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Abstract—LSM tree based stores are a popular database design
in modern persistent storage systems due to their efficient writes
with sorted keys. However, this hierarchical log structure suffers
from extensive read amplification because multiple disk accesses
are required when it searches for a key. Recent optimizations
of LSM trees propose caching hot keys to reduce I/Os mainly
based on their access frequencies. However, our empirical studies
show that keys are different in I/O costs, which should also
be considered in the caching policy: caching key-value pairs
with high I/O cost can effectively improve query latency. In
addition, false positives incurred by the Bloom filters in LSM
trees introduce a large overhead to access SSTables because the
queried keys do not exist. In this work, we design and implement
SpotKV, which resolves the above two problems in an LSM
tree store by proposing two memory-efficient data structures,
weighted Count-Min sketch for access and I/O-aware cache
admission and dynamic-seed Cuckoo filters for eliminating false
positives, to improve data lookup throughput. We implement
SpotKV on Google’s LevelDB v1.20. From extensive experimental
evaluations, SpotKV achieves 1.2-3.0× read throughput while
using the same or smaller memory, compared with several state-
of-the-art LSM tree stores under the read-heavy workloads of
the YCSB benchmarks.

Index Terms—LSM tree, KV store, Caching, Cuckoo filter,
Count-Min sketch

I. INTRODUCTION

Persistent key-value stores are increasingly essential nowa-

days as a widespread solution for handling extremely large-

scale data. Log-structured merge tree (LSM tree) based store

is widely used as a fundamental storage infrastructure in a

large variety of applications in datacenters, like Google’s Lev-

elDB [1], Meta’s RocksDB [2], [3], and Apache Cassandra [4].

Based on significant advantages in dealing with write-intensive

workloads, the LSM tree store has become the backbone

storage backend in production [5]–[7].

LSM tree stores maintain key-value (KV) pairs in two com-

ponents, one resides in memory to buffer the new KV writes

and updates called MemTable and Immutable Memtable. The

other is kept in secondary storage, where most KV pairs in the

database are packed into SSTables and organized in multiple

levels (e.g. from L0 to Ln) whose sizes increase exponentially.

We call the first level with the least number of SSTables as

the lowest layer and the last one as the highest layer. Each

SSTable contains an array of KV pairs in a sorted ordering and

corresponding metadata like indexing data within the SSTable.

In each layer, once the number of SStables exceeds its size

limit, one of the SSTables would be selected to merge into

the next layer with SSTables having the key range overlapping

with it. When there is a data lookup request, it has to search the

SSTables in each layer until it can find it. During the process,

the membership query filters (e.g. Bloom filters) will be used

to check if the SSTable contains the targeted KV pair. Note that

some read requests for non-update-intensive KV pairs have to

go through multiple layers to get satisfied because they are

compacted to the bottom as time goes on.

A variety of designs [8]–[11] have been proposed to improve

data query throughput in LSM tree stores. These schemes

focusing on fast data locating and accessing in SSTable can

be categorized into two types – cache-based and filter-based.

UniKV [8] uses a Cuckoo hashing table to maintain all KV

pairs’ positions in L0, where the KV pairs are not sorted

strictly across SSTables. Thus, keeping each key’s position

in memory could reduce latency for locating SStable in L0

because binary search does not help in this layer. AC-Key [10],

as a representative of hybrid caching work, combines three

different caching approaches – key-value, key-pointer and

block – to accelerate the process of finding target KV with

a "ghost" cache. To lower the false positive rate brought by

hashing collision in Bloom filters, ElasticBF [11] tries to

assign more bits-per-key to hot data blocks, whose hotnesses

are identified by their accessing time intervals. The main

thought behind these methods is trading memory space for

fast lookups.

However, we realize that existing solutions often use the

query frequency to characterize the "hotness" of a key [8],

[10], [11]. Based on our empirical studies, presented in Sec-

tion II, show that a key with a lower query frequency but at

a higher level might cause more total I/O times than another

key with a higher query frequency but at a lower level. Since

the average I/O time is the main metric to predict the query

latency, an ideal metric to characterize the hotness should

reflect the average I/O time of a key rather than just the access

frequency.

On the other hand, improving read throughput by lowering

the false positive rate in the Bloom filters for SStables is an

effective way. Assigning more bits per key in the filters for

SSTables/blocks containing hot keys [11], [12] is a common

approach to achieve a low false positive rate because there is

a consensus that data accessing workload is usually skewed in

real scenarios [11], [13], [14]. Just like the bits-per-key is a

key parameter for a single Bloom filter for its memory usage

and false positive rate, the fingerprint length is a parameter

that can adjust the expected false positive rate when it comes

to a Cuckoo filter, and the false positives originate from

the fingerprint collisions. Given the fixed memory budget,
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ElasticBF [11] varies the bits-per-key in different Bloom

filters for different data blocks, and Monkey [12] allocates an

exponential distribution of bits for keys in the different layers’

Bloom filters. However, increasing bits per key certainly

increases memory cost. Is there a way we can lower such

membership query filters’ false positive rate further besides

just allocating more bits?
In this paper, we introduce SpotKV, a solution designed

to identify KV pairs’ hotness in disk I/O efficiency and

further lower false positives in membership query filters by

incorporating dynamic seeds within a Cuckoo filter. The newly

designed Cuckoo filter can change seed values for each bucket

to reduce known false positives. The idea is motivated by the

adaptive Cuckoo filter [15], a recently proposed design that

allows the filter to eliminate known false positives: when a

false positive is detected, the data structure can be adjusted

such that the same false positive will not happen again. But the

adaptive Cuckoo filter does not have a seed for each bucket like

that in SpotKV. We believe this idea is a great fit to eliminate

potential false positives of hot queries to an LSM tree: hot

queries can be detected. The filters can be changed to correct

the hot queries if they are false positives. This combination

of strategies can benefit the KV store by caching for hot keys

and reducing disk I/Os incurred by filters’ false positives.
However, to complete the hotness identification task in

an I/O-oriented perspective, and make precise optimization

to replace caching with Bloom/Cuckoo filters, the following

key problems have to be solved: (1) How to accurately

measure and identify the hotness of KV pairs in terms of

their I/O costs? (2) How to lower false positives in Cuckoo

filters without assigning more bits to the data structure?

SpotKV carefully addresses these key issues by developing

two pluggable techniques – an I/O-aware Count-Min sketch

and adaptive hot-key Cuckoo filters – to improve the LSM

tree store’s data query throughput in a memory-efficient way

based on our observations: (1) the caching admission policy

that combines frequency and I/O should be used for the LSM

tree based KV store, and (2) there are repeating false positives

of hot queries that happen in data stores.
We emphasize that the designs in SpotKV are compatible

with most existing optimizations on LSM tree structures. They

can replace current relevant modules in different LSM tree

variants to achieve higher data query performance.
Our contributions in this paper are summarized as follows:

(1) We conduct empirical studies to identify that including

I/O cost is necessary for cache management of an LSM

tree store.

(2) We present a fast and memory-efficient structure to select

read-intensive key-value pairs according to disk I/O over-

heads instead of general frequency-based identification in

the LSM tree store.

(3) We propose a novel scheme to make a traditional mem-

bership query filter to reduce the false positives in an

advanced step and improve lookup throughput.

(4) We have implemented a prototype with the two key

designs in SpotKV based on Google’s LevelDB v1.20

MemTableImmutable
MemTable

…
…

…

SSTable

LRU
Block Cache

Data Block

Index Block
Filter Block

Footer

…

Disk

Memory

Fig. 1: The LSM tree structure in LevelDB.

and conducted extensive experiments to illustrate the

advantages of SpotKV against several baselines for read-

heavy workloads.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce LSM tree based KV

stores with an example of LevelDB [1]. We then show our

observations from the empirical results and analysis of the

data lookup workload.

A. Log Structured Merge Trees

Fig. 1 illustrates the structure of an LSM tree, which consists

of both in-memory and on-disk components. A MemTable

and an Immutable Memtable serve as the main cache space

in the memory. On the disk, a set of SSTable (Sorted string

table) groups storing data in a persistent way are ordered and

organized in n layers, from L0 to Ln. The number of SSTables

in each layer increases exponentially by a factor named Layer
Ratio r, where r equals 10 in LevelDB and 8 in RocksDB [2]

by default. If we refer the number of SSTables in Li is mi, that

means mi+1 ≈ r ·mi, where i+ 1 ≤ n. Except for SSTables

in L0, all key-value pairs are sorted strictly inside an SSTable

and among SSTables in a layer without any overlapping.

An LSM tree store works as follows. All incoming KV

write operations are first served by the MemTable, which

acts as a cache buffer. When the MemTable is filled up, it

would be converted to an Immutable Memtable on which we

could not write more data and then a new empty MemTable

will become a new buffer for incoming operation requests.

When the Immutable Memtable is flushed from memory to

disk, all KV pairs in it are sorted and rewritten again into

a new SSTable, which is how the new SSTable is built in

L0. SSTable is a piece of data log where KV are organized

on it with metadata. We have m0 SSTables in L0, and the

key ranges among them are not strictly sorted because the

Immutable Memtables are converted to SSTables at different

times. Compaction is a merging operation that happens among

SSTables in two continuous layers. When the number of

SSTables in Li reaches the set threshold, an SSTable in Li is

chosen and merged with all SSTables in Li+1 with key range

overlappings. Then all KVs in these SSTables are sorted and

written into a new SSTable in Li+1.

The read operation starts to find the target KV from

Memtable to Immutable Memtable in memory first. If there

is no match, the LSM tree will search the disk layer by layer

from L0 to Ln because the newly updated data are stored

in the lower layer (like L0). The search stops immediately
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(a) Number of queries for different
level

(b) Number of queries with different
Disk I/O times

(c) False positive rate (d) Repeated false positives ratio

Fig. 2: Observations from YCSB read-only workload.

once it gets the KV in a certain layer. For mi SSTables in

Li, it uses binary search to locate the SSTable candidates that

may contain the target KV. After it locates an SSTable, the

Bloom filter block will be accessed first as a membership query

structure to check if the target KV exists in it – Bloom filters

have false positives.
B. Motivations

Many performance optimizations on LSM tree stores have

been proposed [10], [11], [16] by treating hot data (in the unit

of key, SSTable, or block) and cold data differently. A hotness

identification scheme is a prerequisite for separating hot data

from the whole workload set. For example, L2SM [17] uses

HotMap to calculate the hotness value of all SSTables and op-

timize the compaction of hot SSTables to save the computation

overheads.

An LSM tree store manages all KV pairs through SSTables

in multiple layers, which incurs lots of I/O overhead [18]

when it comes to point data lookup operation (especially

compared to B+ tree). Caching hot KV pairs [10] enables

the database to access read-heavy data faster and consume

less CPU and time resources without going through SSTables

stored in disk. However, how the hot keys are identified and

selected in an LSM tree store to reduce I/O overhead is

a challenging research problem. For example, TRIAD [16]

proposes to get the most K popular key-value pairs in each

MemTable with a top-K algorithm, which can recognize the

update-intensive data instead of read-intensive pairs. Time-

based hotness identification is also a common approach used

in recent work to complete the task. ElasticBF [11] maintains

a table to track all data block’s lifeTime values which

represent the time they stay in the LSM tree. The data segment

that is accessed more than two times within a time duration

expiredtime will be inserted into the cache. The weakness

is that all keys in one data segment share one hotness value,

which is not accurate for individual KV pairs, especially when

the memory size for caching is limited. We know it is a subtle

tradeoff because memory cost will increase significantly if we

maintain the lifeTime values for all single KV pairs. Thus,

a memory-efficient hotness identification scheme is required

for estimating the hotness value for individual keys.

In addition, data are stored in different levels of the LSM

tree. For a KV pair that is stored at a higher level, accessing it

requires more I/O cost. Hence we argue that the storage level

of a KV pair needs to be considered in the cache strategy: a key

with a lower query frequency but at a higher level might cause

more total I/O times than another key with a higher query

frequency but at a lower level. We run a microbenchmark

with 1 million read operations on LevelDB [1] v1.20, with

4 levels and 4 SSTables in L0. Then, we draw the CDF

of SSTables accessing times for the workload (with uniform

and Zipfian access patterns) based on YCSB [19]. Fig. 2(a)

shows the distribution of levels the data lookup reaches in

the log scale. A higher level receives significantly more data

requests than the lower levels; for example, data lookup

requests reaching the highest level (L4) make up 88% of the

uniform workload. From Fig. 2(b), we can see the number of

SSTables accessing distribution varies in different data lookup

processes. In uniform workload, the data requests that access

5 SSTables make up around 15%, but the requests that access

8 SSTables are 30.6%. Such disk I/O difference motivates us

to differentiate them in caching admission and prioritizes the

one that incurs more disk I/Os. Thus, a cache admission rule

that can take into account the different I/O costs of the KV

pair is ideal for the LSM tree store.

Recently, counting sketches [20], a statistical tool for mak-

ing hotness identification, have been proposed for multiple net-

work applications [13], [21] as a memory-efficient approach.

For example, the Count-Min sketch [13] is used to estimate

the frequency of incoming data packets with the hashing value

of the IP address in it. Motivated by these techniques, we

propose to apply sketches on counting the hotness of queried

KV pairs in the LSM tree store. However, caching KV pairs

with the most frequent KV pair does not necessarily minimize

the disk I/O overheads. If a KV pair has a high hotness value,

maybe it is not optimized to cache it in terms of the benefit

for the database system. The final objective is to improve the

read performance by lowering the disk I/Os incurred by the

lookup operation. AC-Key also takes into account the different

overheads incurred by caching the KV pairs in different layers

and makes the KV pair with a high-efficiency factor stay at

the cache for a longer time like the weighted LRU cache [22].

In this work, we focus more on how to select hot keys in the

cache admission.

To reduce the disk I/Os to SSTable, different LSM tree

store implementations [1], [2] usually leverage Bloom filters

to check if the queried key exists in the SSTable. However, the

false positives in Bloom filters will cause extra disk I/O and

CPU resources. We show the false positive rate in Fig. 2(c)

when we set the number of bits per key used in the filter from

6 to 10. There are more than 10% false positives shown in both
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Fig. 3: Overview of SpotKV.

Zipfian and uniform workload when bit-per-key is 6. The more

bits we assign to the Bloom filters, the lower the false positive

rate is. Given the fixed memory budget, we cannot lower the

number anymore. However, we observe that the repeated false

positives make up around 7% among all false positives, as

shown in Fig. 2(d). Thus, the other motivation of this work is

how to reduce/avoid duplicated false positives in a further step.

Alternatively, there are many hotkeys in a workload, and it is

impossible to cache all of them due to the limited memory

space. Is there any way we can avoid their false positives

appearing with the membership query filters?

III. DESIGN OF SPOTKV

We propose SpotKV, a high-throughput and memory-

efficient solution for the LSM-tree store, which can potentially

save a large portion of I/O overheads with a novel hotness

identification scheme. It also can mitigate read amplification

by reducing false positives for accessing SSTables.

A. Overview

A key design goal of SpotKV is to leverage a memory-

efficient sketch data structure to realize I/O-aware hotness

identification for caching hot KV pairs. It also leverages adap-

tive Cuckoo filters to eliminate false positives on warm keys

or the keys where false positives happened before. SpotKV

accomplishes this by installing these two optimized modules

introduced in this section.

The whole design is illustrated in Fig. 3. In memory,

besides MemTable and Immutable MemTable we mentioned

in section II, we have a module named weighted Count-Min
(CM) sketch, which enables SpotKV to identify hot/warm keys

based on the I/O overheads they can save for read operations.

The hot keys chosen by sketch can be cached for any further

applications. The fingerprints of warm keys output by our

weighted CM sketch will be kept in an LRU list. Note that

only fingerprints will be maintained thus the memory usage

will be way less than storing full KV pairs. We also have

an array of dynamic seeds-based Cuckoo filters maintained in

memory for each SSTable on disk, and they can lower FPR

when it tells if the target key is in the SSTable or not. Given

the fixed memory budget, our Cuckoo filters can work it out

Disk

Memory

…
…

key1 key2

Get(key1)

(key1)

+(m0+1)

Add value

Get(key2)

(key2)

Add value

+(m0+n)

Weighted Count-Min Sketch

Fig. 4: Weighted Count-Min sketch.

with the list of warm keys’ fingerprints as assistance to remove

false positives may happen on them.

Note that we put the following two main modules together

to work out as SpotKV, they can also be divided and applied

to other LSM-tree stores independently without the other on.

For example, dynamic Cuckoo filters can be fed with hot keys’

fingerprints chosen by a time-based hotness identification

scheme.

The workflow of a key lookup operation is as follows. The

queried key will be first checked in the cache, MemTable and

Immutable MemTable, respectively. If there is no match, then

the lookup will go to the SSTables on the disk. Same with

LevelDB, it searches every SSTable in L0 and at most one

SSTable in the layer from L1 to Ln will be checked until

the queried key is found. When the lookup process gets the

queried KV pair in Lj , after the LSM tree returns the data,

the counters in the weighted CM sketch will be updated based

on the number of the SSTables this lookup had went through.

If the estimation of the key’s hotness value in the weighted

Count-Min sketch reaches a threshold, then the corresponding

KV pair will be cached for future use. If the estimated hotness

does not reach the threshold, the fingerprint of the key will be

added into the fingerprint LRU list, which will be fed to the

adaptive Cuckoo filters as a reference to remove false positives

on them.

B. Weighted Count-Min Sketch

To mitigate the disk accessing times consumed by read oper-

ations in the LSM-tree structure, we propose to identify read-

intensive keys that incurred large I/O overheads from multiple

layers and cache them in memory to make future lookups fast.

In this section, we are going to illustrate the detailed design

of the weighted CM sketch. This sketch provides a fast and

memory-efficient hashing scheme to estimate the hotness of

each individual key-value pair. Hotness analysis in terms of

SSTables or other units of data store is not the focus of our

work.

Count-Min sketch. A Count-Min sketch consists of M
arrays of W counters, which are initialized to 0. The maximum

value each counter can reach depends on the bits assigned to it;

if a counter occupies 8 bits and the maximal value it can serve

is 255. A set of M hash functions are enabled to hash elements
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into random counters in each array. In practice, we usually use

one hashing function and M different seeds to realize Hi(k),
where 0 ≤ i ≤ M . It works as follows. When it comes to

a key, it is hashed to different counters in each array with

different M hashing functions, and generally a constant value

c will be added to them. If you want to estimate the frequency

of a key, just access the counter values (c0, c1, .., cM ) with

M functions again, and the minimal value min(ci) will be

regarded as a close estimation of it. The estimation error e
is limited to ε with probability of 1 − δ, where we assume

M = �e/ε� and W = �ln(1/δ)�. In fact, sketch is commonly

used to count up data packets with specific IP/MAC addresses

in their headers as the keys of hashing functions.

Weighted Count-Min sketch. Provided there are

m0,m1, ..,mn SSTables in LSM-tree structure from layer L0

to Ln, where the key-value pairs in L0 are not strictly sorted

across the m0 SSTables. When data request comes to L0, it

has to search all SSTables because there possibly are keys

range overlapping among them. However, it can use binary

search to locate that exact one candidate SSTable from L1 to

Ln because all keys are sorted in ascending in layers.

Fig. 4 shows the working process of the weighted Count-

Min sketch that estimates the hotness of KV pairs. Same as the

traditional Count-Min sketch, it has M arrays of W counters

initialized with 0. When it comes to a point lookup request

of key1 (as indicated in blue), our SpotKV will � follow the

LSM-tree rules to search target KV pair layer by layer; here

we find key1 in the second SSTable of L1. � Then we hash

key1 with M different seeds to M counters, spreading all rows

in sketch. � We add c = m0+1 on the hashed counters as an

increment of hotness it brings to this counter, where m0 refers

the number of SSTables in L0. Then we compare all values

in all these M counters and choose the least one as a close

estimation of key1’s hotness value. If the smallest estimation

exceeds a threshold, the KV pair could be regarded as hot and

added to the LRU caching list. Correspondingly, we found

key2 (indicated in red) in the third SSTable of Ln, so we add

an increment of c = m0 + n on the counters hashed by key2.

Additionally, if a key is found in the i-th SSTables in L0, we

just add i on associated counters.

In summary, what the weighted CM sketch actually does

is to use the SSTable accessing overheads caused by search-

ing the key as the increment added on counters instead of

requested times from the database. When it comes to a read-

intensive workload, there are read-intensive keys in high layers

of the LSM-tree structure with less chance to be updated and

appear in low layers again. Thus, we use the I/O cost and

access times simultaneously to refer to how worthwhile to

identify it as a hot pair. If we just add a constant for each key,

then all KV pairs in different positions of the LSM-tree will be

treated with no difference, and the I/O cost is not considered.

Configuring hot KV threshold. The weighted Count-Min

sketch enables us to estimate the frequency of the individual

KV pair in a fixed period. As time goes on, the value in

counters will increase, it does not bode well if we set a fixed

integer as a bar to screen hot keys. The threshold we select

should be relevant to a key’s relative hotness in the sketch.

Thus, we defined the hotness of a key as the ratio between the

estimated value and the sum of all counter values like:

hotness =
min(c0, c1, .., cM−1)∑

counter value
(1)

Then, no matter whether the sketch is just initialized or almost

overflowed, a threshold t (0 ≤ t ≤ 1) could be chosen to tell

if the requested key is hot or not.

Overflow of the sketch. When the value of a counter

reaches the maximum it can support, how to enable sketch to

serve after overflow is a crucial problem. Given each counter

is assigned with 8 bits, the largest estimated value it can record

is 255. At that time, all counters in the sketch can continue

serving, but this overflowed one.

We leverage two common approaches to let sketch work on

after overflow. One where as long as one counter overflows, we

will empty all counters and reconstruct it with the KV requests

in the future. The advantage is it is fast, and this operation does

not incur any heavy overhead, but it will lose all information

and former estimations recorded in the past. Usually, after we

empty the whole sketch, we will add an initial value to the

overflowed counter to refer to it as the most popular counter

in the last round.

The other approach to solve this problem is using a sliding

window. All keys contributing to their popularity in the sketch

will be maintained in a sliding window with time order. When

a counter reaches the ceiling value, we start from the left of

the sliding window and subtract a constant from each key’s

associated counters until the overflowed counter’s value is

taken off by 5%. The benefit is that sliding window-based

sketch [23] can always keep the relative popularity indicated

in a past period. However, it is expensive to implement this

policy because it is easy to get the counter to be overflowed

again if it got ovevflowed before, and the cost to remove the

KV pairs in the tail of the sliding window also incurs large

overheads. Additionally, maintaining keys in a list just for the

sketch is not necessary in terms of its memory cost. The sliding

window-based sketch does not fit our work. Thus, we choose

an "empty scheme" as the default way to handle the overflowed

counters in our weight CM sketch.

Configure the sketch size. Since we replace KV request

times with its corresponding SSTable accessing cost in the

sketch, we can understand our weighted CM sketch in another

way: If it takes m times on-disk accessing to find a key, it

means key appears m times if we put all KV pairs in one

single layer. When it comes to configuring the sketch’s size,

we can follow the rules in traditional CM sketch, too. Assume

the sketch size is M ×W , where array number M also refers

to the hashing functions we used in sketch. To make sure the

estimations in the CM sketch follow P (x ≤ x̂ ≤ x + εn) ≥
1− δ, where n is the number of all distinct KV pair requests,

εn is a tolerant error and δ is confidence probability. Since

we are going to apply an empty policy(resetting to 0) to deal

with the overflowed counter problem, n will be a number of

distinct KV requests within a time round, which starts from an
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empty sketch and ends when an overflow happens. Given that

the ceiling value in each counter is set to 255 (8 bits), we want

to estimate the frequency of 1K KV pair requests in a single

time round. With ε equal to 0.01, we can calculate the required

width W in sketch should be 270. If we hope estimation error

could be limited within a difference of 1K × 10 with the

possibility of 99%, the expected choice for the number of

hashing functions M will be 4 or 5.

Overhead. Even if maintaining and managing our weighted

CM sketch in memory will cost some resources, but the

overheads are very small. Provided our sketch size is M×W ,

and each counter contains 8 bits for estimation. If we set M
as 5 and W as 270, the memory cost will be 1.01KB.

For each point lookup request for k, we will calculate

M hashing result with Hi(k). The M memory accessing

operations are required to update the value in M associated

counters, above which does our sketch incur extra compu-

tational overhead. When it comes to an overflowed counter,

assigning all values with 0 in the sketch just occupies limited

computational resources.

C. Dynamic-seed Cuckoo Filter

To avoid wasted I/O overhead for accessing "wrong" on-

disk SSTables, which actually do not have the target KV

contained, approximate query structures like Bloom filter are

used in LevelDB and Cuckoo filter in RocksDB [2]. LSM-tree

stores suffer from the waste of I/O overheads incurred by false

positives in filters, even with the help of caching. We propose

to mitigate the false positive rate (FPR) of query structures

associated with SSTables further with Cuckoo filters and our

weighted CM sketch.

Cuckoo filter. SpotKV achieves a lower FPR using the

Cuckoo filter for the application of an LSM-tree store, where

each SSTable has a membership query structure with it. We

introduce (2,4)-Cuckoo filter here because recent works [24],

[25] prove it can achieve the maximal load factor in memory.

A (2,4)-Cuckoo filter is a table of a number of buckets, each

with 4 cells or slots. When we insert a key in the Cuckoo filter,

two candidate buckets could be calculated by b1 = H(key)
and b2 = H(key) ⊕ H(f(key)) = b1 ⊕ H(f(key)), where

H(·) is a hash function and f(·) returns the fingerprint of the

input. Then key will be stored in one of the 8 cells of two

buckets. If there is no available cell for newly inserted keys,

one of the keys in these 8 cells will be kicked out to the other

candidate bucket and keep going until all keys could be stored

without overflows. Note that what we put in the bucket cells

is actually the key’s fingerprint instead of the full key, which

is the different point with Cuckoo hashing [26]. Thus, when it

comes to a key membership query, we just compare the key’s

fingerprint with 8 possible fingerprints stored in two buckets,

as long as there is a match, the Cuckoo filter will return a

positive answer that the key may be in it. If there is none of

them match, then the key will definitely not be in the filter

(no false negative).

Dynamic-seed Cuckoo filter. We propose to use (2,4)-

Cuckoo filter as a membership query structure associated with

each SSTable. As shown in Fig. 5, we make an adaption on

a traditional Cuckoo filter that � we attach a seed for each

bucket and use it to calculate the fingerprint of 4 keys stored

in it. At first, all seeds are set to 0. All four keys in one

bucket share the same seed for the hash function to get its

fingerprint, whose length is adjustable in our setting. Note

that the two candidate buckets are calculated by two distinct

hashing functions H1, and H2 and any of them cannot be

restored by the exclusive-or operation as suggested in the

traditional Cuckoo filters. However, we will keep the full

keys while constructing a dynamic Cuckoo filter for a new

compacted SSTable while merging. The idea was motivated

by the recently proposed adaptive cuckoo filter [15] but the

detailed design is different in order to be used by the LSM

tree.

Recall that we conclude a list of warm keys’ fingerprints

(hashed with the seed 0) and they are organized in an LRU

approach. The warm keys mainly consist of two parts: (1)

When there is a key query, we update it in our weighted

CM sketch. If it is not identified as a hot key (the estimated

frequency is smaller than the threshold but larger than 0), it

will be regarded as a warm key. Then, we will calculate the

warm key’s fingerprint with the seed of 0 and put it in the

LRU list. (2) When a false positive happens, and the bucket

seed is 0, we will insert the fingerprint of this key into the

list. We will also move the compaction offset pointer to the

current SSTable and try to compact this table into the next

level first.

Every time we finish constructing the Cuckoo filter with

all seeds of 0, we test all warm keys in the list to see if the

dynamic Cuckoo filter will give a positive answer back.

There are two occasions that make it have a positive answer,

(1) The warm key is indeed in the Cuckoo filter. (2) As shown

in Fig. 5, � there is a false positive happened. No matter

which one is the real reason for that, what we are going to do

is � updating seed 0 to 1 in this bucket. Correspondingly, �
we update all fingerprints with new seed. After we update

all possible seeds and fingerprints in buckets where false

positives may occur with our warm keys, a dynamic seeds-

based Cuckoo filter is finished, and it could be used as a

structure when a data lookup request makes a membership

check with extremely low FPR. Then, we can discard all the
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full keys to save memory space and use the Cuckoo filter to

serve the membership query in the future.

There is a variant based on the dynamic-seed Cuckoo filter.

What we put in the list of warm keys is their full keys instead

of fingerprints hashed when it is constructed. The weakness

of the fingerprint version is that we can only update seeds

once in the buckets with possible false positives. Thus, we can

use 1 bit to store the seed. However, false positives may still

exist because the newly updated fingerprints may conflict with

other hot keys’ fingerprints with the seed of 1. Suppose we can

maintain full keys of warm KV pairs in an LRU list and feed

it to the Cuckoo filter. In that case, we can do many rounds

of seeds and fingerprint updates to make the FPR lower until

we can totally erase all false positives incurred by these warm

keys. The weakness is that we have to spend more memory

on storing full warm keys. We still use the fingerprint version

in the rest of this paper and demonstrate that the throughput

improvement brought by the reduction of FPR can replace

caching even with a smaller memory budget. Note that we

could write the dynamic-seed Cuckoo filters into a disk with

SSTables like filter block in LevelDB because all seed updates

will be finished before the construction.

Configure the dynamic-seed Cuckoo filter. The critical

parameter in (2,4)-Cuckoo filter we need to configure is the

size. The number of cells in a Cuckoo filter influences the

effectiveness of membership checking for each SSTable. If

the load factor is low, lots of memory space will be wasted;

if it is too high, then the reconstruction of Cuckoo filters will

frequently happen because some keys cannot find an available

cell within the limited kicking-out times, then the compaction

of new SSTable will be pulled back in this stage.

The key part of setting the Cuckoo filter’s size (number of

buckets) depends on how to estimate the number of distinct

KV in a new SSTable after compaction. Provided an SSTable

size is set to p (e.g. 2MB), and the size of each key-value pair

is q on average. We can use �p/q� as an estimation for the

number of KV pairs. Since we have other metadata blocks (like

footer and indexing blocks) in an SSTable besides data blocks,

the number of distinct keys in a full SSTable will not exceed

�p/q�. Note that we do not have to round our dynamic Cuckoo

filter’s size to a power of 2 because we use two independent

hashing functions to locate two candidate buckets for a key.

However, we can initialize the Cuckoo filter with the size of

�p/(qτ)� first, where τ is the expected load factor.

Overheads. Constructing and maintaining our dynamic

Cuckoo filters for each valid SSTable will incur additional

memory of computational costs. The peak memory overhead

will be spent on a set of Cuckoo filters and a list of warm keys’

fingerprints. Provided we set 20480 cells for each dynamic

Cuckoo filter with 5120 buckets, the fingerprint length is 8 bits,

and the seed only costs 1 bit in each bucket. Each dynamic

Cuckoo filter costs 5120 · (4 · 8 + 1)bits = 20.62KB. If all

cuckoo filters are put into memory, in a 5-layer LSM-tree with

2 SSTables in L0 and size ratio r as 8, the whole memory cost

for Cuckoo filters will be 20.62KB ·∑5−1
i=0 2 · 8i ≈ 193MB.

Additionally, we can apply the common optimization for

the last layer Ln, removing all Cuckoo filters there to save

memory cost [6].

IV. PERFORMANCE EVALUATION

Setup. Our experiments are running on a workstation that

maintains the LSM tree key-value store service, with Intel

Xeon Silver 4314 CPU @ 2.40GHz, 160GB 2133MHz DDR4

memory, and 48MB LLC. The SSD we equipped is a Samsung

990 PRO NVMe SSD with a user capacity of 1T.

We used the C++ version of Yahoo! Cloud Serving Bench-

mark (YCSB) [19], [27] as workload by default. We adapt

it to generate the KV pairs for SpotKV and run 12 million

transactions each time to get the throughput and stat disk

I/Os. We use 100M KV pairs (around 12GB) to warm up

the database with 20B keys and 100B values, which is a

common setting [28] in existing studies. Unless specified, all

workloads follow a 0.99-Zipfian accessing pattern. We use

workload C of YCSB as the default workload to evaluate and

analyze our weighted CM sketch and dynamic Cuckoo filters.

We developed SpotKV based on Google’s LevelDB v1.20 [1],

which is an LSM tree implementation that maintains bloom

filter blocks on disk for each SSTable. For a fair comparison, a

version of LevelDB that keeps bloom filters in memory [17] is

implemented. We configured the SSTable size to 1MB (default

setting in LevelDB) and the number of levels to 5, and set

the original block_cache_size to 100 and max_open_files

size to 64. Besides LevelDB, we use two other recent works

for comparison. (1) E-LRU [10], which assigns an efficiency

factor to each cached KV pair. In the implementation we use,

the potential number of disk I/Os is assigned as the efficiency

factor. When the LRU cache is full, the system checks the

16 least used KV pairs and evicts the one with the smallest

efficiency factor. Generally, the higher the level of the KV

pair lies, the harder to be evicted from the cache. For cache

admission, the system directly inserts the new queried KV pair

in the LRU cache. (2) ElasticBF [11], which calculates hotness

based on SSTable block’s lifetime. We maintain a table to

record the lifetime of each data block in an SSTable. If the

block is accessed more than once within the expiredtime,

we cache all the KV pairs in that block. We use the data

operation sequence as time. We set the expiredtime as the

same as the existence time of the SSTable. If an SSTable is

compacted to the next level, the time record for each data block

it contains will be removed. We also implement ElasticBF on

top of LevelDB due to the lack of open-source code.

A. Overall performance in YCSB

We show the performance of SpotKV under six different

YCSB workloads (A, B, C, D, E, F) against E-LRU [10],

ElasticBF [11] as well as LevelDB v1.20 [1]. Data read

operations make up 50%, 95%, and 100% in workloads A,

B, C, respectively. Workload E consists of 100% data scan

requests, and there are 50% read-modify-write operations in

workload F. Each benchmark performs 12M operations with

Zipfian accessing patterns (skewness as 0.99 and 1.1) defined

by the benchmark on a pre-loaded key-value data store.
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(a) Throughput on YCSB workloads (Zipfian
const: 0.99).

(b) Level distributions (Zipfian const: 0.99). (c) Disk I/O distribution (Zipfian const: 0.99).

(d) Throughput on YCSB workloads (Zipfian
const: 1.1).

(e) Level distributions (Zipfian const: 1.1). (f) Disk I/O distribution (Zipfian const: 1.1).

Fig. 6: Evaluation with YCSB workloads.

We have configured the cache size as 100K (0.1% size of the

total database), and the default threshold for hotness identifi-

cation in the weighted CM sketch is set at 0.19. The size of the

weighted CM sketch is set to 4×256. The resulting throughput

data is presented in Fig. 6(a) and Fig. 6(d), corresponding to

data access patterns of 0.99 and 1.1, respectively. In Fig. 6(a),

SpotKV consistently demonstrates the greatest benefits using

an equivalent cache size among various baselines. Note that

SpotKV can achieve 1.03-1.93× the throughput of LevelDB

except workload E (100% scan). The throughput performance

benefits read-intensive workloads more because our scheme is

mainly optimized for data lookup operations.

Then, we give a comprehensive analysis of the impact

of the weighted CM sketch on data queries, accompanied

by pertinent statistical insights. To this end, we present

Figures 6(b) and 6(e) illustrate the CDFs of data lookup

operation levels reached under Zipfian access patterns with

constants of 0.99 and 1.1, respectively. Remarkably, SpotKV

consistently achieves comparable ratios for data queries in

memory, whether they stem from the cache or the MemTable.

Even with a modest cache capacity of 0.1% entries of the

total database, the hit ratios can be mounted to around 40%

and 65%, respectively. However, ElasticBF achieves inferior

hit ratios when compared with both SpotKV and E-LRU.

This difference arises from ElasticBF’s reliance on block-level

hotness identification, as opposed to the more granular individ-

ual KV pair approach used by SpotKV. Also, the lifetime

updates for each data block maintained by ElasticBF is another

reason resulting in low throughput. We implement E-LRU in

the granularity of individual KV pairs so that the hit ratio can

be similar to the SpotKV. However, the no selective admission

of caching KV pairs makes the ratios for cached high-level KV

pairs a bit lower than SpotKV does. Compared with LevelDB

(in green), the caching-based schemes can make more than

50% of data operations be completed in memory without

reaching into the disk. Even if LevelDB may not access any

data block in each level due to many reasons (e.g., the queried

key does not fall into the key range of all SSTables), Caching-

based approaches can make those data operations completed

without checking metadata or filter blocks and saving software

overheads.

Fig. 6(c) and Fig. 6(f) illustrate the CDF for the number of

the potential disk I/Os incurred in 100% data read workloads.

We can see the disk I/Os benefits in our SpotKV with the red

dotted line that there is nearly no data read operation that needs

access to more than three SSTables when the Zipfian constant

is 1.1. Further, SpotKV achieves a more left-shifted CDF. This

result benefits from SpotKV’s priority of caching KV pairs that

incur larger disk I/Os, thereby reducing the potential number

of disk I/Os. Even if the E-LRU prioritizes the KV pairs lying

at a high level, the cache admission rule does not work well

for the case where the KV pairs are at a high level and may

not be accessed so frequently, but it is still worth catching.

Also, the efficiency factor checking causes time latency when

deciding which KV pair is supposed to be evicted. Note that

LevelDB benefits from the block cache for improving data

lookup throughput when the skewness increases from 0.99

to 1.1. From Fig. 6(b) and Fig. 6(e), we can see the level

distribution is almost the same but the CDF of disk I/Os are

different with the help of the block cache. LevelDB cached

more hot keys in the block cache (LRU) in the case of the

skewness as 1.1.

B. Evaluation of weighted CM sketch

1) Sampling interval.: We leverage lazy sampling to update

sketch counters for data queries to reduce the overhead and
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(a) Throughput with different sampling rates. (b) Throughput with different hotness thresholds. (c) Throughput with different sketch shape.

Fig. 7: Evaluation of different settings in the weighted CM sketch.

latency incurred by frequently updating the weighted CM

sketch. To evaluate its influence, we vary the sampling interval

from 1 to 64 and show the performance with four different

cache sizes. If the sampling rate equals 8, we update the

counters once for every eight key queries. As we can see from

Fig. 7(a), the throughput exhibits upward first and downward

trends when the cache size is relatively small (e.g., 1K, 10K

and 100K). When the sampling interval is large (e.g., 64), the

throughput is the lowest because it cannot update the statistical

information to cache in time. If we update the weighted CM

sketch too often (sampling frequency is high), the extra latency

will be incurred. However, if we update the counters with

a very low frequency, then our sketch cannot get the fresh

statistical results for queried keys. From the results, the read

throughput turns out to be the highest when the rate is set to

8 when the cache size is 100K.

2) Threshold.: The hotness threshold is an important pa-

rameter for weighted CM sketch to identify hot keys. In

our experiments, we evaluate the impact of the threshold on

throughput by adjusting its value within the range of 0 to

0.35 used for cache admission. As depicted in Fig. 7(b), the

throughput initially experiences an increase with the incre-

mental threshold value, followed by a subsequent decline. We

can observe this trend in all different cache size settings.

With a threshold set to 0, the weighted CM sketch totally

functions as an LRU cache. In this configuration, each newly

queried KV pair enters the cache immediately right after being

queried. As the threshold value increases, the cache admits

more frequently queried KV pairs. Additionally, those pairs

lying at higher levels are prioritized for getting into the cache.

Thus, the throughput climbs to its peak. However, with a

continuous increase of the threshold, a KV pair has to be very

hot to be chosen, which cannot fully use the cache’s capacity.

Consequently, the throughput experiences a downturn.

3) Sketch shape.: In our evaluation, we also conducted an

analysis of the influence of the sketch size on its performance.

To assess the sketch’s capabilities, we explored four distinct

shapes with 4 × 128, 4 × 256, 6 × 128, and 6 × 256, where

6 corresponds to the number of hashing computations (rows)

within the sketch, and 256 denotes its width. as depicted in

Fig. 7(c) To provide a comprehensive view of its performance

characteristics, we subjected the sketch to varying data query

distributions, ranging from uniform to Zipfian with a constant

parameter of 1.2 and the throughput remains stable. The shapes

with more rows (e.g., 6× 128, and 6× 256) are supposed to

incur extra latency. However, the hashing computation costs

less overheads with hash chaining, where the new hashing

result can be generated from the last hash result with fewer

computations. Further, the sketch with a large width can lower

the estimated errors in hotness identification. Some keys may

be selected and cached because the hash collision happened in

the sketch instead of its own actual hotness because other KV

pairs also contribute to the estimation value toward its hotness

counters. In the evaluation, the shape (4× 256) can win with

a slight advantage compared with other combinations among

the listed four configurations.

C. Impact of dynamic-seed Cuckoo filter
This section evaluates the dynamic-seed Cuckoo filters with

different SSTable sizes and fingerprint lengths. We can see

from Fig. 8, the throughput of SpotKV increases as we

use more bits as fingerprints in dynamic Cuckoo filters. In

this evaluation, there are 16K KV pairs in each SSTable.

The memory cost for each dynamic Cuckoo filter is 12.5KB

when the fingerprint length is 6 bits, and a total space of

78.35MB is used for all SSTables with zero false positives

for hot keys. However, the bloom filters used in LevelDB set

bits_per_key as 10 bits, and there will be 100MB for 1M

KV pairs.

D. Impact of workload settings.
Impact of different workload skewness. In this section, we

evaluate both SpotKV and LevelDB with 100% read workload

in the YCSB benchmark. With 100M KV pairs warmed up, we

varied the query skewness from uniform to Zipfian-1.2 in the

following 10M read operations. As shown in Fig. 9(a), when

the skewness rises, both SpotKV and LevelDB experience an

increase in read throughput. LevelDB benefits from the block

and table cache to reduce the time for accessing queried KV

pairs. SpotKV and LevelDB share the same throughput of

around 37.5 KOPS when the workload is uniform. However,

when the skewness degree equals 1.2, SpotKV can reach 139.7

KOPS, which is almost three times that of LevelDB.
Impact of different read/write compositions. In this

section, we evaluate the performance of SpotKV and LevelDB

with different read/write compositions in the YCSB workload.

We varied the makeup of read operations in workload from

20% to 100% with Zipfian-0.99, as shown in Fig. 9(b).
When the read operations makeups are small (e.g., 20%

to 40%), SpotKV achieves a throughput similar to LevelDB.
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Fig. 8: Throughput with different fin-

gerprint lengths.
(a) Throughput with different skewness in
workload.

(b) Throughput with different Read/write ra-
tio.

Fig. 9: Evaluation of the different workload settings.

Fig. 10: Evaluation of the different SSTable sizes.

Fig. 11: Evaluation of the different database sizes.

This is because SpotKV is mainly optimized for accelerating

data read operations. Further, the dynamic-seed Cuckoo filter

construction will incur latency in changing seeds for potential

false positives. As the data read workload makeup increases,

the cache maintained in SpotKV can improve the whole

throughput, especially when there are more than 80% read

operations.

E. Impact of varied SSTable sizes.
Fig. ?? delves into the effects of varying SSTable sizes on

read throughput. We observe that the read throughput reaches

its lowest point when the SSTable size is 1MB. This is because

small SSTables lead to the generation of more SSTables in

the database with the same number of KV pairs, triggering

more compactions that can stall read operations and ultimately

reduce read throughput. As the SSTable size increases, the data

lookup throughput improves from 30 KOPS to 45 KOPS when

the cache size is 1K.

V. RELATED WORK

KV pair hotness identification. TRIAD [16] separates hot

keys and cold keys with the statistical function of getTopKHot

recording the frequency of each key in the current Immutable

MemTable. L2SM [17], [29] proposes HotMap, which is like a

stack of multiple Bloom filters of each SSTables, and one key’s

hotness value could be obtained from the number of positive

results of all bloom filters. The more positive results bloom

filters indicate, the hotter the key would be. Even if L2SM

does think of the IO difference caused by the key’s position

in the tree, the calculation of summing all filters’ results up

is a time-consuming process for hotness identification. Our

SpotKV flexibly combines the Count-Min sketch and layer

difference to achieve a quick hotness keys separation scheme.

Effective query-agnostic filters. Chucky [30] constructs a

large Cuckoo Filter in memory to locate every single key’s

SSTable. The updating cost incurred by the associated change

would drag the lookup throughput. Monkey [12] exhibits an

optimal balance between the costs of updates and lookups

with a specific memory budget. It models the worst costs on

point lookup and update operation with different size ratios

in the LSM trees and shows that we can assign the different

number of bits per key to Bloom filters in different layers

to achieve a lower false positive under the same memory

budget. ElasticBF [11] manages all KV pairs in the unit of

the data segment and assigns different bits per key parameter

for bloom filters in different hotness segments. In a nutshell,

Monkey [12] compromises more space to bloom filters in

shallow layers, while ElasticBF [11] grants a larger memory

usage for identified hot key-value segments’ Bloom filters.

However, both of them are trying to give more bits for hot

keys in Bloom filters, and our SpotKV further aims to lower

the false positive rate.

VI. CONCLUSION

In this paper, we design and implement an LSM tree store

called SpotKV with a novel caching scheme, aiming to set

a disk I/O-aware cache admission rule by incorporating a

weighted CM sketch and dynamic-seed Cuckoo filters. The

core idea of this scheme is to assign varying priorities to

queried KV pairs across different SSTable layers. We also

develop mechanisms to mitigate false positives arising from

the membership query structure by changing dynamic seeds.

SpotKV has been implemented on top of LevelDB, and

the extensive experiments reveal its ability to deliver higher

throughput compared to recent works.
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