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Inspired by the natural intelligence of humans and bio-evolution, Artificial Intelligence (Al) has seen acceler-
ated growth since the beginning of the 21st century. Successful Al applications have been broadly reported,
with Industry 4.0 providing a thematic platform for Al-related research and development in manufacturing.
This paper highlights applications of Al in manufacturing, ranging from production system design and plan-
ning to process modeling, optimization, quality assurance, maintenance, automated assembly and disassem-
bly. In addition, the paper presents an overview of representative manufacturing problems and matching Al

solutions, and a perspective of future research to leverage Al towards the realization of smart manufacturing.
© 2024 The Author(s). Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Artificial intelligence (Al) is often referred to as “the science and
engineering of making computers behave in ways that, until recently,
we thought required human intelligence” [89]. The research field of
Al evolves not only as the community of researchers builds on top of
one another's work, but also as inspirations are taken from natural
intelligence.

1.1. From natural intelligence to artificial intelligence

For 99% of the known history of the human species, humans were
wanderers and hunters [219]. With trial and error, humans devel-
oped more sophisticated strategies that increased the yield of hunt-
ing while enhancing self-protection. Observing and learning from the
behaviors of animals, humans gained insights that complemented
their survival skills and problem-solving strategies. Through collabo-
ration and information-sharing, humans accomplished what each
alone could not. And using the tools that they developed, humans
started to domesticate animals, developed agriculture, created homes
and cities, and abandoned the nomadic lifestyle. Although chasing
food and self-protection from predators no longer constituted the
highest priority in life, curiosity for understanding the environment
and propensity for self-betterment persisted, thereby continually
sharpening the evolution of humans intelligence [218].

* Corresponding author.
E-mail address: Robert.Gao@case.edu (R.X. Gao).

https://doi.org/10.1016/j.cirp.2024.04.101

As the need for understanding the law of nature is essential to the
survival of the species, humans started to recognize patterns embed-
ded in the world and created logical and mathematical tools to synthe-
size and generate knowledge, describe its functioning, learn to break
down complex problems into smaller ones to optimize solution strate-
gies, and see the similarities among different problems for which exist-
ing knowledge can be adapted to [191]. Throughout this process,
learning from animal intelligence played a pivotal role in the advance-
ment of natural intelligence as a key element to human survival.

From the era of manual production to a series of industrial revolu-
tions over the past centuries, human intelligence has not only guided
the perfection of craftsmanship in the production of goods but also
led to the mechanization that freed humans from hard labor, as char-
acterized by the creation of steam engines, automobiles, electric
motors, industrial robots, and computers [129]. As a precursor to the
era of Al, the idea of mechanization of human natural intelligence
was also a topic of exploration during the late 19th century [274]. In
the 1950s, Turing [251] devised Turing test to argue the plausibility
of “thinking machine”. Shortly after, the term “artificial intelligence”
was coined by McCarthy [184] at the Dartmouth Summer Research
Project on Artificial Intelligence (DSRPAI) in 1956, and Minsky [175]
presented the envisioned steps towards Al: search, pattern recogni-
tion, learning, planning, and induction. These resemble the main
characteristics of natural intelligence and catalyzed the Al research
until today. This keynote paper aims to present advances in Al in
manufacturing since the beginning of the 2000s, with related Al tech-
niques being the result of cumulation of research and development
during the past decades.
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1.2. Al technologies

The development of Al has been characterized by two distinct tra-
jectories, leading to what is known as model-based vs. data-driven
methods, as illustrated in Fig. 1. Such distinction can be traced back
to the 1960s, as symbolic vs. connectionist Al.

Symbolic Al consists of implementing interpretable, high-level
rules and calculating symbols that have concrete semantic meanings
[232]. The design of programming language Lisp in 1958 to manipu-
late symbols was widely regarded as Al's first contribution [171]. By
contrast, connectionist Al envisions large-scale calculation of low-
level functions distributed across a neural network, with meaningful
behavior appearing as the collective effect of all elementary opera-
tions. Such bio-inspired concept first emerged from neurophysiolo-
gists and logicians [172] before evolving into Rosenblatt’s perceptron
[212]. Intuitively, the symbolic Al is a deductive machine, which
relies on human-designed model (rule, knowledge) to compute an
output from a given input. Connectionist Al is an inductive machine
which learns the model from observed samples of desired input and
output. However, the 1st generation Al systems did not take off due
to their limited capability and practicality [176]. In the early 1970s,
research was put on hold in what is known as the 1st Al winter [29].

A significant upgrade to the symbolic Al under the name of expert
systems led the 1st Al revival around 1980 [29]. It was made possible
by more powerful computers that allow bigger set of rules, which
consist of structured lists of “IF ... THEN”, to be stored in the memory
[242], leading to successful diagnosis of blood diseases [229], identifi-
cation of locomotive breakdowns [22], and detection of geological
deposits [73]. In addition, the systems can break down the reasoning
process into blocks of “agents” which could independently utilize
rules and infer consequences, inspired by the concept of modularity
[4]. However, researchers soon realized that creating repositories for
realistic and diverse rules to convey the subtleties in reasoning
became increasingly inefficient. As research effort in expert systems
slowed down and supporting hardware (e.g., Lisp machines) dimin-
ished in the mid 1980s, the 2nd Al winter began [29].

During the same period, several algorithmic and theoretical
advances foreshadowed the revival of connectionist AL Backpropaga-
tion was developed in 1986 to allow the weights of any type of neural
network to be optimized [214], propelling a creative period that saw
the invention of some of the most widely used networks today: con-
volutional (CNN) and recurrent neural network (RNN) [92,142]. Also,
universal approximation theorem was proven, indicating that neural
networks are universal function approximators that theoretically can
fit any functions [96].

Interspersed in the evolution of symbolic vs. connectionist Al is
the notable development of a series of techniques on both model-
based and data-driven fronts. For example, the evolutionary algo-
rithms developed in the 1960s use rules inspired by biological evolu-
tion, such as genetic reproduction, mutation, recombination, and
selection, to search for optimal solutions [95]. In the 1990s, kernel
methods such as support vector machines (SVM) were developed

»
»

[39]. The convex nature of these methods provided a means to bypass
the local minima constraint and their effectiveness in leveraging
small datasets made them more attractive choices than the neural
networks [93]. In 1997, Mitchell [177] provided a formal definition of
machine learning (ML) to describe algorithms such as neural net-
works that can learn from data and generalize to unseen data, with-
out explicit instructions. (A related concept is soft computing,
generally describing techniques such as evolutionary algorithms and
neural networks that exploit tolerance for imprecision, uncertainty,
and partial truth to achieve tractability in problem-solving [31].)

Given the specifics of ML tasks, the learning process can be gener-
ally categorized as supervised, unsupervised, and reinforced based
on the interaction [19]: supervised learning trains a ML model on a
labeled dataset such that the model learns to predict outcomes based
on the input data. The goal is to minimize the difference between the
predicted and actual outcomes. Unsupervised learning, in contrast,
trains a model on data without labeled responses, and the goal is to
identify patterns, clusters, or relationships within the data. Reinforce-
ment learning (RL) is a paradigm where an agent learns to make deci-
sions by performing actions in an environment to maximize certain
cumulative reward, based on the feedback from its actions and expe-
riences rather than from direct labeled instructions.

In mainstream Al research, the concept of task-oriented, rational
agent made a breakthrough around the turn of the century. By defini-
tion, a rational agent is embedded in an environment to perform
tasks. After making observations, it changes the environment with its
actions in a way that optimizes its utility criterion with bounded
computational resources [217]. Shortly, the rational agent concept
defined a dominant and most successful approach to Al [216,217] as
it was pragmatically task-oriented and inclusive regarding all avail-
able Al technologies. The notion of rational agent re-initiated
research in ML which was essentially aimed at improving agent per-
formance based on accumulated experience [110]. By populating the
environment with other agents, it could intuitively be extended to
multi-agent systems and distributed intelligence. Finally, sensing and
acting are the essence of robotics, and the agent concept brought
robotics back into the realm of Al, with natural extension to the appli-
cations such as the human-robot collaboration (HRC).

The beginning of the past decade has witnessed significant shifts
in the Al landscape. Digital transformation across the globe had
necessitated a new generation of Al methods to tackle new chal-
lenges such as spam/fraud detection, prediction of supply chain vola-
tility, impacts of customer response and behavior on decision-
making, etc. These new Al methods require the use of “big data”,
which bears little resemblance to the relatively small and calibrated
data known to the Al community [42].

The challenge to learning from these massive data, after a brief
period of stagnation, has ultimately been met by the advancement of
deep neural networks and the growth in computational infrastruc-
ture such as graphic processing unit (GPU) and cloud computing
[130]. Increasingly, researchers have realized the capability of deep
neural networks in exploiting the hierarchical structure embedded in
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Fig. 1. Evolution of Al technologies, [16,26,185,195,229,260,283]; LLMs: large language models.
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data, making them not only capable of ingesting raw data without
manual feature engineering (a typical step in other ML techniques
such as SVM), but also more effective in processing features as com-
pared to their “shallow” counterparts [141]. Additionally, empirical
evidence suggested that the lack of theoretical guarantee in neural
networks due to the non-convexity is far outweighed by their supe-
rior performance in handling large, real-world datasets, including
image processing and speech recognition, when compared to the tra-
ditional ML [58,90]. During this period, the term “deep learning”
(DL), which specifically describes ML using deep neural networks
without manual feature engineering, begins to gain popularity [141].

During the past decade, accelerated development of DL has
brightened the prospect of fulfilling the longer-awaited promise of
neural networks being universal function approximators, enabled by
a series of innovations in terms of the network structures. For exam-
ple, rectified linear unit (ReLU) activation function was rediscovered
to replace the traditional smoother functions such as hyperbolic tan-
gent, enabling much faster learning of deep neural networks [76].
Around the same time, a new regularization technique termed drop-
out has emerged, which randomly drops neurons from the network
during training [234]. Intuitively, dropout can be considered as train-
ing an ensemble of networks, each with a different subset of neurons.
Dropout has seen wide success in preventing model overfitting and
quantifying model uncertainty [69,234]. Another major innovation is
the attention mechanism [11]. Rather than having fixed neural net-
work weights after training, the goal of attention mechanism is to
allow weights generation based on the specific input and thereby
capturing the dynamic relationship between the input and output.
Originally conceived as solutions to one narrow and specific prob-
lem-language translation, attention mechanism has since become the
cornerstone of general-purpose neural networks, propelled by the
transformer architecture [254] and its variants [205,206].

The development of DL during the past decade has also facilitated
the conceptualization and/or maturation of next class of learning-
based Al techniques such as generative learning and deep reinforce-
ment learning (DRL). The main idea of the former is to use deep neu-
ral networks to approximate the transformation between a known
distribution where samples can be taken (e.g., standard Gaussian)
and a (unknown) distribution of desired output, which subsequently
enables the synthesis of output data by sampling from the known
distribution [78,91]. Similarly, DRL relies on deep neural networks to
directly approximate the value functions (which are associated with
the cumulative reward) for decision-making. Compared to the tradi-
tional RL, DRL allows for decision-making from complex input such
as images. These advances have quickly led to new results in a num-
ber of applications such as design and robotics [255,284].

1.3. Al for smart manufacturing

To advance the state of manufacturing, continued effort has been
made by engineers and researchers to:

e efficiently search through variable space of manufacturing sys-
tems to optimize scheduling and planning [236];

e accurately model process dynamics and optimize process parame-
ters in production to improve part property [65];

e timely detect defects and forecast future performance of equip-
ment for quality assurance and maintenance [271];

¢ delegate repeated, laborious tasks to robots and explore seamless
interaction between human and machine [261].

The increasing difficulty of meeting these objectives due to the
multitude of productivity, efficiency, and sustainability requirement
stemming from the growing product and process complexity, as well
as the variability in customer preferences, provide opportunities for
manufacturers to investigate Al capabilities. Due to the rising rele-
vance of Al in manufacturing, several contributions have been pre-
sented as keynotes in CIRP Annals by the end of the past century.
Markus and Hatvany [170] outlined the structure of subfields in
manufacturing, such as design, planning, monitoring and control, and

matched Al tools to the corresponding tasks. Rowe et al. [213]
detailed Al implementation in grinding, with domain-specific appli-
cations such as wheel selection and parameter selection. Teti and
Kumara [244] defined a functional view of manufacturing system
consisting of design, planning, production, and system-level activities
and mapped Al technologies to each functional element.

After a brief hiatus, the digital transformation of manufacturing
has accelerated, enabled by massive deployment of sensors and
Industrial Internet of Things and the resulting large amounts of data
produced by machines, controllers, and system records, etc. The need
to properly decipher the information embedded in the data brought
Al research back to the spotlight in manufacturing, which offers com-
plementary understanding of the physical characteristics of a system
or process [228]. Unsurprisingly, the comeback of Al has been led by
the emergent ML, and especially DL technologies. A review of ML
techniques and their applications in manufacturing is found in [228].
Several other review articles are focused on more specific aspects in
manufacturing, providing analysis at a more granular level. For exam-
ple, Wang et al. [261] provides a comprehensive review of Al for HRC,
while Gao et al. [71], Kriiger et al. [134], and Mohring et al. [179]
addressed the implementation of Al from the perspective of data life
cycle, control, and self-optimization in their respective keynotes.
Recent development of model-based Al, such as agent-based system
and ontology, was also summarized in [183] and [282].

Diverging from these recent review articles that are primarily
focused on specific applications and Al technologies, this keynote
paper (Fig. 2) aims to present the state-of-the-art of advances in Al in
manufacturing with an integrated view of system (Ch. 2), process
(Ch. 3), quality (Ch. 4), and (dis)assembly (Ch. 5) from both model-
based and data-driven perspectives, with the integrated view exem-
plified in case studies (Ch. 6).

The complementary nature between domain knowledge and data
will be emphasized. Highlights will also be given to the research ave-
nues that have been completely transformed due to the latest Al
technologies, such as generative learning and DRL, which have led to
the development that was unimaginable before. This keynote also
picks up the baton from Markus and Hatvany [170] and Teti and
Kumara [244] and provides an updated mapping between Al technol-
ogies and manufacturing tasks to bridge the gap of Al advances in
manufacturing over the past 20 years. Correspondingly, newly
emerged challenges and directions in Al, such as model physical con-
sistency, real-life Al, generative Al, and generalist Al models will also
be discussed (Ch. 7).

Fig. 2. Chapter structure of the keynote.

2. Al-assisted production system design and planning

Production systems, consisting of intricate networks of machinery
and human resources, technological and logistical processes, mate-
rial, information and financial flows, are among the most complex
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man-made systems. These systems have inspired Al research on
automated problem solving, reasoning, and learning [36]. In the con-
text of production, whether it be the synthesis of complex objects
(i.e., production systems) or the dense network of their actions (i.e.,
production plans and schedules), the structural and functional rela-
tionships among system components must be maintained on top of
which decisions will be made [54]. The Al research in design and
planning of the production systems primarily revolves around
modelling the systems while considering these relationships or con-
straints, and optimizing design, scheduling, and operations in general
(Fig. 3).

Al Applications in System
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Fig. 3. Overview of Al for design of and planning in production systems.

2.1. Design of production systems

The design of production systems is primarily a configurational
problem typically requiring combination- and modification-based
design methods [249], commonly starting with domain knowledge
before being abstracted into mathematical forms for computation.

2.1.1. From ontologies to graph neural networks

One of the primary ways that logic-based knowledge and reason-
ing, as well as their acquisition and management in Al research is
through ontologies [208,243]. An ontology is a formal, well-structured
vocabulary that captures a consensus set of terms to represent the
entities in a domain along with their relationships. It also provides
axioms that guide the interpretation and reasoning about terms,
enabling verification of data validity and consistency, and inference
of new knowledge. Ontologies, and more recently, knowledge graphs
[46] have been used to capture the conceptual structure of
manufacturing organizations, encompassing related products,
technologies, resources, and business aspects [46]. Ontologies and
knowledge graphs facilitate design standardization, semantic inter-
operability, principled engineering of complex software systems, and
knowledge reusability.

Nowadays, the de-facto “assembly language” of ontology building
is OWL (Web Ontology Language). Among others, the National Insti-
tute of Standards and Technology (NIST) uses OWL for product life-
cycle modelling and promoting an Industrial Ontology Foundry (IOF)
[6]. IEEE also uses this form of logic-based knowledge representation
to define the field of automation and robotics [101]. To meet require-
ments of agility and changeability of manufacturing, a decomposed
ontology structure is typically used, where one part is general and
stable, representing the core ontology, while the other parts may be
domain, application and/or company specific. Such ontologies have
been developed for additive manufacturing (AM) (see Fig. 4)
[162,221], steelmaking [28], and robotic assembly [111,128].
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Fig. 4. OWL for additive manufacturing, adapted from [162].

However, relying solely on symbolic reasoning methods built upon
the ontologies [208] and knowledge graphs [94], either individually
or in combination, falls short of fully capturing the essence of produc-
tion system design. The need of transforming the system representa-
tion into a computable form to modeling the increasing system
complexity and realizing functions such as design synthesis and sys-
tem planning and scheduling have led contemporary research to rely
on recent advances in ML and data analytics [108,197].

Focusing on a single manufacturing step, Wang et al. [268] investi-
gated spindle power and tool wear conditions during hard milling
using the stochastic modeling and analysis technique of Data Depen-
dent Systems (DDS). The spindle power data was decomposed into
different frequency regions using DDS, and the correlation between
spindle power and tool wear in the frequency domain was quantified.
In the context of self-optimizing machining systems, Mohring et al.
[179] presented a broad array of ML methods that were used for link-
ing sensory characteristic features to workpiece, tool, machine, and
process states. These Al-based models can be used in decision-mak-
ing processes when predicting part quality, tool and machine condi-
tions are essential elements of a system design problem.

For systems consisting of multi-step manufacturing processes,
graph neural networks (GNNs) [276] have been increasingly attract-
ing research attention. GNNs are adept at capturing complex relation-
ships and interactions between different components in a
manufacturing system. By representing machines (processes) and
intermediate products as nodes, and interactions or dependencies
between them as edges, GNNs capture the entire manufacturing sys-
tem through its graph structure while maintaining the flexibility of
neural networks in learning from data.

Fig. 5 illustrates a typical multi-layer GNN representation of a
manufacturing system by Huang et al. [98]. The system consists of
multiple types of machines corresponding to various manufacturing
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Fig. 5. GNN representation of a manufacturing system [98].
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processes. In GNN, each node corresponds to a machine while the
inter-node connections are determined through the domain knowl-
edge of whether any pair of manufacturing steps must be done adja-
cently. At the input level, each GNN node contains a feature
representing its local conditions (e.g., machine conditions). Then, for
each node in the first GNN layer, its feature is determined not only
from local conditions of the corresponding node, but also the condi-
tions from all its 1st order neighbors (i.e., nodes that are one edge
away). By progressively adding GNN layers, the feature correspond-
ing to each node accumulates information regarding local conditions
as well as correlations from the nodes that are further away. These
high-level features have shown to be useful in system design synthe-
sis (Section 2.1.2) and optimization of system planning and schedul-
ing (Section 2.2).

2.1.2. Design synthesis

In the design synthesis of production systems, humans still retain
their central role, while advanced simulation, process mining, data
analytics, and visualization methods offer broad support for the anal-
ysis of solutions. Providing early feedback and learning from the eval-
uation and analysis of partial designs is a key to success. One example
that builds upon a GNN-modeled manufacturing system is demon-
strated by Klar et al. [123].

In this work, the main objective is to synthesize factory layout
such that material transportation load is minimized. The authors for-
mulated this using an RL-based approach where each machine of the
system is sequentially added to the shop floor. At each RL step, the
decision about placement is determined through (1) material flow
among different machines, which is modeled using a GNN., (2) shop
floor layout at the current step (i.e., partial design), which is repre-
sented by an image and is processed by a convolutional neural net-
work (CNN), and (3) features of upcoming machine to be placed,
which are extracted using a multilayer perceptron (MLP). The outputs
from these three neural networks (i.e., states in RL) are then fused to
determine the “goodness” or action values corresponding to different
candidate x- and y-locations as well as the rotations (i.e., actions in
RL) of placement. These action (or Q) values can be considered a
proxy for the material transportation load and the optimal placement
comes with the combination of x, y, and rotation with the highest Q
values. At the initial stage of RL, the neural networks may predict the
Q values randomly. However, by sequentially assigning machines
and recording feedback on a trial-and-error basis, RL can improve its
accuracy in Q value prediction by network weight update. This spe-
cific RL variant is also known as deep Q learning (DQN) [239]. The
authors demonstrated the effectiveness of the method using a case
study of a shop floor with 43 machines.

The above example provides a template of how design synthesis
can be achieved through the integration of data learning and simula-
tion and can be expanded to problems with higher complexity. Pro-
duction system design is a teamwork which can be facilitated by
agent-based or distributed Al solutions. As discussed in [295], the
multi-agent approach to production system design is gaining
momentum because it facilitates the collaboration of various engi-
neering branches related to the problem. Furthermore, it fits well
with the workflow of concurrent [161] and life cycle [86] engineer-
ing. One example is from Zhang and Lin [290] that investigated
multi-agent RL (MARL) for shop floor layout design optimization. The
essence of MARL is to assign an agent for each machine such that RL
can be done in a distributed way [239]. In contrast to [123], their
objective is to minimize the connection cost among different
machines. The method is validated using a case study of a pure water
manufacturing system.

Design of complex systems also necessitates better simulation
methods. For this purpose, the concept of Digital Twins (DTs), which
captures both the models and realizations of engineered systems,
together with a bidirectional, continuous interaction between the
virtual and the physical counterparts [190], is envisioned to play a
central role through (1) consolidating design decisions from differ-
ent sources, (2) supporting high-fidelity simulation and evaluation,
and 3) facilitating life cycle engineering [17,222]. During the

engineering phase, a DT can be applied to test and validate system
design alternatives, while at run time production data can be gath-
ered to update and improve a DT (e.g., fine-tune DT parameters to
close the sim-to-real gap) to complete the bidirectional interaction
(Fig. 6). Jaensch et al. [103] present a combined approach of these
model-based and data-driven DTs that allows continuous self-
improvement.
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Fig. 6. Communication between digital twin and physical system [257].

The combination of simulation and learning-based approaches
often can generate new and creative results. This can be extended to
a co-evolution where a design problem's specification also evolves
over time [248,249, 270]. Recognizing and formulating new knowl-
edge brought up by creative design can be challenging, highlighting
the importance of human involvement [53,59]. Early efforts have
been focusing on the concept of explainable Al (XAI) [100]. For exam-
ple, Klar et al., implemented saliency maps [230] to interpret the
shop floor regions of interest used by RL in determining machine
placement. While certain patterns emerge in the beginning, the
authors admit that the interpretation quickly becomes difficult as the
problem scales up [123]. Addressing the challenges of XAI in
manufacturing requires concerted efforts across various manufactur-
ing domains (see Section 7.10).

2.2. Production planning and scheduling

Production planning and scheduling (PPS) involves strategical, tac-
tical and operational decisions in setting and achieving production
targets. It is expedient to see the problem as orders competing for
finite production resources in a dynamic environment. Solutions con-
sist of temporally interlinked actions assigned across diverse resour-
ces, adhering to multiple constraints while optimizing criteria related
to cost, time, quality, resource, and energy utilization, etc. Due to
their inherent combinatorial complexity, PPS problems of practical
relevance are difficult to solve [64]. In a production network, this sit-
uation is further aggravated by information asymmetry [139].

2.2.1. From mathematical programming to search

For PPS, operations research (OR) has traditionally utilized mathe-
matical programming for strategic and tactical production planning
[202], while Al has rather been applied to operational production and
logistics scheduling [297]. The research of Al has contributed to
scheduling by enhancing constraint-based modeling and constraint
programming (CP), addressing representational adequacy to ensure
compliance with production constraints [138,187]. These models,
which differentiate between essential hard constraints and soft, pref-
erence-based constraints, offer a clear, incrementally developable
approach, critical in industrial Al applications (see also Sect. 7.10)
[51]. Advanced CP enhances this with its powerful constraint propa-
gation and search-based solution techniques, increasing flexibility
and adaptability over more rigid algorithms [138]. CP's capability for
incremental adjustments and its use of approximate methods for
heuristic guidance further underline its utility in handling complex
PPS scenarios [41,289].
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Additionally, PPS considers various performance criteria, includ-
ing newer aspects like robustness and environmental efficiency
[140], with CP allowing intuitive representation and exploitation of
these factors for improved solution efficiency [138]. Moreover, inte-
grating production planning with process planning and system con-
figuration, despite increasing solution complexity, offers a
comprehensive approach [250]. This integration captures a broad
spectrum of scheduling knowledge, as evidenced by early and subse-
quent scheduling ontologies [207,231].

Closely related to CP are the variety of pure search methods. Most
of them use heuristics to estimate the value of partial solutions or
their distance from the goal, striking a balance between complete-
ness and computational efficiency. By now, meta-heuristics and in
particular local search techniques such as simulated annealing, tabu
search, and various population-based search approaches are rou-
tinely applied for solving production planning and scheduling prob-
lems [1]. For instance, Nonaka et al. [193] proposed a method for
optimizing the efficiency of a job shop by exploiting the potential of
alternative routings made available by flexible CNC machines (Fig. 7).
To solve this complex scheduling problem, the authors combine
mathematical programming with tabu search. Stricker et al. [237]
solved the task of scheduling in matrix production of different prod-
uct variants with various cycle times. This work introduces a method
for identifying and autonomously adjusting high-performing solu-
tions to the scheduling problem employing multi-objective Monte
Carlo tree search (MCTS). Meta-heuristics have recently been devel-
oped further to hyper-heuristics which interchange different solvers
while at work [220]. In parallel, anytime algorithms became indis-
pensable for delivering solutions when response time was of the
essence, as in real-time production scheduling [241]. Recent search
techniques like large neighborhood search (LNS) [138] have proven to
be successful in solving highly complex problem formulations, which
provide intuitive models for high-level production system configura-
tion [250] and planning [202].
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Fig. 7. Schedule optimization: a) alternative routings; b) schedules generated with
heuristic and optimized load balancing [193].

2.2.2. Role of learning-based methods

Compared to design synthesis, a key differentiating factor of PPS is
its dynamic nature. In contrast to design synthesis that can often be
done offline, it is critical that PPS is done online in response to the
dynamic changes likely to occur. This temporal scale makes it chal-
lenging for decision-making in PPS as the predictive model of pro-
duction may not exist and simulation (that search methods need)
becomes computationally expensive and likely to deviate from

reality. Solving these challenges constitutes the first core application
of ML in PPS.

One important aspect of decision-making in PPS is to forecast the
expected future progression of production. Compared to the tradi-
tional time-series analysis, ML, in particular DL has demonstrated
superior performance in finding highly nonlinear association
between the variables indicating current production status to its
future progression, allowing accurate estimation of metrics such as
future demand [71] and lead times [81]. As an example, Fang et al.
[57] developed a stacked sparse autoencoder (S-SAE) to predict the
remaining time for ongoing manufacturing jobs during production.
This work first utilizes the capability of S-SAE to distill essential fea-
tures embedded in data related to production task (e.g., task compo-
sition), production status (e.g., waiting sequence), and machine status
(e.g., machine utilization rate). This is done by using the contraction-
expansion structure of S-SAE ‘s encoder-decoder pair. Then, for pre-
diction, only the encoder is retained, and it is attached to an MLP for
job remaining time estimation. The authors noted significantly
reduced prediction mean absolute percentage error by S-SAE (5.6%)
compared to linear regression (19.2%), deep belief network, or DBN
(16.9%), or using MLP only (13.7%). Similarly, ML can be used to create
models directly from event log data. In production planning, Kadar et
al. suggested a process mining method for re-constructing the model
of a semiconductor factory from partial, noisy and at times contradic-
tory data [113]. Thanks to the tight coupling of physical processes
and their digital representations, the model could be adapted to
changing conditions automatically.

To a certain extent, these works represent how ML is incorporated
into DTs in production management [226,257] through surrogate
modeling. In addition, the role of ML can also encompass replacing
simulation directly. For PPS, the efficiency of optimization methods
depends fundamentally on the fast evaluation of the solution candi-
dates. In the case of complex, real-world problems, this can rarely be
achieved by the application of an easily evaluated objective function.
Instead, computationally expensive simulations must be performed.
ML techniques can act as surrogate models to replace simulations for
fast evaluation of solution candidates generated by meta-heuristics
[108,182] (see Fig. 8). Running simulations on well-chosen scenarios
derived from historical data using unsupervised learning is another
approach to optimizing efficiency [77]. This work combines model-
and data-driven analysis to support scheduling in a high-mix low-
volume production environment.
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Fig. 8. Data-driven evolutionary optimization [108].

In addition to surrogate modeling, ML has also shown capable of
reducing the sim-to-real gap (or deviation) between the digital and
the physical representation of the system to improve the reliability of
decision-making. One example is provided by Vrabic et al. [257]. The
idea is to first determine the source of the deviation and formulate a
response strategy through generating and simulating what-if scenar-
ios for various disruptions using the DT. A neural network then enco-
des the discovered association and predicts the parameters of the DT
based on past and present observables. Specifically, the network
input contains observables at subsequent times of observation, while
the output includes DT parameters [257]. The network can then
determine how the DT should be updated so that its behavior
matches the physical systems. The authors validated the effectiveness
of the method in improving system resilience (Fig. 9) after disruption
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Fig. 9. Reduction of resilience loss after disruption through NN-based DT parameter
update [257] (vertical axis represents accuracy of DT).

using a case study of cell and gene therapy (CGT) secondary
manufacturing facilities.

Once a reliable evaluation method is available, RL has also been
widely investigated for PPS [40,117,151,197] by learning a control
policy for sequential decision-making from interactions with an
uncertain, dynamic environment that provides feedback in the form
of rewards [135,239]. For example, Epureanu et al. investigated [55]
an RL-based method to determine the optimal strategy for handling
machine breakdown. Specifically, a deep convolutional Q learning
neural network as shown in Fig. 10 has been developed. The input
includes encoded production information such as suspect modules
and swappable stages. This information is processed by convolutional
layers for prediction of Q values corresponding to three repair strate-
gies. Simulation results using a production system consisting of seven
stages show that the developed RL significantly reduces the produc-
tion capacity loss as compared to a random strategy selection.

Huang et al. [98] built upon a GNN-model production system and
investigated MARL for maximizing throughput while minimizing
defects, taking into consideration the variability of each machine. The
MARL is based on the method of advantage actor-critic or A2C [238].
The A2C synergizes an actor, responsible for choosing actions (i.e.,
setting parameters of each machine) based on the current policy, and
a critic, which evaluates the chosen actions by estimating the value
function. The actor's policy, represented by GNN, dictates the proba-
bilities of taking specific actions in given states. In parallel, the critic
assesses the expected return from these states, aiding in the compu-
tation of the advantage function. This function reflects the relative
benefit of each action compared to the average, guiding the actor
toward more rewarding choices. Learning occurs as the actor adjusts
its policy to maximize rewards, using the advantage function as a
directional signal, while the critic refines its value predictions to align
with actual returns. Compared to two rule-based baselines using a
simulated case study, the MARL is able to incur three times fewer
defects while maintaining similar throughput and could double the
throughput while maintaining similar defect-to-throughput ratio.
Other reported work includes weighted Q-learning [269], double
DQN [83], distributed policy search [67], and policy-iteration type
actor-critic models [157]. Recently, policy gradient RL also proved to
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be successful in efficiently managing resources of biological material
production in a highly uncertain environment [181].

As exemplified by MARL, in production systems, the operation is a
result of the collaboration among numerous autonomous decision-
makers, each driven by its own objectives within a network of inter-
dependent entities [139], naturally fitting multi-agent systems that
offer a robust model for representing these autonomous units and
their interactions, significantly enhancing the analysis of system-
level behavior [183]. Despite the efficiency of multi-agent systems in
visualizing and analyzing such interactions, ensuring consistent, effi-
cient, and goal-oriented operations in line with production expecta-
tions necessitates some type of centralized control mechanisms, a
challenge yet to be fully addressed in industrial applications
[194,253].

3. Al in process modeling, management and optimization

As the core step to transform raw materials into finished parts,
efficient and anomaly-free manufacturing processes have been the
goal for manufacturing researchers and engineers since the very
beginning. As manufacturing processes are getting increasingly com-
plex to be designed, modeled, and optimized using domain knowl-
edge alone [150], Al techniques are increasingly investigated to
compensate for this limitation in modeling and parameter optimiza-
tion, as shown in Fig. 11.
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Fig. 11. Alresearch for process design, modeling, and optimization.

3.1. Process design

A detailed summary of Al for process design has been presented in
[147], which extensively reviewed Al applications in process design
and planning with a focus on Al techniques of expert systems and
evolutionary algorithms. This section will first highlight research
works that mainly benefit from these model-based techniques,
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Fig. 10. Deep Q-learning for optimal strategy selection in handling machine breakdown [55].
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before introducing more recent works that increasingly leverage the
capability of data-driven AL

Teti et al. [244] investigated in Intelligent Computing Methods
for Manufacturing Systems. Future motivations for intelligent com-
putation in manufacturing include enhancing decision-making,
features, and classifications, improving performance, flexibility,
and efficiency, and integrating real-time operation and automa-
tion. Achievements require enhanced knowledge bases, improved
Al tools, cost reduction, and new applications. Future systems will
integrate Al into various engineering processes, develop hybrid
systems, and implement intelligent manufacturing systems, char-
acterized by integration, modularity, and hybridization. The
research of Molina et al. in [180] addresses Al's potential in
machining processes, including quality and efficiency improve-
ments, contrasts with industry readiness due to machinery and
worker training deficiencies. Adoption challenges persist despite
Industry 4.0’s promises.

In [5], a hybrid approach is presented by using techniques of neu-
ral networks, fuzzy logic, and rule-based systems. The research illus-
trates a feature-based intelligent computer-aided process planning
system (CAPP) that includes (1) a standardized feature-based model
in the form of STEP-based features and (2) the hybrid Al model for
process planning. In addition, a digital process plan can be created,
which provides the required information on the components to be
manufactured. The results of the analysis show that the integration
of model-based and data-driven Al techniques can make process
planning more efficient. Similar work has been reported in [47] using
genetic algorithm (GA) and neural network.

Beyond process planning, Al has also found applications in fixture
design. For example, ML-based optimization of a clamping concept is
investigated in [60] (Fig. 12). The objective of the investigation is to
establish a rapid model for positioning fixture locations within an 8-
second timeframe. The clamping of components is an important ele-
ment in manufacturing processes which have a large influence on the
dimensional accuracy. In the context of the study, an optimal clamp-
ing is determined from a multiplicity of configuration possibilities for
the reduction of manufacturing errors. A milling process is chosen as
the manufacturing process and the target values of the clamping
optimization are the maximum workpiece deflection and the lowest
natural frequency. Initially, exemplary configuration of the clamping
is introduced and the generation of the input and output data for the
ML models based on FE simulations are shown. Subsequently, differ-
ent regression algorithms are evaluated, and a morphological box
was used to identify the most promising algorithm. The research
shows that XGBoost achieves good results with a small training data
set and can assist designers in making decisions regarding the design
of clamping system.

Another study on intelligent fixture design in high performance
machining is shown in [178]. For this purpose, the influence of differ-
ent workpiece-fixture setups on the natural modes is investigated.
The results first show the relevance of fixture layout in the context of
process-workpiece interaction for fixture design, layout, and optimi-
zation. Furthermore, the use of intelligent fixtures is examined to
reduce the influence of vibrations, deformations, and positioning of
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thin-walled parts. It is shown that the use of model-based method in
combination with process simulation enables a significant improve-
ment of the fixture performance and process robustness.

For the identification of forming limits in sheet metal, DL algo-
rithms have been investigated in [104]. The forming limit curve
defined by the major and minor strain is used to determine the form-
ing range. As forming behavior is difficult to investigate, since only
the last process step can be mapped due to the process setup, a semi-
supervised neural network is presented to detect the onset of local-
ized necking. The studies include two steps (Fig. 13). The first is
supervised feature learning where the extreme ranges of the forming
sequences are considered. The second is unsupervised clustering
using Student’s t mixture models (SMM), which groups the remain-
ing frames of the forming sequence. The presented approach allows
location and time independent investigation and an online analysis
of a distinct time point. By processing the information from the cap-
tured images, cracking of the sheet specimen can be prevented. A
detailed summary of Al for process design is presented in the review
article [147].
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Fig. 13. Supervised feature learning and unsupervised clustering for determination of
forming limits, adapted from [104].

3.2. Process modeling and evaluation

Depending on the specific application, process modeling requires
associating process parameters to the final property of the produced
part (e.g., process-structure-property-performance, or PSPP relation-
ship) or revealing the mechanism underlying the time-evolution of
process (e.g., process dynamics). The capability to accurately predict
part property is crucial for process optimization, while understanding
the underlying process mechanism serves as the technical basis for
process control.

While empirical equations have been developed over the years for
describing the PSPP relationship, process-to-process variation and
process physics that are unaccounted for by these models inevitably
cause deviation in terms of process modeling. The advent of data-
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Fig. 12. Fixture design optimization for milling process using FE analysis and XGBoost, adapted from [60].
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driven Al provides a promising tool to effectively use the in-process
sensing data to close this gap.

Choi et al. [35] presented a neural network-based method to
understand the relationship between the input process parameters
in injection molding and process output properties, such as those
associated with linear shrinkage. The idea is based on the self-orga-
nizing properties of a neural network. The system consists of three
functional software groups: a user interface and command module,
an optimization and synthesis module, and a computer-aided engi-
neering (CAE) analysis software module. The authors have shown
that a prediction error of 0.5% has been achieved [35]. Bak et al. [12]
also investigated a neural network model for die-casting process.
First, an optimal set of dominant manufacturing parameters for high
product quality in a die casting process is determined using the mini-
mal redundancy and maximum relevance (MRMR)-based approach.
With the selected parameters, a prediction accuracy of 99.6% has
been achieved by the neural network for process yield prediction.

The applicability of Al techniques to flexible rolling process for
customized semi-finished products is shown in [121]. Kirchen et al.
established fundamental correlations between process and quality
parameters using data-driven Al methods. Here, the predictive model
is set up using incremental regression modeling and subsequently
evaluated with the aid of process and quality data. The quality vari-
able describing the homogeneity of the sheet thickness of the semi-
finished product can be predicted with a maximum deviation of only
5%. The predictive model allows to derive adapted parameter settings
between process steps for a product, which offers the possibility for
process optimization. Similarly, in [264], a DBN is investigated to
model the complex relationship between material removal rate
(MRR) and the underlying process parameters in chemical-mechani-
cal polishing. The outcome shows that the DBN can predict the MRR
with less than 3% error, which is an order of magnitude smaller than
the results from the physical equation.

In addition to analyzing part properties, Brillinger et al. [27] have
explored the application of Al in predicting the energy consumption
of CNC machines during processes. For this purpose, a training part is
first processed, and high frequency measurements and the NC
instructions are collected. Based on this data, a ML model is trained
(Fig. 14). After that, the validation part is processed. The NC instruc-
tions of the validation part are passed to the already trained model.
The model then predicts energy consumption. For this purpose, three
ML algorithms were trained "random forest”, "decision tree" and
"AdaBoost + decision tree" [27]. Although there are exceptions for
certain measures and aggregates, the most accurate predictions can
be obtained with the random forest technique. Accordingly, the
energy demand curve of the machining process is accurately pre-
dicted.
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Fig. 14. Energy prediction for CNC machining with ML [27].

Brecher et al. [25] presented a knowledge-based approach to eval-
uate the quality of toolpaths by reducing process data to information

about machining deficiencies. The approach can be used for post-pro-
cess and planning-integrated diagnosis as a first step towards optimi-
zation. The method allows NC planners to obtain feedback from
virtual or real processes to improve their knowledge of the current
planning state and identify existing deficits. They are thus supported
in deriving possible means of optimization from aggregated informa-
tion without having to perform time-consuming analyses of raw
data.

One of the most recent research trends in Al-based process
modeling is the metal AM process. Due to its multi-physics nature,
predicting part property and modeling process dynamics for AM is
challenging. As a result, researchers have turned to data-driven Al for
establishing the complex relationship between process dynamics and
part property. For metal AM, the characteristics of the melt pool are
known to play a crucial role in determining the process behavior and
outcome. For the evaluation of the melt pool, a methodology based
on edge image templates combined with Bayesian inference is dem-
onstrated by Lindenmeyer et al. [156]. Specifically, high-speed X-ray
images of the melt pool area were analyzed. The developed detection
method has a 60% accuracy for identifying the dimensions and shape
of the melt pool.

The AM process induces process heat that results in local varying
mechanical properties and is site dependent. To predict mechanical
properties of the parts, infrared measurements were performed on
several thin-walled components at the selected positions and con-
verted to wavelet-based scalograms by Xie et al. [277]. Subsequently,
a CNN is used to predict mechanical properties obtained from minia-
turized tensile tests (Fig. 15). Furthermore, through a random forest
algorithm, an infrared thermography parameter can be used to relate
the mechanical properties to the temperature ranges of the compo-
nent [277].

With the recent development of physics-informed ML [115],
researchers have started to integrate physical knowledge about the
AM process and data-driven method, to accurately predict its time-
dependent evolution. The main idea of physics-informed ML is that,
in addition to the prediction accuracy in the ML loss function, a physi-
cal-consistent term is also added such that any deviation from the
physical equation will be penalized. As a result, the predicted output
from the ML is expected to be physically consistent. Early proof-of-
concept has been reported by Zobery et al. [296] and Liao et al. [154].
Both studies integrated the heat equation for prediction of tempera-
ture evolution in AM.

3.3. Process optimization

All processes in manufacturing are subject to variations. As an
example, scattering of the geometrical or mechanical properties of
materials can cause disruptions during series production and must
therefore be detected, evaluated, and ultimately controlled and opti-
mized in time. Conventional methods using process simulations are
often time-consuming and not flexible enough to react quickly
enough to changes for in-situ optimization. Al offers new opportuni-
ties to exploit further optimization potential.

For process control, researchers have generally followed the vast
knowledge of control theory and integrated it with Al-based model-
ing of process dynamics. For example, in [8], an integrated method
of model predictive control (MPC) and Gaussian process (GP)-based
AM model is developed. The objective of GP is to predict the time-
evolution of the melt pool width given the laser power and other
process parameters. Once the predictive model is obtained, it is line-
arized locally to be compatible with MPC. Simulated results have
shown that the integrated control method is effective in controlling
the melt pool width from deviating from a reference trajectory,
which is widely considered critical to ensure AM part property. Simi-
larly, in [210], a PID controller is investigated for AM melt pool depth
control, with the depth information directly predicted from sensor
images.

Process optimization can be considered an inverse problem where
suited process parameters need to be determined to arrive at the
optimized output. One of the methods is through sensitivity analysis,
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Fig. 15. Mechanistic data-driven method for tensile property prediction in AM, adapted from [277].

as it indicates how the output changes when a unit of change hap-
pens at the input (e.g., process parameters). In [245], an ML-based
methodology for predicting and improving the energy requirements
of battery production was developed (Fig. 16). The approach is
intended to highlight the interdisciplinary nature of battery produc-
tion and to be applicable to other sectors. Once an Al-model is estab-
lished at the third phase of the process, "modeling & evaluation”, to
identify the most influential factors, sensitivity analysis is carried out
to evaluate energy efficiency potentials and derive actions for
improvements. It is reported that energy savings of up to 9% have
been achieved.
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Fig. 16. ML based optimization of energy efficiency, adapted from [245].

Other researchers tackle optimization by directly modeling the
inverse mapping using ML, e.g., for the production of composite
materials. For this purpose, ML models were developed in [99] for
the rapid evaluation of a wide range of boundary conditions (Fig. 17).
By comparing thermocouple data with the predictions using these
boundary conditions, all plausible solutions can be identified. To this
end, two long short-term memory (LSTM) networks were developed
to predict workpiece and mold temperatures for a given thermal
stack and air temperature profile. In addition, a neural network was
developed for multi-objective optimization of temperature cycle. The

method mitigates the risk associated with unknown boundary condi-
tions, and the system can be used for real-time optimization of the
curing process with active adjustment of an oven.
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Fig. 17. Schematic of ML framework for inverse modeling of composites processing,
and optimization of air temperature profile [99].

For ML techniques with probabilistic nature, such as Gaussian
process, Bayesian optimization provides an intuitive way of parame-
ter optimization while considering process model uncertainty [233].
The idea is to first model the output variables of interest with respect
to the process parameters. Then, Bayesian optimization is carried out
sequentially to determine the parameter point to conduct the subse-
quent experiment that has the highest probability of improving the
output. ML combined with Bayesian optimization has shown to be
particularly advantageous in situations where acquiring experimen-
tal data is a time-consuming process. The effectiveness of the method
is demonstrated by Maier et al. [166] and Khosravi et al. [119] for
grinding, where feed rate and cutting speed, and gain of PID control-
ler are optimally tuned, respectively.

One of the promising ML techniques that has attracted much
attention recently for process control and optimization is RL [239]. As
RL commonly learns the association between process state and con-
trol/optimization adjustment, it is considered model-free. Several
studies on RL-based process control and optimization have been
reported [52,126]. For example, Dornheim et al. [52] investigated RL
to find the optimal blank holder force in deep drawing to minimize
the tear of the produced part. Their approach is based on DQN that
uses a neural network to predict the goodness associated with each
blank holder force adjustment, and the one with the highest value is
selected. Training of the neural network is carried out in simulated
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environment. The authors reported that after 200 iterations, the RL-
based method is able to outperform rule-based methods. Besides
DQN, the method of actor-critic has also been reported for control/
optimization of welding [109].

Finally, the methods of search have also contributed to process
optimization. These methods can effectively explore the parameter
space and converge to the optimal solutions. For example, evolution-
ary algorithms have shown effective in optimizing tool path for mill-
ing, with different optimization properties such as time, straightness,
and cutter engagement [189]. In addition, GA and particle swarm
optimization have been successfully implemented for parameter
optimization for cutting [136] and turning [ 18], respectively.

4. Al for quality assurance and maintenance

Quality assurance and maintenance have been related to Al since
the early 1980s [146]. Over the years, the development of model-
based Al techniques, such as those based on defect-induced signal
features and the physics-based models has contributed to safe opera-
tions and provided technological basis for fault and defect identifica-
tion [105], machine/tool degradation and remaining useful life (RUL)
prediction [112]. When it comes to data-driven Al, the field of quality
assurance and maintenance has some unique challenges as compared
to the other aspects in manufacturing, such as data imbalance and
domain knowledge integration [116]. Collectively, these challenges
started to reshape the research of Al-based quality assurance and
maintenance, leading to new development of data-driven Al that is
robust, interpretable, and consistent with physical knowledge. The Al
techniques and the corresponding applications in quality assurance
and maintenance are summarized in Fig. 18.
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Fig. 18. Al-related research for quality assurance and maintenance.

4.1. Al-enhanced condition monitoring

As the first step towards quality assurance, condition monitoring
refers to monitoring the quality attributes of a part, machine, or tool
to identify deviations that are indicative of potential defects or faults
[102]. Traditionally, this task relies primarily on inspection by human
experts, which is typically a time-consuming process conducted off-
line. The consequence is delays in defect detection and interruption
to the manufacturing processes. The development of Al, especially
the advances in image analysis, has accelerated research towards
automated online condition monitoring.

Images have been widely investigated in Al for manufacturing. For
example, time-frequency images of vibration signal for machine con-
dition monitoring [48] and optical images for surface roughness

estimation [34]. In these applications, the information contained in
the image has been distilled into a scalar prediction while its spatial
information is largely discarded. However, for part surface inspection,
it would be desirable that the Al algorithm can pinpoint the image
region that deviates from normal conditions, such that the outcomes
are more easily understood by human.

Early success of image-based defect detection often relies on
point-of-interest extraction enabled by scale-invariant feature trans-
form (SIFT) [160] and speeded-up robust features (SURF) [14]. The
motivation is that surface defect can exhibit noticeable change in
terms of patterns of pixel intensity as compared to the non-defective
region. As a result, both SIFT and SURF rely on models for local
extrema detection in image pixel variation, such as the difference in
Gaussian (DoG) model and the Hessian matrix model. Coupled with
multi-scale analysis, SIFT and SURF have shown to be effective in
finding the points-of-interest to support defect detection on steel
surface [240] and PCB board [85].

The recent development of DL techniques, especially the CNNs
have further sparked research in detection of surface defect whose
characteristics cannot be described using features such as local
extrema of pixel densities [223]. As a data-driven Al technique, the
working principle of CNN is fundamentally different than model-
based method as it does not depend on pre-defined models for fea-
ture extraction. Instead, image features that are most relevant for
defect detection are learned through training images.

Mehta and Shao [173] presented a CNN-based approach for sur-
face defect detection and segmentation in AM. For this purpose, a U-
Net structure, a variant of CNN is considered (Fig. 19) [211]. U-Net is
advantageous over other CNN variants (such as fully convolutional
networks) in defect detection where defects can vary in size and
shape, due to the network’s unique architectural features [211]. Its
design, which includes a contracting path and an expanding path,
allows for effective feature analysis at multiple levels that are adap-
tive to both large and small defects as well as different defect com-
plexities (e.g., shapes). Moreover, the skip connections connecting
the contracting and expanding paths facilities the integration of
multi-level image features to enable accurate segmentation of defects
at the U-Net’s output.
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Fig. 19. U-Net for defect segmentation for AM, adapted from [211].

To overcome the limitation that training images containing
defects can be insufficient from a single source (e.g., manufacturer) to
fully optimize the U-Net, the method of federated learning is consid-
ered by the authors [173]. Federated learning refers to a collaborative
data-driven method that works under the premise that limitation in
data quantity can be overcome by pooling data information from var-
ious sources (known as clients). To avoid sharing data directly and
violating data privacy, federated learning uses a single global model
while each client only provides a model parameter update that is
computed using its own data (Fig. 20) [127,173]. As a result, data is
never shared across different clients, while the information embed-
ded in this data contributes to the construction of a global model. The
authors have shown that by using federated learning, defect
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Fig. 20. Schematic of federated learning, adapted from [127,173].

segmentation accuracy of the global model has outperformed indi-
vidual models that have been trained using siloed data from each cli-
ent by 20%.

Beyond images, time series data are also commonly collected to
infer the snapshot of machine/tool conditions using Al. As the tem-
poral information embedded in time series data often comes
directly from physics, the integration of physical knowledge and
data-driven method has been investigated to improve the physical
consistency of Al-models. Wang et al. [259] presented a gated
recurrent unit (or GRU [37]) network for milling tool wear predic-
tion. This study features physics-informed network training to
ensure that the predicted tool wear level is monotonically increas-
ing as the cutting cycle increases. By using physics-informed train-
ing, the network prediction logic will be penalized if the predicted
tool wear does not increase monotonically. As a result, network
weight update is guided to achieve maximum physical consistency
during training. The authors have shown that by integrating phys-
ics-informed training, not only physical inconsistency in tool wear
prediction has been eliminated, but also the tool wear predictive
error is consistently lower (up to 50% in terms of root mean square
error, RMSE) as compared to the scenario without physics-
informed training.

4.2. Structural fault identification

As the key components in power transmission, smooth and fault-
free operation of rotary machines, such as induction motors, gear-
boxes, and bearings are critical for manufacturing processes such as
cutting, grinding, and metal forming. Al-based diagnosis allows to
identify information related to hidden structural faults from sensing
data collected from these machines, leading to informed decision-
making on predictive maintenance to prevent unexpected interrup-
tion to production.

Model-based Al for fault identification traditionally relies on time-
frequency analysis of sensing signals, such as the wavelet-based
method, to reveal the structural fault as manifested at the character-
istic frequencies computed using physical models [61]. Beyond time-
frequency analysis, researchers have also identified correlation
between machine structural fault and sensing signal that is based on
complexity measures in information theory. For example, Yan and
Gao observed that fault severity level in bearings is highly correlated
to complexity measures of the vibration signal such as approximate
entropy, permutation entropy and Lempel-Ziv complexity, leading to
reliable fault identification [279,280]. Additionally, empirical signal
decomposition, such as empirical mode decomposition (EMD) has
also shown capable of revealing the composition of sensing signal

and extracting fault related information from the decomposed intrin-
sic modes [70,145].

The advent of data-driven Al, especially DL, has opened a new
avenue for fault identification in rotary machines. The main advan-
tage is the elimination of the need to compute and select a priori fea-
tures or measures that are relevant to the structural fault [70].
However, the collection of faulty data is often limited due to produc-
tion and safety constraints [71]. As a result, data augmentation has
been one of the main research focuses.

Recently, data synthesis based on generative adversarial network,
or GAN [78], to alleviate the lack of data from faulty conditions for
model training has shown great potential. The structure of GAN typi-
cally consists of a generator and a discriminator (both as neural net-
work, Fig. 21). The objective of the generator is to learn to transform
samples from a known high-dimensional distribution into samples
from the underlying distribution of faulty data. The objective of the
discriminator is to learn to distinguish synthetic samples (from the
generator) from real samples collected from the faulty machines. The
performance of both is improved through adversarial training, in
which the generator is trained to improve the data synthesis quality
and reduce the discriminator’s accuracy, while the discriminator is
trained to improve its capability of detecting synthesized data. Such
adversarial training is expected to arrive at an equilibrium in which
the discriminator can no longer distinguish synthetic data samples
from real ones. At this point, the generator can be used for high-fidel-
ity data synthesis and data augmentation.
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Fig. 21. Schematic of GAN for data synthesis, adapted from [78].

The GAN-based data synthesis has been validated in several pub-
lications over the past years, with consistent conclusion that the
data-driven Al models trained using synthetic data have outper-
formed the ones trained using unbalanced data in fault identification
for induction motor [227], tool wear [38] and bearing [158]. For
example, Shao et al. [227] have shown that the fault identification
accuracy improvement can be as high as close to 50% (from 50% to
99.3%) when the imbalance ratio is 2:1 between the healthy and
faulty motor data. Cooper et al. [38] investigated synthesis of wavelet
spectrums using GAN for non-compliant tool detection in milling.
Different from the previous works in which the classifier is either
constructed separately or incorporated with the discriminator, the
generator of the GAN is inverted to perform non-compliance detec-
tion in this work, resulting in a 25% improvement in detection accu-
racy for the dataset with 2:1 imbalance ratio. Liu et al. [158]
examined the waveform and the corresponding Fourier spectrum
between the real and synthetic bearing vibration signal (Fig. 22). The
authors noted that beyond visual similarities, the frequency compo-
nents in Fourier spectrum are well preserved in synthetic data,
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Fig. 22. Consistency between real and synthetic vibration data in time and frequency
domains, adapted from [158].

critical for vibration-based fault identification and indicative of good
performance from GAN.

Besides GAN-based data synthesis, federated learning has also
attracted research interest to bypass the limitation in faulty data
quantity. Good fault identification accuracy has been reported in sev-
eral publications [75,292]. Zhang et al. [286] investigated a scenario
in which data from each client is not guaranteed to be available dur-
ing the training process. The motivation is that as each client has full
control of its own data, it is possible that data from certain clients
may not participate during certain stages of the training process due
to issues such as scheduling conflicts. Such partial participation con-
stitutes one of the main differences between federated and non-fed-
erated learning. In [286], the authors evaluated a federated learning
scenario with 50 clients, each having a dataset of distinct imbalance
levels between data of healthy and various faulty bearing conditions.
Each training epoch has a client participation rate from 80% to 100%.
The authors demonstrated that federated learning is robust to partial
participation and achieved fault identification accuracy comparable
to the one that would have been achieved using centralized training
(around 96%). This demonstrates federated learning as a reliable tech-
nique in addressing limitations in data quantity for fault identifica-
tion of rotary machines.

For critical applications such as fault identification, once the deci-
sion is made by Al, it is imperative to evaluate the logic behind the
decision against the existing physical knowledge to avoid spurious
findings. That is, to know exactly how each element in the input con-
tributes to the final decision. Research on such post-analysis methods
represents the first step towards opening the black-box of Al models
[9], especially DL models, and facilitates broader acceptance of Al-
enabled applications [230,285].

As an example, Grezmak et al. [79] investigated layer-wise rele-
vance propagation (LRP) to determine the prediction logic of CNN-
based motor fault identification with wavelet time-frequency spec-
trum of the vibration signal as the CNN input. In contrast to the fault
identification that transforms the input into a discrete probability
distribution of motor conditions, LRP works backwards by redistrib-
uting the final probability distribution as relevant score until it
reaches the input (Fig. 23). The score redistribution follows two rules:
(1) the score assigned to each neuron is proportional to the multipli-
cation of the activation of the neuron and the weights connecting it
to the next CNN layer, and (2) all neuron scores within each CNN
layer add up to one [9]. Based on these two rules, each pixel in the
spectrum with a positive score can be considered as contributing to
the CNN decision. The authors observed that the scores in the wavelet
spectrum image exhibit alternating positive and negative bands, with
positive bands largely falling on the characteristic frequencies and
their harmonics, indicating consistency between the CNN prediction
logic and human knowledge for motor fault identification.

Beyond the post-analysis techniques such as LRP, researchers also
investigated network structures that constrain the prediction logic to
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Fig. 23. LRP for interpretable CNN-based motor fault identification [79].

be physically consistent, for example, a continuous wavelet convolu-
tional layer (CWConv) for bearing fault identification [153]. Different
from standard CNN Kkernel that is unconstrained, the wavelet kernel
is parameterized by two wavelet parameters: scaling and translation.
As a result, the behavior of the kernel is consistent with the known
physical properties of wavelet, leading to improved model interpret-
ability as compared to standard CNN.

4.3. Machine remaining life prognosis

Prognosis aims at predicting the progression of machine perfor-
mance from its current status to its functional failure. Accurate RUL
estimation provides the technological basis for predictive mainte-
nance [72].

Model-based method in RUL estimation relies on physical degra-
dation models, such as the Paris’ law or the Arrhenius equation for
characterizing damage propagation [198]. As the parameters in these
equations are often undetermined, calibration is needed to update
model parameters using sensor data. The degradation models with
updated parameters then carry out the estimation of RUL. Such a
combination of physical model-based prediction and data-driven
parameter update can be considered a hybrid Al approach. Among
the techniques under this category, a state-space model using parti-
cle filter has attracted much research interest due to the root in
Bayes’ theorem [7].

Bayes’ theorem allows to calibrate the degradation model param-
eters using both physical relationship and sensing data [7]. Specifi-
cally, the physical relationship can be considered as the prior
knowledge about the parameters, while sensing data allows to com-
pute the likelihood of the prior knowledge given the real-world
observations. Bayes’ theorem fuses this information to arrive at a
more accurate, posterior estimation of the model parameters. In prac-
tice, particle filter utilizes weighted particles to represent the uncer-
tainty in model parameters, making it suited to characterize any
distributions underlying parameters. Recent development of particle
filter includes a multi-modal particle filter [267] that can accommo-
date different degradation modalities and a local search particle filter
that improves the convergence of the algorithm in characterizing the
model parameters [263].

Beyond the state-space model, a hybrid Al method has also been
developed by integrating physical equations and ML. The main idea
is to use ML to learn the difference between the physical equation
and the real-world observation and thereby, complementing the
physical knowledge. For example, Zhang et al. [287] developed phys-
ics-guided GP (PGGP) by embedding a degradation equation into its
mean function (Fig. 24). GP is a ML method where machine perfor-
mance at any time step in the future is predicted as a Gaussian distri-
bution that is conditioned on its past performance [287].
Furthermore, uncertainty analysis is inherently incorporated. The
authors demonstrated that the hybrid Al outperforms the pure data-
driven approach in long-term estimation of RUL of HVAC systems
and Li-lon batteries by up to 75% in terms of prediction error. A simi-
lar work for bearing RUL prognosis is reported in [107].

Additionally, DL has also been integrated with Bayes’ theorem for
RUL estimation [19]. The concept is that for any observed data, there
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Fig. 24. Physics-guided Gaussian process for system performance prognosis (with Lithium-Ion battery as a case study), adapted from [287].

are an infinite number of possible models, and the prediction should
consider the results from all of them. More specifically, each model is
assigned a model probability, and the prediction result can be consid-
ered as the sum of each model’s prediction weighted by the corre-
sponding model probability [19]. The effectiveness of this method
has been validated on Li-lon battery [293]. In addition to the methods
described above, other prognosis techniques have also been devel-
oped, such as the dynamic time warping method that aims to find
the optimal match between the degradation trajectory to be pre-
dicted and a reference trajectory [120].

5. Al for automated and flexible assembly and disassembly

The following chapter (Fig. 25) discusses the advances and poten-
tials of Al for assembly and disassembly. Specifically, the contribution
of Al to the growing challenges of assembly planning and material
flow control is first described, followed by the fundamental Al-based
advances in robotics for automation of assembly and disassembly.
The rapidly emerging research in the field of Al for HRC to cope with
the rising demand for flexibility and changeability is also discussed,
followed by an overview about future potentials of Al for assembly
and disassembly.
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Fig. 25. Al-related research for automated assembly and disassembly.

5.1. Assembly planning and material flow control

The increasing variety of products, especially in the automotive
industry, goes hand in hand with the growing demands on the

flexibility, changeability and reconfigurability of assembly lines,
which have seen the evolvement of lineless structures such as matrix
production [237]. These growing demands, coupled with the compar-
atively low degree of automation of complex handling and assembly
operations, demographic development, and associated increase in
average age of assembly workers, have resulted in a significant
increase in the complexity for assembly planning and material flow
control and highlighted the need for efficient methods to search for
the optimal solutions among combinatorial variety of outcomes.

5.1.1. Assembly planning & optimization

Introduced in 1975, GA, a subdomain of evolutionary computa-
tion, is regarded as a means for solving a broad range of optimization
problems for assembly planning and scheduling. For example, Dini et
al. [49] proposed a GA-based method for generating and evaluating
assembly sequences. Also based on GA, Raatz et al. [204] proposed a
method for optimizing the interlocking of human and robot opera-
tions in collaborative robot-assisted assembly. Kardos et al. [114] sug-
gested a constraint programming approach to assembly planning
based on boundary-aware decomposition to account for process
complexity.

Complementing the GA-based method are approaches for knowl-
edge-based solutions generation through ontologies. Ahmad et al. [3]
described a new method in which inferences are generated based on
explicit knowledge mapped in modular ontologies, based on which
product and process requirements are mapped to available resources.
Additionally, self-learning and self-optimizing assembly systems
have been proposed for adaptive assembly by Kluge et al. [125]. Plan-
ning for general manufacturing systems has been described in Ch. 2.

5.1.2. Material flow control

Due to the flexibilization of assembly based on the dissolution of
rigid line structures and transition to matrix production, the needs
for flexible solutions for material transport using mobile robot plat-
forms are growing, opening the potential of Al for increasing the
degree of automation of autonomous mobile robot (AMR). Among a
great wealth of research for AMR, learning unknown environments
and automatic navigation forms a major focus. Various methods of
supervised learning, self- and semi-supervised learning, unsuper-
vised learning, and RL are developed to identify movements of AMR
relative to its environment. These methods can be combined and
assigned to artificial perception. A review of vision-based navigation
is provided by [43].

For research of material flow control in known environment,
major research focuses have been placed on “obstacle avoidance”
[23], “indoor navigation” [87], and more recently with the rise of
automated warehouse, “multi-robot cooperation” [155]. As an exam-
ple, Malus et al. [168] combined perception and navigation-related
abilities of AMRs with MARL, where AMR agents learn to bid for
orders to realize self-organizing order dispatching. Specifically,
agents are given order specification and learn to form a bid based on
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their location and immediate plans. The reward function is designed
to reward all agents upon order completion by any individual agent,
which stimulates agent learning towards cooperation. MARL training
is carried out first using a simplified simulation before transferred to
a physics-based simulation of AMR fleet for validation (Fig. 26). The
authors demonstrated that the learned policy outperforms “closest-
first” policy by learning to cooperate and adapt to the workspace lay-
out.
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Fig. 26. MARL-based order dispatching, adapted from [168].

5.2. Potentials of Al enhanced robotics for assembly

Industrial robots are essential for automation of assembly opera-
tions and have benefited from the considerable progress in funda-
mental research in robotics through the development of Al methods.
Their contribution to robotic object handling and manipulation plays
a crucial role in enabling robotic assembly.

5.2.1. Al-enhanced "Pick and Place”

Handling operations in assembly often have a degree of complex-
ity, which requires the combination of several cognitive and sensory
motor abilities of a human such as learning/ reasoning, visual cogni-
tion, flexible mechanics, and haptic cognition [131]. As a result of
continued progress in ML for robot-assisted manufacturing, the field
of "robot learning" as a subdomain of ML has gained increasing atten-
tion in recent years. In [159], Liu et al. presented a comprehensive
review of this field.

Advances in the field of visual object recognition and detection
through CNN form the basis to achieve hand-eye coordination during
object grasping and manipulation. In early works, Levine et al. [149]
demonstrated the robot's ability to independently learn to grasp
unknown objects based on 800,000 gripping cycles of 14 robots
working in parallel. The idea is to establish a neural network-based
mapping between workspace sensing images and robot action
through interaction between robot and workspace such that grasping
success probability is maximized.

One of the limitations in [149] is data collection with physical
experiment that lasts more than 2 months. This motivates other
researchers to explore methods with improved learning efficiency.
For example, Finn et al. [62] demonstrated that one-shot imitation
learning could reduce needs for training data. One-shot imitation
learning can be considered a variant of meta-learning where the
objective is to optimize meta-parameters such that a small number
of gradient steps can produce good performance under new tasks.
Additionally, simulation-based methods have been investigated to
replace physical robots and facilitate the learning process. To bridge
the sim-to-real gap such that the grasping algorithm learned in simu-
lation can be translated into the real world, Rao et al. [209] have
investigated cycle-generative adversarial network (Cycle-GAN) to
synthesize real-looking texture for the simulation (Fig. 27), and
reduced learning time from months to days.

More recently, Wen et al. proposed a method to learning cate-
gory-level, task-compatible grasping using simulation data [272]. The
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Fig. 27. Transformation of simulated image to support simulation-based robotic grasp-
ing learning [209].

method achieved category-level generalization through a CNN-based
canonical transformation. Then, grasping heatmaps are generated for
different part categories based on grasping stability and task compat-
ibility (Fig. 28). A survey on ML vision-based robotic grasping and
manipulation is presented in [124].
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Fig. 28. Robotic grasping learning based on canonical transformation and simulation-
based grasping probability estimation, adapted from [272].

In addition to learning algorithms, Gabriel et al. [68] optimized
object grasp points based on constrained GA, which evaluates both
part’s mass distribution and the holding force each gripper can pro-
vide. The developed method first identifies potential grasp points
based on a point cloud of the geometry. Then, part segmentation and
identification of center of mass are carried out. Finally, GA-based
optimization is implemented with weighted fitness criteria for evalu-
ation and selection of optimal grasp points.

To ensure a robust, fast, and accurate stacking process, Bobka et
al. [21] presented a deviation compensation strategy which
increases accuracy through modeling of process-specific deviations.
Potential multidimensional regression methods for modeling the
deviations are compared. Supported by ANN, placing operations
with significantly increased precision are performed by a robot-
based fuel cell stacking system. The contribution of the work is the
model simplicity where the authors designed a feed forward ANN
(FF-ANN) with only 3 hidden layers and 40 neurons to achieve the
significantly optimized stacking accuracy of limp fuel cell compo-
nents. In [284], a learning-based method for joint object picking and
placing has been developed to assist in autonomous object assembly
using height maps of both object and assembly kit. Specifically, three
neural networks are developed to predict picking location, placing
location, and the needed rotation of the object before placing, as
shown in Fig. 29. The novelty of the study is a self-supervised
approach to use disassembly as a means of data collection for net-
work training that minimizes human intervention. The authors
demonstrated that after 10 h of training, the method can achieve a
94% assembly success rate.
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5.2.2. Al methods for contact-rich joining tasks

A human’s ability to manually perform complex joining processes
with small tolerances such as peg-in-hole insertion is based on a
fusion of visual and sensory motor abilities in combination with cog-
nitive skills for motor control as well as dexterity and compliance of
the human arms and hands. However, translating such capability
into complex robot-based assembly operations, especially the transi-
tion from free motion when approaching the workpiece to the
moment of contact between robot and stiff environment, is challeng-
ing [133].

For these types of contact processes, two control strategies are
commonly applied, indirect control methods such as compliance or
impedance control and direct force control. In these operations, one
of the fundamental challenges is to control the position and force of
the end effector at the same time, where the stiffness as well as posi-
tion and shape of contact object often are not exactly known. Qiao et
al. [203] introduced a learning mechanism to compensate for this
lack of knowledge. Through a "reinforcement” function, regarded as a
principle for parameter identification and adaptation, the method
optimizes a joint position and force control of the robot in contact
with the unknown constraint environment.

Other studies of control of contact-rich tasks were focused on ML
[148] to combine visual data as generated from camera data in hand-
eye coordination scenarios with other sensing modalities such as
force/torque and proprioception. For example, Lee et al. [144] pro-
posed a multimodal representation learning approach, where camera
images, force/torque signals and data from the robot encoders for
current position and velocity are jointly encoded into one model
comprising MLP and CNN as shown in Fig. 30. The authors also pro-
posed a self-supervision approach to avoid time-consuming data
labeling. By investigating model-free RL to determine subsequent
robot action, the need for an accurate model of process dynamics can
be avoided, which is difficult to obtain for contact rich tasks. Haninger
et al. [84] demonstrated the fusion of image and force/torque data
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through variational autoencoder (VAE) for peg-in-hole insertion. The
VAE learns the representation of the data by minimizing the differ-
ence between each sample of the real data used for encoding and the
predicted state generated from the decoder. Based on the mutual
information between these states, the controllability of the model is
evaluated. In addition to torque/force, Pfrommer et al. [201] proposed
a ContactNets-based method, which learns the contact parameters
including friction without contact or force sensing.

5.2.3. Al enhanced assembly of deformable objects

Handling and assembly of deformable objects traditionally can
only be carried out manually whereas robot-based handling and
assembly is mostly limited to rigid objects. This is due to the hetero-
geneous geometrical and mechanical properties in combination with
non-linear dynamics that are challenging for the classical modeling
and control methods [167].

The potential of Al-based approaches to identify the control
parameters or learn the control policy without an explicit model, e. g.
by teleoperation or kinesthetic teaching, is high, as shown in [143]
for complex operations such as force controlled bimanual robotic
handling operations of deformable linear objects (DOL) and weaves.
In contrast to teleoperation or kinesthetic teaching, Wu et al. [275]
introduced an approach for learning of deformable object manipula-
tion without demonstration through model-free visual RL. In this
work, the pick and place policies are learned separately to avoid chal-
lenges such as reward assignment in RL. The developed solution first
trains place policy with uniformly random pick, and then selects the
optimal pick point that maximizes the value function in RL. In robot-
ics the research field of deformable object manipulation (DOM) is
steadily growing with new approaches often based on ML, especially
DRL but also artificial visuomotor learning [148].

In [167], Makris et al. gave a comprehensive overview about con-
trol methods for handling of deformable objects in assembly. The
overview includes different ML based methods such as SVM and
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Fig. 30. Neural network architecture for self-supervised multimodal representation learning of a robotic peg in hole insertion task [144].
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neural networks for deformation control, extraction of grasping
poses, pose estimation of grasping garment or the estimation of
deformations of soft objects with unknown mechanical properties. It
also refers to RL based methods for learning of manipulation of ropes,
clothes, and fluids.

5.3. Al based disassembly

Compared to the assembly of products, automated disassembly
represents a greater challenge due to the often-unknown internal
structure. Also, the evaluation of the form of separation of inter-com-
ponent connection can be more complex than the planning and
design of the connection itself. Vongbunyong et al. [256] introduced a
cognitive robotics-based system for disassembly of LCD screens. The
system is equipped with cognitive functions for reasoning, execution
monitoring, learning and revision. It stores relevant information from
successful disassembly processes of a product. The results show that
the system is flexible enough to deal with any product models with-
out prior information.

Physics-based simulation and search algorithms have also been
investigated for disassembly planning. One example is reported in
[247], where a progressive Breadth-First Search (BFS) is developed
and implemented in combination with a rigid-body simulator ensur-
ing axis-aligned torques and forces for each component. Specifically,
given assembled states of all components, the method iteratively
searches for an ordered sequence of disassembly paths that connect
the assembled state and a disassembled state for each component
subject to the precedence relationship. At each iteration, the devel-
oped method tries to disassemble each of the remaining components
until all are disassembled. The authors demonstrated the effective-
ness of the method by solving complex assemblies such as electric
motor in the simulated evaluation.

Other researchers have been investigating computer vision for
identification of components in the assembled part, which serves as
the basis for disassembly. These techniques include CNN [169] and its
variants such as you-only-look-once, YOLO [15] and region-based
CNN (RCNN) [63,281] that have shown capable of segmenting com-
ponents such as screwhead in the assembled part.

5.4. Al for symbiotic human robot collaboration

HRC is regarded as a means for increased flexibility of assembly
lines and as a contribution to the change from mass production to
mass customization [261]. Among various elements of HRC, the
adaptability of robots to the workspace as well as human worker
actions are fundamental to realize seamless HRC [132].

In recent years, Al-based approaches for enhancing robot’s percep-
tion of human action have been introduced. Wang et al. [266]
described a CNN-based approach for human action recognition, which
serves as the basis for human action prediction. Specifically, the
authors investigated transfer learning to resolve the limitation in
manufacturing data collection. The developed method has achieved
an action recognition accuracy of 96.6% in a car engine assembly sce-
nario. As a further step towards HRC, human trajectory prediction is
investigated in [288], which is critical to enable robot to deliver part/
tool to the desired location to realize collaboration. Specifically, trajec-
tory prediction is realized through an RNN. The novelty of the work
includes two functional units for parsing the evolutionary pattern of
human body joints and their coordination. In a car engine assembly
case study, the developed method allows robots to synchronize with
humans to realize pro-active part/tool pick-up and handover.

Wang et al. [262] presented a novel form of communication
between human and robot for HRC through analysis of brainwave
signals. In this approach brainwaves are first converted to time-fre-
quency images which serve as an input to a VGG16 (a variant of
CNN). The network then determines the human command through
predicting the subject, predicate, and object, such as “robot assembly
block” (Fig. 31). The predicted command is then translated to robot
action via function blocks. The feasibility of brainwave-based robot
control is demonstrated by car engine assembly. This example
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Fig. 31. VGG16 structure and adaption to time-frequency images [262].

underlines the high potential of Al for task-oriented robot program-
ming [134] as a future means for reduction of robot programming
effort in assembly. Recent studies of HRC have been summarized by
Semeraro et al. [225].

5.5. The future of Al-based assembly and disassembly automation

The ongoing research shows a high potential of Al for the
improvement of robot capabilities to support assembly and disas-
sembly. A potential future research direction is high payload applica-
tions, as current Al-based robotic research has restricted payload
limits. For these applications, further improvements of cognitive
robotic skills to ensure safe interaction between human and robot
are required. The steady increase of exoskeleton support systems in
assembly will also benefit from the development of Al methods for
improved detection of human intentions and states as well as the
adaptive control of robot kinematics (Fig. 32) [137]. As a result, the
adaptation of the support to the worker and the respective assembly
operation can be individually controlled in the sense of a symbiotic
connection between human and exoskeleton.
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Fig. 32. Soft robotic assist system PowerGrasp. Left: dual arm system, right: single arm
system with elbow and wrist/finger actuator [137].

A lot of promising research work in recent years has shown the
feasibility of Al-based approaches to enable robotic object handling
for assembly/disassembly. Their broad application in industrial sce-
narios will generally require an integration of intelligent planning
methods and a high in-process adaptivity of the robot. The increase
of cognitive skills of the robot such as tasks recognition and auto-
mated generation of control parameters also shows a high potential
for the reduction of effort for robot programming which so far is
regarded as one of the major obstacles for the application of robots.

6. Industrial case studies

The ultimate goal of Al in manufacturing is to have various Al
techniques developed successfully translated into realization of
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smart manufacturing. To this end, representative industry case stud-
ies are presented in this chapter.

6.1. Optimization of production scheduling

In general, manufacturing is about turning raw materials into prod-
ucts. For manufacturers that make different types of products, each
production line is often focused on producing one single type of prod-
uct at any time. The production scheduling problem is therefore to
determine how long each line should take one type of product before
switching to another type, with the objective of fulfilling the maxi-
mum number of orders while minimizing the cost. The scheduling
problem is usually constrained by factors such as the availability of
production lines, pending orders, predicted incoming orders, inventory
levels, and production rates of each product type. Additionally, the cost
of switching is a significant factor to consider, which can encompass
scenarios such as the production of off-grade products sold at reduced
margins and the associated downtime of production lines.

Similar to the research efforts described in Ch. 2, Dow Chemical,
which has 50+ plants worldwide with each manufacturing 20—-50
products, has developed a RL-based system named AlphaDow to
tackle challenges in production scheduling [118]. AlphaDow is based
on the actor-critic RL framework as shown in Fig. 33. At high-level, it
ingests the state of the current production schedule and determines
the schedule change that is needed for the subsequent operations
(such as product switching). In AlphaDow, the state consists of
manufacturing data (such as production rates of each product type),
customer demand (such as open orders, predicted orders), current
inventory levels, as well as maintenance schedule. The objective of
RL includes maximized on-time shipments, minimized inventory lev-
els, minimized off-grade products, etc. Additionally, the technique of
masking is incorporated at the RL output to suppress product switch-
ing that is incompatible with the production system.
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Fig. 33. Actor-critic RL for production scheduling, adapted from [118].

The training of RL is carried out using the method of population-
based bandits (PB2) [199], which is based on a multi- agent approach
that leverages GP-based Bayesian optimization to improve the search
efficiency of optimal RL hyperparameters. The outcome has shown
that the RL-based approach is able to reduce overall cost as compared
to heuristic rule-based scheduling method over a period of 12
months in a simplified product scenario consisting of 5 different
products. Dow Chemical expects to expand the method into all its
plants in the future.

6.2. Automated chip detection and removal for machining

Cutting metals often results in chips that are prone to accumulate
around the tool and workpieces, leading to degraded processing. As a
result, operators are traditionally required to remove the chips regu-
larly. The cleaning process takes away valuable machine operation
time and hinders automation. DMG Mori has developed “Al chip
removal”, an Al-based system for automated chip accumulation anal-
ysis and chip removal path generation as shown in Fig. 34 [50].

Chamber Imaging

Path Generation

Fig. 34. “Al chip removal” system from DMG Mori [50].

The “Al chip removal” system consists of four steps. First, the
machining chamber is equipped with two cameras to take high-reso-
lution images of the entire chamber. The cameras are enhanced with
water-repellent films and air blow to prevent chips and coolant from
adhering that can degrade the image quality. The images are then
analyzed using image recognition techniques from computer vision
to evaluate the location and level of accumulation of chips, resulting
in heatmaps that provide comprehensive information about chips in
the machining chamber.

The heatmaps serve as the basis for cleaning path generation,
which can be considered a process optimization problem similar to
those described in Ch. 3. Specifically, the necessity of coolant cleaning
and the amount of coolant discharging are computed based on the
chip locations as well as the level of accumulation. Finally, chip
removal is executed through chip flush nozzles with a wide movable
range based on the determined cleaning path. Compared with the
conventional fixed nozzle system that is limited when chip accumu-
lation pattern or workpiece type changes, the “Al chip removal” sys-
tem enables automatic angle adjustment that is adaptive to different
accumulation patterns and workpiece types, suited for machining of
high-mix products and contributing to improved operating rates of
machining system.

6.3. Natural language processing for machine maintenance

Various Al techniques have been presented for machine condition
monitoring, fault diagnosis and RUL prognosis in Ch. 4. These techni-
ques are mainly based on sensor data, such as time series and images.
However, this data does not contain information that is equally
important for predictive maintenance, such as describing what fixes
were implemented to resolve the discovered quality issues. The vast
majority of such information is buried in the text data, such as main-
tenance records.

Compared to time series and image data, text poses unique chal-
lenges for pattern recognition. For example, text may contain typos,
acronyms, abbreviations, non-standard concatenations, etc., making
it especially difficult for pattern recognition. As one of the early
works, researchers at Boeing have developed the PArts Name Discov-
ery Analytics method, or PANDA, that leverages linguistics domain
knowledge and natural language processing (NLP) to extract part
names from maintenance records as a first step towards effective
text pattern recognition [192] (Fig. 35).

The method starts by user entering a few basic “seed” part name
heads, such as fan, valve, relay, and switch. This is followed by the
construction of tree data structures, such that the first level nodes are
the entered part heads with the descendants being the tokens that
precede them in the dataset. The tree is then traversed in depth-first
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Fig. 35. PANDA method for part name extraction from noisy text [192].

manner as long as the minimum frequency criteria is satisfied, result-
ing in candidate part names.

These candidates are purified using a series of empirical filters
before generating training samples for ML training. Rather than using
the part names alone, their k-previous and k-next word tokens and
their part-of-speech tags are also used as features for ML, which pro-
vide each part name a context in the maintenance record. The train-
ing samples are then used to train sequence ML models that can
predict sequences of tokens, such as conditional random field (CRF)
or LSTM. The part name predicted from the trained ML model will
subsequently pass through a few human-in-the-loop steps for valida-
tion. In evaluation, PANDA scored an 81% accuracy for part name
extraction, demonstrating its capability of analyzing text data and
supporting maintenance activities.

More recently, the research of NLP has exploded with the devel-
opment of generative Al and large language models (LLMs). These
developments have rapidly transformed the state-of-the-art NLP and
opened new possibilities to advance smart manufacturing. These
new developments are described in Ch. 7.

6.4. Human activity recognition for assembly

As manufacturing is transitioning from mass production to mass
customization, it is becoming increasingly difficult for workers to
achieve a high level of assembly quality without making errors due
to the high variety of operations that they have to carry out. While
innovation in robot technologies as described in Ch. 5 can be lever-
aged to assist human workers, human workers are still needed in the
foreseeable future to handle operations that require flexibility and
dexterity, such as picking up small objects (e.g., screws) and installing
them in a constrained space. The increasing variety of operations also
makes it more difficult to assess worker’s performance and timely
detect error.

To tackle these challenges, the German Research Center for Artifi-
cial Intelligence (DFKI) and Hitachi have jointly developed Al-based
technology for human activity recognition of workers through multi-
modal sensor fusion, as shown in Fig. 36 [45].

The primary sensors consist of an eye-tracking glass and an arm-
band, generating gaze point and muscle activation signal as sensing
data, respectively. Human action recognition is carried out by train-
ing two deep neural networks to analyze gaze point for object recog-
nition (e.g., screw) and muscle activation signal for action recognition
(e.g., twist). Additionally, this system can also assist workers in iden-
tifying correct types of parts/tools during pick up (through gaze
point), assessing quality of assembly, such as tightening level of
screws, by analyzing the muscle activation signal, and evaluating
ergonomics by utilizing the human pose and the muscle activation
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Fig. 36. Flowchart of Al-based human activity recognition [45].

data (Fig. 37). DFKI and Hitachi have demonstrated the effectiveness
of the system in manufacturing operations and preventing human
error in assembly.
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Fig. 37. Object detection and screw tightening level prediction [44].

7. Challenges and future directions

Advancement in manufacturing has continued to drive the pursuit
for enhancing the performance, robustness, and trustworthiness of Al
methods to transform data into actionable insights. At the same time,
the continued surge in data acquired from manufacturing processes
and systems has presented new challenges for researchers and prac-
titioners to more efficiently harness the potential of Al in realizing
smart manufacturing. This section outlines ten recommendations for
future research.

7.1. Unsupervised learning for unlabeled data

Improving data availability is one of the central focuses in data-
driven Al. However, manual labeling of manufacturing data can be a
daunting task. Most of the reported research of Al in manufacturing
has been focused on supervised learning. For datasets used to
develop supervised learning algorithms, data labeling is either pre-
determined before data collection (such as pre-seeding structural
fault into machine) or carried out manually after data is collected.

To improve the flexibility and efficiency in data labeling, one of
the future research topics in Al in manufacturing can be unsupervised
learning. The focus is on characterizing patterns embedded in data
such that these patterns can be used for a variety of tasks and in com-
bination with supervised learning. The goal is to utilize unlabeled
data to not only develop data-driven Al models, but also improve the
models’ capability to generalize as compared to those developed
using a limited number of labeled data. Early work on unsupervised
learning for model generalization has demonstrated its effectiveness,
for example, for motor fault diagnosis in [215]. The authors
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demonstrated that the features learned from unlabeled data of two
motor conditions using unsupervised learning can be well general-
ized to additional motor conditions, as reflected by a 9.6% higher
diagnostic accuracy when compared to supervised method that is
trained using a limited amount of labeled data.

7.2. Integrating physics with Al

Integrating physical laws and principles with Al has long been
regarded as a crucial milestone to enable the utilization of physical
knowledge and information extracted from sensor data to effectively
solve manufacturing problems [80]. Promising results have been
achieved in applications such as AM part property prediction and
tool wear prognosis [246,259].

Nevertheless, Al architecture and physical components have
largely been treated independently from each other, with the output
from one side serving as the input to the other. Many Al models, par-
ticularly deep learning models, remain decoupled from physical
domain knowledge. A potential solution lies in designing Al struc-
tures that possess a physically interpretable behavior, allowing better
understanding and optimization of the properties of related Al mod-
els. An example of early effort in this direction is to replace the first
layer in a CNN that is randomly generated with a continuous wavelet
convolutional layer [153]. The resulting new layer mimics the behav-
ior of wavelet transform, which is grounded in mathematical princi-
ples and decomposes the input signal into the time and frequency
domains, thus ensuring physical interpretability of the layer output.
At the same time, parameters of the wavelet layer can be continually
optimized by the incoming data. To accelerate physics-Al integration
and enhance applications to manufacturing, further research on Al
model design that incorporates physical domain knowledge is war-
ranted.

7.3. Embedding safety constraints

While integrating physical knowledge with data-driven Al con-
tributes to improving the interpretability and physical consistency of
data-driven methods, for Al-based decision-making that involve criti-
cal operations such as real-time control of manufacturing processes
and collaborative robots, an extra layer of safety constraints is needed
to avoid catastrophic outcome.

As one of the main drivers for Al-based decision-making, research
using reinforcement learning has shown to be able to alleviate this
limitation through algorithm training in a simulated environment
before fine-tuning in real-world scenarios [52]. Still, such an
approach cannot eliminate the safety concerns entirely. A promising
future research direction is to combine Al-based decision-making
with model predictive control (MPC). MPC has seen significant suc-
cess in recent decades and has established itself as the primary
method for the systematic handling of safety constraints [88]. By
combining the constraint satisfaction capability of MPC with the
modeling capability of data-driven Al, integrated models can be
developed as shown in Fig. 38. An early work is the development of
MPC-based safety filter [258]. The main idea is to solve an optimiza-
tion problem to find the safety-compliant control signal that is the
closest to the output from the data-driven RL algorithms. This
method is suited for any data-driven decision-making algorithms
and has been validated in the research of self-driving vehicles.

7.4. Controlling false discovery rate and causal Al

One of the most promising aspects of Al for manufacturing is the
discovery of new knowledge. For example, for complex processes
such as AM [122] and semiconductor manufacturing [264], it is
essential to be able to screen a large number of process parameters
and determine which ones are the most influential, in order to effi-
ciently achieve process optimization.

The primary challenge for Al-based scientific discovery is to
ensure low false discovery rate (FDR), as high FDR can result in sig-
nificant waste of effort in the subsequent confirmatory study.
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Fig. 38. Integrated method combining constraint satisfaction from MPC and modeling
capability of data-driven Al, adapted from [88].

Common post-analysis techniques such as SHapley Additive exPlan-
ations (SHAP), while effective in quantifying the influence of process
parameters on the part property, are not able to distinguish correla-
tion from causation [74,164]. Various research efforts have been
made to tackle this challenge. For example, knockoff filter [13] has
been developed to control FDR for data-driven Al. The main idea of
knockoff filter is to construct dummy parameters that are designed
to mimic the structure found within the existing parameters while
exhibiting feature importance statistics in a way to allow accurate
FDR control. Another promising branch of research is the emerging
causal ML, which aims to combine causal inference framework with
data-driven methods to ensure validity of findings [165]. These stud-
ies should motivate manufacturing researchers to develop more rig-
orous and reliable procedures for continued scientific discovery
using Al

7.5. Extending NLP with embedding and transformer

While NLP has been investigated for manufacturing as described
in Ch. 6.3, the process of Al algorithm development generally lacks
systematic guidance and often requires empirical design. Handling
text has long been a challenge to Al due to the limitation in trans-
forming words into computable elements while retaining the seman-
tic structure. Breakthrough came in the 2010s through embedding
[174] and the transformer architecture [254].

The technique of embedding is characterized by the mapping of
words to their representations in a high-dimensional space [174]. To
establish domain-specific embedding, a key step involves training of
the mapping to maximize the consistency between an individual
word and its existing manufacturing context while minimizing the
consistency with non-existing contexts. This enables the implicit
encoding of word semantics. The result is that semantically similar
words exhibit similar representations.

Originally designed for language translation, the structure of
transformer features a set of self-attention that allows to capture and
quantify the association between words in the translated sentence
and the original sentence [254]. With sentences encoded using
embedding, transformer enables massive parallel computing to
achieve state-of-the-art performance in translation.

One promising future research direction for Al in manufacturing is
to utilize transformer (and its variant) as a backbone model on top of
which specific text-based analysis module can be extended. Early
progress includes information parsing from maintenance logs [33],
which confirms the potential of transformer as a powerful tool to
support the development of language-based Al methods and applica-
tions.

7.6. Learning from human demonstration
In the era of Industry 5.0, human workers will be back in the spot-

light as the concept of "human-in-the-loop" acknowledges the crucial
role that human expertise plays in manufacturing settings [186,278].
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The emphasis on leveraging the full potential of human expertise
provides an opportunity to develop skill transfer from human dem-
onstration to Al algorithms, with potential benefits including rapid
reprogramming of robot to learn new skills without having to rely on
large-scale data collections [149].

One of the promising directions is imitation learning, which ena-
bles a robot to acquire the ability in fine manipulation in assembly by
learning from human demonstration via teleoperation [294]. To
reduce the error compounding effect due to the difference between
the training and testing scenarios, the algorithm learns to implicitly
associate sensing images to the robot actions on an average basis
rather than aiming at reproducing actions at each instant. Early
results have shown that imitation learning through teleoperation can
achieve human-like capability for object manipulation and assembly
after only 10-min human demonstration. In a follow-up work, the
authors further installed the manipulator on a mobile platform, dras-
tically increasing the capability of this setup [66]. Teleoperation has
also been integrated with virtual reality (VR) to enable more flexible
human demonstration [291]. Future research of imitation learning in
manufacturing can also be focused on extending its application
beyond robotics to realize skill transfer from human to Al Addition-
ally, imitation learning can be integrated with curriculum learning,
which brings in external expertise into the learning process by
appropriate tasks sequencing and generation, and transferring skill
or knowledge learned for tasks with increased complexity [188].

7.7. Adopting generative Al

Generative Al itself has been around in manufacturing for a few
years as exemplified by research on GAN and its variants. However,
the capability to control the generated data at a more granular level
has always been challenging. The recent development of diffusion
models aims to tackle this challenge.

The diffusion model consists of the diffusion process and a reverse
process. The diffusion process progressively adds random noise to
the data, and the reverse process, usually built on neural networks,
learns to progressively remove the noise [163]. The method was orig-
inally developed for image synthesis where a sequence of well-
trained denoisers represent a mapping from a known distribution to
the distribution of images. New images can then be synthesized by
first sampling from the known distribution, before passing through
the denoiser sequence.

The diffusion model becomes significantly more impactful once it
is combined with language-based instruction that can be used to tai-
lor the synthesized data [235], with the training process of the deno-
iser including an additional input that is the language-based
instruction, which is usually in the form of an image caption. Once
the denoiser is trained, the diffusion model can synthesize realistic
images that are highly customized to the user instruction.

For manufacturing, generative Al can have broad applications
such as design and optimization of materials and processes. One
promising approach is self-supervised learning enabled by physics-
based simulation. The idea is to attach the simulation by ingesting
the output of the generative Al (e.g., design parameters) and verify its
effectiveness (e.g., whether desired property is achieved). Since gen-
erative Al can take the desired property as the input, the deviation
between the output of the simulation and the input of the generative
Al constitutes a self-supervised circle to guide the improvement of
generative Al Such ideas have been explored for design optimization
of material microstructure [255] and robotic gripper [82]. Research
on integrating language-based instruction into the self-supervised
learning framework is expected to further enhance the utility of gen-
erative Al in design and optimization in manufacturing.

7.8. From specialist to generalist model

In 2022, ChatGPT, an LLM from OpenAl, took the world by storm
[20,200]. At the heart of its popularity is what can be considered the
transition from the traditional specialist Al model to a new genera-
tion of generalist model. For a specialist model, the task itself is

implicitly determined when training data is collected [2]. Each model
is unique to the task it is trained on and does not have capability to
carry out new tasks. By contrast, a generalist model is trained with
task-related instruction and therefore can perform various tasks
[273]. However, building generalist LLMs for manufacturing can be
challenging on several fronts:

(1) Data quantity: A generalist model is currently considered possi-
ble only when building on top of a foundation model that is pre-
trained on massive data in an unsupervised manner. However,
such quantity of manufacturing data is yet to be acquired.

(2) Pre-training: Even though ChatGPT is pre-trained with unlabeled
data, its “Q&A” format allows formulation as predicting the next
word in the sentence and thereby, minimizing the requirement
of data labeling. Such formulation is, however, difficult to trans-
late to manufacturing, as manufacturing data generally does not
contain the desired output in themselves.

(3) Fine-tuning: The pre-trained model is also fine-tuned with
human feedback. For example, tens of thousands of instructions
are manually tuned and tens of thousands of ChatGPT’s answers
are evaluated by human experts to encourage more natural ones
[196]. The requirement of such scale of human feedback can be
beyond the capacity of any individual manufacturers.

Despite these challenges, building upon the existing generalist
models has shown to be highly performant in manufacturing applica-
tions such as robotics and maintenance. One early example is shown
in Fig. 39, where multi-modal instruction is utilized to control the
robot to carry out distinct tasks by fine-tuning a T5 LLM [106]. More
recently, researchers have found high efficiency of fine-tuning
ChatGPT using manufacturing domain knowledge (such as ontology)
to improve LLM’s understanding of hierarchical structure of machine
components, leading to accurate responses when it comes to deter-
mining components of interest and suggesting resolution based on
the issues presented in the maintenance log [265]. This example illus-
trates that LLMs can be adapted to specific manufacturing problems
by infusing domain-specific information into these models and using
them in the workflows where conversational problem-solving is
appropriate. Such cases could be the specification of system design or
planning problems, the diagnosis and maintenance of manufacturing
equipment, or supporting teamwork in HRC in assembly.

put @ into D LLM

then
------ »

Finally restore it into Instruction

its original container.

— ' J

Fig. 39. Multi-modal instruction for robotic action, 1-6 illustrate actions carried out
by robot to fulfill instruction [106].

Despite the initial success, LLMs' capability in approximate infor-
mation retrieval is often (mis)taken in having abilities of reasoning
and planning. However, LLMs are essentially language models
whereas manufacturing applications such as planning requires world
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models [252]. As a result, synergistic integration of LLMs and world
models would open a potential path to solving general planning
problems. Additionally, as LLM models become larger, training often
requires high computational power, leaving behind a large computa-
tional carbon footprint [224]. As a result, research should also con-
sider efficiency and energy consumption as model evaluation
metrics. To this end, researchers have started developing model eval-
uation metric that takes into account the computational footprint
[32]. As the emphasis on sustainability is essential for the future of
manufacturing, research on model energy efficiency in real-world
applications should be encouraged.

7.9. Developing Al-specific hardware

While most of the Al research in manufacturing has been solely
focused on software (i.e., algorithms), increasing demand for sensing,
data transmission, and processing speed and accuracy in Al imple-
mentation has brought hardware limitations into the spotlight,
including generic design of sensors and processing units that are not
optimized for Al algorithms. Dedicated Al hardware, in particular
Lisp machines, have provided a major boost to Al research before the
beginning of the second Al winter (see Fig. 1). Recognizing the state
of Al research, it is envisioned that advancing the state of design of
specific hardware for a new generation of Al algorithms can again
lead to tremendous benefits for Al in manufacturing. Three promising
directions are described as recommendations:

Al-enhanced metrology. In manufacturing, often the sensor is not
able to directly measure the variables of interest and only indirect
measurement can be made. Examples include measuring subsur-
face structure using electrical capacitance tomography [56], where
only capacitance between different nodes is obtained, and angle
measurement is based on angle-dependent second harmonic gen-
eration (SHG) spectrum [152]. In these cases, obtaining variables of
interest requires solving an inverse problem which is commonly
ill-posed. The advancement of Al methods provides a new way of
resolving this issue by establishing complex inverse mapping using
neural networks. Early work [152] has shown that neural networks
can solve the inverse problem in angle measurement based on the
SHG spectrum to achieve a sub-arcsecond level of accuracy and
resolution.

Sensing-Al codesign. The idea of codesign is to formulate sensing
mechanism as an optimization problem such that it can be optimized
in an end-to-end fashion together with the AI algorithm for
manufacturing tasks. This ensures that only the information that is
most relevant to the tasks is captured. While similar to Al-enhanced
metrology, the uniqueness of codesign is that sensing mechanism
can be tailored for each application. Sensing-Al codesign has already
been progressing in the medical field, where optimal MRI strategy is
needed to minimize scanning time while restoring images with the
highest quality. By exploring codesign, an 8x reduction of scanning
time has been achieved with minimal image quality degradation
[10]. The codesign approach can be extended to sensor-rich
manufacturing environment to further facilitate optimization of Al
methods.

Hardware-level Al computation. Modern Al algorithms such as
those based on deep neural networks require significant computation
even for inference. While advances in GPU have significantly
improved the computational efficiency, many applications in
manufacturing still struggle with Al computation using standard
GPU, such as real-time control in AM. To resolve this limitation,
researchers have started exploring hardware-level implementation
of Al computation. One example is to replace a digital convolution
layer in CNN with optical convolution by designing specific optical
elements and light pathway to mimic the convolution operation with
images [30,97] (Fig. 40). The result is an orders-of-magnitude reduc-
tion of computational time. By synergistically integrating hardware
design with an Al algorithm, the development of Al-specific hardware
is expected to significantly improve the efficiency and scalability of Al
in manufacturing.

DMD#1

Loaded inpyts

Loadey Kernes

DMD#2

l -/ Diffraction in DMD#2
(DMD: digital micromirror device)

Fig. 40. Setup for optical convolution operation [97].

7.10. Real-life introduction of Al

Despite Al support, many industrial projects in production have
yet to progress beyond the stage of prototype building. The lack of
adoption of Al techniques developed in the research community can
be attributed to various factors beyond technological and engineering
advancements. Successful integration of these advanced techniques
into industry requires appropriate scope setting and problem state-
ment, change management, development of a credible business case,
and last but not least, gaining the trust of potential users.

Often, there could be unrealistic expectations for Al-enhanced
projects arising from a lack of understanding of the constraints of Al
and/or a risk-averse, conservative position against adopting new
technologies that is generally perceived as black-box. In fact, it is
often difficult to forecast precisely what to expect from an Al applica-
tion. Gaining industry’s trust is essential. Towards this end, end users
need to be provided with interpretable, physically trustworthy pre-
dictions when Al is involved, and at the same time, an option for
humans to remain in control. They should also be able to change solu-
tions without violating the underlying constraints. If requested,
explanations need to be generated along with the solutions.

All this poses strict requirements towards interactive user interfa-
ces with a reasonable response time that is consistent with the
expectation for real-world operations. For domain experts on the fac-
tory floor, modelling limitations and assumptions underlying the Al
algorithms need to be clearly laid out and readily accessible for fine-
tuning. Based on the idea that even though “all models are wrong,
but some are useful” [24], declarative Al approaches that rest upon
explicit assumptions have an advantage over pragmatic purely data-
driven methods in this respect. XAl attempts to open the “black box”
models generated by data-driven techniques and make them amena-
ble to human interpretation and comprehension. XAl methods char-
acterize model accuracy, fairness and transparency, thereby
promoting trust in an Al system. XAl provides an answer to concerns
about the legal, security and compliance risks of using Al in an indus-
trial environment. This also facilitates making the distinction
between real domain constraints and inveterate past practices which
should be rather dispensed of. For management, it is essential to
build and maintain trust via, if possible, public success stories, and
new business models which mitigate risks and enable sharing of ben-
efits.

8. Conclusions

Artificial intelligence is destined to play a pivotal role in redefin-
ing the manufacturing landscape. This transformative shift will be
driven by key technologies, with the goal to enhance: (1) production
system design and planning, (2) process modeling, management, and
optimization, (3) quality assurance and maintenance, and (4) auto-
mated assembly and disassembly. This keynote has offered a compre-
hensive overview of the current state-of-the-art of Al in
manufacturing, illuminating its manufacturing-specific life cycle,
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from the initial design through process management to quality main-
tenance and automation.

Additionally, Al's place in manufacturing has been exemplified
through the exploration of industrial case studies, which showcase
practical implementations and benefits of Al in automation of
machining operation with computer vision, optimization of mainte-
nance with natural language processing, and human action recogni-
tion for process monitoring and inspection. Furthermore, specific
challenges arising from issues such as data validity in real-world
applications, the need for further integrating physics with Al meth-
ods, real-life concerns of Al including transparency, interpretability,
and trustworthiness, the necessity for the adoption of next-genera-
tion generative Al with granular control, and the development of
generalist Al promoting natural interaction with users are outlined,
with the proposed future directions intending to provide a roadmap
for researchers and practitioners.

With the rapidly evolving Al landscape, novel methodologies and
tools continue to emerge. Embracing these advancements will not
only allow manufacturers to harness the power of Al by capitalizing
on the wealth of information available in a data-rich environment
but also enable deeper understanding of the mechanisms underlying
manufacturing processes and systems to ultimately advance the sci-
ence base for smart manufacturing.
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