Computers & Industrial Engineering 196 (2024) 110404

Contents lists available at ScienceDirect

Computers &
Industrial
Engineering

Computers & Industrial Engineering

ELSEVIER

journal homepage: www.elsevier.com/locate/caie

L))

Check for

An online dynamic dual bin packing with lookahead approach for | el
server-to-cell assignment in computer server industry

Mahmud Parvez *, Pratik J. Parikh ™", Faisal Aglan®, Md. Noor-E-Alam "

@ Department of Industrial Engineering, University of Louisville, Louisville, KY, United States
Y Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States

ARTICLE INFO ABSTRACT

Keywords:

Dynamic assignment
Dual bin packing
Lookahead

Optimization

Genetic algorithm
Computer server industry

Efficient production scheduling in computer server industry remains a critical challenge. This challenge becomes
particularly acute during the testing phase, where servers are assigned for testing in a modular environment
consisting of test banks. Unique characteristics such as online arrival of servers known only over a short time
window, skewed arrival pattern, power and cooling compatibility constraints, and dynamic assignment
complicate decision making, a situation we observed at our industry partner’s site, which often leads to missing
due dates and loss of customer trust. Motivated by this challenge, we introduce an Online Dynamic Dual Bin
Packing with Lookahead problem and propose an integer linear programming model that maximizes the number
of assigned servers. To efficiently solve this model, we decompose the problem into a set of subproblems for a
given lookahead length. A ‘2-phase’ computational framework is proposed that seamlessly integrates mathe-
matical programming with genetic algorithm. Based on realistic data available from a server manufacturer, our
findings suggest that solutions are sensitive to (i) the length of the lookahead window, (ii) testing capacity and

server arrival pattern, (iii) test processing time requirement, and (iv) physical allocation of servers.

1. Introduction

The emergence of cutting-edge electronic devices with shorter life-
spans, combined with advancements in information technology (IT), has
spurred the rise in demand for electronic products. The U.S. electronics
manufacturing landscape is diverse and encompasses numerous industry
leaders such as IBM, Asus, Dell, HP, Huawei, LG, Microsoft, Ricoh, and
Xerox. The environment is characterized by aggressive introduction
cycles of new products, extreme demand skewness, and significant en-
gineering changes (Aqglan, Lam, & Ramakrishnan, 2014; Saha, 2015).
These businesses, however, face challenges such as supply-demand
imbalance, insufficient quality management practices, large inventories,
poor spare parts information, and insufficient automation (Kurilova-
Palisaitiene, Sundin, & Poksinska, 2018; Nasr, Haselkorn, Parnel, Burn,
& Hanson, 2017).

1.1. Motivation

This work is motivated by our interaction with a leading computer
server manufacturer in the US. The company uses a Configure-To-Order
(CTO) environment, as illustrated in Fig. 1. The CTO production setup is

a hybrid approach combining elements from both build-to-plan and
assemble-to-order systems, often referred to as the fabrication-
fulfillment strategy. During the fabrication phase, components or sub-
assemblies undergo production, testing, and assembly based on fore-
casted production plans. These components remain in storage until a
specific customer order arrives. In the fulfillment phase, assembly of the
final products is carried out based on real-time customer demands.

In such an environment, the assembly of servers involves compo-
nents that are not only expensive, but also requires comprehensive
testing processes to meet essential quality and reliability standards
before dispatch. The production lines in this setting rely on multi-tiered
suppliers, both internal and external, often characterized by extended
lead times for supplies (Aqlan et al., 2014).

1.2. Online decision-making for fulfillment test

The fulfillment test is the key final step for testing the assembled
servers to ensure the highest quality before shipping. During this step,
computer servers undergo rigorous testing within a modular test envi-
ronment that consists of test banks, each comprising numerous test cells,
to ensure their quality, performance, and reliability. The set of the

* Corresponding author at: Department of Industrial Engineering, 132 Eastern Parkway, University of Louisville, Louisville, KY 40292, United States.

E-mail address: pratik.parikh@louisville.edu (P.J. Parikh).

https://doi.org/10.1016/j.cie.2024.110404

Received 3 April 2024; Received in revised form 16 July 2024; Accepted 17 July 2024

Available online 20 July 2024

0360-8352/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

mailto:pratik.parikh@louisville.edu
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2024.110404
https://doi.org/10.1016/j.cie.2024.110404

M. Parvez et al.

testing facility at our partners site includes four test banks, each with
fourteen dedicated test cells for testing the servers (Fig. 2). Each test
bank has two cooling units, and test cells have specific voltage and
cooling capabilities.

In a CTO setting, this testing phase is characterized by significant
skewness in server (customer order) arrival with certainty over a short
time window, strict power and cooling compatibility requirements, and
the availability of test cells (resources) after a server departs upon test
completion. These factors significantly impact the overall
manufacturing workflow, leading to a higher number of unfinished
servers. These unique characteristics of the fulfillment test underscore
the need for precise and careful scheduling of servers to the test cells, a
critical step in streamlining the manufacturing process and meeting the
increasing demand for servers.

At our partner organization’s facility, the decision-making process is
manual and online as information about server arrival is only available
with certainty over a short time-window during the planning horizon.
Whenever a new server arrives, the decision makers at this facility
immediately allocate it to a current (or soon-to-be-available) test cell.
Such a myopic approach makes it challenging for ensuring that no
servers are unassigned or partially finished by the server due date, and
the test cells are effectively utilized. Unassigned or unfinished servers
can lead to missing due dates and customer trust. While missing
customer orders is not allowed at our partner’s facility, even if it were to
be outsourced to a third-party with enough capacity, then it would result
in delays or financial loss.

Addressing the shortcomings of this current myopic decision-making
approach, characterized by the first-come-first-serve assignment of
servers to cells, we recognize that such practices may not be necessary if
information about server arrivals was known with certainty, even over a
few future periods. We define this foresight as ‘lookahead’” and explore it
in tandem with the online dynamic assignment of servers to cells.

1.3. Research questions and contributions

Realizing that this problem of online decision making is not unique
to just this server manufacturing company, but to many others with a
similar testing setup, we attempt to address the following generic
research questions:

e How to optimally assign servers to test cells in a given lookahead
window to minimize the number of unfinished servers?

e How does the choice of lookahead window affect solution quality?

e How do other system parameters such as server arrival pattern,
server size, and system capacity affect solution quality?

Through these questions, we will add the following contributions to
scientific literature in this area. First, we propose an Online Dynamic
Dual Bin Packing with Lookahead (OD-DBP-LA) problem, which

Computers & Industrial Engineering 196 (2024) 110404

generalizes the Online Bin Packing with Lookahead (OBP-LA) problem
proposed by Dunke et al. (2016). The generalization is along three
directions:

o the time lookahead (LA) concept, where the lookahead is determined
by the length of a time-window during which the server arrival is
known with certainty;

e the dual bin packing (DBP) concept, where the aim is to maximize
the number of items that can be packed in available bins (Assmann,
Johnson, Kleitman, & Leung, 1984; Labbé et al., 1995; Peeters &
Degraeve, 2006; Parikh et al., 2008; Vijayakumar, Parikh, Scott,
Barnes, & Gallimore, 2013); in our problem, servers are treated as
items, test cells as bins, and our aim is to maximize the number of
assigned servers; and

e the dynamic concept (D), where servers depart the test cells after
they are processed, which frees up the cells for another assignment; i.
e., this is not a static assignment (Coffman, Garey, & Johnson, 1983).

Second, we propose an integer linear programming model for the
OD-DBP-LA that (i) prioritizes servers with earlier due dates, (ii) in-
corporates system-related and demand-related constraints, and (iii) ac-
counts for sequential and dynamic aspects of the decision-making
problem capturing the interdependencies and the cascading effects of
decisions throughout the time-horizon. The objective is to minimize the
number of unfinished servers, a key requirement in server
manufacturing industry. Third, given the challenges of solving industry-
scaled problems with large problem sizes and longer lookahead win-
dows, traditional solvers fail to provide optimal solutions within a
reasonable timeframe. This is a significant issue since decision-makers
have limited time for model execution and decision-making. To
address this, we propose a ‘2-phase’ computational framework for effi-
ciently solving each deterministic, lookahead window-specific sub-
problems. The proposed ‘2-phase’ computational framework seamlessly
integrates a metaheuristic based on genetic algorithm (GA) framework
with mathematical programming approach.

Our comprehensive numerical analysis shows the efficacy of the
proposed ‘2-phase’ computational framework, particularly in solving
large-scale instances with longer lookahead windows. Furthermore, the
analysis reveals a notable sensitivity of solution quality to the length of
the lookahead window, with longer windows consistently yield fewer
unfinished servers compared to shorter ones. Moreover, the variability
in test processing times and the proportion of servers requiring two test
cells (2TC) significantly influence the characteristics of unfinished
servers, especially as the lookahead window shortens. Alongside un-
finished servers, we also calculated, post-hoc, a secondary measure; the
number of tardy servers. The server arrival pattern exhibits a significant
impact on the performance metrics: right-skewed arrival patterns tend
to result in fewer unfinished but more tardy servers, while left-skewed
arrivals lead to more unfinished and fewer tardy servers. Additionally,

Fulfillment
Upgrade
Assembly
L Inventory -
Fabrication—— Stocking
MCM Point
(Components) K
W Server

¢

Build-to-plan (push production strategy) 4‘> <

Make-to-order (pull production strategy)

.

Fig. 1. Overview of the server manufacturing system: Fabrication and Fulfillment process.

2

M. Parvez et al.

Computers & Industrial Engineering 196 (2024) 110404

Test Cell-01 Test Cell-02 Test Cell-03 Test Cell-04 Test Cell-05 Test Cell-06 Test Cell-07
TEST BANK-1
Test Cell-08 Test Cell-09 Test Cell-10 Test Cell-11 Test Cell-12 Test Cell-13 Test Cell-14
"L“!:"li Test Cell-01 Test Cell-02 Test Cell-03 | Test Cell-04 || TestCell-05 | Test Cell-06 Test Cell-07
nit-
TEST BANK-2
Test Cell-08 Test Cell-09 Test Cell-10 Test Cell-11 Test Cell-12 Test Cell-13 Test Cell-14
Test Cell-01 Test Cell-02 Test Cell-03 Test Cell-04 Test Cell-05 Test Cell-06 Test Cell-07
TEST BANK-3
Cooling
Unit-2 Test Cell-08 Test Cell-09 Test Cell-10 Test Cell-11 Test Cell-12 Test Cell-13 Test Cell-14
Test Cell-01 Test Cell-02 Test Cell-03 Test Cell-04 Test Cell-05 Test Cell-06 Test Cell-07

TEST BANK-4

Cooling

Unit-2 Test Cell-08 Test Cell-09

Test Cell-10

Test Cell-11 Test Cell-12 Test Cell-13 Test Cell-14

Fig. 2. Testing facility layout with four test banks, each containing fourteen test cells (yellow for idle, white for active) and two cooling units (gray circles).

we observed that tighter due dates increase the number of tardy servers.

The subsequent sections of this article are organized as follows.
Section 2 provides a concise review of relevant literature. Section 3
presents our proposed mathematical model, while Section 4 summarizes
the proposed solution methodology. Section 5 details our experimental
setup and derives insights from the results. Finally, Section 6 summa-
rizes our findings and provides recommendations for potential future
extensions.

2. Literature review

The online resource allocation in manufacturing is vast and includes
aspects like online scheduling, dynamic scheduling, online generalized
assignment, dynamic assignment, and online packing problems
(Balseiro, Kroer, & Kumar, 2023; Bukkur, Shukri, & Elmardi, 2018;
Herrmann, 2006; Jaillet & Lu, 2011; Lu, 2013; Pinedo, 2012). In the
following sections, we summarize research pertinent to our work, spe-
cifically around online scheduling and bin packing variants.

Research in online scheduling in manufacturing covers a range of
topics, focusing on resource allocation, reactive scheduling, and opti-
mization techniques. Gupta and Palis (2001) explored online real-time
preemptive scheduling on multiple machines, developing algorithms
to adhere to deadlines and optimize resource utilization. Mezmaz et al.
(2011) introduced a parallel bi-objective hybrid metaheuristic for
energy-efficient scheduling in cloud computing, aiming to balance en-
ergy consumption and performance. Cheng et al. (2013) proposed an
energy-aware resource service scheduling approach for cloud
manufacturing systems, integrating utility models to optimize resource
use and minimize energy consumption, demonstrating enhanced effi-
ciency and resource sharing in cloud-based decentralized
manufacturing. Zhang, Wang, Liu, and Qian (2017) proposed a game
theory-based strategy for real-time shop floor scheduling in cloud
manufacturing, using a novel allocation strategy and dynamic optimi-
zation method to enhance processing efficiency. Kocsi, Matonya,

Pusztai, and Budai (2020) designed a real-time decision-support system
for scheduling in high-mix low-volume production within Industry 4.0,
blending mathematical optimization with a genetic algorithm to analyze
production risks and optimize scheduling. Wang, Wang, and Xu (2022)
focused on simultaneous production and maintenance scheduling in
refinery processes, optimizing scheduling decisions with attention to
risk management and resource availability.

Online bin packing has been extensively studied in the literature due
to its practical applications in various domains, including logistics,
resource allocation, and scheduling. Table 1 summarizes the literature
related to online bin packing and its variants. Seiden (2002) introduced
a framework for analyzing online bin packing algorithms, enhancing
algorithmic efficiency. Bohm, Sgall, van Stee, and Vesely (2017) focused
on online bin stretching with three bins, applicable in server upgrades
and shipment checking. Gupta and Radovanovic (2020) proposed pri-
mal-dual algorithms for stochastic bin packing, with applications in
shipping logistics and appointment scheduling. Bodis and Balogh (2019)
explored an online variant with scenarios, applicable in diverse pro-
duction lines. Angelopoulos, Kamali, and Shadkami (2023) addressed
variants of the online bin packing problem with erroneous predictions,
proposing efficient solutions for dynamic resource management tasks
like virtual machine placement for server consolidation and memory
allocation in data centers. Similarly, Zhao, She, Zhu, Yang, and Xu
(2021) also focused on a variant of the online bin packing problem,
specifically with 3D constraints, offering solutions applicable in logis-
tics, manufacturing, and warehousing. Zhao, Zhu, Xu, Huang, and Xu
(2022) conceptualized the online 3D bin packing problem as a Markov
Decision Process, solved using deep reinforcement learning and high-
lighted its application in autonomous packing for logistics hubs and
manufacturing plants. Boyar et al. (2001a, 2001b) and Epstein and
Favrholdt (2003) examined online dual bin packing and its variants,
focusing on resource allocation and optimization in online
environments.

Dynamic bin packing, and its online variants, address the dynamic

M. Parvez et al.

Table 1
Summary of the research studies on online bin packing and its variants.

Computers & Industrial Engineering 196 (2024) 110404

Online bin Dynamic bin Online dynamic Online dual bin ~ Dynamic dual Online bin packing Online dual bin packing ~ Online dynamic dual bin
packing packing bin packing packing bin packing with lookahead with lookahead packing with lookahead
O-BP D-BP OD-BP O-DBP D-DBP O-BP-LA O-DBP-LA OD-DBP-LA

Reference Variant Research focus and methodology Solution approach Application

O- D- OoD- O- D- O- OD- OD- Analysis ~ Optimization =~ Machine Exact Algorithm domain
BP BP BP DBP DBP BP- BP- DBP- Learning
LA LA LA

Zhao et al. (2021), Zhao X X X General mfg,
et al. (2022) Logistics

Ojha et al. (2021) X X X X Automated

packaging systems

Boyar et al. (2021) X X X

Seiden (2002), Renault X X X General mfg.,Data
et al. (2015), Bohm center operations,
et al. (2017), Gupta IT
and Radovanovic
(2020), Angelopoulos
et al. (2023), Bodis and
Balogh (2019)

Dunke and Nickel X X X X General mfg.,Data
(2016), Polyakovskiy center operations
and M’Hallah (2018)

Boyar et al. (2016), X X X Logistics,
Angelopoulos et al. Transportation
(2018), Dunke and
Nickel (2021)

Li et al. (2014), X X X Data center
Buchbinder et al. operations,
(2021), Murhekar et al. General mfg.,
(2023) Cloud computing

service

Burcea (2014), Berndt X X X General mfg.,
et al. (2020), Cloud computing
Guruganesh (2018) service

Boyar et al. (2001a, X X X General mfg., data
2001b), Epstein and center operations
Favrholdt (2003)

Runarsson et al. (1996) X X General mfg.

Our contribution X X X X Server mfg.

arrival and departure of items in real-world applications like warehouse
and computer storage. Burcea (2014) focused on minimizing bin usage
over time without item migration, while Berndt, Jansen, and Klein
(2020) introduced a method to balance bin numbers and migration
factors, adding a technique for small items. Li, Tang, and Cai (2014)
applied these concepts to cloud resource allocation in cloud gaming
through the MinTotal DBP algorithm. Guruganesh (2018) developed a
dynamic bin packing algorithm with recourse for real-time applications
in cloud computing, and Buchbinder, Fairstein, Mellou, Menache, and
Naor (2021) enhanced this approach using machine learning for Virtual
Machine assignments. Murhekar, Arbour, Mai, and Rao (2023) explored
MinUsageTime DBP for allocating multi-dimensional, resource-inten-
sive online jobs to cloud servers, analyzing algorithm performance with
synthetic data.

Literature on using the lookahead to access the future information in
online bin packing has received growing attention recently. Dunke and
Nickel (2016) included online bin packing with lookahead, demon-
strating its positive impact on reducing bin usage. Renault, Rosén, and
van Stee (2015) and Boyar, Kamali, Larsen, and Lopez-Ortiz (2016)
explored online bin packing algorithms with advice, where the online
algorithm receives bits of future information with each input, enabling
decisions based on both current and future information. Boyar, Favr-
holdt, Kamali, and Larsen (2021) further investigated the bin covering
problem within the advice framework, revealing that optimal solutions
depend on specific advice sizes, with larger sizes offering marginal
performance improvements. Polyakovskiy and M’'Hallah (2018) intro-
duced a hybrid approach to the two-dimensional bin packing problem
with lookahead, integrating heuristics and lookahead strategies,

adaptable to various complex packing challenges. Angelopoulos, Diirr,
Kamali, Renault, and Rosén (2018) explored the advice complexity of
online bin packing, showing how small advice enhances algorithm
performance, with simpler algorithms converging quicker than complex
ones. Ojha et al. (2021) addressed the online 3D bin packing problem in
automated robotic sorting centers, introducing algorithms and a
framework to optimize bin packing heuristics using lookahead infor-
mation, supported by comparative analyses with synthetic and industry
data. Dunke and Nickel (2021) presented an exact analysis of online bin
packing algorithms with and without lookahead, highlighting the ad-
vantages of lookahead and analyzing performance ratios in specific
scenarios, providing detailed insights into the impact of lookahead on
these algorithms.

Our review of the above literature reveals the following gaps that
limit us from addressing the questions we raised in Section 1:

- There are limited studies in online and dynamic assignment
considering effect of changes in lookahead window on the resulting
assignment and decision-making process.

Existing literature on online bin packing approaches does not
consider simultaneously various real-world requirements such as
server-test cell compatibility, test cell requirement, variable capacity
of testing facility, and due date priority to maximize the number of
servers tested.

To address these gaps, we propose an optimization model and a
decomposition algorithm for the OD-DBP-LA, which we detail below.

M. Parvez et al.

3. Proposed optimization approach

The primary purpose of our proposed model for OD-DBP-LA is to
facilitate online and dynamic assignment during the fulfilment test
process in computer server industry. The input elements are revealed
based on the time-lookahead approach and tested based on the parallel-
random-order processing approach, enabling the concurrent processing
of multiple elements and flexibility to process any available unfinished
input at any time.

As indicated in Section 1, we take a dual bin packing approach
whereby the test cells are bins, each preassigned with fixed attributes
such as voltage and available time during the planning horizon. Further,
servers are ’items,” each characterized by distinct voltage, number of
test cells it requires for testing, and processing time needs. To elaborate,
customer orders (servers) have varying voltage (high or low) and cool-
ing (air or water) requirements, which are tested on dedicated test cells
with specific capabilities. Each test cell has either high or low voltage
power supply, or both. Additionally, while all test cells have air-cooling
capacity, not all of them have water cooling capacity. The primary
objective of the model is to minimize the number of unfinished servers,
while ensuring that servers with earlier due dates are prioritized.

With this background, we now present an integer linear program-
ming model for this OD-DBP-LA problem under the following
assumptions:

Each test cell can handle one server at a time.

A server can be assigned to either one or two adjacent test cells
simultaneously (i.e., 2TC) based on the number of cell requirements.
No preemption is allowed; i.e., once a server is assigned to a test cell,
it cannot be removed until its testing is completed.

A test cell is immediately made available after testing of an assigned
server is complete.

All time-related aspects (arrival, processing, and due) are known
with certainty at the beginning of a lookahead window and are
deterministic.

e There are no delays due to breakdowns, failures, machine setup,
unavailability of operators, changeovers, or any other reasons.

The model parameters and decision variables are listed in Tables 2
and 3, respectively, where parameters represented in bold denote a bi-
nary parameter matrix. Before we introduce the mathematical model,
we first discuss the lookahead concept and the penalty function.

3.1. Lookahead window

The lookahead window (w) is defined as the number of future periods
for which information is available to the decision-makers with certainty.
In our model, it can be calculated as the difference between the start (S,,)
and end (E,) time of the window for a specific window m, inclusively
(W = En —Sm + 1), where w < L and L is the total length of the planning
horizon. Therefore, at any given time t (where t=3S,,), the decision-
makers have access to all available information within the window [t,
t+w), where E, =t+w-1. Note that these lookahead windows are
sequential and non-overlapping. Fig. 3 presents an illustration of three
such lookahead windows, each of length w. All servers, both input and
output, are represented by dropdown arrows, with different colors used
to distinguish between them. Input servers are shown in light gray, while
output servers are color-coded to represent their status; i.e., green for
servers fully assigned, blue for partially assigned servers, and orange for
those that remain unassigned. Servers that are partially assigned or
unassigned in one window (such as window 1) are carried over to sub-
sequent window(s) while the initial assignment position of partially
assigned servers remains fixed until their testing is finished. These
carried-over servers, along with any new arrivals, are treated as inputs
for the next window (window 2), and this process is repeated for the rest
of the windows until the end of the planning horizon.

Computers & Industrial Engineering 196 (2024) 110404

Table 2
Parameters in the model.

Notation Definition

1 Set of test banks; i e I

J Set of test cells; jeJ

K Set of servers; k e K

L Length of the planning horizon
w Length of a lookahead window
M

Set of lookahead window(s); m e M = {1, 2, e, "5‘ }

Sm Start time of a lookahead window =(m—1) w+1
En End time of a lookahead window =min{mw, L }
Tm Set of discretized time period(s) for a specific window; t € T, and
[Tm| =w
Dy 1, if server k requires 2 test cells (2TC); 0, otherwise
Hg 1, if server k requires high voltage supply; 0, otherwise.
Lg 1, if server k requires low voltage supply; 0, otherwise
Wk 1, if server k requires water cooling; 0, otherwise
Hy 1, if j™ test cell under i test bank has high voltage power supply
available; 0, otherwise
Ly 1, if j™ test cell under i™ test bank has low voltage supply available; 0,
otherwise
w; 1, if j‘h test cell under i test bank has water cooling unit available; 0,
otherwise
Ape 1, if server k is available at time t; 0, otherwise
Py Test processing time required for each server k
Cx Cost associated with each server k
Ax First period when a server k is available, Ax= min{t, Vt € Tp, | Age=1};
vk € K
N Set of blocking instances for other testing processes (e.g., fabrication) in
the same testing facility; ne N
in Blocked test bank due to other testing processes
Jn Blocked test cell due to other testing processes
STy, ET, Blocking start and end times for other testing processes
Z Set of instances for carried-over servers with remaining time; z € Z
0, Carried-over server with remaining time
B, Bank holding carried-over server for the remaining time
C, Test cell(s) holding carried-over server for the remaining time
R, Remaining time for carried-over server
N; Test bank(s) entirely unavailable throughout the planning horizon
N; Test cell(s) entirely unavailable throughout the planning horizon
Table 3
Decision variables in the model.
Notation Definition
Xrije 1 if a server k is assigned to j™ test cell under i™ test bank at time t; 0,
otherwise
Yk 1 if a server k is assigned; 0, otherwise
by 1 if a server k is assigned to j™ test cell under i™ test bank; 0, otherwise
Qe 1 if a server k is starting at a particular time t; 0, otherwise
Okij, Cke auxiliary binary variables, {0,1}
fi Time-period when server k is first assigned in window w

3.2. The dynamic penalty function

The optimization model minimizes the number of unfinished servers
where we prioritize unassigned servers (in each lookahead window)
based on the earliest due date. To do so, we use a dynamic penalty cost
function, Cx = (q—i)¥, where Ci represents the cost assigns to a
particular server, q is the total number of servers for a specific window, i
indicates the server’s position (index) in the sorted list, and ¥ is a very
large number. That is, the cost function assigns a higher cost to servers
with earliest due date and lower cost to those with latest due date in a
linear manner. When multiple servers share the same due date, the
server that arrived earlier receives a higher cost. Servers with identical
arrival and due dates are assigned costs based on their numerical order.
Table 4 provides an example of 5 servers with their arrival and due
times, and Table 5 provides their cost assignment for the sorted server
list, considering ¥ =100,000. Note that the assignment of servers
partially assigned in the previous window remains unchanged in the
current window being solved.

M. Parvez et al.

New Arrivals

28388 BLT

Finished Processing /

333890

New Arrivals

Computers & Industrial Engineering 196 (2024) 110404

. 2

Window 1

Window 2

Window 3

I A

—

t t=w

I
Iy

t=2w t=L

Fig. 3. Illustration of the lookahead concept with server assignment (light gray for input, green for fully assigned, blue for partially assigned, and orange

for unassigned).

3.3. Proposed model

Given these preliminaries, we now present our proposed mathe-
matical model for OD-DBP-LA.

Minimize Zka(l — Yk)

Subject to:

o X<l VieLjedteT, ¢h)
Zizjxkiﬁ <1+Dy VkeK teTy,)
D X <1+Dg VieLkeKteT, ()
33 xge=0; Vie N.Viel @
thizjxkiﬁAh =P(1+D)yx; VkeK (5)
SIS S =05 Vkek ®)
DD bui=1+D VkeK @
o < byj; Vk € K, i €1, jeJ\{max(J)} 8)
ok < b1y Vk € K, i € I, j € J\{max(J)})]
Okj > big + brigar) — 1; Vk € K,i € I, j € J\{max(J)} (10
S oy = D vk € K an
Xije <bij; Vk e Kiel,jeJ te Ty 12)
Y aw=1; VkeK (13)
fi=> taw; VkeK a4
Z’f:;ckt:o; VkeK, te Ty meMfi#1, a =1 (15)

Zmi"{fk“’k’l'“}ch =min{Py, En—fi+1}; VkeK,te TpmeMag=1

t=fi
1e)

Table 4
Server arrivals for a window.

€

Server (k) Arrival Time (Days) Due Date (Days)

1 1 5

2 2 5

3 2 2

4 3 6

5 4 2

Table 5

Cost of sorted servers.
Sorted servers (k) Cost (Ck)
3 500,000
5 400,000
1 300,000
2 200,000
4 100,000

S Ge=0; VkeK teTmmeMfi+P<Enau=1 (17)

t=fi+Py,
X < ¢y VkeKieljeld teTy (18)
Hy—Hi—x4e> —1; VkeKiecljeld te Ty (19)
Li—Li—xqe > —1; VkeKieljelJteTy (20)
Wi —Wi—xie > —1; VkeKieljed teT, 21
S) X =0; Yk €K, ¥neN,meM 22)

=S+ min{w, Ry}—1

Xo,p,c,c = Min{w,R;};Vz € Z,meM (23)

t=Sm
X €{0,1}; VkeK, i€el,jed teT, (24)
ye€{0,1}; VkeK (25)
by € {0,1}; VkeK,iel jelJ (26)
a, €{0,1}; VkeK,teT, (27)
oy €{0,1}; VkeK,iel,jeJ (28)
e €{0,1}; VkeK, te T, (29)
fk€Z"NTyw; VkeK (30)

Note that this model needs to be solved iteratively for all the win-
dows, m € M, for a specific length of lookahead window, w. So, if we
define the set of lookahead window lengths as W = {1,2,3,, L},
where L is the total length of the time horizon, then each specific
lookahead window is represented as LA,, . Here LA,, , represent the m™
window for a lookahead (LA) window of length w.

Constraints (1) enforce the capacity limit for test cells at a specific
time, stating that each test cell in a test bank can handle only one server
at a time. Constraints (2) and (3) enforce assignment restrictions for
servers, ensuring that they cannot be assigned to more than two test cells
in a test bank at a time. Constraints (4) restrict the assignment of servers
to test cells that are completely unavailable throughout the entire
planning horizon. Constraints (5) specify a limit on the testing time for
servers in test cells. It ensures that if a server k is available at a given time
t and assigned to 1 test cell (1TC) or 2 test cells (2TC) inside a test bank,
the total time it spends in that test cell will not exceed the server’s total
testing time requirement (Py). Constraints (6) restrict server assignment

M. Parvez et al.

before arrival. It specifies that for any server k, it cannot be assigned to
any test cell(s) j under any test bank i when it’s not available in the
system. Some servers require 2TC that must be adjacent to each other
and located under a single bank. Constraints (7) ensure that a server k
will be assigned to 1TC if Dy= 0 or 2TC if Dy = 1, regardless of the time.
Constraints (8)-(12) specify that if a server requires 2TC (Dy = 1), those
cells should be adjacent to each other under one bank i. It is important to
note that to maintain this adjacency requirement, we exclude the last
test cell denoted as max(J), within a test bank from consideration, as it is
not feasible to assign a server (that requires 2TC) to the last cell in a test
bank.

Constraints (13)-(16) ensure the assignment of servers to test cells for
contiguous testing times. Constraints (13) ensure that each server k is
assigned exactly one start time (a,, = 1) and Constraints (14) utilize the
variable f; to capture that specific start time for each server k. Con-
straints (15) ensure that a server cannot be assigned before its specified
starting time of a window, except for servers that commence at the
beginning of the window. Constraints (16) enforce that a server cannot
be assigned any time before its assignment, aligning the processing
duration with either the server’s testing duration or the remaining time
in the window. Constraints (17) ensure that no server is assigned beyond
the time period required for its testing completion, specifically focusing
on scenarios when the testing finishes within the current window.
Constraints (18) ensure that if a server cannot be assigned to any time-
period, it cannot be assigned to any bank or cell for the entire planning
horizon. Constraints (19)-(21) govern the assignment based on voltage
(high and low) and water-cooling compatibility. These constraints
ensure that if a server requires high voltage (Hy), it cannot be assigned to
a cell without high voltage (H; = 0), and similarly for low voltage (L)
and water cooling (Wy).

Constraints (22) capture the unavailability of test cells that are
occupied with other processes (e.g., fabrication) and gradually become
available as the time window progresses. This ensures that no servers
will be assigned to these preoccupied test cells until they become
available. Constraints (23) govern the carried-over assignment of servers
O, across lookahead windows based on their remaining testing time R,.
It specifies that any server with remaining testing time must be assigned
to the same test bank and cell to complete their testing. Constraints (24)-
(30) define bound on decision variables.

Note that our proposed ILP model, a variant of the classical bin
packing problem, is NP-hard (Parikh & Meller, 2008; Vijayakumar et al.,
2013). Consequently, solving realistic problem instances can be chal-
lenging. Our preliminary experiments indicated that state-of-the-art
commercial software like CPLEX, although effective for smaller in-
stances, faces difficulties with longer lookahead windows in large sce-
narios. Specifically, in industry-scale instances involving 400 + servers
with a minimum of 20 % 2TC requirements for longer lookahead win-
dows, CPLEX fails to deliver optimal solutions even with more than 24 h
of runtime, making it an impractical choice for solving the proposed
model. To overcome the limitations of solving the model with a com-
mercial solver, we propose a ‘2-phase’ computational framework that
integrates mathematical programming with a genetic algorithm (GA).
We will now discuss our proposed approach in detail.

4. A 2-phase computational framework

Recall that there are two types of servers, those requiring a single test
cell (1TC) and those requiring two (2TC), which must also be adjacent to
each other. The presence of constraints related to 2TC servers compli-
cate the problem. Fig. 4 demonstrates the relationship between runtime
and solution gap with the percentage of servers requiring 2TC when
solving a problem with 300 servers and 54 test cells for lookahead
window length of 10 with a state-of-the-art commercial solver. This
challenge is more pronounced in larger instances with longer lookahead
windows.

To mitigate this complexity in the OD-DBP-LA, we propose a two-

Computers & Industrial Engineering 196 (2024) 110404

phase computational framework that seamlessly integrates mathemat-
ical programming with GA for a given lookahead window m:

Phase 1: This phase uses GA to solve the original problem of
assigning all servers (with 1TC and 2TC requirements); recall, the
original problem cannot be solved efficiently using a commercial
solver. With GA having full visibility into all servers, it provides an
efficient first-cut solution to the original problem.

Algorithm 1: ‘2-phase’ Computational Framework

Define the parameters W, Hy, Lj, L
For w € W do:

Calculate the lookahead window set, M = {1,2, 3, ..., ’%}}

Form € M do:
Define parameters Sm, Em, Tin,K, Pk, Ck, Wk, Hk, Lk, D, Rz, Ake
IF (K! = Null):
Solution_Phasel = GA(W,m,Sm, En, Tm,K, Px,Ck, W, Hy, L, Dy, Rz, Axe, Wy, Hyj,
Ly)
Solution_Phase2 = MathModel(w,m, Sy, En, T, K, Px,Ck, Wk, Hx, Lx,Dx, Rz, Agt,
Wi, Hj, Lyj, Solution_Phasel)
Extract data from Solution_Phase2
Calculate the assigned time for each server and pass servers with the remaining
time and those unassigned to the next iteration or window (m)
Save the data
ELSE:
Continue to the window (m)
EndFor
EndFor

- Phase 2: In this phase, the 2TC assignments from the solution in
Phase 1 are fixed and then the reduced problem is resolved using a
commercial solver. The idea is to leverage the mathematical pro-
gramming approach to derive an optimal solution to the 1TC prob-
lem by removing 2TC decisions from consideration (as they were
already assigned in Phase 1). This combination of metaheuristic and
mathematical programming approach, solved in a sequential
manner, allowed us to achieve high-quality solutions in a reasonable
amount of time (see Section 5). Algorithm 1 provides a pseudo-code
of the proposed ‘2-phase’ computational framework. More details
about the proposed framework are available in the Appendix. We
now discuss the two phases in detail.

4.1. Phase 1 (genetic algorithm)

Our GA implementation in Phase 1 to assign both server types (1TC

—o—Run time Average gap across the windows

250 T T 25

240 + -
=230 4 e ,//m 12 2
2220 ¢ ' / 2o
,é.. 210 + / + 15 2 ?;
3200 1 e 2
E 190 1 110 3PE
g 180 T e ;33“ z
& 170 + T3 é

160 +

150 + b + 0

10 20 30
2TC (%)

Fig. 4. Run time and gap with varying 2TC.

M. Parvez et al.

and 2TC) in a specific lookahead window is detailed below.

4.1.1. Solution representation

Each chromosome in the population is represented as a vector of
vectors and matrices, where each gene represents a server. The primary
structure of the chromosome is a vector, which is further divided into |I|
equal-sized vectors, where each vector (¢;) corresponds to a test bank i.
Each vector (¢;) for a bank i is further subdivided into |J| vectors of equal
size, where each vector (¢;) corresponds to a test cell j, arranged in
sequence. The sequence of servers within the resulting matrix (¢;) for a
test cell j represents the operational sequence for that cell j under bank i.
The server listed first in matrix (¢;) will be processed first and will
occupy cell j from the earliest available time up to its processing time,
calculated based on the length of lookahead window (w) and its arrival
time. If a server cannot be processed, then it will be considered
unassigned.

Fig. 5 represents the nested vector-matrix structure of the chromo-
some for a system, where (i) I ={1,2}, (ii) J ={1,2,3}, (iii) K = {Gy, G,
..., G12); i.e., 12 servers, and (iv) window length w =5. Note that we
only illustrate the example for bank, i =2 to illustrate the subsequent
structure after dividing chromosome into sub-sections correspond to
each bank i.

In the final step (Time allocation for each element in @), within
vector ¢,,, gene Gg appears first and occupies test cell 2 (under bank 2)
for time 1, 2 and 3; the 3 time periods correspond to the processing time
for server Gg. Subsequently, gene Gyg is processed occupying test cell 2
under test bank 2 for time 4 and 5.

4.1.2. GA cycle
The GA cycle consists of the following stages, culminating in a set of
termination criteria:

. Initial Population: Generate initial population (chromosomes) and
evaluate the population.

. Selection: Parents for mating are selected using a parent selection
operator.

. Crossover: Mating occurs after parent selection. Parents are com-
bined into one or multiple offspring by the crossover operator.

Computers & Industrial Engineering 196 (2024) 110404

. Mutation: After offspring are created in the crossover stage, muta-
tion is carried out using a mutation operator with a predefined
probability. This is done to increase diversity in the population.

. Evaluation: The evaluation is done in two steps. Initially, the val-
idity of each chromosome in the initial population is checked to
ensure they satisfy the constraints. Subsequently, the objective or
fitness value is calculated for valid solutions.

. Survival: Chromosomes are sorted based on their fitness value.

. Termination: GA will terminate when any of the following termi-
nation criterion are met: (i) after 4,000 generations or (ii) no
improvement for 100 consecutive generations.

If the above termination criteria are not met, then the process will go
back to step 2 (selection).

4.2. Phase 2 (mathematical programming)

In Phase 2, we utilize the mathematical programming approach to
find the optimal solution for 1TC servers. To do this, using the solution
from Phase 1, we first fix the assignment of servers requiring 2TC for the
time they were assigned in Phase 1 by adding the following constraint to
the original mathematical model:

Z:k:pk (Xkijet + XuiGi+1)e) = 2(7k —pr +1); Vk €G, 31
where G C K is assigned in Phase 1. Each server k requiring 2TC should
be allocated to its designated test bank i, and corresponding cell or cells
(jx) from the start (p,) to end (7) time period it was assigned in Phase 1.
Fig. 16 in the Appendix summarizes the key steps for our ‘2-phase’
computational framework.

Second, to ensure that unassigned servers with 2TC in Phase 1 are
excluded, we introduce an additional constraint in the model. This
constraint ensures that such servers not assigned in Phase 1 are also not
considered in the current solution of Phase 2.

X =0; VkeUieljed teTy, (32)
where U C K with 2TC in Phase 1, k € U. If a server requiring 2TC is not
assigned in Phase 1, it should not be considered for assignment in any

(G]G

G;

Gy [Gs |

Gg | Gy | Gg [Gy [Gyo | Gy [Gia |
A

P1
[Gi]G |G [G:]Gs]G]

@2
[G]G G [Gu[Gy[Gn]

G,

P1

Gs

Gs

P2

G

Gene G, | G | G | Gy Gy, Gy
Processing | 1 3 2 2 3
time - -
Time
Cells | 1 9 3 4 5
G 16 16 TG V i=2,and
¢ $a1 G 1} vimi23
@25 | Go| Go | Gy Gy | Guo
For j=2, i=2 @23 | Gu| Gu | G | G| Gi

Fig. 5. Solution encoding.

M. Parvez et al.

test bank or cell(s) during the same lookahead window in Phase 2 either.
The resulting mathematical model (original model plus Constraints (31)
and (32)), is solved using a commercial solver to optimize the assign-
ment of servers requiring single cells.

In Phase 1, GA was implemented using the Pymoo optimization
framework, while in Phase 2, we utilized DOcplex, a native Python
optimization library. The algorithms for both stages were coded in Py-
thon version 3.9 and run on a Dell 17-10700 CPU @ 2.90 GHz desktop
with 32 GB of RAM to find the solutions.

5. Computational study

We now present our computational study starting with data gener-
ation and GA parameter tuning. We then evaluate our solution
approach, conduct a sensitivity analysis, and conclude with key insights.

5.1. Data generation and GA parameter tuning

The testing facility that we select is similar to our industry partner’s
site as illustrated in Fig. 2. We consider a time horizon of 13 weeks,
corresponding to 1 quarter in a year. Fig. 7 depicts the availability of test
cells for testing considering that these cells are often allocated to other
process in the manufacturing facility during the earlier part of the
planning horizon.

Because the data available from our industry partner was limited, we
extrapolated this to generate a synthetic dataset. Two general types of
arrival patterns are typically encountered in a server manufacturing
industry: ’left-skewed’ and ’right-skewed.” As the names suggest, the
‘right-skewed’ pattern would have most servers arriving during the
earlier part of the planning horizon, which is opposite of a ‘left-skewed’
pattern where most servers arrive during the last part. We also consid-
ered ‘uniformly loaded’ arrival patterns for comparison purposes. Fig. 6
illustrates the monthly distribution of server arrivals for all three pat-
terns using an example dataset of 400 arrivals over the entire planning
horizon. The colors green, orange, and purple represent months 1, 2, and
3, respectively. Table 6 summarizes the % of servers in each month for
each arrival pattern.

In terms of GA, we employed a systematic approach to determine the
appropriate values for the GA’s parameters. This involved an iterative
tuning process using smaller instances of the original problem. This
method allowed us to fine-tune the parameters effectively, and ensure
robust and reproducible results. Specifically, in terms of population size,
to balance genetic diversity and computational efficiency, we tested
various population sizes. A population size of 100 provided the best
balance, ensuring sufficient diversity without excessive computational
cost. Sizes of 25 and 50 produced poor results, while 150, 200, and 300
offered no significant improvement (and resulted in higher computation
time) over a size of 100.

For crossover and mutation parameters, we tested various crossover
operators (SBX, single-point, two-point, order) and mutation operators
(bit-flip, inversion, polynomial) with different rates, along with dynamic
adjustments to both crossover and mutation rates. The combination of
SBX with a 0.5 crossover rate and polynomial mutation with a 0.2 rate
comparatively provided the best results, ensuring high-quality solutions
and preventing the algorithm from getting stuck in local optima without
significantly increasing computation time.

5.2. Performance of the 2-phase computational framework

For the performance evaluation of the ‘2-phase’ computational
framework, we analyzed ten problem instances within an existing
testing facility, utilizing two distinct server arrival patterns: uniform and
right-skewed. We deliberately avoided the left-skewed pattern, as
similar problem instances in this category are comparatively easier to
solve and often yield almost identical outcomes. In the uniform pattern,
we examined three server sizes—200, 300, and 400—while for the right-

Computers & Industrial Engineering 196 (2024) 110404

400

350 ..'.',-n.

300 Right-skeed Arrival it
. ight-skeye ivals "
5250 L e
= |
) 200 ' 1! Unif rmly Loaded Arrivals
14 |
5} ! _'L,
§) 150 ! . : Left-skeWed Arrivals

N [}
100 o))
, First month arrivals
50 ot Second month arrivals
0 Third month arrivals
1 6 11 16 21 26 31 36 41 46 51 56 61 66
Time (days)

Fig. 6. Monthly distribution of server arrivals for right-skewed, uniformly
loaded, and left-skewed patterns.

N
(=

100

401 90

—e— Fabrication Testing
Fulfillment Testing

o
(=]
~J
(=]

1S
o
3

Fabrication Testing Availability (%)
Fulfillment Testing Availability (%)

01 e e o e e o

1 2 3 45 6 7 8 91011 1213
Week

N
(=

Fig. 7. Availability of test cells for fabrication and fulfillment testing
over 13 weeks.

skewed pattern, we focused on sizes 300 and 400, since the outcomes for
left-skewed 200 were nearly the same as those for uniform 200. For each
server size in both arrival patterns, we consistently applied a specific
percentage of 2TC, reflecting the proportion of servers that require two
compatible cells to be located adjacently. A uniform 10-day lookahead
window length was maintained in all instances. This approach,
emphasizing more challenging scenarios, allowed for an equitable and
comprehensive comparison of the framework’s performance across
diverse scenarios. We set a CPU-time limit of 2h for each lookahead
window when solving the problem with the CPLEX optimization solver.

Table 6 presents our computational experiments that compare the
solution quality and runtime of the ‘2-phase’ computational framework
and ‘Exact approach’ (per Section 3) for several problem instances. In
the table, ‘% Difference’ column represents the difference between the
objective’ i.e., % of the unfinished servers in the Exact approach and (%)
of unfinished servers in ‘2-phase’ computational framework. The posi-
tive value represents that the ‘2-phase’ computational framework’ out-
performed the Exact approach by producing fewer unfinished servers
than the Exact approach. The number in a bracket of the ‘Exact’ column
of ‘Solution Quality’ represents the gap between the best solution and
the lower bound when the solver reached the time limit.

These computational experiments confirm that our ‘2-phase’
computational framework can achieve high quality solutions (often,
optimal) across different scenarios in a relatively quick time; therefore,
we utilized this approach for further experiments to generate insights.

M. Parvez et al.

Table 6
Performance evaluation of our proposed ‘2-phase’ computational framework.

Computers & Industrial Engineering 196 (2024) 110404

Experiments Solution quality (number of unfinished servers) Run time (minutes)
Arrival pattern Demand % of 2TC Lookahead window (w) Exact 2-phase % Diff Exact 2-phase
size
Uniform 200 10% 10 0 0 0 0.05 2.38
30% 10 0 0 0 0.79 2.52
300 10% 10 0 0 0 0.39 4.09
30% 10 0 0 0 216.58 4.45
400 10% 10 0 0 0 325.86 92.09
30% 10 140 (39.0 %) 0 35% 840.00 190.85
Right-skewed 300 10 % 10 0 0 0 244.66 63.42
30% 10 0 0 0 610.78 50.39
400 10 % 10 165 (41.2 %) 0 41.25% 840.00 287.23
30% 10 281 (32.1 %) 0 71.25% 840.00 276.62

5.3. Experimental setting

Preliminary experiments indicated that solutions to the OD-DBP-LA
problem were sensitive to system parameters; e.g., physical server
allocation (1TC and 2TC), arrival patterns, server size, length of the
lookahead window, and capacity utilization of the testing facility.
Table 7 summarizes these factors, their levels, and values, with bold
entries in the last column indicating the base case. The bounds on the
input parameters were determined based on our interactions with the
partnering industry.

Note that, while the primary objective in our model is the minimize
the number of unfinished servers, since our model prioritizes servers
with earlier due dates, we also calculated the number of tardy servers
(servers completed beyond their due date) as a post-hoc measure.

5.4. Experimental insights

Insight 1: The effect of longer lookahead on reduction in unfinished
servers diminishes at higher testing capacity and smaller server size.

In our approach, we assess the frequency of decision-making by
examining the effects of 1-, 5-, and 10-day lookahead windows on out-
comes at different testing capacities. Intuitively, a 10-day window
would lead to a reduction in unfinished servers given increase in the
window of certainty in terms of server arrivals, as shown in Fig. 8. This
figure illustrates the impact on the number of unfinished servers (y-axis)
with increasing test capacity (one, two, and four banks). The x-axis
represents a combination of 2TC (%) and lookahead window length,
with different colors representing the outcomes for the same 2TC (%).
Also note that as testing capacity increases from 1 to 4 banks, the benefit

Table 7
Summary of the parameters, levels, and values in the sensitivity analysis.

Parameters Level Values

Monthly (M) server arrival Right-skewed M1: 50 %, M2: 33.33 %,

pattern (3 months) M3: 16.67 %
Uniformly- M1: 33.33 %, M2: 33.33 %,
loaded M3: 33.33%
Left-skewed M1: 16.67 %, M2: 33.33 %,
M3: 50 %
2TC requirement Low, Medium, 10 %, 20 %, 30 %
High
Server size Low, Medium, 200, 300, 400
High
Lookahead window length Short, Medium, 1,5,10
(days) Long
Number of available banks (and Low, Moderate, 1 (14 cells), 2 (28 cells), 4
test cells) Full (54 cells)’
Due date flexibility (Average Tight, Loose 19, 26

lead time)

1 While each test bank typically has 14 cells, Test Bank 4 has 2 unusable cells,
reducing the total available cells across all four banks to 54.

of a longer lookahead window in terms of lower unfinished servers
decreases.

Additionally, the effect of server size on the number of unfinished
servers was analyzed. Fig. 9 illustrates the impact on the number of
unfinished servers (y-axis) with decreasing server size (400, 300, and
200). The x-axis represents a combination of 2TC (%) and lookahead
window length, with different colors representing the outcomes for the
same 2TC (%). Also note that as server sizes decreases from 400 to 200
servers, the benefit of a longer lookahead window in terms of lower
unfinished servers decreases. Smaller server sizes inherently require less
capacity, enabling existing resources to efficiently handle demand
variability and allocate resources effectively, thus reducing reliance on
extended lookahead for optimizing outcomes.

Insight 2: As the lookahead window shortens, the variability in test pro-
cessing times between servers and the proportion of servers requiring 2TC
significantly affect the characteristics of unfinished servers.

We investigated the characteristics of unfinished servers and
observed how they are affected by varying lookahead window lengths,
leading to two main findings. First, with longer lookahead windows,
servers requiring longer test processing times are more likely to be un-
finished compared to those requiring shorter test processing times. In
contrast, scenarios with shorter lookahead windows, and servers with
shorter processing times are more frequently unfinished. This is because
servers with shorter test processing times are often prioritized over
servers with longer processing times (if due dates are comparable) to
minimize the total number of unfinished servers when the lookahead
window is longer. Notice the difference between the % of servers with
longest processing time in the input data and output solution in Fig. 10;
i.e., 27 % vs. 31.22 % for lookahead window of 10.

However, when the lookahead window length is decreased to less
than the processing times of most servers, the capability to distinguish
between servers based on their processing times diminishes. This results

300
‘\.\. —e | © Bkl
250 B Bank 2
A Bank 4
200 | 10%2TC
| 20%2TC
B 30%2TC

Number of Unfinished Servers
7
(=]

o / “’
$7 g ST ST g ST 8T ¢
2TC(%) and Lookahead Window (days)

Fig. 8. Impact of test capacity on unfinished servers across 2TC (%) and
lookahead windows.

10

M. Parvez et al.

> 200 Ord
.\'\- ® 3000rd
250 W 400 Ord
ﬁ | 10%2T
E B 20%2T
g 200 W 30%:2T
|
2 150 *—e
=)
E 100
Y—H——x
He———e—X
504 Ye——d——X
N 9 Q N k) S S) S
\s\u ; \s“‘u P \s“\ "§\e) “§‘a ; ,§‘°\/ -’&ﬂ\a ; "5\9 . "‘9"\”\

2TC(%) and Lookahead Window (days)

Fig. 9. Impact of server size on unfinished servers across 2TC (%) and look-
ahead windows.

in a random selection of servers, which can increase the fraction of
unfinished servers having longer processing times compared to the prior
case when the lookahead is longer (i.e., 27 % vs. 12.5 % for lookahead
window of 1). In contrast, Fig. 11 shows the opposite effect for servers
with shorter processing times. For lookahead window of 1 day, a larger
percentage of these servers remain unfinished (26.51 %), whereas at a
lookahead window of 10 days, the unfinished rate decreases to 14.34 %,
which is below the original proportion in the input data (25.25 %). With
a lookahead window length of 5 days for both long and short test pro-
cessing times, the unfinished rate aligns more closely with their repre-
sentation in the data.

Second, we observe that with shorter lookahead windows, the pro-
portion of unfinished servers requiring two test cells (2TC) tends to be
significantly higher compared to their initial representation in the
original data. Fig. 12 illustrates this trend, showing that with a 1-day
lookahead window, the percentage of unfinished servers requiring
2TC is approximately 43.6 %. This percentage decreases slightly to
42.5% with a 5-day window, and further to 41.4% with a 10-day
window. Notably, all these percentages are significantly higher than
the actual presence of 2TC in the input data, which is around 30 %. A
longer lookahead window, specifically for 10 days, provides a more
comprehensive view of both 1TC and 2TC requirements over an
extended period. This allows for effectively reserving resources for up-
coming 2TC servers without compromising 1TC servers, while main-
taining due date priority. Such an approach leads to a more balanced
allocation of cells to both types of servers, thereby reducing the number
of unfinished 2TC servers.

In contrast, a 1-day lookahead window may result in an allocation
based on limited foresight. This limitation hinders the algorithm’s

= Input Data (%) = Output Unfinished (%)

31.22

Percentage (%)

10

5
Lookahead window length (Days)

Fig. 10. Comparison of actual and unfinished percentages of long processing
time servers across lookahead windows.

11

Computers & Industrial Engineering 196 (2024) 110404

= Input Data (%) = Output Unfinished (%)

— [
w =

S

Percentage (%)

1 5

Lookahead window length (Days)

Fig. 11. Comparison of actual and unfinished percentages of short processing
time servers across lookahead windows.

ability to strategically reserve and align adjacent cells for 2TC assign-
ments, resulting in a higher likelihood of a greater number of 2TC
servers remaining unfinished compared to scenarios with longer look-
ahead windows.

Insight 3: Right-skewed arrival results in fewer unfinished servers, but
more tardy servers; the effect is reversed with left-skewed arrival.

Fig. 13 demonstrates the variation in unfinished and tardy servers
across different arrival patterns for a fixed 2TC (%) and lookahead
window, with server sizes of 300 (lower lines) and 400 (upper lines),
considering a system with 2 test banks. The number of tardy servers
(servers completed beyond their due date) was calculated post-hoc. The
vertical position of each bubble represents the number of unfinished
servers, and the size of the bubble represents the number of tardy
servers. We observe that with right-skewed arrivals, servers that arrive
early have more time and capacity available to be finished, resulting in
lower unfinished servers. However, the initial surge of servers inherent
in this arrival pattern can overwhelm the testing facility, leading to
delays in processing these servers leading more tardy servers; i.e., even
though more serves get finished, many miss their due date. This effect is
reversed for the left-skewed arrival pattern, where a mismatch in a large
number of servers compared to available capacity in a shorter time-span
results in many servers not even getting started causing a higher number
of unfinished servers. Those servers that do get processed mostly get
completed prior to their due date resulting in few tardy servers.

Insight 4: Tighter due dates result in a higher number of tardy servers
without impacting the count of unfinished ones.

To assess the effect of tighter due dates, we created an additional
dataset, keeping all other parameters constant. We ensured that each
server had at least the minimum required time for test processing and

® Input Data (%) » Qutput Unfinished (%)

425 414

[
=

Percentage (%)
2

o

1 5

5 10
Lookahead window length (Days)

Fig. 12. Comparison of actual and unfinished percentages of 2TC servers across
lookahead windows.

M. Parvez et al.

160 .
18 =2
140
4 23 9 5
2 1201 M
3 9
g 1001 »
=
)
£ 80
=
2
2 60
g 5
E 401 56 2 i
=
Z i ®
20 0
6
ol s
Right-skewed Uniform Left-skewe
Arrival Pattern

Fig. 13. Effect of arrival pattern on unfinished and tardy servers.

used the following formula:

New due date = Arrival time + Test processing time + Uniform (0, Max
time of the planning horizon- Arrival time — Test processing time)

This formula calculates the new due date by adding the arrival time
and test processing time for each server and then adding a random buffer
time. This buffer time is drawn from a uniform distribution ranging from
0 to an upper limit calculated by subtracting the arrival and test pro-
cessing times from the maximum time of the planning horizon.

Our findings reveal that tighter due dates result in an increase in the
number of tardy servers in all experiments. This is intuitive because,
while there may be capacity available in the future to finish the servers,
there may not be enough capacity available now that could finish those
servers prior to the due date. However, the quantity of unfinished
servers remained unchanged, as depicted in Fig. 14.

We also examined the variation in the number of tardy servers across
different lookahead window lengths, particularly under tighter due
dates, within a system of fixed capacity and varying server sizes (300
and 400). Fig. 15(a) and (b) illustrate the impact of lookahead window
lengths (1, 5, and 10 days) on the number of tardy servers (y-axis) for
both 300 and 400 servers, across various fixed 2TC percentages. The x-
axis displays combinations of these specific 2TC percentages with their
respective lookahead window lengths.

Our findings indicate that increasing the lookahead window length
from 1 to 5, and subsequently to 10days, significantly reduces the
number of tardy servers, irrespective of the server size within a system of
fixed capacity. This reduction is attributed to the system’s enhanced
ability to access and utilize future demand and capacity information.
This allows the optimization algorithm to allocate resources more effi-
ciently, avoiding resource conflicts, which in turn leads to fewer tardy
servers. The size of the servers, whether 300 or 400, has a negligible
effect on tardiness due to the system reaching its capacity; beyond this
threshold, additional servers do not significantly impact tardiness.

6. Summary and future research

Our research introduces an Online Dynamic Dual Bin Packing with
Lookahead (OD-DBP-LA), a time-driven decision-making, approach that
is based on the advanced certainty of future information for the com-
puter server manufacturing industry, specifically focusing on the final
test process. OD-DBP-LA aims to minimize the overall penalty incurred
from not assigning servers (customer orders), while prioritizing the
assignment of servers with earlier due dates. It addresses gaps in existing
online scheduling literature by considering the effects of changes in the
lookahead window on assignment and decision-making processes, while
also incorporating several practical considerations not previously
considered in online bin packing literature, such as server-test cell
compatibility, test cell requirements, variable testing facility capacity,
and due date prioritization to maximize the number of servers tested.

OD-DBP-LA generalizes the existing Online Bin Packing with

12

Computers & Industrial Engineering 196 (2024) 110404

300

285 287 B Unfinished (original due date)
Unfinished (tight due date
Tardy (original due date)
258 256 Tardy (tight due date
2504 246 246
£ 200
4
3
w
>
2
S
S
2
é 150
e
2
©
3
9
Z 1001
69
50 4
32
25 26
18
0 1 5 10

LOOkZIhﬁI(i window (days)

Fig. 14. Comparison of unfinished and tardy servers with original and tight due
times across lookahead windows.

Lookahead (OBP-LA) in three directions: (i) through the time lookahead
(LA) concept, where the lookahead is determined by the length of a time-
window during which server arrival is known with certainty (compared
to request lookahead), (ii) the dual bin packing (DBP) concept, and (iii)
the dynamic concept (in OD). The inclusion of time lookahead, dual bin
packing, and dynamic strategies ensures a faithful representation of the
online decision-making process during the final testing phase of com-
puter server manufacturing. In addition, the consideration of mini-
mizing penalties for unassigned servers and prioritizing servers with
earlier due dates in OD-DBP-LA allows decision-makers to effectively
balance operational efficiency with timely fulfillment of customer
demands.

We modeled OD-DBP-LA as an integer linear program and proposed a
‘2-phase’ computational framework that integrated a metaheuristic
based on GA framework with a mathematical programming approach to
solve each deterministic, lookahead window-specific subproblem,
addressing the challenges posed by two test cells requirement con-
straints and the problem’s size. The set of testing facility we selected
resembles that of our industry partner’s site. Due to limited demand data
available from our partner, we generated synthetic server arrival data,
incorporating ’left-skewed,” 'right-skewed,” and uniform’ distributions,
and considered a time horizon of 13 weeks, corresponding to one quarter
of a year. The key findings from our study are as follows:

e Longer lookahead windows lead to high quality results, but their
effectiveness in improving outcomes diminishes with higher testing
capacity and smaller server sizes.

o Server arrival patterns significantly impact outcomes during the final
testing process. Right-skewed arrivals, where most servers come
early in the planning horizon, allow such servers to have more time
and available capacity for completion, resulting in fewer unfinished
servers, but more tardy servers due to capacity overload and bot-
tlenecks. Conversely, left-skewed arrivals, with most servers coming
late in the horizon, lead to more unfinished servers due to capacity
mismatches in a shorter time span, but fewer tardy servers as the
limited number of processed servers are more likely to be completed
on time.

M. Parvez et al.

" 10%2TC
00 B 20%2TC
B 30%2TC
4]
g
£
32 9%
-
<
é‘
et
=]
5 80
2
=]
=
Z
70
% “ Q N “ Q N b, Q
g g° a8 St oo 3* S dor
N S N A) D 5 S P

2TC(%) and Lookahead Window (days)

(a) 300 servers

Computers & Industrial Engineering 196 (2024) 110404

B 10%2TC
B 20%2TC
B 30%2TC

Number of Tardy Servers
-~ =<} [~} o
N (=] N (=]

~
(=

=N
Y

Q 5 e
Q‘Q\ o olo
S » »

o
7
»

o/ gl
ST
v

TC(%) and Lookahead Window (days)

(b) 400 servers

Fig. 15. Effect of numbers of servers on the tardy measure.

o If the lookahead window length is short, servers requiring short
testing times are more likely to be unfinished, whereas with longer
lookahead, servers needing longer testing times tend to remain un-
finished. In a short window scenario, such as a 1-day lookahead,
servers are selected randomly due to their indistinguishable nature in
single-period assignments, but a 10-day lookahead allows the algo-
rithm to distinguish processing times, thus prioritizing servers with
shorter testing times to reduce the total number of unfinished
servers. Moreover, servers that require 2TC are disproportionately
unfinished compared to their representation in the original data.

If the average lead time for servers decreases, the benefits of a longer
lookahead become more pronounced, resulting in fewer tardy
servers compared to using a shorter lookahead, without impacting
the magnitude of unfinished servers.

These findings offer practical implications for decision-makers in
server manufacturing. Server manufacturing decision-makers can use
our approach to determine optimal decision-making frequency to
improve the outcomes. Furthermore, decision-makers can weigh the
trade-off between investing in information technology and engaging in
client negotiations to increase server arrival certainty against the costs
of expanding system capacity and accommodating smaller server sizes.
Additionally, decision-makers can quantify the impact of server arrival
patterns on server completion (on-time, tardy, or unfinished), enabling
them to better design the system to handle demand variability and
improve capacity utilization. Furthermore, server manufacturing and
testing operations should adjust their lookahead strategies based on
server testing times and specific needs their servers and the constraints
of their testing facilities. For short lookahead windows, strategies need
to be developed to minimize the risk of leaving servers with shorter
testing times unfinished due to the randomness of server selection.
Conversely, with longer lookahead windows, the focus should shift to-
wards effectively managing and scheduling servers requiring longer
testing times to prevent them from remaining unfinished. Additionally,
special attention should be given to servers requiring two test cells
(2TC), possibly through dedicated resources or adjusted scheduling
priorities, to avoid disproportionately high unfinished rates. Finally, our
findings on tighter due dates demonstrate how the system behaves under
these conditions, highlighting the need for decision-makers to negotiate
more realistic deadlines with clients. By understanding the effects of
tight due dates, decision-makers can better plan and allocate resources
to ensure timely delivery, thus avoiding both unfinished and tardy
orders.

13

The insights from our model extend beyond computer server
manufacturing and can be applied to various manufacturing systems
that require real-time and dynamic task assignment to fixed resources.
Manufacturing environments with high variability in demand and
complex scheduling requirements can benefit by identifying the optimal
length of lookahead windows, as the effectiveness of these windows
diminishes with higher capacity and smaller task sizes. Additionally, the
impact of different arrival patterns on task completion rates is relevant
to industries where timing and order of arrivals significantly affect
operational efficiency. By applying these insights, manufacturers across
diverse sectors — automotive (e.g., Ford, GM, Toyota), aerospace,
consumer electronics (e.g., Apple, Samsung, Dell), packaging and lo-
gistics, healthcare, and capital machinery (e.g., GE, Johnson &
Johnson)—can enhance their resource allocation and scheduling stra-
tegies, ensuring better capacity management and improved outcomes in
terms of timely task completion. This adaptability demonstrates the
model’s applicability to a wide range of manufacturing settings,
enabling them to handle varying demand scenarios more efficiently.

Future research in this domain could explore the use of sliding
windows instead of static ones to more effectively manage uncertainties
in the testing process. Considering that the accuracy of information
within a lookahead window may vary in real-world scenarios, data an-
alytics could be employed to enhance forecasts of future server arrivals,
improving decision-making. Moreover, incorporating uncertainty fac-
tors such as server arrival times, testing durations, machine failures, and
server repairs into the testing strategy could optimize a wider range of
performance metrics. A focus on minimizing energy consumption and
carbon dioxide emissions would not only offer economic advantages but
also promote environmental sustainability in manufacturing enterprises
within both electronics and non-electronics sectors. Further, exploring
different matheuristic or pure metaheuristic algorithms such as Ant
Colony Optimization, Differential Evolution, or Simulated Annealing to
potentially enhance solution quality and computational efficiency seems
viable. This approach underlines the importance of sustainable practices
in increasing operational efficiency and reducing the environmental
impact of manufacturing processes.

CRediT authorship contribution statement

Mahmud Parvez: Writing — original draft, Visualization, Validation,
Software, Methodology, Formal analysis, Data curation. Pratik J. Par-
ikh: Writing - review & editing, Writing — original draft, Validation,
Supervision, Resources, Project administration, Methodology,

M. Parvez et al.

Investigation, Funding acquisition, Formal analysis, Conceptualization.
Faisal Aqlan: Writing — review & editing, Validation, Supervision, Re-
sources, Project administration, Methodology, Investigation, Funding
acquisition, Data curation, Conceptualization. Md. Noor-E-Alam:
Writing — review & editing, Validation, Supervision, Methodology,
Investigation, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence

Computers & Industrial Engineering 196 (2024) 110404
the work reported in this paper.
Data availability
The authors do not have permission to share data.
Acknowledgment

This research was partially supported by a grant from the National
Science Foundation (CMMI #2038325).

Appendix A Additional details on the 2-phase computational framework

Function GA(w,m,Si, Em, T, K, Pk, Cx, Wk, Hk, Ly, Dk, Ry, Ake, Wi, Hy;, Lij):

Population = Generate initial population
while stopping criteria not met do:

EvaluatePopulation(Population, K, Py, Cx, Wi, Hi, Lk, Dk , Rz, Age, Wyj, Hjj, L)

Sort the individuals from the Population based on fitness

Select parents for recombination
Create offspring from parents
Mutate the offspring
Set new Population
EndWhile
Convert the final solution and return the data
End Function

Function MathModel(w,m, Sm, Em, Tm,K, P, Cx, Wi, Hi, Lk, Dk, Rz, Ak, Wij, Hij, Lyj, Solution_Phasel):
Define the required variables, parameters, objective function, and constraints in DOcplex
Extract 2TC server assignments from Solution_Phasel to appropriately fix the assignments

Assign single cell requiring servers using DOcplex
Return the solution obtained from DOcplex
End Function

Function EvaluatePopulation (Population, K, Cx, Px, Wk, Hk, Lk, Di , Ry, Axe, Wyj, Hyj, Lij):
CompatibleSolutions = CompatibilityChecking(Population, Py, Wi, Hi, L, Dy, Rz, Ak, Wij, Hyj, Lij)

CostObjective = CostCalculation(CompatibleSolutions,K, Cy)

Return CostObjective
End Function

Function CompatibilityChecking(Population, P, Wi, Hy, Lx, Dk , Rz, Ak , Wy, Hyj, Lyj):
Length = Calculate the total number of chromosomes in the Population

For i =0 to Length do:

solution = Population/[i]

Set the solution as compatible (feasible)

While all servers in solution are not checked do:
server = Select a server
Celll = Extract the cell for the selected server
If (Dye—server = = 1):

Cell2 = Extract adjacent cell of Celll

If (server is not compatible with Celll(and Cell2 if, Dy —seryer = = 1):

Set the solution as incompatible (infeasible)
Break
Continue to the next server
EndWhile
EndFor
Return the compatible solutions
End Function
Function CostCalculation (CompatibleSolutions, K, Cy):

LengthOfServers = Calculate the total number of servers in K
LengthOfSolutions = Calculate the total number of solutions in CompatibleSolutions
CostSet = initialize a set to return the objective value of each solution

For i =0 to LengthOfSolutions do:
CostOfSolution = 0
Solution = CompatibleSolutions|[i]
For j = 0 to LengthOfServers do:
SERVER = KI[j]
IF (SERVER does not exist in Solution):
CostOfSolution +=Cy_sgrvEr
EndFor
Add CostOfSolution to CostSet
EndFor
Return CostSet
End Function

Pseudocode (GA and MathModel functions).

14

M. Parvez et al.

Computers & Industrial Engineering 196 (2024) 110404

[Define window length, w]

[Define the set of windows, m € M/]

v

L[
=

Select a window m]

Phase 1 (GA): For all servers (1TC and 2TC) in window m
Determine the optimal allocation for all servers € K

A

y

Phase 2 (Mathematical Programming): Only for servers requiring 1TC

[Fix the assignments for servers (X € G) requiring 2TC as determined in Phase 1, where GCX]

(Exclude unassigned servers (¥ € L) requiring 2TC from Phase 1, where U'CK]

[Determine the optimal allocation for all servers that requiring only 1TC]

Yes

Any windows left?

Figure 16. Flowchart of the ‘2-phase’ computational framework.

References

Angelopoulos, S., Diirr, C., Kamali, S., Renault, M. P., & Rosén, A. (2018). Online bin
packing with advice of small size. Theory of Computing Systems, 62, 2006-2034.

Angelopoulos, S., Kamali, S., & Shadkami, K. (2023). Online bin packing with
predictions. Journal of Artificial Intelligence Research, 78, 1111-1141.

Aqlan, F., Lam, S. S., & Ramakrishnan, S. (2014). An integrated simulation-optimization
study for consolidating production lines in a configure-to-order environment.
International Journal of Production Economics, 148, 51-61.

Assmann, S., Johnson, D., Kleitman, D., & Leung, J. (1984). On a dual version of the one-
dimensional bin packing problem. Journal of Algorithms, 5, 502-525.

Balseiro, S., Kroer, C., & Kumar, R. (2023). Online resource allocation under horizon
uncertainty. In Abstract Proceedings of the 2023 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems (pp. 63-64).

Berndt, S., Jansen, K., & Klein, K. M. (2020). Fully dynamic bin packing revisited.
Mathematical Programming, 179(1-2), 109-155.

Badis, A., & Balogh, J. (2019). Bin packing problem with scenarios. Central European
Journal of Operations Research, 27, 377-395.

Bohm, M., Sgall, J., van Stee, R., & Vesely, P. (2017). Online bin stretching with three
bins. Journal of Scheduling, 20, 601-621.

Boyar, J., Favrholdt, L. M., Kamali, S., & Larsen, K. S. (2021). Online bin covering with
advice. Algorithmica, 83, 795-821.

Boyar, J., Favrholdt, L. M., Larsen, K. S., & Nielsen, M. N. (2001a). The competitive ratio
for on-line dual bin packing with restricted input sequences. Nordic Journal of
Computing, 8(4), 463-472.

Boyar, J., Kamali, S., Larsen, K. S., & Lopez-Ortiz, A. (2016). Online bin packing with
advice. Algorithmica, 74, 507-527.

Boyar, J., Larsen, K. S., & Nielsen, M. N. (2001b). The accommodating function: A
generalization of the competitive ratio. SIAM Journal on Computing, 31(1), 233-258.

Buchbinder, N., Fairstein, Y., Mellou, K., Menache, 1., & Naor, J. (2021). Online virtual
machine allocation with lifetime and load predictions. ACM SIGMETRICS
Performance Evaluation Review, 49(1), 9-10.

Bukkur, K. M. M. A, Shukri, M. L., & Elmardi, O. M. (2018). A review for dynamic
scheduling in manufacturing. The Global Journal of Researches Engineering, 18(5-J),
25-37.

15

Burcea, M. (2014). Online dynamic bin packing (Doctoral dissertation). University of
Liverpool.

Cheng, Y., Tao, F., Liu, Y., Zhao, D., Zhang, L., & Xu, L. (2013). Energy-aware resource
service scheduling based on utility evaluation in cloud manufacturing system.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, 227(12), 1901-1915.

Coffman, E. G., Jr., Garey, M. R., & Johnson, D. S. (1983). Dynamic bin packing. SIAM
Journal on Computing, 12(2), 227-258.

Dunke, F., & Nickel, S. (2016). A general modeling approach to online optimization with
lookahead. Omega, 63, 134-153.

Dunke, F., & Nickel, S. (2021). Exact distributional analysis of online algorithms with
lookahead. 40R, 19(2), 199-233.

Epstein, L., & Favrholdt, L. M. (2003). On-line maximizing the number of items packed in
variable-sized bins. Acta Cybernetica, 16(1), 57-66.

Gupta, B. D., & Palis, M. A. (2001). Online real-time preemptive scheduling of jobs with
deadlines on multiple machines. Journal of Scheduling, 4(6), 297-312.

Gupta, V., & Radovanovi¢, A. (2020). Interior-point-based online stochastic bin packing.
Operations Research, 68(5), 1474-1492.

Guruganesh, G. (2018). Topics in Approximation and Online Algorithms (Doctoral
dissertation). Carnegie Mellon University Pittsburgh, PA.

Herrmann, J. W. (Ed.). (2006). Handbook of production scheduling (Vol. 89). Springer
Science & Business Media.

Jaillet, P., & Lu, X. (2011). Online resource allocation problems. Rock & Soil Mechanics,
86, 3701-3704.

Kocsi, B., Matonya, M. M., Pusztai, L. P., & Budai, I. (2020). Real-time decision-support
system for high-mix low-volume production scheduling in industry 4.0. Processes, 8
(8), 912.

Kurilova-Palisaitiene, J., Sundin, E., & Poksinska, B. (2018). Remanufacturing challenges
and possible lean improvements. Journal of Cleaner Production, 172, 3225-3236.

Li, Y., Tang, X., & Cai, W. (2014). On dynamic bin packing for resource allocation in the
cloud. In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and
Architectures (pp. 2-11).

Lu, X. (2013). Online optimization problems (Doctoral dissertation). Massachusetts
Institute of Technology.

Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y. C., Talbi, E.-G., Zomaya, A. Y., & Tuyttens, D.
(2011). A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for

http://refhub.elsevier.com/S0360-8352(24)00525-4/h0005
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0005
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0010
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0010
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0015
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0015
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0015
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0020
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0020
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0030
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0030
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0035
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0035
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0040
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0040
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0045
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0045
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0050
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0050
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0050
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0055
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0055
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0060
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0060
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0065
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0065
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0065
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0070
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0070
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0070
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0080
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0080
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0080
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0080
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0085
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0085
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0090
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0090
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0095
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0095
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0100
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0100
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0105
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0105
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0110
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0110
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0120
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0120
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0125
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0125
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0130
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0130
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0130
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0135
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0135
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0150
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0150

M. Parvez et al.

cloud computing systems. Journal of Parallel and Distributed Computing, 71(11),
1497-1508.

Murhekar, A., Arbour, D., Mai, T., & Rao, A. B. (2023). Brief announcement: Dynamic
vector bin packing for online resource allocation in the cloud. In Proceedings of the
35th ACM Symposium on Parallelism in Algorithms and Architectures (pp. 307-310).

Nasr, N., Haselkorn, M., Parnel, K., Burn, V., & Hanson, F. (2017). Technology roadmap for
remanufacturing in the circular economy. Rocherster, NY: Golisano Institute for
Sustainability, Rochester Institute of Technology.

Ojha, A., Agarwal, M., Singhal, A., Sarkar, C., Ghosh, S., & Sinha, R. (2021).

A generalized algorithm and framework for online 3-dimensional bin packing in an
automated sorting center. In 2021 Seventh Indian Control Conference (ICC) (pp.
135-140). IEEE.

Parikh, P. J., & Meller, R. D. (2008). Selecting between batch and zone order picking
strategies in a distribution center. Transportation Research Part E: Logistics and
Transportation Review, 44(5), 696-719.

Peeters, M., & Degraeve, Z. (2006). Branch-and-price algorithms for the dual bin packing
and maximum cardinality bin packing problem. European journal of operational
research, 170(2), 416-439.

Pinedo, M. L. (2012). Scheduling (Vol. 29). New York: Springer.

Polyakovskiy, S., & M'Hallah, R. (2018). A hybrid feasibility constraints-guided search to
the two-dimensional bin packing problem with due dates. European journal of
operational research, 266(3), 819-839.

16

Computers & Industrial Engineering 196 (2024) 110404

Renault, M. P., Rosén, A., & van Stee, R. (2015). Online algorithms with advice for bin
packing and scheduling problems. Theoretical Computer Science, 600, 155-170.
Saha, C. (2015). A framework for managing uncertainty using decision support system in a
closed-loop supply chain business environment (Ph.D. dissertation). Binghamton, NY:

Binghamton University.

Seiden, S. S. (2002). On the online bin packing problem. Journal of the ACM (JACM), 49
(5), 640-671.

Vijayakumar, B., Parikh, P. J., Scott, R., Barnes, A., & Gallimore, J. (2013). A dual bin-
packing approach to scheduling surgical cases at a publicly-funded hospital.
European Journal of Operational Research, 224(3), 583-591.

Wang, X., Wang, S., & Xu, Q. (2022). Simultaneous production and maintenance
scheduling for refinery front-end process with considerations of risk management
and resource availability. Industrial & Engineering Chemistry Research, 61(5),
2152-2166.

Zhang, Y., Wang, J., Liu, S., & Qian, C. (2017). Game theory based real-time shop floor
scheduling strategy and method for cloud manufacturing. International Journal of
Intelligent Systems, 32(4), 437-463.

Zhao, H., She, Q., Zhu, C., Yang, Y., & Xu, K. (2021). Online 3D bin packing with
constrained deep reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence (Vol. 35, No. 1, pp. 741-749).

Zhao, H., Zhu, C., Xu, X., Huang, H., & Xu, K. (2022). Learning practically feasible
policies for online 3D bin packing. Science China Information Sciences, 65(1), Article
112105.

http://refhub.elsevier.com/S0360-8352(24)00525-4/h0150
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0150
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0160
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0160
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0160
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0165
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0165
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0165
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0165
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0170
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0170
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0170
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0175
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0175
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0175
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0180
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0185
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0185
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0185
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0190
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0190
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0195
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0195
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0195
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0200
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0200
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0205
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0205
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0205
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0210
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0210
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0210
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0210
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0215
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0215
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0215
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0225
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0225
http://refhub.elsevier.com/S0360-8352(24)00525-4/h0225

	An online dynamic dual bin packing with lookahead approach for server-to-cell assignment in computer server industry
	1 Introduction
	1.1 Motivation
	1.2 Online decision-making for fulfillment test
	1.3 Research questions and contributions

	2 Literature review
	3 Proposed optimization approach
	3.1 Lookahead window
	3.2 The dynamic penalty function
	3.3 Proposed model

	4 A 2-phase computational framework
	4.1 Phase 1 (genetic algorithm)
	4.1.1 Solution representation
	4.1.2 GA cycle

	4.2 Phase 2 (mathematical programming)

	5 Computational study
	5.1 Data generation and GA parameter tuning
	5.2 Performance of the 2-phase computational framework
	5.3 Experimental setting
	5.4 Experimental insights

	6 Summary and future research
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix A Additional details on the 2-phase computational framework
	References

