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Abstract

Objective — This quasi-experimental study examined the effect of repetitive finger stimulation
on brain activation in eight stroke and seven control subjects, measured by quantitative

electroencephalogram (qEEG).

Methods — We applied five minutes of two Hz repetitive bilateral index finger transcutaneous
electrical nerve stimulation (TENS), and compared differences pre and post TENS using qEEG

metrics delta/alpha ratio (DAR) and delta-theta/alpha-beta ratio (DTABR).

Results —Between group differences pre and post-stimulation were significantly different in the
DAR (z=-2.88 with p=0.0040) and the DTABR variables (z=-3.90 with p<.0001). Significant
decrease in the DAR and DTABR variables after the TENS was detected only in the stroke group

(DAR diff = 3.87 p=.0211), (DTABR diff = 1.19, p=.0074).

Conclusions — The decrease in qEEG metrics in the stroke group may indicate improved brain
activity following TENS. This finding may pave the way for a future novel therapy based on

TENS and qEEG measures to improve brain recovery after stroke.

Keywords: stroke, DAR, EEG, DTABR, sensory stimulation, finger stimulation

e What is Known
o DAR and DTABR serve as indicators of post-stroke impairment in the acute
phase.
e What is New
o Repetitive finger stimulation leads to changes in DTABR and DAR scores for

stroke survivors.
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Introduction

With a mean global lifetime risk of 24.9%, stroke ranks as the leading cause of significant
morbidity in the US, and the fifth leading cause of death.! Approximately 795,000 people
experience a new or recurrent stroke each year.! Stroke can cause a variety of impairments
including hemiparesis, hemisensory loss, cognitive dysfunction, altered speech, and altered oral-
motor function.! These impairments lead to functional disability including depression, social
isolation, and the inability to resume vocational pursuit. Three percent of males and two percent

of females living in the United States report long-term disability due to stroke.'

Up to 88% of acute and 75% of chronic stroke survivors experience upper extremity motor
impairment, and research suggests motor impairment is linked to sensory impairment.? Sensory
function has also been correlated to position-cortical coherence, a measure of motor function that
compares the degree of wrist perturbation with cortical activity.? Transcutaneous electrical nerve
stimulation (TENS), even without motor recruitment, is beneficial to motor return.* In a previous
study, subjects who received two hours of median and ulnar peripheral nerve stimulation at 1 Hz
to their involved hands experienced enhanced training effects as measured by the Jebsen-Taylor
Hand Function Test (JTHFT).® Finger stimulation intervention lasting 90 minutes, four days a
week, for six weeks has been associated with improvement in motor performance.!® Despite
these findings, the neural mechanisms and objective measurements of post-stroke sensory-motor

interaction remain unclear.

Electroencephalogram (EEG) is a non-invasive technology that measures electrical activity in the
brain using electrodes attached to the surface of the scalp. Quantitative EEG (qQEEG) is a revised
form of EEG that processes, transforms, and analyzes EEG signals using complex mathematical

algorithms.® Delta-alpha ratio (DAR) and Delta-theta/Alpha-beta ratio (DTABR) are established
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qEEG metrics representing ratios of the power of each frequency band on resting-state EEG
recordings. When measured in subjects 24 hours after stroke, brain activity in delta (1-3 Hz)
and/or theta (4-7 Hz) band(s) increases, and alpha (8-12 Hz) and/or beta (13-30 Hz) activity
decreases, leading to increased DAR and DTABR values.” These acute brain changes, as
measured by EEG readings, can persist during stroke recovery and have been associated with the
severity of disability when compared to the Modified Rankin Scale.” The existing literature
indicates elevated DTABR and DAR in acute stroke patients are useful measures of the degree of
post-stroke motor impairment.®® Other studies have explored a possible negative association
between DTABR, DAR, and cognition in a 90-day period after stroke.!” These results imply
resting-state EEG metrics contain unique information about motor impairment.!' MRI and CT
scans are useful for identifying structural characteristics of the lesion such as location and size,
which are clinically important for diagnosing stroke and identifying interventions for acute
stroke, but do not offer insight into the underlying mechanisms of recovery. The qEEG, similar
to other emerging imaging modalities such as functional MRI, attempts to explore the changes in
brain activity that occur during stroke recovery and therefore offers a different type of
information.'? In addition, qEEG can be used to enhance our understanding of the
pathophysiology underlying various neurological diseases in a way that routine assessments
based on gross observation may not. For example, the gEEG indices have been studied as a
diagnostic tool for Parkinson's disease and schizophrenia, and as a way of measuring responses
to therapy.!® This early phase study in stroke may pave the way for future longitudinal studies to

develop qEEG as a diagnostic tool for post-stroke recovery of brain activity.

The primary aim of this study was to determine the effect of repetitive finger stimulation on

brain activity using qEEG metrics. A secondary aim of this study was to explore the correlation
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between qEEG measures and motor function during stroke recovery. We hypothesized that
elevated DAR and DTABR have the potential to demonstrate the response to tactile stimulation
in patients in stroke recovery. We further hypothesized somatosensory input to distal peripheral
nerves would improve brain activity in the sensorimotor area as reflected by decreased

DAR/DTABR.

Methods

Participants

Eight stroke survivors (three female) with ages ranging from 57-75 years, and a mean time after
stroke of 3.333 years, and seven age-similar healthy controls (five female) with an age range
between 52-77 years participated in this study (Table 1). Study subjects had unilateral stroke
lesions confirmed by a physician through magnetic resonance imaging, computed tomography
scan, or radiological report at least three months prior to the study. Additional inclusion criteria
included unilateral hemiparesis with substantial upper extremity involvement, absence of
significant sensory deficits in the non-hemiplegic upper extremity, and the ability to provide
informed consent. Subjects were excluded from the study if they had motor or sensory
involvement in the non-affected limbs, severe atrophy or joint contracture in the hemiplegic
upper extremity, significant concurrent medical problems including cardiorespiratory
impairment, history of epilepsy or seizures, or brainstem lesions. The study was approved by the
internal review board (IRB) of the University of Oklahoma Health Sciences Center (IRB #
12550). All participants provided written informed consent to be included in the study. This
quasi-experimental study conforms to Transparent Reporting of Evaluations with Non-
randomized Designs (TREND) guidelines and reports the required information accordingly (see

Supplementary Checklist)
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Experimental Protocol

A licensed physical therapist administered the upper extremity portion of the Fugl-Meyer Motor
Assessment (FMA-UE)!*!> Research personnel recorded a resting-state, 3-minute, continuous
EEG for all participants using the BrainVision Recorder EEG System (Brain Vision LLC,
Morrisville, NC) before and after 2 Hz repetitive transcutaneous electrical nerve stimulation
(TENS) in the index finger. Previous studies indicate a 3-minute resting state EEG recording is
capable of predicting stroke recovery.'® Finger stimulation was also provided to the control
group to assess its floor effect.

Each participant was fitted with an EasyCap electrode cap (EASYCAP GmbH, Woerthsee-
Etterschlag, Germany) using 64 electrodes in the 10-10 system. We utilized a sampling rate of
1000 Hz to collect EEG data. We also used a 60 Hz notch filter to mitigate interference by the
electrical grid. During each recording, we asked participants to sit quietly, with hands and arms

supported, eyes open, and without excessive blinking.

Following the three-minute resting-state EEG recording, participants received repetitive index
finger TENS using a Digitimer DS7A Constant Current Stimulator (DigitimerLtd, Welwyn
Garden City, UK). Electrodes were placed with the positive and ground termini on the distal and
intermediate phalanges, respectively. The stimulus was delivered in the form of a square wave
with a duration of 200us with the current normalized to twice the sensory threshold for each
subject. Each trial lasted one minute and consisted of 120 individual stimuli delivered at 2 Hz.
Each hand received five trials interspersed with 30-second rests. The order of hand stimulation
was randomized across subjects. This design standardizes the intervention across subjects
regardless of the side of the lesion. The resting-state EEG recording was repeated post-

stimulation.
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Preprocessing

EEG data was preprocessed using the EEGLAB v. 2020.0 toolbox in MATLAB (EEGLAB v.
2020.0, Swartz Center for Computational Neuroscience).!” We applied a common average

reference and visually inspected the data for artifact removal.'8
DTABR and DAR

DTABR and DAR are expressed as follows:

5+6
DTABR = _ (1)

DAR =2 )

[0

where 0, 9, a and P represent the power for each respective frequency band, calculated using the
fast Fourier transform (FFT) in MATLAB."” DTABR and DAR were calculated for each subject
before and after finger stimulation. Only the sensorimotor channels were included in the

calculations (C1, C3, C5, CP1, CP3, C2, C4, C6, CP2, CP4, CP6)*° to test whether finger TENS

can improve brain activity at the sensorimotor area.

Statistical analysis

We calculated summary statistics for each continuous variable in the study. We utilized Proc
Univariate to check for a normal distribution within the means of the DAR and DTABR outcome
variables. We utilized generalized estimating equation analysis to determine within group and
between group mean differences in the outcome variables DAR and DTABR over time, and then
checked for interactions between group and time. We analyzed pre-post outcome assessment

differences using Generalized Estimating Equations (GEE) because this technique unbiased
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estimation of population-averaged regression coefficients despite possible misspecification of the
correlation structure. We then used Proc Glimmix to determine the correlation between upper
extremity Fugl-Meyer scores, and both DTABR and DAR measures. We plotted scalp
topographies, averaging the logarithmic power at each channel for the stroke group to
demonstrate the difference after finger stimulation for each frequency band. We completed all

statistical analyses using SAS 9.4 (Carey, NC) with an alpha = 0.05.

Results

Prior to stimulation, mean DAR values were significantly higher in the stroke group (12.00)
compared to the control group (4.60) (p=.0126) according to GEE. Following stimulation, while
mean DAR values were higher in the stroke group (8.13) compared to the control group (2.54),

the difference was not significant (p=.0627, see Figure 1).

Prior to stimulation, DTABR values were significantly higher in the stroke group (4.15)
compared to the control group (2.96) (p=.0028). Following stimulation, while mean DTABR
values in the stroke group (1.50) approached those of the control group (1.03) (p=.0085), they

were still significantly different (see Figure 1).

Within group differences. The stroke group mean DAR demonstrated a significant decrease
(mean change =3.87, p=.0211) after the repetitive TENS, while the control group DAR did not
(mean change=2.06, p=.1880). The stroke group mean DTABR demonstrated a significant
decrease after the intervention (mean change = - 1.19, p=.0074), while the control group DTABR

did not (mean change = - 0.47, p=.1978) (Table 2).

Between group differences. The mean difference in the DAR value between pre- and post-TENS

was significantly higher in the stroke group (3.87, 95% CI = 0.78, 6.96) compared to the control
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group (2.06, 95% CI = -1.33, 5.44) (p=.0040). The mean difference in the DTABR was also
significantly higher in the stroke group (1.19, 95% CI = 0.43, 1.94) compared to the control
group (0.47, 95% CI =-0.32, 1.26) (p=.0002). The lack of interaction in either variable between
group and time (DAR p=.3053, DTABR p=.0880) indicated the groups did not change

significantly differently over time (Table 2, 3, and 4).

Correlation between qEEG measures and motor impairment. Figure 2 shows the relation
between pre-stimulation qEEG ratios (DAR and DTABR) and Fugl-Meyer (FMA-UE) scores
(DAR: R°=0.376, P=0.106; DTABR: R’ = 0.4754, P = 0.0585). We did not observe a
statistically significant correlation between elevated DAR/DTABR values and the Fugl-Meyer

standardized assessment of movement.

Discussion

We found that somatosensory input to distal peripheral nerves significantly decreased
DAR/DTABR values in stroke subjects, but not in controls. The difference between pre vs. post
intervention on the control group was not statistically significant. The range of difference was
within the range of experimental error and individual differences. Additionally, decreases in
DAR/DTABR were significantly greater in stroke subjects compared to controls. However,
while the p-value suggested a difference in the impact of intervention between the stroke group
and the control groups, the lack of interaction between group and time indicates the groups did

not change at different rates over time.

DTABR and DAR values are potential tools for mapping stroke recovery, and measuring
changes following intervention, particularly because EEG is a noninvasive way to measure brain

activity. Previous studies have found lower DAR and DTABR values can differentiate the degree
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of severity following a stroke.?!”> While our data showed no correlation between FM-UE and
qEEG values, changes in qEEG values do suggest that the brain may be capable of
demonstrating neural plasticity in stroke recovery. The qEEG metrics could be advantageous in a
clinical setting and provide additional information, regarding the change of brain activity, to the

anatomical change in the brain reflected by MRI or CAT scans.

We did not observe a statistically significant correlation between elevated DAR/DTABR values
and the Fugl-Meyer standardized assessment of movement, an indicator of post-stroke movement
impairment (DAR: R?=0.38, P=0.11; DTABR: R’ = 0.48, P = 0.06); however, this may be a

reflection of the accuracy of the Fugl-Meyer measures rather than the EEG values.?*

Scalp topography illustrating the power spectrum density difference between pre- and post-
TENS for each frequency band demonstrates increased oscillatory activity in the beta and
gamma bands (Figure 3). Previous studies suggest that beta oscillations are associated with
voluntary movement.”>?° A study of functional connectivity in the brain before and during finger
extension shows that stroke subjects demonstrate decreased functional connectivity compared to
healthy controls, and these changes are especially prominent within higher frequency (beta and
gamma) bands.?> A similar study with older adults found that EEG functional connectivity in the
beta band is most predictive of motor performance.?® During an actual motor task, beta band
power tends to decrease relative to the resting state. In one study, changes in alpha and beta band
activity in the primary sensorimotor cortex were associated with the contralateral leg swing
phase during gait.”® Studies have documented that decreased power in the beta band is
associated with increased local excitability in the sensorimotor cortex during the swing phase
(movement), while increased power was found in the double-support or stance phase of gait.?’

Proprioceptive feedback during brain-computer interface (BCI) training also produces increased
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beta band power in the motor cortex.?” In our study, the beta band power was recorded during
rest, rather than with task activity, suggesting increased resting state beta band power may
correlate with improved motor function. This is an interesting finding compared to previous
studies which document changes in beta band power during a motor task and increased beta band
functional connectivity in the resting state. A potential next step might involve exploring the
usefulness of EEG in determining the effectiveness of interventions during stroke recovery.
Additional studies investigating the frequency of stimulation needed to achieve results would
also be helpful. Other studies investigating transcranial direct current stimulation (tDCS) in
motor recovery using treatment schedules of five or six stimulation sessions per week, with
sessions lasting ten to twenty-five minutes, demonstrated improvement.*® A similar frequency

might be used for finger stimulation to explore its clinical value as a part of our future work.
Limitations

Significant decreases in DTABR and DAR values after finger stimulation indicate the potential
for finger stimulation or other similar sensory input to alter the activation in the brain. This study
was exploratory and only investigated resting-state brain activity. Future studies could attempt to
correlate clinical sensory assessments pre and post-TENS with the brain changes documented
here. A power analysis using our effect size would ensure a sample size with sufficient power to
document change. The current single session study only allows the pre- vs. post-intervention

comparison. Future study will be conducted to explore the within-person variability over time.

One of the main goals of this study was to explore whether gEEG can be an indicator or
predictor for impairments in stroke. Therefore, we only assessed the correlation between pre-
intervention qEEG values and UE-FMA scores. The other goal of this study was to investigate

the changes in resting-state brain activity as reflected by qEEG after finger stimulation.
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Therefore, we did not collect post-intervention upper extremity Fugl-Meyer scores. We
acknowledge the limitation of using UE-FMA as not specific to hand function but rather
reflecting the overall impairment of the upper extremity. In the future, we will use more specific
hand function clinical measures such as the Wolf Motor Function Test (WMFT) and Action
Research Arm Test (ARAT) and include post-intervention assessment to explore the effects of

finger stimulation as a potential therapeutic intervention for improving motor function.

Conclusion

We observed decreased qEEG metrics following TENS repetitive finger stimulation. Studies
with a larger sample size are needed to confirm these findings. Additional research
demonstrating the usefulness of DTABR and DAR as chronic-phase indicators is needed to
develop qEEG biomarkers for stroke rehabilitation. The use of TENS as a supplemental
intervention for motor function recovery could be further assessed with gEEG biomarkers and

other clinical measures.
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Figure Legends

FIG. 1. Delta-Alpha Ratio (DAR) and Delta-Theta-Alpha-Beta Ratio (DTABR) in the stroke and
the control groups. R1: pre-TENS, R2: post-TENS, * indicates P value in the range of 0.01-0.05,
** indicates P value in the range of 0-0.01.

FIG. 2. Linear regression between Delta-Alpha Ratio (DAR, top) and Delta-Theta-Alpha-Beta
Ratio (DTABR, bottom) with Upper Extremity Fugl-Meyer scores.

FIG. 3. Difference in power after finger stimulation (R2 — R1). Positive values (an increase in
activation) are indicated by red, and negative values are indicated by blue ends of the spectrum.
The plots have been normalized and averaged across subjects with the lesion hemisphere
presented on the left.
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