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Q uantum computing is an emerging technology with the
potential to revolutionize computational studies in

chemistry and materials science. Unlike conventional classical
computers, quantum computers can harness the power of
quantum superpositions and entangled states to achieve a
quantum advantage in various challenging computational
chemistry problems. In recent years, there has been a growing
interest in exploring new ways to apply quantum computing to
chemistry. This is reflected in the increasing number of
manuscripts published in The Journal of Chemical Theory and
Computation (JCTC) on this topic.
This Virtual Issue on “Quantum Computing for Chemistry”

highlights recent articles published by The Journal of Chemical
Theory and Computation (JCTC) on this exciting and rapidly
evolving field. The selection of papers reflects the abundance of
open problems in quantum computing simulations for
chemistry. Most of these papers report new quantum
algorithms for predicting the electronic structure of mole-
cules1−7 and simulating chemical dynamics.8,9 For example, ref
1 presents a new quantum algorithm that produces wave
functions for quantum chemistry problems that are systemati-
cally improvable. Reference 6 introduces low-cost wave
functions based on coupled-cluster with paired double
excitations, which are optimal wave function ansaẗze for
variational quantum algorithms. Other papers in this Virtual
Issue seek to reduce quantum resource requirements using
Hamiltonian downfolding10−12 and encoding of opera-
tors.13−15 One paper presents an approach to estimating
quantum resources needed for practical applications of
quantum computation in chemistry.16 Another paper describes
the realization of quantum computers with molecular
electronics,17 and one paper introduces software for emulating
quantum algorithms for quantum chemistry.18 This impressive
selection of papers highlights only a small fraction of the
cutting-edge research at the interface of theoretical chemistry
and quantum computing. Quantum computing has also been
applied to solve challenging classical problems that arise in
chemistry, such as molecular docking and molecular search in
databases. We hope the highlighted articles will inspire
researchers to further develop this field, as the JCTC is
committed to publishing highly impactful manuscripts in this
broad area of chemical theory and quantum computation.
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