hand, was
capable of detecting faces of every ethnicity and gender with
nearly perfect accuracy in all categories, see Table 1.

Table 1. Classification accuracy on different ethnicity cate-
gories and genders, a comparison among 4 different models,

custom CNN, ResNet50, VGG16, and our model, MDCA.
Ethnicity/Gender #img CNN ResNet50 VGG16 ViT MDCA

Black/F 757 73.84  97.09 95.64 9273 99.33
Black/M 799  63.2 97.12 94.49 9537 99.87
East-Asian/F 773 83.31  95.60 9521 9226 99.61
East-Asian/M 777 77.09  96.14 96.78 9730 99.87
Indian/F 763 88.33  96.59 96.20 94.89 100
Indian/M 753 88.34  95.88 9495 98.03 100
Latino-Hispanic/F 830 86.86  96.63 98.07 97.54 99.63
Latino-Hispanic/M 793 8398  95.88 96.47 98.87 100
Middle-Eastern/F 396 83.83  94.19 9495 94.65 100
Middle-Eastern/M 813 82.41  96.06 95.82  98.30 99.38
Southeast-Asian/F 680 85.00  97.21 95.74 93.74 99.85
Southeast-Asian/M 735 81.49  98.23 97.01 97.82 99.59

5. CONCLUSION AND FUTURE WORK

In conclusion, our primary goal is to abstract themes from
neuroscience in order to improve artificial intelligence. To
this end, we created a computational model that incorpo-
rates important thematics observed in the brain, selectivity
through competition, dedicated pathways, holistic/coarse-to-
fine processing, and top-down feedback. We demonstrate
that these neural mechanisms provide the foundation of a
novel, robust classification framework that rivals traditional
supervised learning in computer vision. In the example
of machine learning bias, we demonstrate that an attractor
model rooted in competition can out perform a supervised
deep learning model. The method itself is learning features
in a self-supervised manner segregated via supervision.
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