2024 IEEE 17th International Conference on Cloud Computing (CLOUD) | 979-8-3503-6853-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/CLOUD62652.2024.00046

2024 IEEE 17th International Conference on Cloud Computing (CLOUD)

SpotKV: Improving Read Throughput of KVS by
I/O-aware Cache and Adaptive Cuckoo Filters

Yi Liu, Ruilin Zhou, Yuhang Gan, and Chen Qian
University of California, Santa Cruz

Abstract—LSM tree based stores are a popular database design
in modern persistent storage systems due to their efficient writes
with sorted keys. However, this hierarchical log structure suffers
from extensive read amplification because multiple disk accesses
are required when it searches for a key. Recent optimizations
of LSM trees propose caching hot keys to reduce I/Os mainly
based on their access frequencies. However, our empirical studies
show that keys are different in 1/O costs, which should also
be considered in the caching policy: caching key-value pairs
with high I/O cost can effectively improve query latency. In
addition, false positives incurred by the Bloom filters in LSM
trees introduce a large overhead to access SSTables because the
queried keys do not exist. In this work, we design and implement
SpotKV, which resolves the above two problems in an LSM
tree store by proposing two memory-efficient data structures,
weighted Count-Min sketch for access and I/O-aware cache
admission and dynamic-seed Cuckoo filters for eliminating false
positives, to improve data lookup throughput. We implement
SpotKYV on Google’s LevelDB v1.20. From extensive experimental
evaluations, SpotKV achieves 1.2-3.0x read throughput while
using the same or smaller memory, compared with several state-
of-the-art LSM tree stores under the read-heavy workloads of
the YCSB benchmarks.

Index Terms—LSM tree, KV store, Caching, Cuckoo filter,
Count-Min sketch

I. INTRODUCTION

Persistent key-value stores are increasingly essential nowa-
days as a widespread solution for handling extremely large-
scale data. Log-structured merge tree (LSM tree) based store
is widely used as a fundamental storage infrastructure in a
large variety of applications in datacenters, like Google’s Lev-
elDB [1], Meta’s RocksDB [2], [3], and Apache Cassandra [4].
Based on significant advantages in dealing with write-intensive
workloads, the LSM tree store has become the backbone
storage backend in production [S5]-[7].

LSM tree stores maintain key-value (K'V) pairs in two com-
ponents, one resides in memory to buffer the new KV writes
and updates called MemTable and Immutable Memtable. The
other is kept in secondary storage, where most KV pairs in the
database are packed into SSTables and organized in multiple
levels (e.g. from L to L,) whose sizes increase exponentially.
We call the first level with the least number of SSTables as
the lowest layer and the last one as the highest layer. Each
SSTable contains an array of KV pairs in a sorted ordering and
corresponding metadata like indexing data within the SSTable.
In each layer, once the number of SStables exceeds its size
limit, one of the SSTables would be selected to merge into
the next layer with SSTables having the key range overlapping
with it. When there is a data lookup request, it has to search the

SSTables in each layer until it can find it. During the process,
the membership query filters (e.g. Bloom filters) will be used
to check if the SSTable contains the targeted KV pair. Note that
some read requests for non-update-intensive KV pairs have to
go through multiple layers to get satisfied because they are
compacted to the bottom as time goes on.

A variety of designs [8]-[11] have been proposed to improve
data query throughput in LSM tree stores. These schemes
focusing on fast data locating and accessing in SSTable can
be categorized into two types — cache-based and filter-based.
UniKV [8] uses a Cuckoo hashing table to maintain all KV
pairs’ positions in Ly, where the KV pairs are not sorted
strictly across SSTables. Thus, keeping each key’s position
in memory could reduce latency for locating SStable in L
because binary search does not help in this layer. AC-Key [10],
as a representative of hybrid caching work, combines three
different caching approaches — key-value, key-pointer and
block — to accelerate the process of finding target KV with
a "ghost" cache. To lower the false positive rate brought by
hashing collision in Bloom filters, ElasticBF [11] tries to
assign more bits-per-key to hot data blocks, whose hotnesses
are identified by their accessing time intervals. The main
thought behind these methods is trading memory space for
fast lookups.

However, we realize that existing solutions often use the
query frequency to characterize the "hotness" of a key [8],
[10], [11]. Based on our empirical studies, presented in Sec-
tion II, show that a key with a lower query frequency but at
a higher level might cause more total I/O times than another
key with a higher query frequency but at a lower level. Since
the average I/O time is the main metric to predict the query
latency, an ideal metric to characterize the hotness should
reflect the average I/O time of a key rather than just the access
frequency.

On the other hand, improving read throughput by lowering
the false positive rate in the Bloom filters for SStables is an
effective way. Assigning more bits per key in the filters for
SSTables/blocks containing hot keys [11], [12] is a common
approach to achieve a low false positive rate because there is
a consensus that data accessing workload is usually skewed in
real scenarios [11], [13], [14]. Just like the bits-per-key is a
key parameter for a single Bloom filter for its memory usage
and false positive rate, the fingerprint length is a parameter
that can adjust the expected false positive rate when it comes
to a Cuckoo filter, and the false positives originate from
the fingerprint collisions. Given the fixed memory budget,

2159-6190/24/$31.00 ©2024 IEEE 344

DOI 10.1109/CLOUD62652.2024.00046

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2024 at 04:39:50 UTC from IEEE Xplore. Restrictions apply.

ElasticBF [11] varies the bits-per-key in different Bloom

filters for different data blocks, and Monkey [12] allocates an

exponential distribution of bits for keys in the different layers’

Bloom filters. However, increasing bits per key certainly

increases memory cost. Is there a way we can lower such

membership query filters’ false positive rate further besides
just allocating more bits?

In this paper, we introduce SpotKV, a solution designed
to identify KV pairs’ hotness in disk I/O efficiency and
further lower false positives in membership query filters by
incorporating dynamic seeds within a Cuckoo filter. The newly
designed Cuckoo filter can change seed values for each bucket
to reduce known false positives. The idea is motivated by the
adaptive Cuckoo filter [15], a recently proposed design that
allows the filter to eliminate known false positives: when a
false positive is detected, the data structure can be adjusted
such that the same false positive will not happen again. But the
adaptive Cuckoo filter does not have a seed for each bucket like
that in SpotKV. We believe this idea is a great fit to eliminate
potential false positives of hot queries to an LSM tree: hot
queries can be detected. The filters can be changed to correct
the hot queries if they are false positives. This combination
of strategies can benefit the KV store by caching for hot keys
and reducing disk I/Os incurred by filters’ false positives.

However, to complete the hotness identification task in
an I/O-oriented perspective, and make precise optimization
to replace caching with Bloom/Cuckoo filters, the following
key problems have to be solved: (1) How to accurately
measure and identify the hotness of KV pairs in terms of
their I/O costs? (2) How to lower false positives in Cuckoo
filters without assigning more bits to the data structure?
SpotKV carefully addresses these key issues by developing
two pluggable techniques — an I/O-aware Count-Min sketch
and adaptive hot-key Cuckoo filters — to improve the LSM
tree store’s data query throughput in a memory-efficient way
based on our observations: (1) the caching admission policy
that combines frequency and I/O should be used for the LSM
tree based KV store, and (2) there are repeating false positives
of hot queries that happen in data stores.

We emphasize that the designs in SpotKV are compatible
with most existing optimizations on LSM tree structures. They
can replace current relevant modules in different LSM tree
variants to achieve higher data query performance.

Our contributions in this paper are summarized as follows:
(1) We conduct empirical studies to identify that including

I/O cost is necessary for cache management of an LSM
tree store.

(2) We present a fast and memory-efficient structure to select
read-intensive key-value pairs according to disk I/O over-
heads instead of general frequency-based identification in
the LSM tree store.

(3) We propose a novel scheme to make a traditional mem-
bership query filter to reduce the false positives in an
advanced step and improve lookup throughput.

(4) We have implemented a prototype with the two key
designs in SpotKV based on Google’s LevelDB v1.20

Immutable LRU
[MemTable }@[MemTable } [Block Cache}

N Memory

Lo ﬁ |:| Data Block
Ly |:| |:| - SSTable',-"fj Filter Block
—! £ |index Block

L O 8T Preer

L OO |:|j|:| Disk

Fig. 1: The LSM tree structure in LevelDB.

and conducted extensive experiments to illustrate the
advantages of SpotKV against several baselines for read-
heavy workloads.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce LSM tree based KV
stores with an example of LevelDB [1]. We then show our
observations from the empirical results and analysis of the
data lookup workload.

A. Log Structured Merge Trees

Fig. 1 illustrates the structure of an LSM tree, which consists
of both in-memory and on-disk components. A MemTable
and an Immutable Memtable serve as the main cache space
in the memory. On the disk, a set of SSTable (Sorted string
table) groups storing data in a persistent way are ordered and
organized in n layers, from L to L,,. The number of SSTables
in each layer increases exponentially by a factor named Layer
Ratio r, where r equals 10 in LevelDB and 8 in RocksDB [2]
by default. If we refer the number of SSTables in L; is m;, that
means m;y1 ~ 1 - my;, where ¢ + 1 < n. Except for SSTables
in Lg, all key-value pairs are sorted strictly inside an SSTable
and among SSTables in a layer without any overlapping.

An LSM tree store works as follows. All incoming KV
write operations are first served by the MemTable, which
acts as a cache buffer. When the MemTable is filled up, it
would be converted to an Immutable Memtable on which we
could not write more data and then a new empty MemTable
will become a new buffer for incoming operation requests.
When the Immutable Memtable is flushed from memory to
disk, all KV pairs in it are sorted and rewritten again into
a new SSTable, which is how the new SSTable is built in
Ly. SSTable is a piece of data log where KV are organized
on it with metadata. We have mg SSTables in Ly, and the
key ranges among them are not strictly sorted because the
Immutable Memtables are converted to SSTables at different
times. Compaction is a merging operation that happens among
SSTables in two continuous layers. When the number of
SSTables in L; reaches the set threshold, an SSTable in L; is
chosen and merged with all SSTables in L;,; with key range
overlappings. Then all KVs in these SSTables are sorted and
written into a new SSTable in L; ;.

The read operation starts to find the target KV from
Memtable to Immutable Memtable in memory first. If there
is no match, the LSM tree will search the disk layer by layer
from Ly to L, because the newly updated data are stored
in the lower layer (like Lg). The search stops immediately

345

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2024 at 04:39:50 UTC from IEEE Xplore. Restrictions apply.

1.0 " 1.0 7 20.0 20.0
= Read-only, u.mf‘orm = Read-only, u.nlf‘orm i 17.5 EZZ Readonly, uniform =175 EZZ Readonly, uniform
0.8/ — = Read-only, Zipfian 0.8 - Read-only, zipfian | . = ’ == Readonly, zipfian R o == Readonly, zipfian
' : A N 15.0 = 15.0
w 0.6 © 0.6 = F125 F125
8 8 : = 10.0 210.0
0.4 0.4 " & 75 g 75
0.2 0.2 | 5.0 S 5.0
- | 2.5 A 25
0.0 0.0 =4 . : . : 0.024 : . .
6 7 8 9 10

a
01234567 891011
Disk 1/0 distribution in data query

0.0
Memory 0 i 2 3 4
Levels distribution in data query

(a) Number of queries for different (b) Number of queries with different
level Disk I/O times

Bits/key in Bloom filter Bits/key in Bloom filter

(c) False positive rate (d) Repeated false positives ratio

Fig. 2: Observations from YCSB read-only workload.

once it gets the KV in a certain layer. For m; SSTables in
L;, it uses binary search to locate the SSTable candidates that
may contain the target KV. After it locates an SSTable, the
Bloom filter block will be accessed first as a membership query
structure to check if the target KV exists in it — Bloom filters
have false positives.

B. Motivations

Many performance optimizations on LSM tree stores have
been proposed [10], [11], [16] by treating hot data (in the unit
of key, SSTable, or block) and cold data differently. A hotness
identification scheme is a prerequisite for separating hot data
from the whole workload set. For example, L2SM [17] uses
HotMap to calculate the hotness value of all SSTables and op-
timize the compaction of hot SSTables to save the computation
overheads.

An LSM tree store manages all KV pairs through SSTables
in multiple layers, which incurs lots of I/O overhead [18]
when it comes to point data lookup operation (especially
compared to B+ tree). Caching hot KV pairs [10] enables
the database to access read-heavy data faster and consume
less CPU and time resources without going through SSTables
stored in disk. However, how the hot keys are identified and
selected in an LSM tree store to reduce I/O overhead is
a challenging research problem. For example, TRIAD [16]
proposes to get the most K popular key-value pairs in each
MemTable with a top-K algorithm, which can recognize the
update-intensive data instead of read-intensive pairs. Time-
based hotness identification is also a common approach used
in recent work to complete the task. ElasticBF [11] maintains
a table to track all data block’s lifeTime values which
represent the time they stay in the LSM tree. The data segment
that is accessed more than two times within a time duration
expiredtime will be inserted into the cache. The weakness
is that all keys in one data segment share one hotness value,
which is not accurate for individual KV pairs, especially when
the memory size for caching is limited. We know it is a subtle
tradeoff because memory cost will increase significantly if we
maintain the 1ifeTime values for all single KV pairs. Thus,
a memory-efficient hotness identification scheme is required
for estimating the hotness value for individual keys.

In addition, data are stored in different levels of the LSM
tree. For a KV pair that is stored at a higher level, accessing it
requires more I/O cost. Hence we argue that the storage level
of a KV pair needs to be considered in the cache strategy: a key
with a lower query frequency but at a higher level might cause

more total I/O times than another key with a higher query
frequency but at a lower level. We run a microbenchmark
with 1 million read operations on LevelDB [1] v1.20, with
4 levels and 4 SSTables in Ly. Then, we draw the CDF
of SSTables accessing times for the workload (with uniform
and Zipfian access patterns) based on YCSB [19]. Fig. 2(a)
shows the distribution of levels the data lookup reaches in
the log scale. A higher level receives significantly more data
requests than the lower levels; for example, data lookup
requests reaching the highest level (L4) make up 88% of the
uniform workload. From Fig. 2(b), we can see the number of
SSTables accessing distribution varies in different data lookup
processes. In uniform workload, the data requests that access
5 SSTables make up around 15%, but the requests that access
8 SSTables are 30.6%. Such disk 1/O difference motivates us
to differentiate them in caching admission and prioritizes the
one that incurs more disk I/Os. Thus, a cache admission rule
that can take into account the different I/O costs of the KV
pair is ideal for the LSM tree store.

Recently, counting sketches [20], a statistical tool for mak-
ing hotness identification, have been proposed for multiple net-
work applications [13], [21] as a memory-efficient approach.
For example, the Count-Min sketch [13] is used to estimate
the frequency of incoming data packets with the hashing value
of the IP address in it. Motivated by these techniques, we
propose to apply sketches on counting the hotness of queried
KV pairs in the LSM tree store. However, caching KV pairs
with the most frequent KV pair does not necessarily minimize
the disk I/O overheads. If a KV pair has a high hotness value,
maybe it is not optimized to cache it in terms of the benefit
for the database system. The final objective is to improve the
read performance by lowering the disk I/Os incurred by the
lookup operation. AC-Key also takes into account the different
overheads incurred by caching the KV pairs in different layers
and makes the KV pair with a high-efficiency factor stay at
the cache for a longer time like the weighted LRU cache [22].
In this work, we focus more on how to select hot keys in the
cache admission.

To reduce the disk I/Os to SSTable, different LSM tree
store implementations [1], [2] usually leverage Bloom filters
to check if the queried key exists in the SSTable. However, the
false positives in Bloom filters will cause extra disk I/O and
CPU resources. We show the false positive rate in Fig. 2(c)
when we set the number of bits per key used in the filter from
6 to 10. There are more than 10% false positives shown in both

346

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2024 at 04:39:50 UTC from IEEE Xplore. Restrictions apply.

Memory
A e s
h<—— +c B
Sl 1 []
Weighted CM Sketch Cache Cuckoo Filters
4
Disk 1/ report False positives
r
1
Disk
Ly @D O B
I\Narm key
L, OJ D d
SSTable
L, OJ 0O
Fig. 3: Overview of SpotKV.

Zipfian and uniform workload when bit-per-key is 6. The more
bits we assign to the Bloom filters, the lower the false positive
rate is. Given the fixed memory budget, we cannot lower the
number anymore. However, we observe that the repeated false
positives make up around 7% among all false positives, as
shown in Fig. 2(d). Thus, the other motivation of this work is
how to reduce/avoid duplicated false positives in a further step.
Alternatively, there are many hotkeys in a workload, and it is
impossible to cache all of them due to the limited memory
space. Is there any way we can avoid their false positives
appearing with the membership query filters?

III. DESIGN OF SPOTKV

We propose SpotKV, a high-throughput and memory-
efficient solution for the LSM-tree store, which can potentially
save a large portion of I/O overheads with a novel hotness
identification scheme. It also can mitigate read amplification
by reducing false positives for accessing SSTables.

A. Overview

A key design goal of SpotKV is to leverage a memory-
efficient sketch data structure to realize I/O-aware hotness
identification for caching hot KV pairs. It also leverages adap-
tive Cuckoo filters to eliminate false positives on warm keys
or the keys where false positives happened before. SpotKV
accomplishes this by installing these two optimized modules
introduced in this section.

The whole design is illustrated in Fig. 3. In memory,
besides MemTable and Immutable MemTable we mentioned
in section II, we have a module named weighted Count-Min
(CM) sketch, which enables SpotKV to identify hot/warm keys
based on the I/O overheads they can save for read operations.
The hot keys chosen by sketch can be cached for any further
applications. The fingerprints of warm keys output by our
weighted CM sketch will be kept in an LRU list. Note that
only fingerprints will be maintained thus the memory usage
will be way less than storing full KV pairs. We also have
an array of dynamic seeds-based Cuckoo filters maintained in
memory for each SSTable on disk, and they can lower FPR
when it tells if the target key is in the SSTable or not. Given
the fixed memory budget, our Cuckoo filters can work it out

347

@) Add value Add value

1mn+1)

+(mg+n

>Hash (key,)

Hash,(key,)4 L P

] »

Weighted Count-Min Sketch Memory
— T
L (3 [Peetiery

Ly

~—]

>

Disk

Get(ke
Key: key, (key,)

L, (JCJ -
Fig. 4: Weighted Count-Min sketch.

with the list of warm keys’ fingerprints as assistance to remove
false positives may happen on them.

Note that we put the following two main modules together
to work out as SpotKV, they can also be divided and applied
to other LSM-tree stores independently without the other on.
For example, dynamic Cuckoo filters can be fed with hot keys’
fingerprints chosen by a time-based hotness identification
scheme.

The workflow of a key lookup operation is as follows. The
queried key will be first checked in the cache, MemTable and
Immutable MemTable, respectively. If there is no match, then
the lookup will go to the SSTables on the disk. Same with
LevelDB, it searches every SSTable in Ly and at most one
SSTable in the layer from L; to L, will be checked until
the queried key is found. When the lookup process gets the
queried KV pair in L;, after the LSM tree returns the data,
the counters in the weighted CM sketch will be updated based
on the number of the SSTables this lookup had went through.
If the estimation of the key’s hotness value in the weighted
Count-Min sketch reaches a threshold, then the corresponding
KV pair will be cached for future use. If the estimated hotness
does not reach the threshold, the fingerprint of the key will be
added into the fingerprint LRU list, which will be fed to the
adaptive Cuckoo filters as a reference to remove false positives
on them.

B. Weighted Count-Min Sketch

To mitigate the disk accessing times consumed by read oper-
ations in the LSM-tree structure, we propose to identify read-
intensive keys that incurred large I/O overheads from multiple
layers and cache them in memory to make future lookups fast.
In this section, we are going to illustrate the detailed design
of the weighted CM sketch. This sketch provides a fast and
memory-efficient hashing scheme to estimate the hotness of
each individual key-value pair. Hotness analysis in terms of
SSTables or other units of data store is not the focus of our
work.

Count-Min sketch. A Count-Min sketch consists of M
arrays of W counters, which are initialized to 0. The maximum
value each counter can reach depends on the bits assigned to it;
if a counter occupies 8 bits and the maximal value it can serve
is 255. A set of M hash functions are enabled to hash elements

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2024 at 04:39:50 UTC from IEEE Xplore. Restrictions apply.

into random counters in each array. In practice, we usually use
one hashing function and M different seeds to realize H;(k),
where 0 < ¢ < M. It works as follows. When it comes to
a key, it is hashed to different counters in each array with
different M hashing functions, and generally a constant value
c will be added to them. If you want to estimate the frequency
of a key, just access the counter values (cg,cq, .., cpr) With
M functions again, and the minimal value min(c;) will be
regarded as a close estimation of it. The estimation error e
is limited to e with probability of 1 — §, where we assume
M =Te/e| and W = [In(1/4)]. In fact, sketch is commonly
used to count up data packets with specific IP/MAC addresses
in their headers as the keys of hashing functions.

Weighted Count-Min sketch. Provided there are
mg, mi, .., my, SSTables in LSM-tree structure from layer L
to L,,, where the key-value pairs in L are not strictly sorted
across the my SSTables. When data request comes to Ly, it
has to search all SSTables because there possibly are keys
range overlapping among them. However, it can use binary
search to locate that exact one candidate SSTable from L; to
L,, because all keys are sorted in ascending in layers.

Fig. 4 shows the working process of the weighted Count-
Min sketch that estimates the hotness of KV pairs. Same as the
traditional Count-Min sketch, it has M arrays of W counters
initialized with 0. When it comes to a point lookup request
of key; (as indicated in blue), our SpotKV will @ follow the
LSM-tree rules to search target KV pair layer by layer; here
we find key; in the second SSTable of Li. ® Then we hash
keyy with M different seeds to M counters, spreading all rows
in sketch. ® We add ¢ = mg+ 1 on the hashed counters as an
increment of hotness it brings to this counter, where m refers
the number of SSTables in Ly. Then we compare all values
in all these M counters and choose the least one as a close
estimation of key;’s hotness value. If the smallest estimation
exceeds a threshold, the KV pair could be regarded as hot and
added to the LRU caching list. Correspondingly, we found
keys (indicated in red) in the third SSTable of L,,, so we add
an increment of ¢ = mg + n on the counters hashed by keys.
Additionally, if a key is found in the ¢-th SSTables in Lg, we
just add ¢ on associated counters.

In summary, what the weighted CM sketch actually does
is to use the SSTable accessing overheads caused by search-
ing the key as the increment added on counters instead of
requested times from the database. When it comes to a read-
intensive workload, there are read-intensive keys in high layers
of the LSM-tree structure with less chance to be updated and
appear in low layers again. Thus, we use the I/O cost and
access times simultaneously to refer to how worthwhile to
identify it as a hot pair. If we just add a constant for each key,
then all KV pairs in different positions of the LSM-tree will be
treated with no difference, and the I/O cost is not considered.

Configuring hot KV threshold. The weighted Count-Min
sketch enables us to estimate the frequency of the individual
KV pair in a fixed period. As time goes on, the value in
counters will increase, it does not bode well if we set a fixed
integer as a bar to screen hot keys. The threshold we select

348

should be relevant to a key’s relative hotness in the sketch.
Thus, we defined the hotness of a key as the ratio between the
estimated value and the sum of all counter values like:

min(co, c1, . Crr—1)

(1)

hotness =

> counter value

Then, no matter whether the sketch is just initialized or almost
overflowed, a threshold ¢ (0 < ¢ < 1) could be chosen to tell
if the requested key is hot or not.

Overflow of the sketch. When the value of a counter
reaches the maximum it can support, how to enable sketch to
serve after overflow is a crucial problem. Given each counter
is assigned with 8 bits, the largest estimated value it can record
is 255. At that time, all counters in the sketch can continue
serving, but this overflowed one.

We leverage two common approaches to let sketch work on
after overflow. One where as long as one counter overflows, we
will empty all counters and reconstruct it with the KV requests
in the future. The advantage is it is fast, and this operation does
not incur any heavy overhead, but it will lose all information
and former estimations recorded in the past. Usually, after we
empty the whole sketch, we will add an initial value to the
overflowed counter to refer to it as the most popular counter
in the last round.

The other approach to solve this problem is using a sliding
window. All keys contributing to their popularity in the sketch
will be maintained in a sliding window with time order. When
a counter reaches the ceiling value, we start from the left of
the sliding window and subtract a constant from each key’s
associated counters until the overflowed counter’s value is
taken off by 5%. The benefit is that sliding window-based
sketch [23] can always keep the relative popularity indicated
in a past period. However, it is expensive to implement this
policy because it is easy to get the counter to be overflowed
again if it got ovevflowed before, and the cost to remove the
KV pairs in the tail of the sliding window also incurs large
overheads. Additionally, maintaining keys in a list just for the
sketch is not necessary in terms of its memory cost. The sliding
window-based sketch does not fit our work. Thus, we choose
an "empty scheme" as the default way to handle the overflowed
counters in our weight CM sketch.

Configure the sketch size. Since we replace KV request
times with its corresponding SSTable accessing cost in the
sketch, we can understand our weighted CM sketch in another
way: If it takes m times on-disk accessing to find a key, it
means key appears m times if we put all KV pairs in one
single layer. When it comes to configuring the sketch’s size,
we can follow the rules in traditional CM sketch, too. Assume
the sketch size is M x W, where array number M also refers
to the hashing functions we used in sketch. To make sure the
estimations in the CM sketch follow P(z < & < x + en) >
1 — 9, where n is the number of all distinct KV pair requests,
en is a tolerant error and ¢ is confidence probability. Since
we are going to apply an empty policy(resetting to 0) to deal
with the overflowed counter problem, n will be a number of
distinct KV requests within a time round, which starts from an

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2024 at 04:39:50 UTC from IEEE Xplore. Restrictions apply.

Hash seeds @ fp(') = Hy()
S | fp1|fp2 | fp3 | fPa
A bucket in Cuckoo filter
1 0x2F
Hot Keys
2 0xB4 0x11 Fingerprints
3 0x85
False positive

4 S - v A fp happened

®s*=s+1 @ hy, (k)

Update seed Update fingerprints

Fig. 5: Dynamic-seed Cuckoo filter.

empty sketch and ends when an overflow happens. Given that
the ceiling value in each counter is set to 255 (8 bits), we want
to estimate the frequency of 1K KV pair requests in a single
time round. With e equal to 0.01, we can calculate the required
width W in sketch should be 270. If we hope estimation error
could be limited within a difference of 1/K x 10 with the
possibility of 99%, the expected choice for the number of
hashing functions M will be 4 or 5.

Overhead. Even if maintaining and managing our weighted
CM sketch in memory will cost some resources, but the
overheads are very small. Provided our sketch size is M x W,
and each counter contains 8 bits for estimation. If we set M
as 5 and W as 270, the memory cost will be 1.01KB.

For each point lookup request for k, we will calculate
M hashing result with H;(k). The M memory accessing
operations are required to update the value in M associated
counters, above which does our sketch incur extra compu-
tational overhead. When it comes to an overflowed counter,
assigning all values with O in the sketch just occupies limited
computational resources.

C. Dynamic-seed Cuckoo Filter

To avoid wasted I/O overhead for accessing "wrong" on-
disk SSTables, which actually do not have the target KV
contained, approximate query structures like Bloom filter are
used in LevelDB and Cuckoo filter in RocksDB [2]. LSM-tree
stores suffer from the waste of I/O overheads incurred by false
positives in filters, even with the help of caching. We propose
to mitigate the false positive rate (FPR) of query structures
associated with SSTables further with Cuckoo filters and our
weighted CM sketch.

Cuckoo filter. SpotKV achieves a lower FPR using the
Cuckoo filter for the application of an LSM-tree store, where
each SSTable has a membership query structure with it. We
introduce (2,4)-Cuckoo filter here because recent works [24],
[25] prove it can achieve the maximal load factor in memory.
A (2,4)-Cuckoo filter is a table of a number of buckets, each
with 4 cells or slots. When we insert a key in the Cuckoo filter,
two candidate buckets could be calculated by by = H(key)
and by = H(key) ® H(f(key)) = by & H(f(key)), where
H () is a hash function and f(-) returns the fingerprint of the
input. Then key will be stored in one of the 8 cells of two

buckets. If there is no available cell for newly inserted keys,
one of the keys in these 8 cells will be kicked out to the other
candidate bucket and keep going until all keys could be stored
without overflows. Note that what we put in the bucket cells
is actually the key’s fingerprint instead of the full key, which
is the different point with Cuckoo hashing [26]. Thus, when it
comes to a key membership query, we just compare the key’s
fingerprint with 8 possible fingerprints stored in two buckets,
as long as there is a match, the Cuckoo filter will return a
positive answer that the key may be in it. If there is none of
them match, then the key will definitely not be in the filter
(no false negative).

Dynamic-seed Cuckoo filter. We propose to use (2,4)-
Cuckoo filter as a membership query structure associated with
each SSTable. As shown in Fig. 5, we make an adaption on
a traditional Cuckoo filter that @ we attach a seed for each
bucket and use it to calculate the fingerprint of 4 keys stored
in it. At first, all seeds are set to 0. All four keys in one
bucket share the same seed for the hash function to get its
fingerprint, whose length is adjustable in our setting. Note
that the two candidate buckets are calculated by two distinct
hashing functions H;, and H, and any of them cannot be
restored by the exclusive-or operation as suggested in the
traditional Cuckoo filters. However, we will keep the full
keys while constructing a dynamic Cuckoo filter for a new
compacted SSTable while merging. The idea was motivated
by the recently proposed adaptive cuckoo filter [15] but the
detailed design is different in order to be used by the LSM
tree.

Recall that we conclude a list of warm keys’ fingerprints
(hashed with the seed 0) and they are organized in an LRU
approach. The warm keys mainly consist of two parts: (1)
When there is a key query, we update it in our weighted
CM sketch. If it is not identified as a hot key (the estimated
frequency is smaller than the threshold but larger than 0), it
will be regarded as a warm key. Then, we will calculate the
warm key’s fingerprint with the seed of 0 and put it in the
LRU list. (2) When a false positive happens, and the bucket
seed is 0, we will insert the fingerprint of this key into the
list. We will also move the compaction offset pointer to the
current SSTable and try to compact this table into the next
level first.

Every time we finish constructing the Cuckoo filter with
all seeds of 0, we test all warm keys in the list to see if the
dynamic Cuckoo filter will give a positive answer back.

There are two occasions that make it have a positive answer,
(1) The warm key is indeed in the Cuckoo filter. (2) As shown
in Fig. 5, ® there is a false positive happened. No matter
which one is the real reason for that, what we are going to do
is ® updating seed 0 to 1 in this bucket. Correspondingly, @
we update all fingerprints with new seed. After we update
all possible seeds and fingerprints in buckets where false
positives may occur with our warm keys, a dynamic seeds-
based Cuckoo filter is finished, and it could be used as a
structure when a data lookup request makes a membership
check with extremely low FPR. Then, we can discard all the

349

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2024 at 04:39:50 UTC from IEEE Xplore. Restrictions apply.

full keys to save memory space and use the Cuckoo filter to
serve the membership query in the future.

There is a variant based on the dynamic-seed Cuckoo filter.
What we put in the list of warm keys is their full keys instead
of fingerprints hashed when it is constructed. The weakness
of the fingerprint version is that we can only update seeds
once in the buckets with possible false positives. Thus, we can
use 1 bit to store the seed. However, false positives may still
exist because the newly updated fingerprints may conflict with
other hot keys’ fingerprints with the seed of 1. Suppose we can
maintain full keys of warm KV pairs in an LRU list and feed
it to the Cuckoo filter. In that case, we can do many rounds
of seeds and fingerprint updates to make the FPR lower until
we can totally erase all false positives incurred by these warm
keys. The weakness is that we have to spend more memory
on storing full warm keys. We still use the fingerprint version
in the rest of this paper and demonstrate that the throughput
improvement brought by the reduction of FPR can replace
caching even with a smaller memory budget. Note that we
could write the dynamic-seed Cuckoo filters into a disk with
SSTables like filter block in LevelDB because all seed updates
will be finished before the construction.

Configure the dynamic-seed Cuckoo filter. The critical
parameter in (2,4)-Cuckoo filter we need to configure is the
size. The number of cells in a Cuckoo filter influences the
effectiveness of membership checking for each SSTable. If
the load factor is low, lots of memory space will be wasted;
if it is too high, then the reconstruction of Cuckoo filters will
frequently happen because some keys cannot find an available
cell within the limited kicking-out times, then the compaction
of new SSTable will be pulled back in this stage.

The key part of setting the Cuckoo filter’s size (number of
buckets) depends on how to estimate the number of distinct
KV in a new SSTable after compaction. Provided an SSTable
size is set to p (e.g. 2MB), and the size of each key-value pair
is ¢ on average. We can use [p/q| as an estimation for the
number of KV pairs. Since we have other metadata blocks (like
footer and indexing blocks) in an SSTable besides data blocks,
the number of distinct keys in a full SSTable will not exceed
[p/q]. Note that we do not have to round our dynamic Cuckoo
filter’s size to a power of 2 because we use two independent
hashing functions to locate two candidate buckets for a key.
However, we can initialize the Cuckoo filter with the size of
[p/(q7)] first, where 7 is the expected load factor.

Overheads. Constructing and maintaining our dynamic
Cuckoo filters for each valid SSTable will incur additional
memory of computational costs. The peak memory overhead
will be spent on a set of Cuckoo filters and a list of warm keys’
fingerprints. Provided we set 20480 cells for each dynamic
Cuckoo filter with 5120 buckets, the fingerprint length is 8 bits,
and the seed only costs 1 bit in each bucket. Each dynamic
Cuckoo filter costs 5120 - (4 - 8 + 1)bits = 20.62K B. If all
cuckoo filters are put into memory, in a 5-layer LSM-tree with
2 SSTables in L and size ratio r as 8, the whole memory cost
for Cuckoo filters will be 20.62K B -7 2- 8 ~ 193M B.
Additionally, we can apply the common optimization for

the last layer L,,, removing all Cuckoo filters there to save
memory cost [6].

IV. PERFORMANCE EVALUATION

Setup. Our experiments are running on a workstation that
maintains the LSM tree key-value store service, with Intel
Xeon Silver 4314 CPU @ 2.40GHz, 160GB 2133MHz DDR4
memory, and 48MB LLC. The SSD we equipped is a Samsung
990 PRO NVMe SSD with a user capacity of 1T.

We used the C++ version of Yahoo! Cloud Serving Bench-
mark (YCSB) [19], [27] as workload by default. We adapt
it to generate the KV pairs for SpotKV and run 12 million
transactions each time to get the throughput and stat disk
I/0s. We use 100M KV pairs (around 12GB) to warm up
the database with 20B keys and 100B values, which is a
common setting [28] in existing studies. Unless specified, all
workloads follow a 0.99-Zipfian accessing pattern. We use
workload C of YCSB as the default workload to evaluate and
analyze our weighted CM sketch and dynamic Cuckoo filters.
We developed SpotKV based on Google’s LevelDB v1.20 [1],
which is an LSM tree implementation that maintains bloom
filter blocks on disk for each SSTable. For a fair comparison, a
version of LevelDB that keeps bloom filters in memory [17] is
implemented. We configured the SSTable size to 1MB (default
setting in LevelDB) and the number of levels to 5, and set
the original block_cache_size to 100 and max_open_files
size to 64. Besides LevelDB, we use two other recent works
for comparison. (1) E-LRU [10], which assigns an efficiency
factor to each cached KV pair. In the implementation we use,
the potential number of disk I/Os is assigned as the efficiency
factor. When the LRU cache is full, the system checks the
16 least used KV pairs and evicts the one with the smallest
efficiency factor. Generally, the higher the level of the KV
pair lies, the harder to be evicted from the cache. For cache
admission, the system directly inserts the new queried KV pair
in the LRU cache. (2) ElasticBF [11], which calculates hotness
based on SSTable block’s 1ifetime. We maintain a table to
record the 1ifetime of each data block in an SSTable. If the
block is accessed more than once within the expiredtime,
we cache all the KV pairs in that block. We use the data
operation sequence as time. We set the expiredtime as the
same as the existence time of the SSTable. If an SSTable is
compacted to the next level, the time record for each data block
it contains will be removed. We also implement ElasticBF on
top of LevelDB due to the lack of open-source code.

A. Overall performance in YCSB

We show the performance of SpotKV under six different
YCSB workloads (A, B, C, D, E, F) against E-LRU [10],
ElasticBF [11] as well as LevelDB v1.20 [1]. Data read
operations make up 50%, 95%, and 100% in workloads A,
B, C, respectively. Workload E consists of 100% data scan
requests, and there are 50% read-modify-write operations in
workload F. Each benchmark performs 12M operations with
Zipfian accessing patterns (skewness as 0.99 and 1.1) defined
by the benchmark on a pre-loaded key-value data store.

350

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2024 at 04:39:50 UTC from IEEE Xplore. Restrictions apply.

levelDB 55 E-LRU 1.0{— vedB -+ ELRU I'— 1.0
E 150 E= ElasticBF BEB SpotkV ElasticBF = = SpotKV
0.8 [
g12s t |
+ 100 w 0.6
& .5 8 R
_§ 0.4] rmpmne———]
50 !
£ 0.29 |
£ 25 | = LevelDB === E-LRU
0.04— 1 | e— ElasticBF == SpotKV
A B C D E F Memory 0 1 2 3 4 012 3456 7 8910
Workloads Levels distribution in data query Disk 1/Os distribution in data query

(a) Throughput on YCSB workloads (Zipfian (b) Level distributions (Zipfian const: 0.99).

const: 0.99).
175
UZ3 levelDB XY E-LRU 1.09(— Levelbe -+ ELRU =] 1.0 R A= 3

o 150 E= ElasticBF = SpotkV ElasticBF = = SpotkV exr 1

S 125 0.8 | 0.8

Sk [A I — £l

= 100 w 061 T W 0.671

o a i [a) |

5 C0.41 Vo4 :

3

50 |

- 0.2 | 021!

F 25 1 —— LevelDB === E-LRU
0.0 +—d—— 0.0~ ElasticBF = = SpotKV

o

Memory 0 1

2 3 4
Levels distribution in data query

(c) Disk I/O distribution (Zipfian const: 0.99).

01234586 78910
Disk 1/Os distribution in data query

(d) Throughput on YCSB workloads
const: 1.1).

(Zipfian (e) Level distributions (Zipfian const: 1.1).

(f) Disk I/O distribution (Zipfian const: 1.1).

Fig. 6: Evaluation with YCSB workloads.

We have configured the cache size as 100K (0.1% size of the
total database), and the default threshold for hotness identifi-
cation in the weighted CM sketch is set at 0.19. The size of the
weighted CM sketch is set to 4 x 256. The resulting throughput
data is presented in Fig. 6(a) and Fig. 6(d), corresponding to
data access patterns of 0.99 and 1.1, respectively. In Fig. 6(a),
SpotKV consistently demonstrates the greatest benefits using
an equivalent cache size among various baselines. Note that
SpotKV can achieve 1.03-1.93x the throughput of LevelDB
except workload E (100% scan). The throughput performance
benefits read-intensive workloads more because our scheme is
mainly optimized for data lookup operations.

Then, we give a comprehensive analysis of the impact
of the weighted CM sketch on data queries, accompanied
by pertinent statistical insights. To this end, we present
Figures 6(b) and 6(e) illustrate the CDFs of data lookup
operation levels reached under Zipfian access patterns with
constants of 0.99 and 1.1, respectively. Remarkably, SpotKV
consistently achieves comparable ratios for data queries in
memory, whether they stem from the cache or the MemTable.
Even with a modest cache capacity of 0.1% entries of the
total database, the hit ratios can be mounted to around 40%
and 65%, respectively. However, ElasticBF achieves inferior
hit ratios when compared with both SpotKV and E-LRU.
This difference arises from ElasticBF’s reliance on block-level
hotness identification, as opposed to the more granular individ-
ual KV pair approach used by SpotKV. Also, the 1ifetime
updates for each data block maintained by ElasticBF is another
reason resulting in low throughput. We implement E-LRU in
the granularity of individual KV pairs so that the hit ratio can
be similar to the SpotKV. However, the no selective admission
of caching KV pairs makes the ratios for cached high-level KV
pairs a bit lower than SpotKV does. Compared with Level DB

351

(in green), the caching-based schemes can make more than
50% of data operations be completed in memory without
reaching into the disk. Even if LevelDB may not access any
data block in each level due to many reasons (e.g., the queried
key does not fall into the key range of all SSTables), Caching-
based approaches can make those data operations completed
without checking metadata or filter blocks and saving software
overheads.

Fig. 6(c) and Fig. 6(f) illustrate the CDF for the number of
the potential disk I/Os incurred in 100% data read workloads.
We can see the disk I/Os benefits in our SpotKV with the red
dotted line that there is nearly no data read operation that needs
access to more than three SSTables when the Zipfian constant
is 1.1. Further, SpotKV achieves a more left-shifted CDF. This
result benefits from SpotKV’s priority of caching KV pairs that
incur larger disk I/Os, thereby reducing the potential number
of disk I/Os. Even if the E-LRU prioritizes the KV pairs lying
at a high level, the cache admission rule does not work well
for the case where the KV pairs are at a high level and may
not be accessed so frequently, but it is still worth catching.
Also, the efficiency factor checking causes time latency when
deciding which KV pair is supposed to be evicted. Note that
LevelDB benefits from the block cache for improving data
lookup throughput when the skewness increases from 0.99
to 1.1. From Fig. 6(b) and Fig. 6(e), we can see the level
distribution is almost the same but the CDF of disk I/Os are
different with the help of the block cache. LevelDB cached
more hot keys in the block cache (LRU) in the case of the
skewness as 1.1.

B. Evaluation of weighted CM sketch

1) Sampling interval.: We leverage lazy sampling to update
sketch counters for data queries to reduce the overhead and

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2024 at 04:39:50 UTC from IEEE Xplore. Restrictions apply.

140 EE Cache Size: 1K EEE Cache Size: 100K —_ - Cache Size: 1K —§— Cache Size: 100K . igg 77 Sketch Shape: 4x128
120 0 Cache Size: 10K EESI Cache Size: 1M & 601 Cache Size: 10K ¢~ Cache Size: 1M a T4 BN Sketch Shape: 4x256
o o =3 EEE Sketch Shape: 6X128
¥ 100 =2 1201 mm Sketch Shape: 6x256

= 451
5 80 3 3
a
< 60 iC
=) & 30
3 40 3
= E 15
£ 20 =

o
o

1 8 16 32 64 0 5 10
Sampling Interval

(a) Throughput with different sampling rates.

15 182022 25 30 35
Threshold rate (%)

(b) Throughput with different hotness thresholds.

uniform zip-0.99 zip-1.10 zip-1.20
Skewness

(c) Throughput with different sketch shape.

Fig. 7: Evaluation of different settings in the weighted CM sketch.

latency incurred by frequently updating the weighted CM
sketch. To evaluate its influence, we vary the sampling interval
from 1 to 64 and show the performance with four different
cache sizes. If the sampling rate equals 8, we update the
counters once for every eight key queries. As we can see from
Fig. 7(a), the throughput exhibits upward first and downward
trends when the cache size is relatively small (e.g., 1K, 10K
and 100K). When the sampling interval is large (e.g., 64), the
throughput is the lowest because it cannot update the statistical
information to cache in time. If we update the weighted CM
sketch too often (sampling frequency is high), the extra latency
will be incurred. However, if we update the counters with
a very low frequency, then our sketch cannot get the fresh
statistical results for queried keys. From the results, the read
throughput turns out to be the highest when the rate is set to
8 when the cache size is 100K.

2) Threshold.: The hotness threshold is an important pa-
rameter for weighted CM sketch to identify hot keys. In
our experiments, we evaluate the impact of the threshold on
throughput by adjusting its value within the range of 0O to
0.35 used for cache admission. As depicted in Fig. 7(b), the
throughput initially experiences an increase with the incre-
mental threshold value, followed by a subsequent decline. We
can observe this trend in all different cache size settings.
With a threshold set to 0, the weighted CM sketch totally
functions as an LRU cache. In this configuration, each newly
queried KV pair enters the cache immediately right after being
queried. As the threshold value increases, the cache admits
more frequently queried KV pairs. Additionally, those pairs
lying at higher levels are prioritized for getting into the cache.
Thus, the throughput climbs to its peak. However, with a
continuous increase of the threshold, a KV pair has to be very
hot to be chosen, which cannot fully use the cache’s capacity.
Consequently, the throughput experiences a downturn.

3) Sketch shape.: In our evaluation, we also conducted an
analysis of the influence of the sketch size on its performance.
To assess the sketch’s capabilities, we explored four distinct
shapes with 4 x 128, 4 x 256, 6 x 128, and 6 x 256, where
6 corresponds to the number of hashing computations (rows)
within the sketch, and 256 denotes its width. as depicted in
Fig. 7(c) To provide a comprehensive view of its performance
characteristics, we subjected the sketch to varying data query
distributions, ranging from uniform to Zipfian with a constant
parameter of 1.2 and the throughput remains stable. The shapes

with more rows (e.g., 6 x 128, and 6 x 256) are supposed to
incur extra latency. However, the hashing computation costs
less overheads with hash chaining, where the new hashing
result can be generated from the last hash result with fewer
computations. Further, the sketch with a large width can lower
the estimated errors in hotness identification. Some keys may
be selected and cached because the hash collision happened in
the sketch instead of its own actual hotness because other KV
pairs also contribute to the estimation value toward its hotness
counters. In the evaluation, the shape (4 x 256) can win with
a slight advantage compared with other combinations among
the listed four configurations.

C. Impact of dynamic-seed Cuckoo filter
This section evaluates the dynamic-seed Cuckoo filters with

different SSTable sizes and fingerprint lengths. We can see
from Fig. 8, the throughput of SpotKV increases as we
use more bits as fingerprints in dynamic Cuckoo filters. In
this evaluation, there are 16K KV pairs in each SSTable.
The memory cost for each dynamic Cuckoo filter is 12.5KB
when the fingerprint length is 6 bits, and a total space of
78.35MB is used for all SSTables with zero false positives
for hot keys. However, the bloom filters used in LevelDB set
bits_per_key as 10 bits, and there will be 100MB for IM
KV pairs.

D. Impact of workload settings.

Impact of different workload skewness. In this section, we
evaluate both SpotKV and LevelDB with 100% read workload
in the YCSB benchmark. With 100M KV pairs warmed up, we
varied the query skewness from uniform to Zipfian-1.2 in the
following 10M read operations. As shown in Fig. 9(a), when
the skewness rises, both SpotKV and LevelDB experience an
increase in read throughput. LevelDB benefits from the block
and table cache to reduce the time for accessing queried KV
pairs. SpotKV and LevelDB share the same throughput of
around 37.5 KOPS when the workload is uniform. However,
when the skewness degree equals 1.2, SpotKV can reach 139.7
KOPS, which is almost three times that of LevelDB.

Impact of different read/write compositions. In this
section, we evaluate the performance of SpotKV and LevelDB
with different read/write compositions in the YCSB workload.
We varied the makeup of read operations in workload from
20% to 100% with Zipfian-0.99, as shown in Fig. 9(b).

When the read operations makeups are small (e.g., 20%
to 40%), SpotKV achieves a throughput similar to LevelDB.

352

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2024 at 04:39:50 UTC from IEEE Xplore. Restrictions apply.

120 m— , 160 160
EZZ1 Fingerprint length=6bits — LevelDB =1 SpotkV s LevelDB E=1 SpotkV
100 |== Fingerprint length=7bits i 140 o 140
BN Fingerprint length=8bits S 120 o 120
80 X

N
o

Throughput (KOPS)
o
=]

N
o
Throughput

o

1MB 2MB 4MB

SSTable size
Fig. 8: Throughput with different fin-
gerprint lengths.

8MB

workload.

140
‘2120
<1001
80
60
40
20

0_

A Cache Size: 1K
BN Cache Size: 10K

BB Cache Size: 100K
Bl Cache Size: 1M

Throughput (

1MB 2MB 4MB

SSTable size
10: Evaluation of the different SSTable sizes.

8MB

Fig.

F=Z] Cache Size: 1K
|EEE Cache Size: 10K

B Cache Size: 100K
EEl Cache Size: 1M

Throughput (

50M 100M 150M

Database size
Fig. 11: Evaluation of the different database sizes.

200M

This is because SpotKV is mainly optimized for accelerating
data read operations. Further, the dynamic-seed Cuckoo filter
construction will incur latency in changing seeds for potential
false positives. As the data read workload makeup increases,
the cache maintained in SpotKV can improve the whole
throughput, especially when there are more than 80% read
operations.

E. Impact of varied SSTable sizes.

Fig. ?? delves into the effects of varying SSTable sizes on
read throughput. We observe that the read throughput reaches
its lowest point when the SSTable size is IMB. This is because
small SSTables lead to the generation of more SSTables in
the database with the same number of KV pairs, triggering
more compactions that can stall read operations and ultimately
reduce read throughput. As the SSTable size increases, the data
lookup throughput improves from 30 KOPS to 45 KOPS when
the cache size is 1K.

V. RELATED WORK

KYV pair hotness identification. TRIAD [16] separates hot
keys and cold keys with the statistical function of getTopKHot

uniform 0.

Throughput (KOP
[«)]
o

74 2
40 60 80 100

Read workload ratio (%)

=
0

N

099 1
Skewness

(a) Throughput with different skewness in (b) Throughput with different Read/write ra-
Fig. 9: Evaluation of the different workload settings.

recording the frequency of each key in the current Immutable
MemTable. L2SM [17], [29] proposes HotMap, which is like a
stack of multiple Bloom filters of each SSTables, and one key’s
hotness value could be obtained from the number of positive
results of all bloom filters. The more positive results bloom
filters indicate, the hotter the key would be. Even if L2SM
does think of the IO difference caused by the key’s position
in the tree, the calculation of summing all filters’ results up
is a time-consuming process for hotness identification. Our
SpotKV flexibly combines the Count-Min sketch and layer
difference to achieve a quick hotness keys separation scheme.

Effective query-agnostic filters. Chucky [30] constructs a
large Cuckoo Filter in memory to locate every single key’s
SSTable. The updating cost incurred by the associated change
would drag the lookup throughput. Monkey [12] exhibits an
optimal balance between the costs of updates and lookups
with a specific memory budget. It models the worst costs on
point lookup and update operation with different size ratios
in the LSM trees and shows that we can assign the different
number of bits per key to Bloom filters in different layers
to achieve a lower false positive under the same memory
budget. ElasticBF [11] manages all KV pairs in the unit of
the data segment and assigns different bits per key parameter
for bloom filters in different hotness segments. In a nutshell,
Monkey [12] compromises more space to bloom filters in
shallow layers, while ElasticBF [11] grants a larger memory
usage for identified hot key-value segments’ Bloom filters.
However, both of them are trying to give more bits for hot
keys in Bloom filters, and our SpotKV further aims to lower
the false positive rate.

VI. CONCLUSION

In this paper, we design and implement an LSM tree store
called SpotKV with a novel caching scheme, aiming to set
a disk I/O-aware cache admission rule by incorporating a
weighted CM sketch and dynamic-seed Cuckoo filters. The
core idea of this scheme is to assign varying priorities to
queried KV pairs across different SSTable layers. We also
develop mechanisms to mitigate false positives arising from
the membership query structure by changing dynamic seeds.
SpotKV has been implemented on top of LevelDB, and
the extensive experiments reveal its ability to deliver higher
throughput compared to recent works.

353

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2024 at 04:39:50 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

We sincerely thank our three anonymous reviewers for their
insightful suggestions. The authors were partially supported by
NSF Grants 1750704, 2114113, and 2322919, and DoE Grant
DE-SC0022069.

[1]
[2
[3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

REFERENCES

“Leveldb. https://github.com/google/leveldb.”

“Rocksdb. https://github.com/facebook/rocksdb.”

S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and
M. Strum, “Optimizing space amplification in rocksdb.” in CIDR, vol. 3,
2017, p. 3.

A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 3540, 2010.
“https://docs.ceph.com/en/quincy/rados/configuration/bluestore-config-
ref/.”

Y. Matsunobu, S. Dong, and H. Lee, “Myrocks: Lsm-tree database
storage engine serving facebook’s social graph,” Proceedings of the
VLDB Endowment, vol. 13, no. 12, pp. 3217-3230, 2020.

D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang,
Y. Zhou, M. Huang et al., “Tidb: a raft-based htap database,” Proceed-
ings of the VLDB Endowment, vol. 13, no. 12, pp. 3072-3084, 2020.
Q. Zhang, Y. Li, P. P. Lee, Y. Xu, Q. Cui, and L. Tang, “Unikv:
Toward high-performance and scalable KV storage in mixed workloads
via unified indexing,” in 2020 IEEE 36th International Conference on
Data Engineering (ICDE). 1EEE, 2020, pp. 313-324.

H. H. Chan, C.-J. M. Liang, Y. Li, W. He, P. P. Lee, L. Zhu, Y. Dong,
Y. Xu, Y. Xu, J. Jiang et al., “HashKV: Enabling efficient updates in
KV storage via hashing,” in 20/8 USENIX Annual Technical Conference
(USENIX ATC 18), 2018, pp. 1007-1019.

F. Wu, M.-H. Yang, B. Zhang, and D. H. Du, “AC-
Key: Adaptive caching for LSM-based Key-Value stores,” in
2020 USENIX Annual Technical Conference (USENIX ATC 20).
USENIX Association, Jul. 2020, pp. 603-615. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/wu-fenggang

Y. Li, C. Tian, FE. Guo, C. Li, and Y. Xu, “ElasticBF: Elastic bloom filter
with hotness awareness for boosting read performance in large Key-
Value stores,” in 2019 USENIX Annual Technical Conference (USENIX
ATC 19), 2019, pp. 739-752.

N. Dayan, M. Athanassoulis, and S. Idreos, “Monkey: Optimal navi-
gable Key-Value store,” in Proceedings of the 2017 ACM International
Conference on Management of Data, 2017, pp. 79-94.

X.Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing Key-Value stores with fast in-network caching,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 121-136.

Y. Li, Z. Liu, P. P. Lee, J. Wu, Y. Xu, Y. Wu, L. Tang, Q. Liu, and
Q. Cui, “Differentiated Key-Value storage management for balanced I/0
performance,” in 2021 USENIX Annual Technical Conference (USENIX
ATC 21), 2021, pp. 673-687.

M. Mitzenmacher, S. Pontarelli, and P. Reviriego, “Adaptive cuckoo
filters,” 2020.

O. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel, H. Yuan,
A. Arora, K. Gupta, and P. Konka, “TRIAD: Creating synergies between
memory, disk and log in log structured Key-Value stores,” in 2017
USENIX Annual Technical Conference (USENIX ATC 17), 2017, pp.
363-375.

K. Huang, Z. Jia, Z. Shen, Z. Shao, and F. Chen, “Less is more: De-
amplifying i/os for Key-value stores with a Log-assisted LSM-tree,” in
2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 2021, pp. 612-623.
“https://tikv.org/deep-dive/key-value-engine/b-tree-vs-lsm.”

J. Ren, “Ycsb-c. https://github.com/basicthinker/ycsb-c.” 2016.

G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” in LATIN 2004: Theoretical
Informatics: 6th Latin American Symposium, Buenos Aires, Argentina,
April 5-8, 2004. Proceedings 6. Springer, 2004, pp. 29-38.

Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu, R. Zhang,
and J. Jiang, “Cocosketch: High-performance sketch-based measurement
over arbitrary partial key query,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, 2021, pp. 207-222.

354

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

D. Yao, H. Wang, H. Xu, and M. Zhang, “Lightweight per-flow traffic
measurement using improved Iru list,” IEEE Transactions on Network
Science and Engineering, 2023.

Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig,
“Cold filter: A meta-framework for faster and more accurate stream
processing,” in Proceedings of the 2018 International Conference on
Management of Data, 2018, pp. 741-756.

B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies, 2014, pp. 75-88.

S. Shi, C. Qian, and M. Wang, “Re-designing compact-structure based
forwarding for programmable networks,” in 2019 IEEE 27th Interna-
tional Conference on Network Protocols (ICNP). 1EEE, 2019, pp.
1-11.

R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122-144, 2004.

G. Xanthakis, G. Saloustros, N. Batsaras, A. Papagiannis, and A. Bi-
las, “Parallax: Hybrid Key-Value placement in LSM-based Key-Value
stores,” in Proceedings of the ACM Symposium on Cloud Computing,
2021, pp. 305-318.

Y. Dai, Y. Xu, A. Ganesan, R. Alagappan, B. Kroth, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau, “From WiscKey to bourbon: A learned index for
Log-Structured merge trees,” in /4th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020, pp. 155-171.
K. Wang and F. Chen, “Catalyst: Optimizing cache management for large
in-memory key-value systems,” Proceedings of the VLDB Endowment,
vol. 16, no. 13, pp. 43394352, 2023.

N. Dayan and M. Twitto, “Chucky: A succinct cuckoo filter for LSM-
Tree,” in Proceedings of the 2021 International Conference on Manage-
ment of Data, 2021, pp. 365-378.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2024 at 04:39:50 UTC from IEEE Xplore. Restrictions apply.

