
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Toward Aggregated Payment Channel Networks
Xiaoxue Zhang , Member, IEEE, and Chen Qian , Senior Member, IEEE, ACM

Abstract— Payment channel networks (PCNs) have been
designed and utilized to address the scalability challenge
and throughput limitation of blockchains. It provides a
high-throughput solution for blockchain-based payment systems.
However, such “layer-2” blockchain solutions have their own
problems: payment channels require a separate deposit for each
channel of two users. Thus it significantly locks funds from users
into particular channels without the flexibility of moving these
funds across channels. In this paper, we proposed Aggregated
Payment Channel Network (APCN), in which flexible funds
are used as a per-user basis instead of a per-channel basis.
To prevent users from misbehaving such as double-spending,
APCN includes mechanisms that make use of hardware trusted
execution environments (TEEs) to control funds, balances,
and payments. The distributed routing protocol in APCN also
addresses the congestion problem to further improve resource
utilization. Our prototype implementation and simulation
results show that APCN achieves significant improvements on
transaction success ratio with low routing latency, compared to
even the most advanced PCN routing.

Index Terms— Blockchain, payment channel network, security,
TEE.

I. INTRODUCTION

BLOCKCHAIN is a promising solution for decentralized
digital ledgers, but low throughput remains a huge prob-

lem with growing numbers of users and transactions [2],
[3]. For instance, Bitcoin can only support 10 transactions
per second at peak in 2020 [4]. Payment channel networks
(PCNs) [3] are a leading concept to provide a high-throughput
solution for blockchains. In a PCN, two users can conduct
transactions with each other through a bi-directional channel.
The blockchain is only involved when the users open and
close the channel [5]. Each user commits a certain fund at
the opening of this channel. Then they can make any number
of transactions that update the tentative distribution of the
channel’s funds as long as the remaining funds allow. These
transactions only need to be signed by the two users, and do

Manuscript received 20 December 2022; revised 28 February 2024;
accepted 14 June 2024; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor D. Malone. This work was supported in part by the National
Science Foundation under Grant 1750704, Grant 1932447, Grant 2114113,
Grant 2322919, and Grant 2420632. The work of Chen Qian was supported
in part by Army Research Office (ARO) under Grant W911NF-20-1-0253. The
preliminary version of this paper [DOI: 10.1109/ICNP55882.2022.9940365]
appeared at the Proceedings of IEEE ICNP, 2022. (Corresponding author:
Chen Qian.)

Xiaoxue Zhang was with the Department of Computer Science and Engi-
neering, University of California at Santa Cruz, Santa Cruz, CA 95064 USA.
She is now with the Department of Computer Science and Engineering, Uni-
versity of Nevada Reno, Reno, NV 89557 USA (e-mail: xiaoxuez@unr.edu).

Chen Qian is with the Department of Computer Science and Engineering,
University of California at Santa Cruz, Santa Cruz, CA 95064 USA (e-mail:
cqian12@ucsc.edu).

Digital Object Identifier 10.1109/TNET.2024.3423000

Fig. 1. A multi-hop payment in a PCN.

Fig. 2. A multi-hop payment in an APCN.

not need to be broadcast to the entire blockchain. Each user
can establish channels with multiple other users. If a channel
does not exist between two users, they can make a transaction
via a multi-hop path, where any two consecutive users on the
path share a channel. As shown in Fig. 1(a), if user a wants
to make a payment to another user c without a direct channel.
User b has direct channels to both a and c. Hence they can use
the multi-hop path a − b − c and adjust the fund distribution
on the channels a − b and b − c accordingly. The PCN is a
promising solution to achieve the scalability of blockchains
because most transactions can be achieved in an off-chain
manner.

However, such “layer-2” blockchain solutions have their
own problems: PCNs require a separate deposit for every chan-
nel and significant locked-in funds from users [6]. Besides,
funds are not equally distributed among all the channels of one
user. A situation might happen that a user cannot support a
transaction due to insufficient funds in a required channel, but
in fact, the node has sufficient unused funds in other channels.
As in Fig. 1(b), when a pays c $5, the link from b to c only
has balance of $3 and hence cannot support this transaction.
Redistributing funds among channels immediately is not real-
istic here, because users need to react with blockchain to set up
new channels which is time-consuming. Such inflexibility of
fund utilization results in significant resource under-utilization
in PCNs. Many recent studies focus on using routing protocols
to improve resource utilization in PCNs, such as Spider [7] and
Flash [8]. However, our evaluations show that routing cannot
fully solve the problem of imbalanced fund utilization
problem across different channels. The key reason is that
per-channel funds also limit routing path selections.

1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2605-6902
https://orcid.org/0000-0002-6882-9590

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Teechain [9] is a recent work to prevent parties from stealing
funds, relying on trusted execution environments (TEEs).
It allows funds to be moved in and out of the network and
between payment channels dynamically using TEE. But such
a method cannot improve the success ratio of transactions
because it is unable to determine how much fund is sufficient
in a channel before the transactions. None of these works allow
sharing fund across different channels of a same user.

In this paper, we introduce Aggregated Payment Channel
Network (APCN), a system that enables sharing and freely
allocating funding among all payment channels of a single
user. In APCN, funds are maintained in a per-user basis
instead of per-channel, which provides higher flexibility of
fund utilization and hence much higher payment success rate
(from 70% to > 95% in our evaluation). When users perform
multi-hop payments, those intermediate nodes only deliver the
payments to the next-hop node, instead of adjusting funds in
the channels as in the PCNs. So intermediate nodes actually
act as relay hops which is more similar to packet-switching
networks compared to existing PCNs. A multi-hop payment is
successful as long as: 1) a path exists between the sender and
receiver; 2) the sender has enough funds to pay the receiver.
Unlike PCNs, there is no requirement that every channel on
the path must have that amount of lock-in funds.

However, there are multiple challenges in designing APCN.
1) How to prevent users from double-spending. Since funds are
not maintained in separate channels, the user cannot determine
whether the funds sent to her have been paid to others until
she makes the settlement on the main chain. 2) How to
make settlements when shutting down channels or users going
offline. In PCNs, payments only change the distribution of
the channel’s funds, and the total balance of the channel
always keeps the same. When closing a channel, two users
only need to broadcast a blockchain transaction with the final
balance. However, in APCN, the funds are not kept in a single
channel, and it is difficult to trace payments in the network.
In order to address these two challenges, we design protocols
based on the widely available trusted execution environment
(TEE) for controlling funds, balances and payments. TEE is a
hardware security feature in modern CPUs [9] that ensures the
confidentiality and integrity of code and data. 3) We further
assume not every user of APCN has a TEE device. Hence how
users can rely on other TEE devices and trust the execution
remains another challenge. 4) We consider the congestion
control problem in APCN: When finding paths for concurrent
payments and multiple payments use the same channel on
their paths, There are two potential solutions in existing PCNs.
1) The two paths use the channel simultaneously, but a solution
is needed when the channel capacity is not sufficient; 2) the
channel is used in a first-come-first-serve manner. Then the
second transaction needs to find another path. Compared to
previous works in PCNs, our APCN solution can well support
concurrency payments because multi-hop payments do not
change the funds of intermediate nodes. The main challenge
is that, if too many payments go through a certain node,
the transaction processing rate on this node should be slower
than the transaction arrival rate which causes congestion. Such
a node will become the bottleneck of the whole network.

To prevent this situation, we design a routing protocol with
congestion control in APCN that each channel locally keeps
a congestion factor, and nodes would consider the congestion
factors of channels to select the next hop.

We conduct both prototype implementation and large-scale
simulations for APCN, based on real-world PCN topologies
and transactions. The results show that even the most advanced
PCN routing protocols cannot achieve 75% transaction success
rate – a transaction is successful if there is a routing path
with sufficient funds – while APCN always achieves over 95%
transaction success. We show APCN is also cost-efficient.

In summary, this paper makes the following contributions:
• We propose APCN, a novel design of payment channel

networks with shared funding that could improve success
ratio of multi-hop payments, and avoid locked-in funds
in channels as well.

• We design a routing protocol with congestion control for
APCN that could lower the average processing time of
the whole network with low per-node overhead while
achieves high resource utilization.

• We simulate APCN based on real-world PCN topologies
and transactions. The results show the claimed advantages
of APCN compared to the state-of-the-art protocols.

The rest of this paper is organized as follows. The system
overview and model are presented in Section II. We describe
an overview in Section III and the detail design of the APCN
and routing protocol in Section IV. Section VII presents the
evaluation results of APCN. Section VIII describes the related
work. Section IX concludes this work.

II. OVERVIEW

A. Network Model

APCN is a payment channel network in which the funds
are maintained in a per-user basis instead of per-channel.
In APCN, each user is called a node. The bi-directional pay-
ment channel shared by two nodes is called a physical channel
or direct link, and these two nodes are called direct neighbors.
Each node maintains some funds to make transactions with
others or help to relay transactions. We model an APCN as
a graph G = (V,E,Ψ), where E is the set of links, V is
the set of nodes with a weight function w, and ψu ∈ Ψ is
the funds of user u in the network. Each node is assigned
a congestion rate which can reflect the time it will take on
average to process a transaction going through it. This value is
periodically updated according to the number of transactions
going through it in the last time slot. Furthermore, a path
p is a sequence of links e1 . . . ek with ei = (vi, vi+1) for
1 ≤ i ≤ k − 1. The path of a transaction is accepted only
if the amount of this transaction is less than the fund of the
sender, ψ1. Every node knows the links to its neighbors. When
two nodes want to make a transaction, they can exchange their
information via the Internet. However, they might not know
the paths to connect them at the beginning.

Problem definition. The problem of making successful
payments in APCN is described as follows. Consider a trans-
action t initiated by sender s that should be received by the
recipient r. APCN needs to find a path from s to r, where

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND QIAN: TOWARD AGGREGATED PAYMENT CHANNEL NETWORKS 3

two consecutive nodes on the path should share a physical
link (payment channel) to transfer the payment to the next-
hop. The success of the payment implies that s can make
a transaction with r by a sequence of transactions involving
other intermediate nodes, even if s and r have no trusted
channel.

APCN should make use of a routing protocol that finds
an end-to-end path from the sender to the recipient in the
network graph. In fact, APCN is able to apply any existing
routing protocol of PCNs and make corresponding adjustments
to allow them to work in APCN. In our implementation, we
use the virtual coordinates based distributed greedy routing
introduced in a recent work WebFlow [10] and extend it for
APCN. Virtual coordinates-based distributed greedy routing
can achieve a low per-note routing state and high routing
success rate, since each node only knows and interacts with a
small subset of other users, independent of the entire network
size. It is a highly scalable and decentralized solution for
payment channel networks. Other types of routing can also
be used in APCN, but the current implementation has the best
performance among other possible implementations.

B. Trusted Execution Environment (TEE)

The requirement for synchronous blockchain access in exist-
ing payment networks comes from the fact that their protocols
use the blockchain as a root-of-trust: parties executing the
payment protocol monitor the blockchain to discover when
other parties deviate from the protocol, and react appropriately.
In traditional PCNs, users can easily verify transactions by
checking their channel states and balances. This mechanism
also prevents the double spending problem since a single
fund cannot be used in two different channels. A single fund
cannot be paid to the same receiver twice either, since both the
receiver and sender keep a view of channel state. They could
detect misbehaving parties when a dispute happens. However,
in APCN, the channel is stateless. We should prevent the
situation where a malicious node tries to spend a fund twice
to two different receivers.

In order to ensure the faithful execution of the payment
protocol in APCN, we make use of trusted execution environ-
ments (TEEs) [11]. TEEs are encrypted and integrity-protected
memory regions, which are isolated by the CPU hardware
from the rest of the software stack. Multiple TEE implemen-
tations are commercially available, including Intel SGX [12],
ARM TrustZone [13] and AMD SEV [11], with several
others currently underway, such as KeyStone Enclave [14],
Multizone [15] and OP-TEE [16]. Intel CPUs from the Sky-
lake generation onwards support SGX [17], a set of new
instructions that permit applications to create TEEs called
SGX enclaves. TEEs ensure faithful execution of software
and the owners cannot make changes on either the data or
software in TEEs. TEEs are widely available and many
blockchain based applications have been using TEEs for
other purposes such as Teechain [9].

APCN constructs a peer-to-peer payment network in which
each node comprises: (i) an API for users to interact with
the payment network; (ii) an interface through which to read

Fig. 3. APCN overview: APCN nodes operate TEEs to store and manage
funds. Users construct payment channels between nodes to exchange funds
directly, and execute multi-hop payments along concatenated payment chan-
nels.

and write blockchain transactions; and (iii) a TEE-protected
program called Ledger that securely holds and manages users’
funds. Ledgers ensure the faithful execution of the payment
protocol. They are responsible for managing payment chan-
nels, executing payment transactions, and controlling access
to funds. They communicate via secure channels established
by two neighboring nodes to update user funds.

Fig. 3 shows an example of APCN. For a user A, to join
in the APCN at initialization, it needs to construct a set-up
message and send it to the blockchain. This message should
include a transaction that A makes a deposit of $128 to
the blockchain. After this message being confirmed in the
blockchain, A can open channels with other users and make
or relay transactions in the APCN. Assume A opens channels
with user B and C respectively. When A wants to make a
payment of $30 to B, the TEE of A, denoted as TEEA,
will record this transaction in the local ledger as B : −$30,
and update A’s remaining funds to $98. The TEE of B,
denoted as TEEB , will also record this transaction in its local
ledger as A : $30, and update B’s remaining funds to $112.
The next time when A wants to make another payment of
$80 to user C, TEEA and TEEC will update their local
ledgers to C : −$80 and A : $80 respectively, and update
A and C’s remaining funds to $18 and $83 as well. When
A wants to go offline and make a settlement, it first needs to
retrieve the encrypted ledger of the latest version from TEEA,
and then send it to the blockchain. It keeps monitoring the
blockchain until its ledger is confirmed. In this process, TEEA

denies all the transactions to or through it as defined in the
settlement protocol in the TEE. After the ledger appears in the
block, A sends messages to all its neighbors. The neighbors’
TEEs who receive the messages will update their local ledgers
to mark the transaction records with A as confirmed. The
correctness of the execution of the protocol is guaranteed by
the TEE. If there is any external adversary preventing TEEs
from correct behavior, we treat it as TEE failure, and certain
users need to restore and recover data before the TEE failure.
The user’s TEE only records its own channel and deposit
information, independent of the entire network size. As shown

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

in Fig. 3, the TEE does not keep all the transaction history
in a channel. Instead, it only updates the overall transaction
value after each transaction happens in this channel. Thus, the
system can achieve high scalability even with a large number
of nodes and a large volume of transactions in the network.

C. Attacker Model

We assume users and webservers can exchange messages
through a traditional secure communication channel such as
TLS. Information leakages among them are beyond the scope
of our discussion. We assume the attackers can gain complete
physical access to a node in which the funds are stored and
complete control of its network connections. They may drop,
modify and replay messages. An attacker may also delay or
prevent the node it controls from accessing the blockchain for
an unbounded amount of time. However, they cannot make
changes to the TEEs on the controlled nodes. The widely
applied TEE implementation SGX is known to be vulnera-
ble to attacks such as controlled-channel attacks, and there
have been some countermeasures to them [18]. To prevent
information leakage from access patterns, existing oblivious
RAM library can be adopted [19]. There are also existing
timing and memory-access side-channel resistant libraries
for sensitive data [9]. Shih et al. [20] presented a modified
LLVM compiler dubbed T-SGX, which is effective against all
known controlled-channel attacks. Lee et al. [21] proposed
ZigZagger as a defence against their own branch shadowing
attack. To defeat enclave specific attacks such as ROP attacks,
Seo et al. [22] activated ASLR inside SGX enclaves to make
exploitation more difficult. BYOTee [23] put forward a method
to build multiple equally secure enclaves by utilizing commod-
ity FPGA devices. Microcode patch could also help, but it can
only be changed by the manufacturer of the CPU, which is
out of scope of this paper. We apply side-channel resistant
libraries and T-SGX in our implementation. We consider the
user security of their funds in a fully distributed PCN. Users
may be malicious and attempt to steal funds and deviate from
the payment protocol, if it benefits them.

D. Requirements

Security: The main security requirement of APCN is that it
should enable transactions to be executed between users safely
and correctly. For safety, we consider two situations. The first
is online users making transactions. Since funds are not kept in
a single channel, we should ensure that APCN could prevent
double spending. If a malicious node tries to spend a fund
twice to two different receivers, the receivers should be able
to detect it and reject the transaction. The second situation we
consider is the settlement. When a user goes offline, all the
transactions related to this user should be settled and written to
the blockchain. If other users want to go offline later, we need
to guarantee that the same transaction will not be written to
the blockchain twice. Overall, at any time during the payment
protocol execution, each user should be able to perform a finite
set of actions that eventually results in them receiving their
perceived balance on the underlying blockchain – a user’s
perceived balance is their initial balance on the blockchain

plus any payments received in the payment network, minus
any payments made.

Privacy: For privacy, our goal is to hide values, and achieve
anonymity of sender and receiver when making transactions.
We use the term value privacy, sender/receiver anonymity
respectively to refer to these three privacy goals. We say that
the system can achieve value privacy if it is impossible for
any adversary to know the total value of a transaction between
two honest users. The system can achieve sender anonymity
if the adversary cannot determine the original sender of a
transaction. Similarly, receiver anonymity can be achieved if
the adversary cannot determine the actual receiver.

Performance: The main performance goal of ACPN is a
high transaction success rate, which is determined by many
factors including available funds, routing protocols, and con-
gestion control to handle concurrent requests.

We introduce another performance requirement that can
further improve transaction success rates: efficient congestion
control. When many transactions requests happen in a PCN
at the same time, we call these requests as concurrent pay-
ment requests. Existing PCN systems such as Flash [8] and
SlientWhispers [24] do not provide solutions to handle con-
current requests. When looking for paths for these concurrent
payments, if multiple payments want to use the same channel
based on routing, congestion on the channel occurs. Hence
there are two ways to deal with this problem. 1) The two paths
share this channel and each gets a lower capacity if the channel
capacity is not sufficient. 2) The channel is used in a first-
come-first-serve manner and the other transaction should use
another path. Malavolta et al. [25] proposed two methods in
PCN to handle concurrency which decrease transaction success
rates and increase processing delays. APCN aims to support
concurrent transactions to achieve high success rates.

E. Analysis Methodology of This Work

From our observations of real PCN topologies, they are not
regular graphs such as grids or trees. Hence it is impossible to
use theoretical formulation to analyze the routing performance
or anonymity of a routing algorithm. We will use extensive
simulations with real network topologies to analyze the routing
performance or anonymity.

III. DESIGN OVERVIEW OF APCN

We provide an overview of transaction executions in APCN.
Similar to traditional PCNs, two users can conduct transactions
with each another via a bi-directional channel. They initiate
a corresponding entry in their ledger at the opening of this
channel. This entry will record all the transactions happening
in this channel. Table I shows the API that APCN provides to
users. It supports 1) creating deposits, 2) operating payment
channels, and 3) settlement. APCN generates unique identifiers
for each deposit and channel, e.g., when a deposit is created
(new_deposit), a unique identifier is returned as a handle to be
used in subsequent API calls. TEEs of each user are identified
through unique public keys.

TEE service providers. Users generate public/private key
pairs for their wallet addresses, which are cryptocurrency

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND QIAN: TOWARD AGGREGATED PAYMENT CHANNEL NETWORKS 5

TABLE I
APCN API

addresses owned exclusively by a user’s TEE. They are
generated securely inside each TEE, and their private keys
are stored in TEE memory. The owner of the TEE cannot see
the private key. Users can send funds to these addresses in
the form of fund deposits. Then deposits can be used in any
payment channels of the users. Note that not all users are
equipped with TEEs on their devices, while some machines
with TEEs are willing to provide their TEEs to others. These
machines can serve as TEE service providers. Those users
without a TEE-enabled node of their own can use a remote
TEE service provider to manage their funds.

Users must verify the integrity of TEE before trusting
them. APCN uses the remote attestation support of TEEs
for verification [26]. A TEE (i) measures the enclave code,
(ii) cryptographically signs the measurement and the user’s
public key, and (iii) provides the signed measurement and
public key to the remote user [9]. The remote user then verifies
the attestation, i.e., the remote user ensures that the attestation
is correctly signed by the Trusted hardware and that the
measurement corresponds to a known TEE implementation.
Users can thus verify that a specific service provider, identified
by its public key, is running the protocol correctly in the TEE
hardware. And remote TEE providers have the same abilities
as a local TEE. To deal with the situation that the machine with
remote TEE going offline and avoid having to trust a single
remote TEE service provider, APCN constructs committees
with multiple remote service providers.

Service provider Committee. Committees are groups of
TEE service providers that jointly manage fund deposits,
ledgers and transactions. They are used to prevent single point
failure when a user does not have a local TEE and has to rely
on a TEE service provider to manage their funds. For each
deposit owned by a service provider committee, a minimum
number of members are required to sign transactions before
that deposit can be spent, thus tolerating a fixed percent-
age of TEE failures to some degree. For this, APCN used
multi-signature support of the blockchain: each fund deposit is
paid to a m-out-of-n wallet address, where m TEE signatures
are required to spend the deposit. The n committee members
are responsible to manage the user deposit [9].

IV. PAYMENT PROTOCOL

This section describes the design of APCN protocols.

A. Deposits Allocation
In order to join the system, users need to create a deposit

in the ledger maintained by their TEEs, like making a deposit

to the wallets in the blockchain. Each TEE has public/private
key pairs for their wallet addresses, which are generated
ahead securely inside the TEE with their private keys stored
in TEE memory. The public key is used to make deposits
to, which is safe to share and is what others will use to
send funds to the users. In order to create a deposit for a
user, they first need to obtain the wallet’s public address
first. They can simply query their TEE for the public key k
and store it locally for future usage. A transaction indicating
making deposits related to the user needs to be recorded on
the blockchain. To construct a new deposit d, users invoke
new_deposit, and present a deposit transaction t and the
public key of the user’s TEE. The TEE then verifies that t
sends funds to the correct address using its public key k.
The TEE then constructs a new deposit d, forwards t to the
blockchain, and returns d’s unique identifier signed by the
TEE to the user. The user can only redeem the funds back
from the TEE after deposit settlement on the blockchain.

Although the deposit is maintained by each user, we still
need payment channels for transactions among users. Since
the channels in APCN are stateless without funds in them,
it is not necessary to associate a determined number of
deposit with a certain channel. To create payment channels
between users without a blockchain interaction, participants
call new_pay_channel and provide the public key of the
TEE with which to create the channel. The two TEEs then
establish a secure communication channel using authenticated
Diffie-Hellman for key provisioning and remote attestation.
Using the secure channel, the TEEs assign a unique channel
identifier to the channel c and return the channel identifier.
After setting up payment channels, users can leverage channels
and their locked deposits in TEEs to make any number of off-
chain transactions.

B. Using Payment Channels
To execute a payment t along a channel, the sender u

calls update_channel, which specifies the amount ω to send
and the channel identifier ci. The sender’s TEE first ensures
that the sender has sufficient funds, du > ω, before decrement-
ing the sender’s balance and incrementing the recipient v’s
balance locally. It then forwards the payment to the recipient’s
TEE to update balances. If the payment is not received by the
recipient in a pre-determined time slot, e.g., due to a network
failure, the sender’s TEE rolls back the payment to prevent
balance inconsistencies. If the payment is received by the
recipient successfully, the sender’s TEE needs to update the
remaining deposit to be du−ω, and the recipient’s TEE needs

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

to update the deposit to dv + ω. They also need to update
the ledgers of the users respectively, which is v : −ω in the
sender’s ledger, and u : +ω in the recipient’s ledger.

Since a deposit is not associated with a single channel,
participants will not suffer from deposit lock-in as in PCNs:
when a large deposit is added to a channel but only a small
fraction is spent, it leaves the remaining locked-in until the
channel is settled. In APCN, all the channels can use the
remaining deposit. Note that APCN still has deposit lock-in,
and users cannot redeem the deposit back until they make a
settlement on-chain. This deposit lock-in cannot be avoided
since users need to leverage the deposit to make transactions
in the system. Compared with traditional PCNs that lock-in
funds can only be used in a certain channel and require
lock-in funds for each channel, APCN is more flexible such
that the lock-in funds can be used in all the channels. Thus,
to support the same set of transactions with different users,
APCN will require significantly fewer lock-in funds compared
with PCNs. Besides, at any time, either party may shut
down the channel using close_channel. Since the channel
is stateless, the TEEs can terminate the channel off-chain by
simply marking the channel c as inactive as long as the channel
is not in use. Different from channel settlement in PCNs, off-
chain termination avoids writing a settlement transaction to
the blockchain, which saves plenty of processing time.

C. Congestion Control

To perform a multi-hop payment, the sender needs first to
find a payment path to the recipient, based on the routing
function. APCN routing is built upon the routing protocol
introduced in WebFlow [10], which is a virtual coordinates
based greedy routing. Each node has a set of coordinates and
the routing protocol always choose the neighbor that is closest
to the recipient in the coordinate space. If no neighbor is
closer to the recipient than the current node, WebFlow will
use pre-established paths to find a node that is closer to the
destination. The sender invokes routing with the coordinates
of the recipient. For each intermediate user received routing
request, it needs to determine the next hop in a distributed
manner. However, this routing protocol still has the problem of
under-utilization and does not consider the end-to-end latency
of the network.

In PCNs like the Lightning and Raiden networks, most
users by default pick the shortest path from the sender to the
destination. However, it leads to the congestion problem [7].
Consider an example PCN shown in Fig 4. Suppose many
users on the left side of a (in Cluster A) try to make
transactions with users on the right side of b (in Cluster B)
at the same time. Based on many routing protocols, when
transaction requests from cluster A reach node a, a always
forward those transactions to node b which has shorter paths to
the receivers in cluster B. This leads to congestion on channel
a − b, while channels a − u and b − u are under-utilized.
And thus, all the transactions between clusters A and B would
suffer from extra processing latency of channel a− b.

To address this problem, we introduce a congestion factor lc
for each channel, which shows the current processing latency
for an incoming transaction in the channel. However, it is

Fig. 4. Example illustrating the importance of congestion control in APCN.

impossible to minimize the processing latency as well as
maximize the success volume of the whole system as a linear
programming problem, because we cannot probe and compare
all the possible paths for every transaction in advance. Instead,
we apply a heuristic mechanism to optimize the end-to-end
latency - Latency Awareness (LA) forwarding, which avoids
congested links.

In LA forwarding, a node u chooses a neighbor x as the
next hop to receiver r such that it minimizes the heuristic
function h(u) = l(u, x) + l̃(x, r). l(u, x) is computed as how
many transactions are currently using the channel u− x, and
l̃(x, r) denotes the estimated routing latency from x to r from
locally computing the distance between the virtual positions
of x and r. The first question is how to assign the congestion
factor lc for each channel. Assume the processing latency of
a transaction at an idle channel c is ∆, and the channel can
process one transaction at a time. If multiple transactions want
to use the same channel, they will be put in a queue and lc is
adjusted according to the number of transactions in the queue.
For example, the congestion factor of an idle channel c is
lc = ∆. If there are 2 unfinished transactions in the channel c,
the congestion factor becomes lc = 3∆. The second question
is how to estimate the remaining routing latency l̃ from a
neighbor node x to the receiver r. Note that we assign each
node a virtual coordinate that reflects the network topology
features. The node pair with small hopcounts in the network
also shows a short distance in the Euclidean space. So we use
the distance dxr between the virtual positions of x and r as the
estimated hopcounts between them. We estimate l̃(x, r) such
that it is proportional to the estimated hopcounts between x
and r. For simplicity, we assume all the channels between x
and r are idle. So the heuristic function at node u is computed
as: h(u) = (n(u, x) + 1)∆ + d(x, r)∆, where n(u, x) is the
ongoing transactions in the channel ux.

However, simply assuming that all the channels between x
and r are idle is not accurate since node u does not have any
information on these channels. And selecting the next hop x
according to the heuristic function h(u) instead of choosing
the next hop that is closest to the receiver r may lead to a
larger routing stretch, and thus may introduce extra routing
latency. There exists a trade-off between WebFlow which has
lower routing stretch, and LA forwarding which has lower
estimated routing latency. So we combine WebFlow and LA
forwarding together. For each transaction arrived at node u,
it has the probability p to apply WebFlow to be forwarded
to the neighbor closest to the receiver. Otherwise, it runs the
LA forwarding protocol. We will further evaluate and find the
optimal p value in evaluation.

D. Deposits Settlement
In PCNs, if a user wants to shut down a channel, he needs

to have a transaction claiming the final state of the channel

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND QIAN: TOWARD AGGREGATED PAYMENT CHANNEL NETWORKS 7

recorded on the blockchain. However, in APCN, shutting down
a channel would not require any operation on the blockchain as
we mentioned in Sec IV-B. Only if a user wants to go offline,
does he need to settle his deposits and have his final deposits
on the blockchain. The channel record in a ledger has four
statuses: Pending, Complete, Inactive, and Settled. Pending
is the status that there exist one or more ongoing transactions
related to this channel. Complete is that all the transactions
going through the channel is complete and confirmed by the
sender and recipient. Inactive is the status that the user
has shut down the channel and this channel does not exist
anymore. Settled is the status that the neighbor that the
user shares the channel with is offline and has settled all his
channels and deposits.

To shut down a channel of the user u, it invokes
close_channel and includes the channel id and the user id
of its neighbor v whom it shares this channel c with as inputs.
The TEE of u first checks the status of channel c in its ledger.
If the status is Inactive, it means that the channel c has been
closed before and does not exist currently. So close_channel
will return ‘FALSE’. If the status is Settled, it indicates
that v is offline and has settled all the related channels.
So the function will fail to shut down the channel and return
‘FALSE’. If the status is Pending, it means that there exist one
or more ongoing transactions related to this channel, including
u sending payments via the channel c, other users sending
payments to u via the channel c, and c served as intermediate
hop of passing by transactions. In this case, the TEE of u will
hold the close_channel request until the status of c becomes
Complete. It is to prevent the situation that a transaction has
probed and determined the path, but some channels of this path
break down before the transaction completes. In the whole
process, the TEE of u will reject any other transactions via
the channel c. If the status of channel c becomes Complete,
u’s TEE can directly shut down the channel by changing the
status to Inactive and inform v’s TEE to change the status
of channel c to Inactive in v’s ledger as well. To prevent
the case that a malicious u tries to close the channel using a
stale state to benefit itself, when it invokes close_channel,
v will have a bounded reaction time to invalidate the action by
providing the latest state with the timestamp. If v approves or
fails to respond within the time slot, u will continue closing
the channel.

Consider user u wants to go offline and settle its deposit
on the Blockchain. The first thing it needs to do is to settle
all its channels by invoking close_channel. After the status
of all the channel records in its ledger becomes Complete,
the next step of u is to call settle_deposit and settle its
deposits on chain. To do this, u need to obtain the latest ledger
signed by its TEE from the TEE, and directly send its signed
ledger to the Blockchain. u needs to keep monitoring the
Blockchain until its ledger is verified, packed into a block,
and added to the Blockchain. Then, u constructs a proof
that its ledger has been added to Blockchain and sends the
proof to all its neighbors. If some neighbors do not agree
on the channel states, they could provide the correct signed
ledger to Blockchain to dispute. After receiving the proof, each
neighbor could easily verify the existence of u’s ledger on the

TABLE II
NOTATION

Blockchain. If the proof is correct, the neighbor nodes will
mark the channel u−v as Settled in their own ledgers. Here,
we treat the Blockchain as a root-of-trust, and roll-back-attacks
towards Blockchain is out of scope of this paper.

E. Data Recovery After TEE Failure

For users without TEEs on their devices, they rely on a
service provider committee to manage fund deposits, ledgers
and transactions. For each operation handled by a service
provider committee, a minimum number of members are
required to sign transactions before that deposit can be spent,
thus tolerating a fixed percentage of TEE failures to some
degree. However, for users with local TEE, their deposits and
ledgers are only kept inside the TEEs. Since TEEs isolate
data securely, if the local TEEs are compromised or fail, data
stored within it can become inaccessible. Thus, in APCN,
a robust backup and recovery mechanism is essential to
maintain system integrity and ensure data resilience after TEE
failures.

Upon a user joining the system and successfully creating
a deposit, the corresponding TEE exports an encrypted copy
of the deposit information, along with a timestamp and its
signature, to the device outside the TEE. Every time when a
new channel is created, the TEE needs to export the latest ver-
sion of the ledger with all the channel information. Note that
APCN strategically avoids backing up after every transaction
due to the potential for high-frequency transaction activities,
which could significantly strain the TEE’s resources. Instead,
backups are exported with the creation of new channels—a
relatively less frequent event that balances the need for up-
to-date data retention with the operational overhead on the
TEE. After a TEE failure and subsequent restoration, the
user first perform re-attestation to ensure the integrity and
trustworthiness of the TEE. They import the previously saved
encrypted ledger backup into the TEE. The TEE assesses the
authenticity and correctness of this backup by checking the
signature. Once validated, the TEE initiates the recovery of
transaction histories for each channel by reaching out to the
recorded neighbors in the backup.

V. PROTOCOL DETAILS AND SPECIFICATION

In this section we provide the detail description and
pseudo-code of our protocols introduced in the Sec. IV.
We tabulate our notation in Table II. We denote the set of
users as U = {U1, . . . , Un}, in which users may goes offline
and online some times. TEE service providers are denoted as
T = {T1, . . . , Tm}, some of which belongs to APCN users,
the others are from devices that are willing to provide their
TEE to APCN system.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE III
TRANSACTION FORMAT

Fig. 5. Transaction from Bob to Alice using HTLC contract for atomicity.

A. Transaction Data Format
Transactions. All transactions among users are conducted

via channels by TEE service providers, the format of which
are shown in Table III. Each transaction τ includes the address
of the transaction recipient τto, the transaction amount τa,
the address of the last hop user τf , and a monotonically
increasing transaction index τi. We note that τf here is not
necessarily the sender. For multi-hop transactions, τf records
the last hop where the transaction comes from. For each
intermediate user received a transaction, it needs to replace
the τf field to be the address of it, and relay the transaction
to the next hop. The protocol has to guarantee atomicity,
that is, either a multi-hop transaction is successful, or the
fund goes back to the original sender. Malavota et al. [25]
proposed a secure and privacy-preserving protocol for multi-
hop payments. It requires the Hash Time Lock Contract
(HTLC) supported in cryptocurrency, as the example shown
in Figure 5. In this transaction, Alice’s TEE first sets up the
transaction by creating a secret key and sending the lock =
H(key) to Bob. Then, the commitment phase starts with Bob.
He first sets on hold v1, and then the intermediate user sets
on hold the received amount minus his own fee. After the
intermediate user sets v2 on hold with Alice, Alice knows
that the corresponding transaction amount is on hold at each
transaction party and she can start the releasing phase. For
that, she reveals the key to the intermediate user allowing him
to fulfill the HTLC contract and settle the new funds. The key
is then passed back to the sender Bob for his settlement.

Ledger state. The ledger in the TEE maintains state that
contains the remaining deposit amount of the user, and several
entries as shown in Table IV. Each entry denotes a channel
of the user u, and consist of the following items: the channel
c built by u and its neighbor, the neighbor cN the user u
shares the channel c with, the overall amount u sent to the
neighbor cN via channel c, and the state s of this channel c
as introduced in Sec IV. The amount of the channel can be
negative, which is the amount user u owes cN .

B. Users With and Without TEE

Here we describe two categories of users separately, the
user with local TEE, and the user without local TEE. For

TABLE IV
LEDGER STATE

the first case, a client trusts its TEE, and uses single TEE
to hold the balance. For the latter one, a client chooses a
set of remote TEE service providers T = {T1, . . . , Tm} as a
committee. Algorithm 1 shows the protocol executed by each
node and TEE service provider. To construct a new deposit
d, a user with local TEE initiates the process by invoking
new_deposit_withTEE (Alg. 1, line 1) and preparing a
deposit transaction t to the TEE. This transaction t includes
the amount of deposit d and the TEE public key k that t
sends funds to, which serves as the TEE’s wallet address.
The transaction t needs to be signed by the user using their
private key, which helps to verify the user’s ownership of the
deposit and secures the transaction integrity by encryption.
This transaction can then be broadcast to the blockchain and
placed on-chain. Broadcasting the transaction to the network
could be performed through various online tools [27] or using
a locally running blockchain node. Once the user has paid
funding deposits into those addresses and the transaction t is
confirmed on the blockchain, they tell their TEEs about them,
including the amounts paid, the transaction hashes and the
transaction ids. TEE verifies that t sends enough funds d to
the correct address k by exploring the blockchain with the
transaction id and its wallet address k. TEE can also verify
the transaction signature using the user’s public key, ensuring
the transaction integrity. TEE can then begin creating a ledger
with the corresponding deposit d (line 6).

For users without local TEE, they have to use more than one
remote TEE service provider to prevent malicious attackers.
To construct a new deposit d, users without local TEE invoke
new_deposit_withoutTEE (line 8), and present a deposit
transaction t and the list of TEE service providers’ public
keys forming the committee that t sends funds to. The service
providers then verify that t sends funds to a k-out-of-m multi-
signature address using the committee members’ public keys,
k1 . . . km, and notify the committee of the new t. The user then
constructs a new deposit d, forwards t to the blockchain, and
returns d’s unique identifier to the requester (line 14), signed
by all committee members.

Payment channels do not hold any funds, and can be set up
or closed at any time. Creating a payment channel c is to add
an entry in the ledger of user u and v. Before the channel c can

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND QIAN: TOWARD AGGREGATED PAYMENT CHANNEL NETWORKS 9

Algorithm 1 APCN Payment Protocol Executed by Each Node and TEE Service Provider

1: def new_deposit_withTEE(t, k):
2: verify_tx(t, k)
3: d← create_new_deposit(t)
4: deposits[di] ← d
5: write_to_blockchain(t)
6: create_Ledger(di)
7: return di

8: def new_deposit_withoutTEE(t,
k1 . . . km):

9: verify_tx(t, k1. . . km)
10: d← create_new_deposit(t)
11: deposits[di] ← d
12: write_to_blockchain(t)
13: create_Ledger(di)
14: return di

15: def approve_channel(k):
16: apprv← ask_approve_remote(k)

17: return apprv

18: def new_pay_channel(k):
19: c← create_channel_with(k)
20: channels[ci] ← c
21: add_Ledger(ci)
22: add_Ledger(cN)
23: return ci

24: def pay_channel(v, ci):
25: c← channels[ci]
26: assert(c.my_bal ≥ v)
27: Update_Ledger(-v, ci)
28: Update_Ledger(v, cN)

29: def create_Ledger(di):
30: d← deposits[di]
31: a ← d
32: return L

33: def add_Ledger(ci, L):

34: c← channels[ci]
35: c.a ← 0
36: s← sc

37: return L

38: def Update_Ledger(v, ci, L):
39: c← channels[ci]
40: c.my_bal ← c.my_bal + v
41: ca ← ca + v
42: s← sp

43: return L

44: def close_channel(ci, L):
45: c← channels[ci]
46: Close_Ledger(ci,L)
47: Close_Ledger(cN ,L)

48: def Close_Ledger(ci, L):
49: // Collect all entries of channel c
50: c← channels[ci]

51: if s == s.c then
52: s← s.i
53: return TRUE
54: else
55: wait for time ∆
56: if s == s.c then
57: s← s.i
58: return TRUE
59: end if
60: end if
61: return FALSE

62: def settle_deposit(di):
63: for all channels c in U ’s ledger do
64: close_channel(ci)
65: end for
66: t ← construct_tx(di, k)
67: return t

be set up, it must be approved by the remote party (e.g., v if u
requests channel creation approval) using approve_channel
(line 15). Approval contacts the remote user via its TEE and
queries if the user is online to build a channel c.

After approval, to create payment channels between
users without blockchain interaction, participants call
new_pay_channel and provide the public key of the TEE
with which to create the channel (line 18). At the network
layer, the user who initiates the channel creation process
needs to announce the local host/port and the remote IP
address and port number of the remote user. Before this
can be called, the remote user will also need to execute
new_pay_channel to allow the remote user to receive an
incoming channel creation handshake from the initiator.
Once the channel has been established, both users will be
notified of the channel identifier ci used to refer to this
specific channel. The TEEs of two users establish a secure
communication channel using authenticated Diffie-Hellman
for key provisioning and remote attestation. Using the secure
channel, the TEEs assign a unique channel identifier ci to
the channel c, initialize both participant’s balances to 0, and
return the channel identifier (line 23). Then the two users u
and v need to create the corresponding entry of the channel
in their ledgers using add_ledger (line 33). When u creates
the channel c, its TEE initializes the amount of entry c in the
ledger to be 0, and the channel state to be sc. Only after
the ledger is created successfully, can the channel c be used
by user u and v for future transactions using pay_channel
(line 24). The sender’s TEE sends the specified amount of
funds v along the given channel ci to the remote user. This
transaction should include the funds to pay, the channel id,
and the current remaining funds of the sender c.my_bal.
The sender sends the encrypted transaction signed by their
TEE to the receiver. The receiver’s TEE verifies the integrity
by checking the signature. They also need to check if the
sender has enough remaining funds to support this transaction
(line 26). They prepare an approval notice signed by their
TEE’s private key and send it back to the receiver. These
two users then construct a commitment transaction reflecting
their updated balance of the channel in the ledgers. This
protocol requires the signatures of both users to authorize a

transaction, ensuring that funds can only be moved with the
consent of all required users. If one of them wants to close
this channel, they need to call close_channel (line 44) to
close the corresponding entry of the channel in both u and
v’s ledgers. At any time, users may settle the deposit using
settle_deposit (line 60) by calling close_channel for
all channels. The client who wants to settle her deposit first
need to close all her channels by calling close_channel. After
all his channels being closed, he can settle his deposit by
constructing a transaction with his latest ledger signed by his
TEE and send to the Blockchain for confirmation.

C. TEE Operations

In this section, we describe three functions associated with
ledger: Ledger creation, Ledger update and Ledger close. The
construction consists of the instructions for two users, Alice
and Bob, and their ledgers on their TEEs.

Ledger creation: We start with describing a procedure in
which Alice and Bob register in the APCN system with the
initial balance, aA and aB . As mentioned in Sec V-B, after
their TEEs verifying the correctness of their deposit transac-
tions tA and tB , respectively, their TEEs need to construct
new deposits dA and dB , forward their deposit transactions to
the blockchain, and initialize a ledger with the deposit dA and
dB , with the amount being aA and aB . The current version
of the ledgers is empty ones with no entry.

When Alice and Bob agree to open a channel c in APCN,
their TEEs negotiate and assign a unique channel identifier ci
to the channel c. Then TEEs need to create the corresponding
entry of the channel in their ledgers, whose format should
follow Table IV. For the new ledger entry in Alice’s TEE,
the Deposit field continues to be aA, since no transaction
happens at this time. The Channel field is ci as the return value
of the function new_pay_channel in Alg. 1. The Neighbor
field cN is set to be Bob’s address. The Amount field is
initialized as 0, since no transaction happens and the overall
transaction amount Alice sends to Bob is 0. The State field is
sc, which means the channel is active and there is no pending
transaction in the channel, so the channel is ready to serve
future transactions. The corresponding ledger entry of channel
c in Bob’s TEE is set in the same way as Alice’s.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. Illustration of ledger update protocol.

Ledger update: When Alice and Bob want to make a new
transaction when there is an ongoing transaction in channel
c, we use a standard technique (see, e.g, Sec. 3.3 in [3])
for updating the entry for a payment channel in the ledger
that is based on counters called “version numbers” ω ∈ N .
Note that the transaction here includes the direct transaction
between Alice and Bob, and the multi-path transaction going
through Alice and Bob. We do not distinguish between these
two situations. Initially, ω is set to 0, and it is incremented
after each transaction via channel c. Suppose Alice initiates
the first transaction τ of amount τa in channel c. If Bob agrees
on this transaction, TEEA and TEEB both need to update the
corresponding entry in their ledgers. On Alice’s side, there is
only one entry of channel c in its ledger, and the current status
of the entry is sc with version number 0. So Alice will update
its ledger by updating this entry. The Amount field is set to be
ca − τa. The State field is changed to sp until the transaction
is complete. Also, the version number ω is incremented by
1. In Bob’s ledger, its TEE updates the Amount field to be
ca + τa, the State field to be sp, and the version number to be
1 in the entry for channel c.

For concurrent transactions, we assume Alice wants to make
another transaction τ ′ with Bob before the last transaction τ
being complete. Alice’s TEE first checks the ledger and finds
that there is only one entry of channel c, but the current status
is sp, which means this entry cannot be updated at this time.
So TEEA has to create a new temporary entry of channel
c, with the Deposit, Channel and Neighbor field same as the
original entry, the Amount field to be the transaction amount
sent to Bob −τ ′a, the State field to be sp, and the version
number ω to be the largest version number related with channel
c so far incremented by 1. Bob performs the same process,
expect the Amount field to be the transaction amount received
from Alice τ ′a. Every time when a new transaction happens
in channel c, both TEEA and TEEB check the ledger and
collect all entries of channel c. They needs to merge all the
entries with status sc by summing up the value in the Amount
field, and deleting those redundant entries while leaving only
one. They also need to find out the largest version number
related with channel c which is the latest one, and prepare it
for the new transaction.

Ledger close: If one of the parties, say Alice, wants to
close the channel c, she first needs to negotiate with Bob.
After approval by Bob, both of them needs to close the entry
of channel c in their ledgers. Again, their TEEs need to check
their ledgers, collect all entries of channel c, and merge all
those with status sc. After this, if there is only one entry

of channel c and its state is sc, TEEs can directly close the
channel by setting the State field of the entry to be Inactive
si. If there exists some entries of channel c with status sp,
TEEs wait time ∆ for those transactions to complete. After the
waiting time ∆, TEEs merge those entries with status sc and
update the State field to be Inactive si. Those entries whose
status are still sp will be abandoned.

D. TEE Committees
We provide TEE committees to prevent malicious TEE

service providers for users without TEEs. For a new TEE
service provider who wants to join the system, it has to
perform remote attestation with a group of TEE committee to
verify that it has the correct code and works correctly. It also
has to pay certain amount of participation fee to be included
in this committee. Every time when the committee performs
a transaction correctly, all the members will receive incentive
from the user.

When creating channels or sending a payment, a user
should get approval from the committee and update its ledger.
In order to achieve agreement and consistency of ledger
state among all committee members, APCN uses Committee
chains introduced in TeeChain [9]. The chain replication offers
strong consistency without requiring all committee members to
communicate directly. The committee members form a chain,
with the primary at the head, and the last backup at the tail.
The user first sends the update request to the primary in the
committee. The primary will check if the user has sufficient
funds and propagates the update down the chain. Each com-
mittee member does the same check, forwards the update to
its backup, and waits for an acknowledgment before updating
the ledger. When the primary receives an acknowledgment,
the entire chain has updated. If any committee member fails
or refuses to update to the latest agreed upon ledgers, the
replication chain is broken, freezing all nodes at the current
ledger state. And this member will lose all its participation
fees and incentive in the committee.

VI. PROTOCOL SECURITY ANALYSIS

APCN achieves payment security under our attacker model:
users can always receive their funds on the blockchain, regard-
less of attacker’s action. We first intuitively define the security
guarantees a payment network should provide, and describe
the framework we use to construct our proofs.

A. Security Guarantees
APCN protects the funds of all users in the PCN: despite

what others may do, funds cannot be stolen or double spent.
At any time during the payment protocol execution, each
user should be able to perform a finite set of actions that
eventually results in them receiving their perceived balance
on the underlying blockchain.

We now prove that APCN achieves funds security using the
Universal Composability (UC) framework [28] similar to prior
work [9], [29]. The UC framework includes parties executing
the protocol in the real world, ideal functionalities performed
by idealized third parties, and a set of adversaries A. A proto-
col is said to be UC secure if the real-world execution of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND QIAN: TOWARD AGGREGATED PAYMENT CHANNEL NETWORKS 11

protocol cannot be distinguished from the idealized protocol
execution by the environment.

We model committees as a single TEE executing the pro-
tocol. Under UC, we consider a real world, in which users
run the APCN protocol, πAPCN , as described in Sec III,
and an ideal world, in which users interact with an ideal
functionality, FAPCN , implemented by a trusted third party.
Attackers behavior is introduced in the ideal world by a
simulator S with appropriate attacker abilities as described in
Sec II-C. To prove that APCN achieves fund security, we show
that (i) the real and ideal worlds are indistinguishable to an
external observer ε. This implies that any attack violating fund
security in the real world is also possible in the ideal one;
and (ii) FAPCN achieves fund security in the ideal world.
This proves that πAPCN also achieves fund security. We’ll
show that the simulator S in the ideal-world translates every
adversary A in the real-world into a simulated attacker, which
is indistinguishable to the environment.

We prove indistinguishability between the real and ideal
worlds through a series of five hybrid steps, starting at the
real world H0, and ending in the ideal world H5. In each step,
a key element is changed and indistinguishability is proven.
As commonly done [30], in H0, the desired behavior of TEEs
and the blockchain are replaced by two ideal functionalities,
FTEE and FB respectively. FTEE is an ideal functionality that
models a TEE. It abstracts an enclave as a third party trusted
for execution, confidentiality and authenticity, with respect to
any user that is part of the system. FB is an ideal function-
ality that represents the blockchain. H1 behaves the same as
H0 except that S simulates FTEE . When the adversary A
wants to communicate with its FTEE , S faithfully emulates
FTEE’s behavior and records A’s messages. As S simulates
the real-world protocol perfectly, the environment ε cannot
distinguish between H0 and H1. In H2, S simulates FB .
When the adversary A wants to interact with the blockchain,
S emulates FB’s behavior for A, and no environment can
distinguish between H1 and H2. H3 behaves the same as
H2 except that if A invoked its FTEE with an incorrect call,
S aborts and drops incorrectly signed messages to FTEE .
Otherwise, S delivers the message to the honest party in
the protocol. H2 and H3 are indistinguishable, or else ε and
A can be leveraged to construct an adversary that succeeds
in a signature forgery. In H4, the only difference is that
incorrectly signed messages to FB are dropped by S . H4 is
indistinguishable from H3 for the same reasons as the last step.
H5 is the ideal world execution, that calls of S to FAPCN are
mapped from the calls in the simulated real-world. In H4, S
can faithfully interact with FAPCN , while faithfully emulating
A’s view of the real-world. S can then output to ε exactly A’s
output in the real-world. So it is equivalence between πAPCN

and FTEE to ε.
Since for any environment the ideal-world and the real-

world executions are indistinguishable, funds security that
holds in the ideal-world will also hold in the real-world.
We now discuss why the ideal functionality FAPCN satisfies
the security requirements from Sec. II-D.

Correctness on channel update. For users sharing a chan-
nel with their own TEEs, the correct channel activities are

achieved by the ideal functionality notifying the users of
whether the channel has successfully been created or updated.
For users without TEEs, chain replication in the TEE com-
mittee offers strong consistency among all TEEs, which will
finally achieve consensus on channel state and notify users.

Guaranteed channel closing with latest state. A channel
u−v can be closed by either u or v with latest state. If u sends
a channel closing request to the ideal functionality FAPCN ,
it will inform v with a message. If it does not receive any
dispute or response from v within time ∆, it will close the
channel after the channel finishing all the ongoing transactions
or reaching time bound. If v provides a dispute with the
correct signed ledger and latest timestamp, FAPCN will accept
this channel state to close the channel, and also for future
settlement.

Guaranteed no double spending. Consider a user u, it calls
the ideal functionality FAPCN to make a transaction to v.
FAPCN always guarantees that u has enough funds to pay v,
and updates funds after each transaction. It makes sure that u
cannot use the same amount of money to pay others twice.

VII. PERFORMANCE EVALUATION

We present the evaluation results based on prototype imple-
mentation and simulations. The evaluations aim to answer the
following research questions:
• What is the payment processing latency of APCN?
• How does congestion control mechanism affect the per-

formance of APCN?
• What are the success rate of APCN, compared to other

PCN routing under real PCN topologies and traces?

A. Methodology

We implement the APCN prototype using Intel SGX SDK
in C++. The prototype is mainly used for evaluating the real
latency to generate ledgers, links, and transactions. Note that
multiple TEE implementations are commercially available,
including ARM TrustZone and AMD SEV. They can also be
applied.

The simulations use two real PCN topologies: Ripple [31]
and Lightning [3], as well as synthesis topologies. For Ripple,
we use the data from January 2021 to December 2021, and
get the network topology with 1,783 nodes and 18,395 edges
in our simulation. For Lightning, we get the network topology
with 3,519 nodes and 47,311 edges on one day in January
2022. The node balance in APCN is assigned as the sum
of the channel balances of a node. We generate payments
by randomly sampling the Ripple transactions for the Ripple
topology. Due to the lack of sender-receiver information in
the Lightning network, we randomly sample the transaction
volumes and sender-receiver pairs. We build two sets of
synthetic PCN topologies based on the Waxman model [32]
and the scale-free network model [33]. The node balances are
assigned similar to those of Ripple. The payments are also
generated by mapping the Ripple transactions to the synthetic
topologies.

In order to defend side-channel attacks, we use timing
and memory-access side-channel resistant libraries, AES-NI

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. The success ratio comparison of APCN, PCN and virtual payment channel network with varying proportion of virtual channels.

Fig. 8. The average routing latency with varying p values.

based AES-GCM [34], [35]. To further enhance the secu-
rity of APCN, we apply T-SGX [20], a countermeasure for
controlled-channel attacks.

Comparisons. To evaluate the performance of APCN,
we compare the following payment channel routing schemes
and systems.

APCN: The coordinates based greedy routing algorithm
with the LA forwarding congestion control mechanism in
APCN as introduced in Sec IV-C.

WebFlow: An MDT routing algorithm in PCNs, which
should consider the channel balances. At each node, it first
check all the physical neighbors closer to the receiver to see
if they have enough balance to support the transactions, and
then check at most 5 DT neighbors.

SpeedyMurmurs (SM) [36]: An embedding-based routing
algorithm in PCNs that relies on assigning coordinates to
nodes to find shorter paths with reduced overhead. We set
the number of landmarks to 3 as [36] suggests.

Spider [7]: The off-chain routing algorithm in PCNs which
considers the dynamics of link balance. It balances paths by
using those with maximum available capacity, following a
waterfilling heuristic. It uses 4 edge-disjoint paths for each
payment.

Shortest-Path in PCN (SP): It serves as the baseline. SP uses
the path with the fewest hops between the sender and receiver
to route a payment.

Perun: [37] Perun is a virtual payment channel system.
Virtual channels can be built on top of the parties involved in
the multi-party state channels that are connected via a path in
the network of ledger channels. The underlying multi-hop path
of virtual channel is the max-flow path between two parties.
We assume users use the same routing algorithm as APCN to
send transactions to recipients. Users can use either payment
channels or virtual channels to send or relay transactions.
According to Perun [37], we set that users pair locks 50%
available funds in the virtual channels in the experiment.

TABLE V
CHANNEL PERFORMANCE

Metrics. We use average processing latency and the number
of hopcounts to evaluate the congestion control mechanism
in APCN. The processing latency of payment is calculated
as the sum of per-hop delay along the path which is related
to the channel condition. Similar to prior work [8], [36],
we also use success rate as evaluation metric for resource
utilization, defined as the percentage of successful payments
whose demands are met overall generated payments. We report
the average results over 10 runs, each of which includes
hundreds of communication pairs.

B. Evaluation Results

Performance of payment channels. We conduct a testbed
evaluation with the prototype. In the experiments, we construct
a payment channel between two users with local TEEs. So the
users only use a single local TEE to manage their ledgers
and transactions instead of the TEE service providers commit-
tee. We execute several transactions between them. Table V
shows the performance of different actions of APCN, and the
latency when applying T-SGX to improve system security.
Each channel creation takes 2.3 secs on average. It is much
faster than channel creation in Lightning Network, which
is approximately 60 mins, as a transaction must be placed
onto the blockchain and confirmation takes 6 Bitcoin blocks.
Channel creation in APCN only requires the corresponding

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND QIAN: TOWARD AGGREGATED PAYMENT CHANNEL NETWORKS 13

TEE to perform remote attestation and add an entry in its
ledger, without the participants of the blockchain. Even though
remote attestation requires participation of the Intel attestation
service, it will not become the bottleneck when the system
scales up. The reason is that each user only has limited
number of channels with its neighbors, and channel creation
is not a frequent action. As long as the channel is there,
users can perform unlimited number of transactions via the
channel. To close a channel, TEE has to wait until the channel
status in the ledger becomes ‘Complete’. The waiting time can
vary a lot, so we only evaluate the time to close a channel
whose status is Complete. In APCN, closing a channel only
requires status change in the ledger and takes 2.2 secs on
average, which is much less than the time to close a channel in
Lightning Network which requires a transaction in blockchain.
For the payments processing latency, we only consider the
time of an idle channel processing one payment. It is 105 ms
on average. We use this time as ∆ in our congestion control
mechanism in evaluation.

We then consider the case of non-SGX users. we construct
a payment channel between two users, one is equipped with
SGX, one is not and uses a TEE service provider committee at
size of 3. Creation of such a payment channel takes 4.3 secs,
as the non-SGX user must verify the integrity of TEEs of the
committee. Closing channel and processing payment also take
more times, 2.9 secs and 427 ms respectively, since each TEE
service provider in the committee needs to verify and sign
each update of the user’s ledger. When applying T-SGX to
APCN, the processing latency increased within 5 times in all
the cases, which is tolerable for better security.

Comparison with other PCNs. We use simulations to
compare the performance of APCN, WebFlow, and Perun – a
virtual payment channel system. For virtual payment chan-
nels, we analyze the historical transaction dataset in different
network topologies. The virtual channels are built according
to the transaction frequency of user pairs. We tends to build
virtual channel for user pairs making transactions with higher
frequency. We set the proportion of virtual channels to be q,
and vary the q value from 0% to 100% to test the performance.
Here, we use 5,000 transactions in each run. Figure 7 shows
the success rates of transactions in APCN, WebFlow, and
Perun with varying q value. When q is 0, Perun has no
virtual channel, and it becomes the same scheme as WebFlow.
All users need to execute the routing protocol to probe the
payment channels to send or relay transactions. So it has
the same performance as WebFlow. With more payment pairs
setting up virtual channel, the overall success rate decreases
a lot. The reason is that, with more virtual channels in the
networks, more funds are locked in the virtual channels, and
those funds cannot be used in other channels. Although virtual
payment channels provide a very fast way to stream payments,
it actually affect the overall success rate.

Efficiency of congestion control mechanism. We first
consider the influence of parameters in our congestion control
mechanism. With congestion control, the intermediate node
would send the payment to the direct neighbor closest to
the receiver with a probability p in APCN. To find the
optimal p for our system, we vary the p value from 0% to

100%, and see how the choice impacts the performance, i.e.
average processing latency. Here, we use 5,000 transactions
in each run. Figure 8 shows the average processing latency
with varying p values. It is understandable that both set-
tings: p = 0% and 100% result in relatively high average
processing delay. Because when p equals to 0%, it becomes
the same routing protocol as WebFlow without congestion
control. Even if the algorithm always chooses the next hop
that is closest to the receiver and more likely to have lower
routing stretch, the next hop itself may introduce large pro-
cessing delay, and thus lead to higher overall processing
latency along the path. On the contrary, when p equals to
100%, our heuristic routing algorithm at intermediate nodes
estimates the remaining processing latency proportional to
the distance from the node to the recipient. However, this
estimation is not accurate reflecting the processing latency,
since hop-delay is not a stable metric and changing over
time. Observed from the evaluation result, when p equals
to 40%, the congestion control mechanism could achieve a
better performance. So we set p value to 40% in the following
experiments.

We also include shortest path routing (SP) as the baseline.
Figure 12 shows the results of average hopcount, average
routing latency and transaction success rate. In all these four
topologies, APCN with congestion control has slightly higher
average hopcount compared to WebFlow routing protocol.
This is because with congestion control mechanism, users
may detour to a longer path to avoid busy intermediate nodes.
Compared to the baseline protocol, both APCN and WebFlow
do not lead to much higher routing stretch. The figure also
shows the average routing latency comparison results that
APCN achieves lower average latency in all these topologies.
This is consistent with our primary goal of congestion control.
The routing latency of WebFlow and SP is quite similar
because both schemes do not take processing latency of
intermediaries into consideration. Besides, the success rate of
these three routing schemes are similar in all four topologies.
This is because in APCN, the key factor affecting the success
rate is the balance of senders instead of paths. The results here
demonstrate that our congestion control mechanism reduce the
processing latency compared to WebFlow without decreasing
the success rate.

Performance with different networks. We evaluate APCN
with four PCN topologies and a varied number of transac-
tions. As shown in Fig. 9, by increasing of the number of
transactions, the success rate of all schemes except APCN
decreases significantly in all topologies. The reason is that,
for other schemes under traditional payment channel networks,
as more transactions flowing into the network, more channels
are saturated in one direction, making them cannot be used
for future transactions. However, in APCN, the success ratio
almost keeps over 95% and does not have obvious changes,
while success ratio of other schemes are always below 80%.
This is because in APCN, the channels do not keep funds. The
transactions only depend on the funds of the senders rather
than channels. As long as the sender has enough funds to
trigger the payments, the transaction will success if a path is
found. The results of success volume in Fig 10 are consistent

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 9. The success ratio with varying transaction numbers under different network topologies.

Fig. 10. The success volume with varying transaction numbers under different network topologies.

Fig. 11. Storage cost compared with benchmarks in PCN or APCN.

with the result of success ratio. APCN still outperforms than
other schemes.

With the increase of the number of transactions, the success
ratio and volume of both schemes (MDT with and with-
out congestion control) in APCN are similar and decrease
slightly in both Ripple and Lightning topologies as shown in
Figure 9 and 10. Because the congestion control mechanism
has no effect on success ratio and volume of payments, but
only lower the routing latency. These result are much better
than WebFlow, the MDT routing protocol in PCNs which is
below 80% even when there are only 1000 transactions, and
Shortest Path in PCNs which is around 60% with 1000 trans-
actions. Note that even in PCNs, the MDT routing protocol
shows much better performance than Shortest Path. The reason
is that Shortest Path is static routing where the path for each
payment is fixed after path discovery. While MDT is dynamic
routing, if one neighbor cannot support the payment, the
intermediary will probe other neighbor nodes. It is especially
useful for PCNs, as the channel balance changes after each
payments.

Storage cost in each node. We now show the storage effi-
ciency of APCN by comparing the average states maintained in
each node. In Shortest Path, every node needs to locally store
the topology of the network, including all the information of

the links. Different from this scheme, to perform MDT routing
protocol in PCNs, nodes only need to maintain the information
of their neighbors, including the coordinates and the channels
information. It is similar for MDT routing protocol in the
APCN system. For the TEE of each node, it needs to store
the coordinates of its neighbors, the balance of itself, and
a ledger including an account-based transaction record with
each neighbor. It does not need to maintain the channel
information since channels in APCN are stateless. For MDT
with congestion control in APCN, nodes should keep one more
information which is its processing latency of incoming trans-
actions. Figure 11 shows the average states maintained in each
node. It is reasonable that routing schemes in APCN cost more
than those schemes in PCNs since each node in APCN needs
to maintain a ledger locally. But it is still acceptable because
the ledgers only create an account-based transaction record for
each neighbor instead of keeping all the transaction history,
and thus do not introduce too much storage cost. The storage
overhead of a ledger is proportional to the number of its
neighbors. Due to the memory limitations of TEE, we do have
an upper bound of the number of neighbors. During system
boot-up, a total of 128 MB is typically reserved for Intel SGX,
and 96 MB of that is allocated to the Enclave Page Cache [38],
which means it can store up to 100,000 neighbor information

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND QIAN: TOWARD AGGREGATED PAYMENT CHANNEL NETWORKS 15

Fig. 12. Performance comparison of routing schemes: Shortest Path, WebFlow and APCN (with congestion control) in APCN system under different network
topologies.

theoretically. Currently, the average channels per node in
Lightning Network is only 7.85, and 95% of nodes have less
than 25 neighbors according to the real-time statistics [39].
The local ledger is totally enough to support the workload in
the current Lightning Network. Actually, with the availability
of the new Ice Lake processors, the maximum configurable
EPC size has been significantly increased, allowing for up
to 1 GB of EPC in some configurations. Thus, APCN has the
potential to support more complex transactions, records, and
even smart contracts.

VIII. RELATED WORK

PCNs provide a high-throughput solution for blockchains
[40]. In PCNs, channels do not always exist between two
arbitrary users, and two users can make transactions via a
multi-hop path. Hence, routing is crucial to achieve high
resource utilization in PCNs. Lightning Network [3] uses
max-flow routing algorithms to find paths. Flash [8] also
uses modified max-flow routing algorithms but treats elephant
and mice payments differently. SilentWhispers [24], Speedy-
Murmurs [36], and have been proposed to improve routing
scalability.

In order to improve the fund utilization and avoid channel
imbalance, Spider [7] develops a multi-path congestion control
algorithm. It is a centralized offline routing algorithm and still
has a high probing overhead. REVIVE [41] enables users to
securely rebalance their channels, according to the preferences
of the channel owners. Sprites [42] supports partial with-
drawals and deposits, during which the channel can continue
to operate without interruption, but requires smart contracts.
Teechain [9] supports dynamic deposits with treasuries by
TEEs, in order to prevent parties from stealing the fund.
Different from them, APCN enables shared deposits among
all payment channels of each user and allows funds to be
used with high flexibility.

IX. DISCUSSION AND CONCLUSION

A. Discussion About the Flash Loans

In this paper, we design APCN to support shared funds
among the payment channels and high-throughput transactions
between users. Besides normal transactions, APCN can be
extended to support complex smart contracts in TEEs. It could
enable APCN with more features such as flash loans in
blockchains. A flash loan is a loan that is only valid within one

atomic blockchain transaction. Flash loans fail if the borrower
does not repay its debt before the end of the transaction
borrowing the loan. Unlike traditional PCNs where funds are
kept in one channel and cannot be moved to other channels,
in APCN, funds can circulate throughout the whole network.
Thus, users can borrow flash loans from a neighbor, and pay
them back later. Users are required to develop a smart contract
in TEE, defining the transaction atomicity that guarantees
either the loan is returned, or the transaction will fail. The
workflow can be generalized into the following steps. First,
the lender’s TEE transfer requested funds to the borrower.
Then borrower can execute operations with borrowed funds.
Once the execution is completed, the borrower has to return
the borrowed funds with the extra fee charged by the lender.
Finally, the lender’s TEE will check their balance. If they
discover that non-sufficient funds are returned by the borrower,
they will revert the transaction immediately. Besides flash
loans, APCN has the potential to support more complex
features with smart contracts in TEE, enabling a wide range
of financial services and applications within the network.

B. Conclusion

In this paper, we present APCN, a novel design for PCNs
that enables shared funds among all the payment channels of
a node. This design provides high fund-allocation flexibility
and hence significantly increases transaction success rates.
To prevent users from misbehavior, we use TEEs to control
funds, balances, and payments. We also design a routing
protocol in APCN that takes congestion control into account.
We build a prototype of APCN with Intel SGX and evaluate
the performance with both prototype experiments and simula-
tions with real PCN data. Results show that APCN achieves
evidently higher success rates of multi-hop payments with
lower average hops and latency, compared to existing PCNs.

ACKNOWLEDGMENT

The authors would like to thank Dejun Yang and the
anonymous reviewers for their suggestions and comments. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the ARO
or the U.S. government. The U.S. government is authorized
to reproduce and distribute reprints for government purposes
notwithstanding any copyright notation herein.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

REFERENCES

[1] X. Zhang and C. Qian, “Towards aggregated payment channel networks,”
in Proc. IEEE 30th Int. Conf. Netw. Protocols (ICNP), Oct. 2022,
pp. 1–11.

[2] K. Croman et al., “On scaling decentralized blockchains,” in Proc.
Financial Cryptogr. Data Secur. Berlin, Germany: Springer, 2016,
pp. 106–125.

[3] J. Poon and T. Dryja, “The Bitcoin lightning network: Scalable off-
chain instant payments,” Lightning Netw., Seattle, WA, USA, Tech.
Rep. DRAFT Version 0.5.9.2, 2016.

[4] (2020). Transaction Rate of Bitcoin. [Online]. Available: http://www.
blockchain.com/en/charts/tran-sactions-per-second

[5] X. Zhang and C. Qian, “A cross-chain payment channel network,” in
Proc. IEEE 31st Int. Conf. Netw. Protocols (ICNP), Oct. 2023, pp. 1–11.

[6] V. Mavroudis, K. Wüst, A. Dhar, K. Kostiainen, and S. Capkun,
“Snappy: Fast on-chain payments with practical collaterals,” in Proc.
USENIX NDSS, 2020, pp. 1–17.

[7] V. Sivaraman et al., “High throughput cryptocurrency routing in payment
channel networks,” in Proc. USENIX NSDI, 2020, pp. 1–21.

[8] P. Wang, H. Xu, X. Jin, and T. Wang, “Flash: Efficient dynamic routing
for offchain networks,” in Proc. ACM CoNEXT, 2019, pp. 370–381.

[9] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch,
“Teechain: A secure payment network with asynchronous blockchain
access,” in Proc. 27th ACM Symp. Operating Syst. Princ., Oct. 2019,
pp. 63–79.

[10] X. Zhang, S. Shi, and C. Qian, “Low-overhead routing for offchain
networks with high resource utilization,” in Proc. 42nd Int. Symp.
Reliable Distrib. Syst. (SRDS), Sep. 2023, pp. 198–208.

[11] D. Kaplan, J. Powell, and T. Woller, “AMD memory encryption,” AMD
Inc., Santa Clara, CA, USA, White Paper 13, 2016.

[12] Software Guard Extensions Programming Reference, R Intel, Intel Corp.,
Santa Clara, CA, USA, 2014.

[13] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan,
“vTZ: Virtualizing ARM trustzone,” in Proc. USENIX Secur., 2017,
pp. 541–556.

[14] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović,
“Keystone: An open framework for architecting TEEs,” 2019,
arXiv:1907.10119.

[15] H-F Security. (2018). Multizone: The First Trusted Execution Environ-
ment for RISC-V. [Online]. Available: https://hex-five.com/

[16] Linaro. (2014). Open Portable Trusted Execution Environment. [Online].
Available: https://www.op-tee.org/

[17] Intel. (2015). Product Change Notification. [Online]. Available:
https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-
062540456F0A/PCN114074-00.pdf

[18] A. Nilsson, P. Nikbakht Bideh, and J. Brorsson, “A survey of published
attacks on Intel SGX,” 2020, arXiv:2006.13598.

[19] M. Li et al., “Bringing decentralized search to decentralized services,”
in Proc. USENIX OSDI, 2021, pp. 331–347.

[20] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
controlled-channel attacks against enclave programs,” in Proc. NDSS,
San Diego, CA, USA, Feb./Mar. 2017.

[21] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in Proc. USENIX Secur., 2017, pp. 557–574.

[22] J. Seo et al., “SGX-shield: Enabling address space layout random-
ization for SGX programs,” in Proc. NDSS, San Diego, CA, USA,
Feb./Mar. 2017.

[23] M. Armanuzzaman and Z. Zhao, “BYOTEE: Towards building your own
trusted execution environments using FPGA,” 2022, arXiv:2203.04214.

[24] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “SilentWhis-
pers: Enforcing security and privacy in decentralized credit networks,”
in Proc. NDSS, San Diego, CA, USA, Feb./Mar. 2017.

[25] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 455–471.

[26] Intel Software Guard Extensions Remote Attestation End-to-End Exam-
ple, CS Intel, Santa Clara, CA, USA, 2018.

[27] (2024). Blockcypher. [Online]. Available: https://live.blockcypher.
com/btc/pushtx/

[28] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proc. 42nd IEEE Symp. Found. Comput.
Sci., Oct. 2001, pp. 136–145.

[29] S. Dziembowski, S. Faust, and K. Hostáková, “General state channel
networks,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2018, pp. 949–966.

[30] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels,
“Tesseract: Real-time cryptocurrency exchange using trusted hardware,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 1521–1538.

[31] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,
“Ripple: Overview and outlook,” in Trust and Trustworthy Computing.
Heraklion, Greece: Springer, 2015.

[32] B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas
Commun., vol. 6, no. 9, pp. 1617–1622, Dec. 1988.

[33] (2014). N Developers. [Online]. Available: https://networkx.
github.io/documentation/networkx-1.9.1/reference/generated/networkx.
generators.random_graphs.barabasi

[34] Intel. Intel 64 and IA-32 Architectures Software Developer Manu-
als. Accessed: May 2011. [Online]. Available: https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-sdm.html

[35] R Intel. Intel(R) Software Guard Extensions for Linux Os. Accessed:
2016. [Online]. Available: https://github.com/intel/linux-sgx

[36] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for path-based
transactions,” in Proc. USENIX NDSS, 2017, pp. 1–15.

[37] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in Proc. IEEE SP, 2019, pp. 1–19.

[38] (2017). Enclave Memory Measurement Tool for Intel Software Guard
Extensions (Intel SGX) Enclaves. [Online]. Available: https://www.
intel.com/content/dam/develop/external/us/en/documents/enc
lave-measurement-tool-intel-sgx-737361.pdf

[39] (2024). Real-Time Lightning Network Statistics. [Online]. Available:
https://1ml.com/statistics

[40] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine agreements for cryptocurrencies,” in Proc. 26th Symp.
Operating Syst. Princ., Oct. 2017, pp. 7747–7758.

[41] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain payment
networks,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 439–453.

[42] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,”
in Proc. Financial Cryptography and Data Security. Springer, 2019,
pp. 508–526.

Xiaoxue Zhang (Member, IEEE) received the B.E.
degree in computer science and engineering from
the University of Science and Technology of China
in 2019 and the Ph.D. degree in computer engi-
neering from the University of California at Santa
Cruz in 2024. She is currently an Assistant Pro-
fessor with the Department of Computer Science
and Engineering, University of Nevada Reno, Reno.
Her research areas are computer networks, payment
channel networks, and routing. She also focuses on
the scalability and security problems of blockchain.

Chen Qian (Senior Member, IEEE) received the
B.Sc. degree in computer science from Nanjing
University in 2006, the M.Phil. degree in computer
science from The Hong Kong University of Science
and Technology in 2008, and the Ph.D. degree in
computer science from The University of Texas at
Austin in 2013. He is currently a Professor with
the Department of Computer Science and Engi-
neering, University of California at Santa Cruz.
He has published more than 80 research papers in
a number of top conferences and journals, includ-

ing ACM SIGMETRICS, IEEE ICNP, IEEE ICDCS, IEEE INFOCOM,
IEEE PerCom, ACM UBICOMP, ACM CCS, IEEE/ACM TRANSACTIONS
ON NETWORKING, and IEEE TRANSACTIONS ON PARALLEL AND DIS-
TRIBUTED SYSTEMS. His research interests include computer networking,
quantum networks, data-center networks and cloud computing, the Internet
of Things, and software defined networks. He is a Senior Member of ACM.
He received the NSF CAREER Award in 2018.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 03:33:16 UTC from IEEE Xplore. Restrictions apply.

