Journal of Parallel and Distributed Computing 189 (2024) 104878

Contents lists available at ScienceDirect . -
DISTRIBUTED
COMPUTING

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

t.)

Check for

SCIPIS: Scalable and concurrent persistent indexing and search in high-end &
computing systems

Alexandru Iulian Orhean **, Anna Giannakou ¢, Lavanya Ramakrishnan ¢, Kyle Chard ¢,
Boris Glavic®, Ioan Raicu®

 Jarvis College of Computing and Digital Media, DePaul University, Chicago, IL, USA
Y College of Computing, Illinois Institute of Technology, Chicago, IL, USA

¢ Scientific Data Division, Lawrence Berkeley National Lab, Berkeley, CA, USA

4 Department of Computer Science, University of Chicago, Chicago, IL, USA

¢ Department of Computer Science, University of Illinois, Chicago, Chicago, IL, USA

ARTICLE INFO ABSTRACT

Keywords:

Search engine architecture
High-performance indexing
High-performance storage
Scientific data

While it is now routine to search for data on a personal computer or discover data online, there is no such
equivalent method for discovering data on large parallel and distributed file systems commonly deployed on
HPC systems. In contrast to web search, which has to deal with a larger number of relatively small files, in
HPC applications there is a need to also support efficient indexing of large files. We propose SCIPIS, an indexing
and search framework, that can exploit the properties of modern high-end computing systems, with many-
core architectures, multiple NUMA nodes and multiple NVMe storage devices. SCIPIS supports building and
searching TFIDF persistent indexes, and can deliver orders of magnitude better performance than state-of-the-
art approaches. We achieve scalability and performance of indexing by decomposing the indexing process into
separate components that can be optimized independently, by building disk-friendly data structures in-memory
that can be persisted in long sequential writes, and by avoiding communication between indexing threads that
collaboratively build an index over a collection of large files. We evaluated SCIPIS with three types of datasets
(logs, scientific data, and metadata), on systems with configurations up to 192-cores, 768 GiB of RAM, 8 NUMA
nodes, and up to 16 NVMe drives, and achieved up to 29x better indexing while maintaining similar search
latency when compared to Apache Lucene.

1. Introduction same high-performance storage and compute systems. Users of large
file systems typically either invest significant resources to implement
specialized data catalogs for accessing and searching data, or resort to

software tools that were not designed to exploit modern hardware with

Rapid advances in digital sensors, networks, storage, and computa-
tion coupled with decreasing costs is leading to the creation of huge

collections of data—commonly referred to as “Big Data.” Increasing
data volumes, particularly in science and engineering, has resulted in
the widespread adoption of parallel and distributed file systems for stor-
ing and accessing data efficiently. However, as file system sizes and
the amount of data “owned” by users grows, it is increasingly diffi-
cult to discover and locate data amongst the petabytes of accessible
data. While much research effort has focused on the methods to ef-
ficiently store and process data, there has been relatively little focus
on methods that efficiently explore, index, and search data using the

many-cores, multiple NUMA nodes, and multiple PCle NVMe SSDs.

While it is now trivial to quickly discover websites from the billions
of websites accessible on the Internet, it remains surprisingly difficult
for researchers to search for data on large-scale storage systems. Google
has pioneered much of the information retrieval and search engine re-
search; however, its area of focus is large-scale distributed search over
web data rather than searching over scientific data stored in high-
performance file systems—two areas with significantly different data,
storage, processing, and query models.

* This work is supported in part by National Science Foundation CNS-1730689 CRI and OAC-2107548 Core awards.

* Corresponding author.

E-mail addresses: aorhean@depaul.edu (A.L Orhean), agiannakou@Ibl.gov (A. Giannakou), lramakrishnan@lbl.gov (L. Ramakrishnan), chard@uchicago.edu

(K. Chard), bglavic@uic.edu (B. Glavic), iraicu@cs.iit.edu (I. Raicu).

https://doi.org/10.1016/j.jpdc.2024.104878

Received 14 July 2023; Received in revised form 13 December 2023; Accepted 13 March 2024

Available online 25 March 2024
0743-7315/© 2024 Elsevier Inc. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:aorhean@depaul.edu
mailto:agiannakou@lbl.gov
mailto:lramakrishnan@lbl.gov
mailto:chard@uchicago.edu
mailto:bglavic@uic.edu
mailto:iraicu@cs.iit.edu
https://doi.org/10.1016/j.jpdc.2024.104878
https://doi.org/10.1016/j.jpdc.2024.104878
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2024.104878&domain=pdf

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

In the enterprise search domain there are several tools that are
commonly used to enable search, such as Apache Lucene [2], Apache
Solr [21], and ElasticSearch [6]. According to surveys from both
academia [10] and industry [4], Apache Lucene is the most popular tool
used to implement search engines. These surveys also show that the top
three search tools are either Apache Lucene or services that build on
Apache Lucene (Apache Solr and ElasticSearch), thus, Apache Lucene
represents 69-73% of the enterprise search market. Apache Lucene was
originally implemented in 1999 and was designed for commodity hard-
ware that consisted primarily of single-core and single CPU systems,
with a single hard disk, and for full-text indexing and search, and they
are not designed to make use of the advanced features of HPC systems
and modern hardware. Instead, they achieve scalability via distribution
and index sharding and often rely on tight coupling with distributed file
system, such as the Hadoop File System [22], which are not supported
on HPC systems. Thus, there is a need to revisit indexing and search
methods and the building blocks of search engines as new hardware
emerges [14].

In order to address the general problem of efficient data exploration
and search in large file systems, we initially explored the problem
of in-memory indexing and search on single-node high-end systems,
characterized by many-cores architectures, multiple NUMA nodes and
multiple PCle NVMe devices. We proposed SCANNS (Scalable and Con-
current Indexing and Searching System) [15,16], a single-node indexing
framework that exposes the indexing pipeline, allowing the user to tune
certain aspects of the pipeline, in order to saturate available compute,
memory, and/or storage resources. We also included practical insights
related to constructing indexes and tuning indexing performance that
can be overlooked when building index-based search engines, such as
the importance of the design of additional data structures required for
the inverted index even when building on a fast search data structure.
We evaluated the performance of SCANNS and of its components and
we showed that it can achieve orders of magnitude higher indexing
throughput and search latency when compared to Apache Lucene, a
state-of-the-art information retrieval library.

In this work we explore the problems of efficiently building persis-
tent indexes that cannot fit in main memory and of efficiently process-
ing TFIDF (Term-Frequency Inverse-Document-Frequency) queries over
the built persistent index, where the TFIDF scores are computed during
query processing time and where the results are sorted by relevance.
We propose SCIPIS (Scalable and Concurrent Persistent Indexing and
Search System), a single node framework that can be used as a build-
ing block for building high-performance index-based search engines and
that expands on the SCANNS framework by redesigning and further op-
timizing the indexing and search pipeline and by improving the inverted
index design. In addition to the existing tuning parameters, that allows
the user to adapt the framework to the characteristics of the comput-
ing system on which the framework runs, SCIPIS exposes new tuning
parameters, that allows the user to adapt the structure of the inverted
index and the persistent index to the properties of the input data, al-
lowing SCIPIS to achieve higher indexing throughput when compared
to SCANNS and similar TFIDF query latency when compared to Apache
Lucene. We evaluate the proposed solution over three types of datasets,
log files, scientific papers and data, and supercomputing center file sys-
tem metadata, and show that, while the inherent nature of each dataset
can affect indexing and search performance, SCIPIS still exhibits good
scalability trends.

The contributions of this paper are as follows:

+ Extension to the SCANNS framework in order to support efficient
persistent indexing and TFIDF search queries;

» Redesign of the indexing and search pipeline, further improvement
of the design of the inverted and the addition of new tuning pa-
rameters, that allows the user to further adapt the structure of
the inverted index to the properties of the input data, in order to
achieve high indexing and search performance;

Journal of Parallel and Distributed Computing 189 (2024) 104878

« Evaluation over three kinds of datasets that are commonly found in
science (logs, scientific papers and data, and file system metadata);

The rest of the paper is organized as follows. In Section 2 we re-
view related work. In Section 3 we present an overview of SCANNS,
introduce the general architecture of the SCIPIS framework and explain
the new optimizations and techniques that we used in its design. In Sec-
tion 4 we present an experimental evaluation of the SCANNS and SCIPIS
frameworks and conclude in Section 5.

2. Related work

Some research focuses on the high-level indexing pipeline and the
integration of indexing and search in existing parallel and distributed
file systems. Taglt is one such project [23,18,24], that implements a
scalable data management service framework for scientific datasets,
that is integrated with the underlying distributed file systems such
as GlusterFS and CephFS that are used to store scientific datasets.
The framework relies on a scalable and distributed metadata indexing
framework, that can index file system related metadata. The system also
supports custom metadata created by the users in the form of tags that
can aid data discovery. Another framework that aims at enabling and
supporting extensive metadata management for scientific data found
in high-performance computing systems is SoMeta [25]. SoMeta can
support parallel and concurrent locate and retrieve operations and it
utilizes Bloom filter to further improve search performance over user-
level tagged objects.

In the are of parallel and distributed file systems, the integration
of distributed hash tables [28] and/or log-structured trees [19] with
the metadata subsystem has shown that the challenge of centralized
file system metadata can be overcome and that file system can scale
to thousands of nodes both in terms of data and metadata operations.
Other existing works from the HPC domain (e.g. GUFI [3,7,13]) have
also aimed to tackle the indexing and search problem focusing on meta-
data as opposed to the scientific data itself, while other work provides
indexing and search over persistent memory object storage [11,12]. We
believe both the metadata and data are critical components to better
accessibility of scientific data.

ScienceSearch [20] is a project that proposes a novel solution for the
problem of performing effective search over scientific data, that builds
an indexing framework that uses natural language processing and ma-
chine learning to generate metadata tags from collections of scientific
data and to build relations between different data sources that cover
the same topic. ScienceSearch uses traditional databases to store and
manage the learned metadata tags and the indexes, which has its own
advantages and disadvantages, but we argue that an efficient low level
indexing framework would be a suitable replacement for the databases
used in search applications.

There are researchers who actively look at how to design and imple-
ment the inverted index for a specific dataset or application. MIQS [27]
is a solution that aims to efficiently index self-describing data formats,
such as HDF5 and netCDF, through the use of a custom in-memory
index implementation. MIQS provides a portable and schema-free so-
lution that is aligned with the paradigm of self-describing data, and it
uses a combination of search trees to build the index. Other existing
works from HPC look at redesigning search tree data structures stored
on persistent memory in order to make them NUMA aware, and thus
avoid the performance overhead of inter-NUMA communication [9].

Cavast [26] is a another project that aims to improve the perfor-
mance of in-memory key-value stores, through a re-design of their
hash table implementation, in order to better exploit the CPU caches
and memory subsystem. Cavast achieves this through a combination of
methods and techniques: the separation of key and value placement in
memory, laying out the hash table elements in memory so that they can
better benefit from cache locality and exposing the kernel cache col-
oring scheme, to name a few. While we acknowledge the importance

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

o) o]
[] 17\

Search Engine
Index Engine ‘ ‘ Query Engine
(data) - 5 (query)
- extraction Ranking Algorithm - parsing
- processing - relevance score assignment - processing
- analysis - sorting by relevance a stemrr]ing
- stemming - context awareness - matching
- reorganizing I I - combining
Index (Data Structure)

File System (Storage)

Fig. 1. General architecture of a search engine.

of the search data structure, we emphasize that the search data struc-
ture alone cannot guarantee high indexing performance and that the
inverted index needs to be designed and implemented as a scalable and
tightly coupled combination of search data structure and inverted index
data structures.

Indexing and search in large high-performance file systems is not a
problem that is solely specific to search engine applications, but other
domain specific applications could also benefit from having an efficient
indexing and search service that runs well on high-performance com-
puting systems. Genomics research is a field that could benefit from
efficient indexing methods, and there is work that looks, for example,
at ways to improve the performance of DNA k-mer sequence counting
using indexing techniques [17]. In the mentioned work, two distributed
parallel hash table techniques are being proposed. These two tech-
niques are optimized to use cache friendly algorithms for hashing, to
overlap computation with communication and to use a vector-based
computation technique to compute the hashes of many k-mer indices.
Their solutions can process 1TB over 4096 cores in 11.8 and 5.8 sec-
onds, demonstrating high improvements over the state-of-the-art. We
argue that an efficient indexing framework, with an exposed indexing
pipeline, should be able to achieve, after tuning of course, similar if not
better performance to the two proposed solutions, while still maintain-
ing enough generality to be easily used in other scenarios.

3. Framework architecture and design

This section presents the SCANNS architecture overview, and the
SCIPIS architecture, covering a general overview of the SCIPIS frame-
work and its underlying components, and a detailed description of the
techniques and optimizations used to improve indexing and search per-
formance.

3.1. Search engine background

The problem that search engines solve in the realm of computers can
be defined as the “problem of locating and retrieving relevant files from
a file system in order to satisfy an information need” [1]. Fig. 1 shows
a structural decomposition of the four main components of a search
engine.

The Index Engine is responsible for extracting the contents of the
files in order to re-organize it into an index. Similarity analysis and
stemming are example of operations that this component can run to
increase the quality of the index.

The second component is the Index itself, which is typically imple-
mented as an inverted index. The term “inverted index” comes from the

Journal of Parallel and Distributed Computing 189 (2024) 104878

inversion between content and the source of the content that happens
during indexing. The inverted index is typically implemented through
the use of various search data structures in combination with container
data structures, but it can also be implemented using mathematical con-
structs, such as vectors and matrices, and it can be stored persistently
on disk or it can be kept in volatile memory or a combination of both. If
the list of files that are returned by the inverted index are not ordered
in any particular way, then the search engine becomes a data retrieval
engine, akin to a relational database that provides only the projection
function.

In order to be a truly information retrieval engine, the third, namely
Ranking Algorithm component needs to be part of the overall search en-
gine. The Ranking Algorithm, also sometimes used as a synonym to the
information retrieval model, is responsible for providing a mechanism
to order the returned files from an inverted index by relevance with
respect to an information need. Term Frequency-Inverse Document Fre-
quency (TFIDF) is a popular model that uses the frequency of words in
files (Term Frequency) and the frequency of files that contain a word
(Inverse Document Frequency) to build a mathematical formula that
can use the indexed frequencies to sort the returned files by their rele-
vance.

TFIDF attempts to capture two observations: if a word exists in many
files it is likely to be less relevant to the information need; and if a word
occurs many times in a file it is likely to be relevant to the information
need. TFIDF is not the only successful information retrieval model, but
in this work we decide to use this model due to its simplicity and effec-
tiveness.

The final component is the Query Engine, that is responsible for pro-
cessing the information need. This component typically reads a search
query, applies some of the parsing and analysis present in the Index En-
gine component, and filters and sorts the returned results according to
the Ranking Algorithm.

3.2. SCANNS framework overview

In order to efficiently leverage systems that have many cores, mul-
tiple NUMA nodes, and multiple NVMe storage devices and to saturate
compute, memory and/or storage resources, we studied the general pro-
cess of performing indexing on high-end systems, and identified three
key sub-processes. For each of sub-process we designed a component
that focuses on a specific system resource and a precise part of the in-
dexing process. When combined, these components form a complete
indexing engine. A diagram of these components and how they are con-
nected structurally and functionally can be seen in Fig. 2.

3.2.1. SCANNS components

The three components are: the ReaderDriver, which is responsible for
reading raw data from a storage system and is typically IO-intensive; the
Tokenizer, which is responsible for parsing and tokenizing the raw data
into units of data that are useful for a specific information retrieval
model and is usually compute-intensive; and the Indexer, which is re-
sponsible for computing and storing the index from the units of data.
All three components are designed as independent functions, that can
be run by one or more threads, exclusively or shared, giving the user op-
tion to fine tune the number of threads and the number of components
according to the amount of compute, memory, and storage resources
available.

SCANNS is designed to implement a TFIDF search engine over a col-
lection of files stored on multiple PCle NVMe devices and is optimized
to achieve high indexing speeds in the scenario where the index does
not already exist and it is being built for the first time. SCANNS assumes
that the input dataset will not change while the index is being built and
the framework is designed to support fixed-term and extended boolean
search.

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

Journal of Parallel and Distributed Computing 189 (2024) 104878

]
index thread K

read thread 1
[ReaderDriver]

DualQueue 1 data

data
B block block
E,'; block || block block data f| TF-IDF :

[Tokenizer] TE-IDF Il
[Indexer] entry S

— N

block |§ entry

o O
T

Aowapy

index thread NK

- read thread N
[ReaderDriver]

=i
block

DualQueue N data I
block [Indexer]

[Tokenizer]

TF-IDF Il -
entry

[—E IB waysAsaliy E IE—I
B P

4l| data data data -
block block || entry
O O
| __tokens |

Fig. 2. SCANNS framework indexing architecture and pipeline.

3.2.2. SCANNS optimizations

The ReaderDriver is the component that is responsible with reading
data from the files stored in a file system as fast as possible to main
memory so that the other components can further process it. This com-
ponent reads blocks of data from disk and in order to increase the read
performance of the blocks we adopted the memory pool design pat-
tern and we used the DIRECT IO flag. The memory pool design pattern
is implemented as part of the DualQueue component, which allocates
the blocks of data where the content of the files will be read at the
beginning of the program and recycles them throughout the execution,
eliminating the penalties incurred by constant memory deallocation and
reallocation. We saw in practice that the operating system will try to
cache the data read from disk, but since this data is read only once,
that is not necessary. In order to avoid unnecessary memory alloca-
tion for caches and buffers, the ReaderDriver uses the DIRECT_IO flag to
tell the IO subsystem to read data straight to the user space blocks of
data. The SCANNS framework adds one more application-level detail to
the implementation of the ReaderDriver, by implementing a mechanism
that returns variable sized blocks of data that avoids splitting words or
tokens in order to preserve correctness. This application-level detail is
implemented as part of the WaveReaderDriver component, which is used
throughout all of the SCANNS framework.

The Tokenizer is the next component in the indexing pipeline and is
responsible with extracting the words or tokens sparated by one or more
delimiters from the data block and passing the list of tokens as fast as
possible to the next component. The Tokenizer is a CPU intensive com-
ponent, because it processes the data by accessing it sequentially and
thus benefits from the CPU cache system. In order to further optimize
the process of tokenizing data, the SCANNS framework implements
what we call a BranchlessTokenizer, that uses branchless programming
and a delimiter hashtable. Through branchless programming we replace
the part of the code, that decides if a new token was discovered through
an if-else block, with ternary operations that will allow the compiler to
generate conditional instructions. The conditional instructions bypass
the CPU branch predictor allowing for a smoother scheduling of instruc-
tions on the CPU pipelines. The delimiter hashtable allows the Tokenizer
to identify and replace a delimiter with a null byte in one single lookup
operation, that is faster that iterating and comparing over the list of
delimiters of each character.

The next and final component in the SCANNS indexing pipeline is
the Indexer, which is responsible with reading the tokens received from
the Tokenizer and writing them to a local TFIDF index stored in mem-
ory. The TFIDF index is built using a hashtable as a search data structure
and a linked list to store the auxiliary inverted index information and
keeps track, for each token, of the number of files the tokens appear in

and for each of those files the number of times the tokens appear in the
file. In order to further optimize the process of building the inverted in-
dex, which is the slowest component, due to the fact that it is memory
intensive, exhibits random access patterns and does not benefit from the
CPU cache subsystem, we adopted an append cache mechanism and a
monotonic-page suballocator. The append cache, exploits the fact that
SCANNS builds the index for the first time and that each file will only be
read and indexed once, and adds an additional structure to the elements
stored in the hashtable in order to minimize the number of memory in-
directions whenever the frequency of words in the same file is being
incremented. The monotonic-page suballocator exploits the same prin-
ciple and allocates the elements of the linked lists, or better said the
auxiliary data structure of the inverted index, in pages that will never
be deallocated, while also minimizing the penalties of memory alloca-
tion. The linked list elements will then be assigned from user space,
thus further increasing the performance of this component.

Lastly, the SCANNS framework adopts two global optimizations that
apply to all of the aforementioned components. The first optimization
makes use of NUMA affinity/scheduling to group reader threads and
indexer threads such that inter-NUMA communication is minimized,
which leads to a significant increase in performance and good scala-
bility for all components. The second optimization makes use of Linux
huge pages to reduce the number of page faults. Because SCANNS was
designed to index data in memory as fast as possible, the framework
will try to use all of the available memory, which sometimes can be
very large and which in turn will cause many page faults when allocat-
ing memory. Using huge pages, allows SCANNS to still utilize all of the
memory with a reduced performance impact from the memory subsys-
tem and thus increasing the overall performance of the framework.

3.3. SCIPIS framework architecture

The SCIPIS framework extends the SCANNS framework and follows
a similar architecture. It reuses the WaveReaderDriver and BranchlessTo-
kenizer components, as the default components responsible for reading
data from files and tokenizing them as fast as possible, respectively, and
the DualQueue component for communication between components that
reside on different execution threads. SCIPIS replaces the Indexer com-
ponent with two components: FilePathIndexer and TFIDFIndexer, that
are responsible for indexing the file path and the file content, respec-
tively. This separation of components allows the user to finely tune
the two aspects of processing indexes but also allows the framework
to separately persist file path and file content indexes. Finally, SCIPIS
adopts a new component, called the IndexWriter, that is responsible

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

Journal of Parallel and Distributed Computing 189 (2024) 104878

EN N R I I G File system I IEM I E I
| e e B 1 L I e Y I
: :I—t Group 1 ﬂ 1 ! ﬂ Group M ﬂ]
1 1
1 1
! Reader Thread 1 Reader Thread N : : Reader Thread 1 Reader Thread N :
1 1
1 1 ! 1
! 3 3 : 5 3 3 :
1 DataBlock i : DataBlock DataBlock i
! 1 1
A R, g | A | S PR
I
: Data Data : I Data Data :
' DualQueue 1 DualQueue N ! \ DualQueue 1 DualQueue N !
— 12— D202 S S M o121 S oo
]
: Indexer Thread 1 Indexer Thread KN i : Indexer Thread 1 Indexer Thread KN E
! DataBlock DataBlock : : DataBlock DataBlock !
: L 1 ! : { O !
! [: ce !
. I I | | I I !
FilePathindex FilePathindex Main FilePathindex FilePathindex
TFIDFIndex TFIDFIndex Memory TFIDFIndex TFIDFIndex
1 I 1 !
1 (v % H] v v i
! IndexBlock : ' IndexBlock IndexBlock !
L 5 : E 5 y !
! ! . 000 :
I
| Index Index ; I Index Index ;
d DualQueue 1 DualQueue N - : DualQueue 1 DualQueueB N !
: o :
1
: Writer Thread 1 Writer Thread N : : Writer Thread 1 Writer Thread N :
! IndexBlock | : IndexBlock |
1 : ! :
1 1 ! 1
1 1 ! 1
1 1 ! |

[_IndexFile |l IndexFile | _indexFile |l IndexFile JZITYSEEN M IndexFile |l IndexFile |

Fig. 3. SCIPIS framework indexing architecture and pipeline.

with reading blocks of index data and writing them as fast as possi-
ble to corresponding files in a file system. In terms of optimizations,
the SCIPIS framework adopts all of the SCANNS component and sys-
tem optimizations, including: direct IO, memory pool design pattern,
branchless programming and the delimiter hashtable, the append cache
mechanism and monotonic-page suballocator, NUMA affinity/schedul-
ing and Linux huge pages; and incorporates two new optimizations that
aim to capture the characteristics of the input dataset: tunable index
depth and split factor.

The SCIPIS framework, like the SCANNS framework, can be used to
implement fully functional TFIDF indexing engines, that are optimized
for indexing data from a static dataset. By static dataset, we mean that
the input dataset does not change while the index is being built (no
files are added, removed or modified). The framework can be used to
index a changing dataset, but it might end up building an incorrect
or imprecise index. Since the output of the framework is a set of files
that contain the persistent index, the intention is that, in the future,
the SCIPIS framework will support various merge operations that users
could run offline on existing built indexes. Indexes could be optimized,
merged and updated using common set operations, such as: union, in-
tersection and difference. In terms of searching the persistent index,
SCIPIS supports, unlike SCANNS, full TFIDF queries, where the query
engine will access the persistent index files, will collect and compute
the TFIDF scores, and will merge and sort the results according to the
computed scores.

3.3.1. Indexing engine execution

Fig. 3 shows the architecture of the SCIPIS indexing pipeline and
the flow of data throughout the framework. One difference from the
SCANNS framework, is that SCIPIS takes as an input a collection of
input files, processes partial indexes in-memory, and returns as an out-
put another collection of files that contain the re-organized input data,
commonly known as the inverted index. The input data is consumed
and transformed by the SCIPIS framework by various components that
are responsible for a certain task and that target a specific compute re-
sources, and these components are executed by worker threads that
are spawned at the start of the program. In terms of execution the
framework makes use of three types of worker threads: reader threads,
indexer threads and writer threads.

Each reader thread manages a WaveReaderDriver component, which
is responsible for reading variable sized blocks of data from the files
stored in a file system as fast as possible and sending them to the in-
dexer threads components through the DualQueue. The reader threads
read the files that need to be indexed from a queue that is populated by
a number of simple file systems crawlers, with one crawler per NUMA
node. This allows the framework to achieve load balancing over the
files read from one NUMA node, that have similar sizes. For files, that
reside in the same NUMA node and that vary in size, the simple crawler
could be expanded to support pushing into the queue the files that are
larger first, in order to avoid any load balancing issues. In the scenario
of load inbalance across NUMA nodes, the framework could use a work-

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

stealing technique to achieve load balance, allowing reader threads to
pop files from queues from different NUMA nodes. However, work-
stealing could cause performance degradation because of inter-NUMA
communication, and is the subject of future work. The reader threads
are [0-intensive and can be over-provisioned. In addition to the blocks
of data containing the content of the input files, the reader threads will
send an additional block of data containing the full file path to the in-
dexer threads in order to index the file path alongside the content of
the files.

The indexer threads are responsible for receiving blocks of data
from the reader threads, indexing the data from the blocks and send-
ing blocks of index data to the writer threads to be stored to disk.
To accomplish this, each indexer thread manages three components:
a BranchlessTokenizer, a FilePathIndex and a TFIDFIndex; each of them
having different roles and using different system resources. The Branch-
lessTokenizer is responsible for breaking down a block of data into a
list of tokens delimited by one or more delimiter characters, and is a
CPU-intensive component. The FilePathindex component is a memory-
intensive component and is responsible for computing a file index from
the full file path and storing the index and the full file path into the
inverted index in order to be retrieved during search operations. The
file content, under the form of a list of extracted tokens, is then in-
dexed by the TFIDFIndex, which is also a memory-intensive component
and that indexes the tokens and keeps track of the term frequencies
and inverse document frequencies necessary for computing the rele-
vance score. The FilePathIndex and the TFIDFIndex sizes are determined
at program startup and usually reflect the amount of memory avail-
able in the system per thread, but also the ratio between full file path
size and file content size. For example, if the input data contains many
small files that only contain a reduced number of tokens, the FilePathIn-
dex should be allocated more memory than the TFIDFIndex, and vice
versa for the converse. Once either the FilePathindex or the TFIDFIndex
reached or is over 90% of the index capacity, the index in question
will be subject to a serialization step, in which the index will be orga-
nized into blocks of data that can then be sent to the writer threads to
be written to disk. The current implementation of the serialization of
indexes serializes the full file path and writes the remainder index in-
formation in binary format on disk. This means that the index cannot
be simply copied from one architecture to another, since the endianess
of the data might be different. But this problem can be simply overcome
by using an efficient serialization library, such as the Google Protocol
Buffers or FlatBuffers in order to standardize the index format on disk.
It’s also worth mentioning that during the serialization step, the indexer
components become CPU-intensive, rather than memory-intensive, be-
cause serializing the index implies reading and writing data sequentially
from the inverted index to the block buffer. Thus, this actually allows
the framework to over-provision the indexer threads to the number of
hardware-threads and still yield good performance.

The last type of thread is the writer thread, which manages an
instance of IndexWriter component, that is responsible with receiving
index blocks from the indexer threads through a DualQueue and writing
them to the corresponding file on the file system. The IndexWriter is an
[0-intensive component and can be over-provisioned without majorly
impacting the overall performance of the framework.

In practice we observed that the reader and writer threads are orders
of magnitude faster than the indexer threads, that is why there is a one
to many mapping between reader/writer threads and indexer threads.
This also allows the user to better load-balance indexing files with sig-
nificantly varying sizes at the cost of index size and, subsequently, of
query latency. SCIPIS groups reader, writer and indexer threads into
groups of threads that can be scheduled together on the same NUMA
node, thus minimizing performance degradation due to inter-NUMA
communication.

The SCIPIS framework, currently, does not implement any means for
achieving fault tolerance when the compute node fails. However, fault
tolerance can be implemented in a very easy way, by keeping track of

Journal of Parallel and Distributed Computing 189 (2024) 104878

IDFIndexEntry TFIndexEntry
e tokenlIndex "l o filelndex

e fileCount e fileNo

AbtendGachs o fileTokenCount

o |astFileIndex
Index Depth

o |astFileNo
o |lastTokenCount
TFEIndexEnt
IDEIndexEntry L F-09eXEniry

e fileNo
o fileTokenCount

e tokenlIndex
e fileCount

Inverted Index HashTable

Fig. 4. SCIPIS inverted index design.

high watermark records for files and positions inside large files. The
framework can crawl the file system and generate a list of files to be
indexed, in a deterministic and idempotent way, by, for example, sort-
ing the directories and files per directory (in order to keep the sorting
tasks small). Then, during indexing, the framework can keep track in a
log of which files have been successfully indexed and, for large files, of
how many blocks of data have been successfully indexed, by updating
a high watermark per file, for small file, and per block, for large files,
whenever SCIPIS flushes the index to disk. If the node crashes during
indexing, the framework would then need to read the log file in order
to figure out which files or blocks of data from large files have been suc-
cessfully indexed and in order to determine from which point can the
framework continue indexing.

3.3.2. Inverted index design

Previously, in SCANNS, we showed that the inverted index design
is crucial to the performance of the indexing process, noting that an
efficient inverted index requires both an efficient search data structure
but also an efficient auxiliary data structure. In that regard, SCANNS
showed that when using the Google Swiss Table and the append cache
mechanism, one can reduce the number of memory indirections when
creating a TFIDF index and significantly improve the performance of the
indexing process. Since SCANNS was designed to index data as fast as
possible in-memory, we permitted ourselves to use pointers to reference
to file paths and other parts of the index and to use linked lists to store
the elements of the auxiliary inverted index. But this solution would not
work if we need to persist the index on disk, since the pointer values
would not easily translate to offsets to disk and the linked list would
yield low serialization performance due to traversing the memory using
pointers to the next element.

In SCIPIS we proposed a new inverted index design that solves all of
the issue stated previously and allows the framework to create an index
that can easily be serialized to disk and that exposes a new dimension
for adapting the inverted index to the input data. Fig. 4 shows the de-
sign of the proposed inverted index. We eliminated all of the pointer
references and replaced them with offsets to buffers and/or with un-
signed integer values. For example, unsigned integer values, calculated
using a hash function, are used to provide file path and token identifica-
tion. SCIPIS still uses the Google Swiss Table as the search data structure
and the elements of the hash table are direct references to IDFIndexEntry
data structures. By direct references, we meant that in order to perform
a lookup into the hash table, the element is not a pointer to another re-
gion of memory that stores the actual element, but returns a reference
to the element itself. This means that the memory for storing IDFIndex-
Entry elements is managed by the data structure itself. We still use the
append cache mechanism to reduce the number of memory indirections,
that relies on the assumption that the dataset is static in order to func-
tion properly. SCIPIS changes the way the TFIndexEntry is allocated and

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

stored in memory. Since the inverted index is designed from the start
to support persistent indexes that are larger than the main memory of
the system, we can relax the requirement to try to fit as many data as
possible inside the in-memory index, which allows us to better organize
the TFIndexEntry elements, which represent the auxiliary inverted in-
dex data structure. Instead of creating a linked list of elements that are
all chained together, we allocate small arrays of TFIndexEntry elements
that then get assigned to each IDFIndexEntry element. When either the
hash table or any array of TFIndexEntry element reached maximum ca-
pacity, the inverted index signals the parent component that it is ready
to serialize and flush the index to disk. By keeping the TFIndexEntry el-
ements, which store the file index and the frequency information for
the word that is found in that particular file, contiguously in memory,
we enhance both the serialization and search performance at the cost
of space utilization.

In order to overcome the space utilization problem, we expose to
the user a new tuning parameter that we call index depth, that allows
the user to specify how big will the contiguous array of elements will
be at program startup. The user only needs to know how big can the
TFIDFIndex be, how big are the input files on average and what is the
mapping between reader threads and indexer threads, to determine how
many files would be able to fit inside the index and thus to how much
to set the index depth. This additional tuning parameter allows the user
to further tune SCIPIS and increase the performance of the indexing
process by giving the framework some information regarding the system
and the input dataset.

While the index depth parameter can help the user adapt the inverted
index to the input data, the parameter alone does not capture the entire
essence of the problem. If no assumptions regarding the input dataset
are made or if no useful knowledge about the structure and patterns of
the input dataset are known, it will be hard to create a general inverted
index that will work well in all scenarios. However, if the user knows
details regarding the number of file, the file sizes, the number of tokens
per file and the total number of unique tokens from the entire dataset,
then the inverted index structure can be additionally optimized, allow-
ing the framework to use the in-memory index space more efficiently,
while minimizing the number of index flushes to disk and the output
index size. That information could be provided either offline, through
an quick analysis of the input dataset, or online through space steal-
ing or defragmentation techniques. SCIPIS does not implement these
techniques and they are the subject of future work, but this work points
towards an aspect of data indexing and search that is often underlooked
and that could lead to a dynamic inverted index design that can yield
even higher indexing and search performance.

3.3.3. Persistent index structure

When either the FilePathIndex or the TFIDFIndex reaches or goes over
90% of its allocated capacity, the index gets serialized and then sent
into blocks to be written to disk. Fig. 5 describes how the index is being
store on disk for a particular index thread. Each index thread creates
its own persistent index, that represents a local or partial index, imply-
ing that when a search query is being launched, the query engine will
need to combine the results from each index thread in order to return
a global view of the index. Each index thread will need to flush both
an index for the file paths and an index for the term frequency and
inverse document frequency information. The file paths index will be
stored under the file_index_<thread id > directory, while the TFIDF in-
dex will be stored under the tfidf index_< thread id>. For each flush of
any index type, the framework creates one segment data file and one or
more segment metadata files. The segment metadata files will contain
the hash table entries for each index type. For example, for the TFIDF
index, the segment metadata files will contain a list of IDFIndexEntry
elements, written down in binary format. Since the size of IDFIndexEn-
try data structure is known, there is no need for there to be a delimiter
between the elements, and the end of the list is marked with a special
entry that has a file count of zero. The segment data files will contain

Journal of Parallel and Distributed Computing 189 (2024) 104878

/segment_data_0 i
(TFIndexEntries) '

/segment_metadata_1 : E
(IDFIndexEntries) H

/segment_data_0
(FilePathEntries)

| /segment_metadata_1
! (FPIndexEntries)

/segment_metadata_B

/segment_metadata_B i
(FPIndexEntries) (IDFIndexEntries) |

i /segment_data_F
! (FilePathEntries)

é[/segment_metadata_(F-1)(B+1)]

/segment_data_F \
(TFIndexEntries) '

[/segment_metadata_(F-1)(B+1)

(FPIndexEntries) (IDFIndexEntries)

i /segment_metadata_FB /segment_metadata_FB
! (FPIndexEntries) (IDFIndexEntries)

Fig. 5. SCIPIS persistent index design.

the auxiliary data structure elements. In the case of the file path index,
the auxiliary data structure is the actual full path of the files delimited
by new line, and the corresponding element from the metadata file will
store an offset to the position where the full file path can be found in
the data file. For the TFIDF index, the segment data file contains a list of
lists of TFIndexEntry elements of size indexDepth, with the entries from
the metadata file containing and offset to the beginning of the corre-
sponding list. In order to control the size of the segment metadata files,
SCIPIS exposes the split factor parameter that allows the user to decide
into how many segments to split the hash table key space, and thus
have the ability to improve search or indexing performance at the cost
of the other. Each key will be stored to the corresponding segment meta-
data file, minimizing the search space when computing search queries.
Each index flush will create a new group of segment data and segment
metadata files, that will be required to be queried when searching the
persistent index.

One benefit for building the persistent index in this way, is that the
index can be searched offline, while SCIPIS is building the persistent
index or after the framework finished executing. Searching the index
is trivial, as it only requires the query engine to access, for a given
term, only a subset of segment metadata and segment data files. For
each query, the query engine will need to search the segment metadata
files for offsets to the term-frequency information. After the offsets are
retrieved the term frequency information is extracted from the segment
data file using the offsets. While the term frequency information is being
retrieved, the query engine can start sorting the results and filtering the
ones that have a low score, thus reducing the amount of data that needs
to be merged. Finally, once all of the persistent indexes for each index
thread have been searched, the query engine will combine the results
from each index thread, using an n-way merge technique, into one final
list of documents and their scores for a given query.

The persistent index is produced by the SCIPIS framework in an im-
mutable way and the framework itself does not yet provide mechanisms
for updating the index in-place. However, additional programs can eas-
ily be built (as part of the framework) that can update the persistent
index offline. One property of splitting the data and metadata compo-
nents of the inverted index into multiple segments is that the index
information for a file will reside in only one segment. The advantage
of this property is that updating the index, when a new file is being
added or when an old file is being modified, can be easily implemented
by adopting similar techniques to log-structured merge trees. Since the

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

Table 1

Journal of Parallel and Distributed Computing 189 (2024) 104878

Mystic Cloud machines used for the experimental evaluation and their specifications.

machine name processors cores memory nvme storage

32cores-16disks 2 x Intel Xeon Gold 6130 32 192 GiBDDR4 16 x Samsung 970 EVO SSD

192cores-16disks 8 x Intel Xeon Platinum 8160 192 768 GiB DDR4 16 x Intel Optane 900P SSD
Table 2

search operations have to access all of the metadata segments from a
specific hash table key space, determined by the split factor, we can in-
clude at index creation time for each metadata segment a timestamp,
and we can filter out at query time old metadata segments, thus always
working on the most up to date index. Thus, the user, would only need
to produce a new and smaller persistent index from the new and/or
modified files, and then combine it with the existing persistent index,
in order to update the index. An offline program could be additionally
built to remove metadata segments that are old and merging metadata
segments that are small, thus clearing up space and improving the per-
formance of search operations when frequent updates happen. As for
updating the persistent index after files have been removed from the
file system, the framework could implement a tombstone mechanism
similar to the one found in databases, where an index entry can be
marked as removed and thus ignored during search time. The frame-
work could further provide a mechanism (similar to database vacuum)
for removing the tombstone marked entries from the persistent index in
order to reclaim space.

4. Performance evaluation

In this section, we present the performance evaluation of the
SCANNS and SCIPIS frameworks. We include details about the SCANNS
variants, the end-to-end indexing performance of SCIPIS, the TFIDF
search performance, the tuning experiments, but also descriptions of
the experimental setup and the datasets used for the experiments.

4.1. Experimental setup

For the purpose of evaluating SCIPIS experimentally we used two
single-node high-end systems deployed on the Mystic Cloud, an NSF-
funded testbed designed to study system re-configurability and to con-
duct computer systems research. Both of the systems have a high num-
ber of PCle NVMe storage devices allowing for fast storage access in
terms of both read and write, and sequential and random access. The
difference between the two systems is the number of cores, memory
channels and NUMA nodes present, and they were a selected in order
to showcase the scalability trends of the SCIPIS framework both on a
small machine, but also on a big machine. The small machine (32cores-
16disks) represents an accessible machine that any computing facility
could deploy, while the big machine (192cores-16disks) is more akin to
a supercomputer node, in terms of CPU and memory capabilities. Ta-
ble 1 shows the hardware details for each system.

In order to achieve high execution performance, we configured the
operating system to use the performance scheduling governor and en-
abled turbo-boost on all machines. When we ran experiments we also
configured the listed storage devices to be accessed in exclusive mode,
having the OS of these two machines run from different storage devices,
all of this in order to eliminate performance degradation caused by any
interference. Since the PCle NVMe drivers are spread evenly across the
NUMA nodes, we grouped the devices by NUMA node and configured
Linux software RAIDO with XFS on them. When running experiments,
we distributed the data evenly across the NUMA nodes and made sure
that threads only accessed data from their own NUMA node.

For both SCANNS and SCIPIS, all the machines ran Ubuntu 22.04
LTS with Linux Kernel 5.15 and g++-12.1. For the Google Swiss Ta-
ble library we used version 20230125.3 Its from the abseil library and
we used openjdk-11 to run Apache Lucene. Both frameworks are im-

Evaluation datasets and characteristics.

dataset name size number of files file sizes dataset type
hdfs 18GB 40 200-800 MB logs
thunderbird 31GB 240 100-600 MB logs
windows 27GB 738 50-200 MB logs

thepile 1.1TB 5500 100-300 MB scientific
fsdumps 1.2TB 300000 4 MB metadata

plemented in C++20 and are compiled with the O3 optimization flag
enabled.

For all of the experiments and all machines we configured the SCIPIS
framework with a file path index size of 64 MiB, a TFIDF index size
of 512 MiB and a split factor of 16 for each indexer thread. This im-
plies that the TFIDF index will be split into 16 32 MiB non-overlapping
hash table regions and that the maximum TFIDF metadata segment files
size will be 32 MiB. The average size of the produced TFIDF metadata
segment file is 22 MiB. We determined and chose the split factor ex-
perimentally and because it allows the framework to a achieve higher
search performance at the cost of a slight decrease in indexing perfor-
mance by about 5%. The size of the data segment file and the number of
metadata segment files depend on the input dataset size and, given the
mentioned configurations, the overall produced index is between 20%
and 50% the size of the original input data.

4.2. Evaluation datasets

For the performance evaluation of SCIPIS we used five datasets, that
represent three different scenarios or dataset types, and that have dif-
ferent properties. The datasets, with the properties and characteristics
of each, can be seen in Table 2. We picked a diverse range of datasets
in order to explore the scalability and performance of SCIPIS, and to
show that while the performance can change from dataset to dataset,
the scalability trends remain similar.

The first type of dataset we consider is log data. Log data is com-
monly found in all computing systems and is especially prevalent on
supercomputers. A supercomputer can contain thousands, if not tens of
thousands of nodes, that each can generate a considerable amount of
log data, that when combined with the log data generated by the ap-
plications that run on supercomputers can easily reach large volumes.
Logs are notoriously hard to search through without the help of an
index-based search engine. Thus we evaluate SCIPIS using three log
datasets, because it is a representative scenario. We used the hdfs clus-
ter, thunderbird supercomputer, and windows operating system logs form
the Loghub collection [8].

For the second type of dataset we consider a collection of scien-
tific datasets. The Pile [5] collection contains publications, websites
and books, from various fields of science, including medicine, law, and
mathematics. The Pile is representative of the kind of data that a scien-
tific search engine would need to index and provide search over, and
we chose this dataset because of its high diversity in terms of topics and
vocabulary.

Since many supercomputing centers use parallel and distributed file
systems to organize data, we also include a dataset to explore search
over the metadata of the file system. Scientists and engineers often
use various naming conventions for directories and files for organiza-
tion and provenance, but these conventions pose an interesting scenario
when it comes to indexing and searching scientific data. Thus we eval-

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

8000
I scanns-std
7000 1 @ scanns-swiss
I apache-lucene
@ 6000 I scanns-std-ap
.;3 5000 4 EEE scanns-swiss-ap
3 4000
"
g
3 3000 A
s
2000 A
1000 A
O_
1 2 4 8 16 32

number of indexer threads

Fig. 6. End-to-end TFIDF indexing throughput with increasing number of read
and index threads on 32cores-16disks.

uate SCIPIS over the file system metadata provided from a supercom-
puting center, that we will refer to as the fsdumps. SCANNS was also
originally evaluated over the fsdumps dataset. For the SCANNS exper-
iments we cleaned and split the file system dump dataset into smaller
files of approximately and up to 32 MiB in size, and the evaluation was
conducted over a collection of 1536 files (48 GiB).

4.3. SCANNS performance evaluation

The TFIDF End-to-End indexing and search evaluation of SCANNS is
performed on variants that include both the WaveReaderDriver and the
BranchlessTokenizer in their runtime. We compare the SCANNS vari-
ants between themselves but also to an indexing and search application
implemented using the Apache Lucene information retrieval library. We
used ClassicSimilarity and the WhiteSpaceAnalyzer to tell the Lucene
variant to perform the same kind of indexing and search that SCANNS
implements, namely TFIDF. We further tuned the Lucene variant by set-
ting the JVM available and start memory to the maximum available on
the system, we enabled server mode and parallel garbage collector, and
we tuned Lucene itself to use 1 GiB buffers and two merge threads per
index thread. In the Lucene variant, similar to the SCANNS variant, each
index thread builds a local index and there is no communication be-
tween the index threads. Here all of the variants that we experimented
with during the TFIDF End-to-End indexing and search:

scanns-std - implementation using C++ unordered_map and with-
out any optimizations;

scanns-swiss - implementation using Google Swiss Table and with-
out any optimizations;

apache-lucene - uses Apache Lucene;

scanns-std-ap - similar to xs-rdtokidx-std, plus the monotonic paged
sub-allocator, the append cache optimization, NUMA-aware config-
urations and huge pages;

scanns-swiss-ap - similar to xs-rdtokidx-swiss, plus the monotonic
paged sub-allocator, the append cache optimization, NUMA-aware
configurations and huge pages;

4.3.1. SCANNS end-to-end TFIDF indexing and search

When looking at a system that has multiple NVMe devices but not
that many cores, as depicted in Fig. 6, we see a similar trend. The un-
optimized solutions, including the Apache Lucene variant, due the fact
that they do not exploit the memory hierarchy properties of these sys-
tems, cannot achieve very high performance and cap out at 369 MiB/sec
for Apache Lucene, 607 MiB/sec for the Swiss Table implementation
and 509 MiB/sec for the standard implementation. Only by incorpo-
rating the memory and NUMA-aware optimizations can the standard

Journal of Parallel and Distributed Computing 189 (2024) 104878

10000
I scanns-std
3 scanns-swiss
8000 1 mmm apache-lucene
@ I scanns-std-ap
a I scanns-swiss-ap
= 6000
5
Q.
ey
S 4000
(S
s
2000 A
0-

1 2 4 8 16 24 48 96 192
number of indexer threads

Fig. 7. End-to-end TFIDF indexing throughput with increasing number of read
and index threads on 192cores-16disks.

Table 3

End-to-end search latency (microseconds).
SCANNS returns unsorted and unmerged re-
sults, while Lucene returns fully computed,
sorted and merged TFIDF results.

cores 64cores-1disk 192cores-16disks

scanns lucene scanns lucene

1 237 26143 229 20056
2 210 27811 233 21747
4 214 30866 237 25160
8 180 47981 238 29412
16 189 45232 248 33601
24 - - 269 39004
32 218 51520 - -

48 - - 296 53666
64 264 65920 - -

96 - - 360 64651
192 - - 476 134061

implementation reach 1093 MiB/sec and the Swiss Table implemen-
tation reach 2414 MiB/sec, both with 32 index threads and 32 read
threads.

On the system that has many cores and multiple NVMe devices
and the most memory channels per NUMA node, we can see that the
SCANNS framework can reach very high throughput, when the proper
optimizations are used. Fig. 7 captures this performance, and shows
that the un-optimized variants reach a similar performance limit to the
previous setups, where the Apache Lucene implementation caps at 501
MiB/sec, the standard Indexer caps at 475 MiB/sec and the Swiss Ta-
ble Indexer caps at 551 MiB/sec. The plot also shows that when using
the memory optimizations to reduce the cache misses and to reduce
the number of page faults while also using NUMA-aware scheduling of
threads and allocation of memory, the standard Indexer can reach a
throughput of 810 MiB/sec, with 24 index threads and 24 read threads,
while the Swiss Table Indexer can reach a whopping 9782 MiB/sec,
with 192 index threads and 192 read threads. This last result shows
that actually in order to build a high-performance indexing engine on
a single node computer, one needs a fast search data structure, such as
the Swiss Table, but one also needs to design the TFIDF inverted index
data structures in such a way that they can benefit from the memory
hierarchy.

Table 3 presents the average search latency of the SCANNS TFIDF
implementation that uses the Swiss Table as the search data structure
and the efficient design and optimization of the inverted index and com-
pares it against the Lucene variant, on the two different systems. The
SCANNS variant exhibits magnitudes lower latency, overall under 500
microseconds, when compared to the Lucene variant that runs search

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

8000
I |ogs-hdfs

3 logs-thunderbird
I logs-windows

7000 -

6000 -

5000 1

4000 -

3000 -

throughput (MiB/s)

2000 ~

1000 -

0_

4
TFIDF index depth

Fig. 8. Tuning the index depth on 32cores-16disks.

queries on average with latency over 20,000 microseconds. One impor-
tant observation to make is that even though both variants return the
same results with the same TFIDF relevance scores, the Lucene variant
also sorts the results, while the SCANNS variant does not sort the re-
sults. We explore the impact of sorting the results on the performance
of queries in the performance evaluation of SCIPIS.

4.4. SCIPIS performance evaluation

We initially show the performance implications of tuning the in-
dex depth, after which we provide a comparison between SCIPIS and
SCANNS in terms of indexing throughput. Afterwards we provide an
analysis of the indexing performance of SCIPIS with various datasets,
which is followed by a comparison between SCIPIS and Apache Lucene
in terms of full TFIDF search latency.

4.4.1. SCIPIS index depth tuning

Fig. 8 shows the results of tuning the index depth parameter over the
three log datasets on the 32cores-16disks machine. In this experiment,
SCIPIS was configured to run with 4 reader threads, 4 writer threads
and 64 indexer threads, with a block size of 1 MiB, a file path index
maximum size of 128 MiB and a TFIDF index maximum size of 1 GiB.

For the hdfs dataset, it can be seen that SCIPIS achieves the highest
indexing throughput of 4.3 GiB/s, when configured with an index depth
of 2, and that with increasing index depth the performance decreases.
This behavior is attributed to the hdfs dataset having a reduced number
of large files, that end up causing the TFIDF index to flush more often
with increasing index depth. Thus, for the hdfs dataset we used an index
depth of 2 for the rest of the experiments.

In the case of the thunderbird dataset, the framework achieves the
highest indexing throughput of 4.2 GiB/s, when configured with an
index depth of 8, and that with small index depths the performance
degrades. The thunderbird dataset is composed of a balanced number of
files of various sizes, smaller in size than the files from the hdfs dataset,
which when indexed occupy a smaller space in the index. Thus with a
higher value for the index depth, SCIPIS is able to achieve a better uti-
lization of the memory space for the index and reduce the number of
index flushes. For the rest of the experiments we used an index depth
of 8 for the thunderbird dataset.

The difference in performance between different index depths can
be seen for the windows dataset, which is comprised of many small files.
If the index depth is small, then SCIPIS will cause many flushes to the
disk and will yield degraded performance. If the index depth is large,
the index memory space will be better utilized, thus minimizing the
number of index flushes. For an index depth of 1, the SCIPIS framework
performs indexing at 3.7 GiB/s, while for an index depth of 16, the

10

Journal of Parallel and Distributed Computing 189 (2024) 104878

6000
B fsdumps-scipis

5000 4 3 fsdumps-scanns

4000 -

3000 A

2000 A

throughput (MiB/s)

1000 A

2 4 8 16
number of indexer threads

32

Fig. 9. SCIPIS vs SCANNS indexing throughput the 32cores-16disks machine.

I fsdumps-scipis
3 fsdumps-scanns

20000 -
17500 A
15000 -
12500 -
10000 -

7500 +

throughput (MiB/s)

5000 -

2500 -

8 24 48 96 192

number of indexer threads

384

Fig. 10. SCIPIS vs SCANNS indexing throughput the 192cores-16disks machine.

framework achieves an indexing throughput of 6.4 GiB/s, which is a
73% improvement in performance.

4.4.2. Indexing throughput (SCIPIS vs SCANNS)

We compare SCIPIS to SCANNS, in terms of indexing throughput,
on the fsdumps dataset in order to showcase how the proposed inverted
index design and indexing pipeline, along with the newly introduced
optimizations, can yield better performance. Figs. 9 and 10 show the in-
dexing throughput of both SCIPIS and SCANNS on the 32cores-16disks
machine and the 192cores-16disks machine, respectively. In both plots
we did not include results for SCANNS running with 64 indexer threads,
because SCANNS was exhibiting performance degradation due to CPU
core over-provisioning. SCIPIS did not exhibit the same performance
degradation, and actually showed improved performance when using
all of the hardware threads available, because the indexer threads
switch between memory-intensive computation to CPU-intensive com-
putation when serializing the index.

From Fig. 9 we can see that, on the 32cores-16disks machine, the
indexing throughput of SCANNS increased from 185 MiB/s with 2 in-
dexer threads to 2.4 GiB/s with 32 indexer threads, while for SCIPIS the
indexing throughput increased from 338 MiB/s with 2 indexer threads
to 3.2 GiB/s with 32 indexer threads and to 4.2 GiB/s with 64 indexer
threads. SCIPIS manages to achieve a performance boost of 75%, while
at the same time building a persistent index and indexing approximately
12 times more data than SCANNS. When we say 12 times more data we
mean that since SCIPIS can store the index on disk and the disk is 12
times larger (including only for index size and not input data size) than
main memory, we were able to index more data.

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

8000
B logs-hdfs
7000 1 @ logs-thunderbird
I logs-windows
Q 9800 I thepile
g 5000 4 EEE fsdumps
3 4000 1
<
g
3 3000 A
=
2000 A
1000 A

0 .
4 8 16 32
number of indexer threads

Fig. 11. SCIPIS indexing throughput the 32cores-16disks machine.

On the 192cores-16disks machine, SCANNS yielded an indexing
throughput of 760 MiB/s with 8 indexer threads, that increased to 9.7
GiB/s with 192 indexer threads. The indexing throughput of SCIPIS in-
creased from 1.3 GiB/s with 8 indexer threads to 16.6 GiB/s with 192
indexer threads, all the way to 17.9 GiB/s with 384 indexer threads.
SCIPIS outperforms SCANNS by exhibiting a performance increase of
84%, while building a persistent index and indexing approximately 24
times more data that SCANNS. When we say 24 times more data we
mean that since SCIPIS can store the index on disk and the disk is 24
times larger (including only for index size and not input data size) than
main memory, we were able to index more data.

4.4.3. Indexing throughput (various datasets)

SCIPIS is not impervious to performance variation when it comes to
indexing throughput, and the characteristics and structure of the in-
put data does influence the overall performance. Although indexing
throughput is influenced in part by the input data, what is important
is the scalability trend and how the system performs with increasing
computing resources. Figs. 11 and 12 show the results of the scalabil-
ity experiment that we ran over three kinds of datasets and on both
the 32cores-16disks machine and the 192cores-16disks machine, respec-
tively. For each dataset we manually tuned SCIPIS in order to yield the
best indexing throughput, accordingly to the specifications of the com-
puting systems but also to the properties of the datasets.

In Fig. 11 we can see the indexing performance with increasing num-
ber of indexer threads for all five datasets. Across the log datasets,
the windows dataset exhibits the best performance with an indexing
throughput of 7.2 GiB/s with 64 indexer threads, while the thunderbird
and hdfs datasets yield only 5.2 GiB/s and 4.6 GiB/s on the same config-
uration. This is explained by the properties of the three datasets, where
the windows dataset has more and smaller files than the other datasets,
that have a similar total size, which allows for a better utilization of the
index memory space and a reduced number of index flushes, especially
when also tuning the index depth parameter. When looking at the fs-
dumps dataset, SCIPIS yielded an indexing throughput of 4.2 GiB/s with
64 index threads. One would expect even better performance than the
windows dataset, because of how small the files are, but in this scenario,
the difference in performance stems from the diverse vocabulary that
the fsdumps dataset has in comparison to the windows dataset. The log
datasets have many terms that repeat many times, such as time stamps
and dates, but also repeating errors and error names and identifiers,
while the fsdumps dataset has a uniform distribution of term frequen-
cies. That means that the number of high frequency terms is similar to
the number of medium and low frequency terms, because of the hier-
archical nature of the file system metadata that is being indexed. And
right now SCIPIS does not know how to adapt to the term frequency
and uniqueness that characterizes a dataset. The thepile dataset is an

11

Journal of Parallel and Distributed Computing 189 (2024) 104878

I logs-windows
3 thepile
B fsdumps

20000 A
17500 -
15000 -
12500 -
10000 -

7500 A

throughput (MiB/s)

5000 -

2500 -

8 24 48 96 192

number of indexer threads

384

Fig. 12. SCIPIS indexing throughput the 192cores-16disks machine.

extreme case of where the number of unique terms is high and their fre-
quency low, when compared to the total number of terms. Also for this
dataset, we only selected half of the total number of files, that were the
largest files in the dataset. So the thepile dataset exhibits a decreased in-
dexing throughput of 3.2 GiB/s with 64 indexer threads both because
the data set has a high term variety but also because the files are large.

In the case of the 192cores-16disks, Fig. 12 contains the results of
the indexing throughput performance evaluation with increasing num-
ber of indexer threads. We did not consider the hdfs and thunderbird with
this machine, because the number of files in these two datasets is less
than 384 (the number of hardware threads), which would create load-
balancing issues and would result in incorrect performance numbers. It
can be seen that in the case of the windows dataset, it looks like the in-
dexing throughput of SCIPIS stagnates at 15.5 GiB/s when running with
96 indexer threads and drops to 13.4 GiB/s with 384 indexer threads.
This is caused by the fact that the files do not have a uniform size and
that they cannot be distributed across the indexer threads uniformly.
The thepile and the fsdumps datasets do show continuous increase in in-
dexing throughput with increasing number of indexer threads, reaching
19.1 GiB/s and 17.9 GiB/s, respectively. In this scenario, SCIPIS com-
puted the index over the entire thepile dataset and managed to achieve
comparable performance to the fsdumps dataset. This is because, the
second half of the thepile dataset contains many more small files and a
smaller vocabulary, when compared to the first half, allowing the pro-
posed framework to catch up in terms of performance with the fsdump
dataset.

4.4.4. TFIDF search latency

The SCIPIS framework supports TFIDF queries—that compute the
TFIDF scores for the returned documents given the query term, and
that sort and select only the most relevant documents. We conducted
experiments where we measured the performance of the query engine.
We compared the SCIPIS search results to the Apache Lucene search
results collected from the SCANNS work. For each experiment we se-
lected 1000 random terms from the respective dataset and performed
1000 individual queries 5 times.

Table 4 contains the average search latency measured in microsec-
onds. We can see that on both machines, SCIPIS performs relatively
similarly to Apache Lucene in processing TFIDF queries, albeit slower
over the hdfs and thunderbird datasets that have a small number of large
files, but slightly faster on the windows dataset that contains many small
files, especially with increasing number of indexer threads. We run the
search evaluation on datasets of similar size, because the persistent in-
dex size does influence the query processing latency of SCIPIS, and this
way there is a more comparable comparison to Apache Lucene. From
this evaluation it can be observed that while a greater number of in-
dexer threads yields a higher indexing throughput, it also contributes to

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

Table 4

Journal of Parallel and Distributed Computing 189 (2024) 104878

SCIPIS vs Apache Lucene TFIDF search latency (microseconds).

cores 32cores-16disks

192cores-16disks

hdfs-scipis ~ hdfs-lucene thunderbird-scipis

thuderbird-lucene ~ windows-scipis ~ windows-lucene

2 3958 1686 5823
4 3782 2261 6707
8 4138 1200 10719
16 6309 1744 10684
24 - - -

32 9168 1625 12526
48 - - -

64 18246 3159 17835
96 - - -

192 - - -

384 - - -

2465 - -
1903 - -
3783 2568 4279
2574 - -
- 3219 5756
7129 - -
7135 5268
3790 - -
- 8936 6069
- 8980 9485
- 14083 17934

a lower search latency. For example, for the hdfs dataset on the 32cores-
16disks machine, with 2 indexer threads, SCIPIS can run a query in
3.7 milliseconds, while with 64 indexer threads, the query latency in-
creases to approximately 18 milliseconds. For the windows dataset on
the 192cores-16disks, SCIPIS exhibits a query latency of 2.5 millisec-
onds with 2 indexer threads, that increases to a query latency of 14
milliseconds with 384 indexer threads.

5. Conclusion

In this work we proposed and presented SCIPIS, a single-node index-
ing and search framework that can efficiently build persistent indexes
that cannot fit into memory and efficiently search persistent indexes
on high-end computing systems characterized by many cores, multi-
ple NUMA nodes and multiple PCle NVMe devices. SCIPIS inherits the
properties and architecture of the SCANNS framework, that exposes
the inverted index pipeline interface, allowing easy modification and
tuning, enabling this framework to saturate modern storage, memory
and compute resources on a variety of hardware. SCIPIS extends the
SCANNS framework by adding support for writing partial indexes to
disk and redesigns the inverted index and the indexing pipeline, ob-
taining higher indexing throughput than SCANNS and lower TFIDF
search latency when compared to Apache Lucene. We evaluated SCIPIS
on three kinds of datasets, namely log files, scientific data and super-
computing file system metadata, and showed that SCIPIS scales well,
achieving 1.8x better indexing performance than SCANNS, 29x better
indexing performance than Apache Lucene and similar search perfor-
mance to Apache Lucene.

We showed that the indexing pipeline can be further improved by
delegating the process of serializing the partial index to the indexer
threads. By doing so, the indexer threads can change their processing
pattern from memory-intensive to CPU-intensive, allowing the frame-
work to safely over-provision the indexer threads and not exhibit per-
formance degradation. We also showed that the inverted index can be
further optimized by introducing the index depth parameter. The index
depth allows the user to adapt the inverted index to the properties of
the input dataset, which consequently enables the framework to more
efficiently use the index memory space but to also reduce the number
of index flushes to disk, and subsequently improves indexing perfor-
mance.

Some future work we plan on undertaking are to explore semi-
automatic hyper-parameter tuning as part of the SCIPIS framework to
allow easier selection of key parameters that govern the performance
on a particular hardware or for a particular dataset. We plan to ex-
plore distributed indexing and search to allow scalability to some of the
largest HPC storage systems available. Finally, we plan to integrate the
distributed SCIPIS system into parallel and distributed storage systems
to enable automatic metadata and data indexing and search.

12

CRediT authorship contribution statement

Alexandru Iulian Orhean: Conceptualization, Data curation, For-
mal analysis, Investigation, Methodology, Validation, Visualization,
Writing — original draft, Writing — review & editing. Anna Gian-
nakou: Investigation, Validation, Writing — original draft. Lavanya
Ramakrishnan: Investigation, Validation, Visualization, Writing — orig-
inal draft. Kyle Chard: Conceptualization, Data curation, Investigation,
Validation, Visualization, Writing — original draft. Boris Glavic: Con-
ceptualization, Data curation, Formal analysis, Investigation, Method-
ology, Supervision, Validation, Visualization, Writing — original draft,
Writing — review & editing. Ioan Raicu: Conceptualization, Data cura-
tion, Formal analysis, Funding acquisition, Investigation, Methodology,
Project administration, Resources, Supervision, Validation, Visualiza-
tion, Writing — original draft.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] R. Baeza-Yates, B. Ribeiro-Neto, et al., Modern Information Retrieval, vol. 463, ACM
Press, New York, 1999.

A. Biatecki, R. Muir, G. Ingersoll, L. Imagination, Apache lucene 4, in: SIGIR 2012
Workshop on Open Source Information Retrieval, 2012, p. 17.

D.J. Bonnie, Gufi overview, Tech. Rep., Los Alamos National Lab. (LANL), Los
Alamos, NM (United States), 2018.

Datanyze, Enterprise search software market share, https://www.datanyze.com/
market-share/enterprise-search--287, 2022.

L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A.
Thite, N. Nabeshima, et al., The pile: an 800gb dataset of diverse text for language
modeling, arXiv preprint arXiv:2101.00027, 2020.

C. Gormley, Z. Tong, Elasticsearch: the Definitive Guide: a Distributed Real-Time
Search and Analytics Engine, O’Reilly Media, Inc., 2015.

G.A. Grider, D.A. Manno, W.K. Poole, D.J. Bonnie, J.T. Inman, Grand unified file
indexing, Tech. Rep., Los Alamos National Lab. (LANL), Los Alamos, NM (United
States), 2021.

S. He, J. Zhu, P. He, M.R. Lyu, Loghub: a large collection of system log datasets
towards automated log analytics, arXiv preprint arXiv:2008.06448, 2020.

[2]

[3]

[4

[5]

(6]

[7]

[8]
[9] S. Jamil, A. Salam, A. Khan, B. Burgstaller, S.-S. Park, Y. Kim, Scalable numa-aware
persistent b+ -tree for non-volatile memory devices, Clust. Comput. (2022) 1-17.
[10] S. Khalsa, P. Cotroneo, M. Wu, A survey of current practices in data search services,
Research Data Alliance Data (RDA) Discovery Paradigms Interest Group, 2018.

A. Khan, H. Sim, S.S. Vazhkudai, J. Ma, M.-H. Oh, Y. Kim, Persistent memory object
storage and indexing for scientific computing, in: 2020 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC), IEEE, 2020, pp. 1-9.

A. Khan, H. Sim, S.S. Vazhkudai, Y. Kim, Mosigs: persistent memory object storage
with metadata indexing and querying for scientific computing, IEEE Access 9 (2021)
85217-85231.

[11]

[12]

http://refhub.elsevier.com/S0743-7315(24)00042-X/bibE8EF0108690A517DFCF24117ABE4A84Cs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibE8EF0108690A517DFCF24117ABE4A84Cs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib9354E851E47160ADA69A40F74749EEF3s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib9354E851E47160ADA69A40F74749EEF3s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib8F529885296BFC2CE42524B0AA62505Cs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib8F529885296BFC2CE42524B0AA62505Cs1
https://www.datanyze.com/market-share/enterprise-search--287
https://www.datanyze.com/market-share/enterprise-search--287
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib6F08FF2BB3CEF9C1CDA585D99FBDFEF9s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib6F08FF2BB3CEF9C1CDA585D99FBDFEF9s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib6F08FF2BB3CEF9C1CDA585D99FBDFEF9s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib2624971EF49D54AD2DEE2449FE5E9529s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib2624971EF49D54AD2DEE2449FE5E9529s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibC026D7399D667AE65DF135371E5B0C0Ds1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibC026D7399D667AE65DF135371E5B0C0Ds1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibC026D7399D667AE65DF135371E5B0C0Ds1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib404790B57FCBB8EF14DF5BACC62C96F7s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib404790B57FCBB8EF14DF5BACC62C96F7s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib2CDD82B3D8F5E2535AD242065D2E550Ds1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib2CDD82B3D8F5E2535AD242065D2E550Ds1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib54E54E72B84A616BE55B9530216502CCs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib54E54E72B84A616BE55B9530216502CCs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib54330A7A895F4EFB88401481E8A944B1s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib54330A7A895F4EFB88401481E8A944B1s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib54330A7A895F4EFB88401481E8A944B1s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibEFAB1DE0AB2EC3AFBB16CA5727E93007s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibEFAB1DE0AB2EC3AFBB16CA5727E93007s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibEFAB1DE0AB2EC3AFBB16CA5727E93007s1

A.L Orhean, A. Giannakou, L. Ramakrishnan et al.

[13] D. Manno, J. Lee, P. Challa, Q. Zheng, D. Bonnie, G. Grider, B. Settlemyer, Gufi:
fast, secure file system metadata search for both privileged and unprivileged users,
in: SC22: International Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE, 2022, pp. 1-14.

A.L Orhean, I. Ijagbone, I. Raicu, K. Chard, D. Zhao, Toward scalable indexing and
search on distributed and unstructured data, in: 2017 IEEE International Congress
on Big Data (BigData Congress), IEEE, 2017, pp. 31-38.

A.L Orhean, A. Giannakou, L. Ramakrishnan, K. Chard, I. Raicu Scanns, Towards
scalable and concurrent data indexing and searching in high-end computing sys-
tem, in: 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), IEEE, 2022, pp. 51-60.

AL Orhean, K. Chard, I. Raicu, Scalable indexing and search in high-end comput-
ing systems, Ph.D. thesis, Illinois Institute of Technology, Department of Computer
Science, 2023.

T.C. Pan, S. Misra, S. Aluru, Optimizing high performance distributed memory
parallel hash tables for dna k-mer counting, in: SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis, IEEE, 2018,
pp. 135-147.

AK. Paul, B. Wang, N. Rutman, C. Spitz, A.R. Butt, Efficient metadata indexing for
hpc storage systems, in: 2020 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGRID), IEEE, 2020, pp. 162-171.

K. Ren, Q. Zheng, S. Patil, G. Gibson, Indexfs: scaling file system metadata per-
formance with stateless caching and bulk insertion, in: SC’'14: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2014, pp. 237-248.

G.P. Rodrigo, M. Henderson, G.H. Weber, C. Ophus, K. Antypas, L. Ramakrish-
nan, Sciencesearch: enabling search through automatic metadata generation, in:
2018 IEEE 14th International Conference on e-Science (e-Science), IEEE, 2018,
pp. 93-104.

D. Shahi, Apache solr: an introduction, in: Apache Solr, Springer, 2015, pp. 1-9.

K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file system,
in: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST),
Ieee, 2010, pp. 1-10.

H. Sim, Y. Kim, S.S. Vazhkudai, G.R. Vallée, S.-H. Lim, A.R. Butt, Tagit: an integrated
indexing and search service for file systems, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
2017, pp. 1-12.

H. Sim, A. Khan, S.S. Vazhkudai, S.-H. Lim, A.R. Butt, Y. Kim, An integrated indexing
and search service for distributed file systems, IEEE Trans. Parallel Distrib. Syst.
31 (10) (2020) 2375-2391.

H. Tang, S. Byna, B. Dong, J. Liu, Q. Koziol, Someta: scalable object-centric metadata
management for high performance computing, in: 2017 IEEE International Confer-
ence on Cluster Computing (CLUSTER), IEEE, 2017, pp. 359-369.

K. Wang, J. Liu, F. Chen, Put an elephant into a fridge: optimizing cache efficiency
for in-memory key-value stores, Proc. VLDB Endow. 13 (9) (2020).

W. Zhang, S. Byna, H. Tang, B. Williams, Y. Chen, Migs: metadata indexing and
querying service for self-describing file formats, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
2019, pp. 1-24.

D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R. Ross, I. Raicu,
Fusionfs: toward supporting data-intensive scientific applications on extreme-scale
high-performance computing systems, in: 2014 IEEE International Conference on
Big Data (Big Data), IEEE, 2014, pp. 61-70.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

Alexandru Iulian Orhean is an Assistant Professor in Com-
puter Science in the School of Computing at the Jarvis College
of Computing and Digital Media at DePaul University. He re-
ceived his PhD in Computer Science in 2023 from Illinois In-
stitute of Technology under Professor Ioan Raicu. He received
his BS in Computer Science in 2016 from University Politehnica
of Bucharest. His research expertise resides at the intersection
of Parallel/Distributed Systems and Information Retrieval, cur-
rently working on the problem of efficient and effective indexing
and search in large-scale scientific storage systems, and on the
problem of efficient data organization, visualization and search in data science and ma-
chine learning. His broad research interests revolve around the areas of data organization,
storage and exploration, information discovery, retrieval and search, distributed index-
ing and search engine design, high-performance computing systems, cloud systems and
databases.

13

Journal of Parallel and Distributed Computing 189 (2024) 104878

Dr. Anna Giannakou is a research scientist at Lawrence
Berkeley National Lab. Her research interests include machine
learning for intelligent network management and end-to-end in-
frastructure adaptation. She is currently working on methods
and tools to verify Al-supported system adaptation decisions.
Anna has served as a program committee member for various
conferences. Anna Giannakou received her Ph.D. from Institut
National des Sciences Appliquées at Inria Rennes under the su-
pervision of Dr. Christine Morin and Prof. Jean-Louis Pazat. In
Dr. Christine Morin’s research group, Anna’s research focused on
self-adaptable security monitoring for cloud environments. Anna holds a master’s in Infor-
mation Security from the University of Luxembourg and a Bachelor’s in Computer Science
from the University of Athens.

Boris Glavic is an Associate Professor of Computer Science
at University of Illinois at Chicago. He received his PhD in Com-
puter Science from the University of Zurich in Switzerland being
advised by Gustavo Alonso and Michael Bohlen. Afterwards, he
did spend two years as a PostDoc in the Department of Com-
puter Science at the University of Toronto working with Renée J.
Miller. His research spans several areas of database systems and
data science including data provenance and explanations, data
integration, query execution and optimization, uncertain data,
and data curation. Boris strives to build systems that are based
on solid theoretical foundations.

Ioan Raicu is an associate professor in Computer Science
at Illinois Institute of Technology, as well as a guest research
faculty in the Math and Computer Science Division at Argonne
National Laboratory. His research work and interests are in the
general area of distributed systems. He obtained his MS and PhD
degree in Computer Science from University of Chicago under
Prof. Ian Foster in 2005 and 2009 respectively. He obtained his
BS and MS in Computer Science from Wayne State University in
2000 and 2002 respectively. His research work has focused on
resource management in large scale distributed systems with a
focus on many-task computing, data intensive computing, cloud computing, grid comput-
ing, and many-core computing. Over the past decade, he has co-authored over 140 peer
reviewed articles, which received over 12K citations, with a H-index of 46. He has been
a TED speaker advocating for a renewed interest in computer science and has been a
strong supporter of engaging students early in their educational careers (high school and
undergraduate students) to prepare them for graduate school and careers in research.

Kyle Chard is a Research Associate Professor in the Depart-
ment of Computer Science at the University of Chicago. He also
holds a joint appointment at Argonne National Laboratory. He
received his Ph.D. in Computer Science from Victoria Univer-
sity of Wellington, New Zealand in 2011. He is a member of
the ACM and IEEE, received the IEEE TCHPC Award for Excel-
lence for Early Career Researchers in HPC, was part of the Globus
team that won an R&D100 award, and received the New Zealand
Top Achiever Doctoral Scholarship. He co-leads the Globus Labs
research group, which focuses on a broad range of research prob-
lems in data-intensive computing and research data management.

Dr. Lavanya Ramakrishnan is Senior Scientist and Division
Deputy in the Scientific Data Division at Lawrence Berkeley Na-
tional Lab and Deputy Project Director for the High Performance
Data Facility (HPDF). Her research interests are in building soft-
ware tools for computational and data-intensive science with a
focus on workflow, resource, and data management. More re-
cently, her work explores the methods and infrastructure needed
to support automation and self-driving labs. In addition, Ramakr-
ishnan established and leads a scientific user research program
focusing on studying and enumerating the way that scientists and
communities use data and workflows to build usable tools for science. She currently leads
several project teams that consist of a mix of social scientists, software engineers, and
computer scientists.

Ramakrishnan serves on the High Performance Distributed Computing Steering Com-
mittee, iHARP NSF HDR InstituterQOs Advisory board and has previously served as the
Associate Editor for Journal of Parallel and Distributed Computing and as program com-
mittee chair for various conferences. She has masters and doctoral degrees in computer
science from Indiana University and a bachelor degree in computer engineering from
VJTI, University of Mumbai. She joined Berkeley Lab as an Alvarez Fellow. Previously
she has worked as a research software engineer at Renaissance Computing Institute and
MCNC in North Carolina

http://refhub.elsevier.com/S0743-7315(24)00042-X/bibB33601D2A881CED60D0272DA86D32E4As1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibB33601D2A881CED60D0272DA86D32E4As1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibB33601D2A881CED60D0272DA86D32E4As1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibB33601D2A881CED60D0272DA86D32E4As1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib6D52F9EA70436944A2BFD603098376A9s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib6D52F9EA70436944A2BFD603098376A9s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib6D52F9EA70436944A2BFD603098376A9s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib4486DBD719D4F0E54AA8D5415A9F3503s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib4486DBD719D4F0E54AA8D5415A9F3503s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib4486DBD719D4F0E54AA8D5415A9F3503s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib4486DBD719D4F0E54AA8D5415A9F3503s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibE62D6BAA650F3231A0BE96BCB499A661s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibE62D6BAA650F3231A0BE96BCB499A661s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibE62D6BAA650F3231A0BE96BCB499A661s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib04654AF7D095ACCE787CC3E00DE6A389s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib04654AF7D095ACCE787CC3E00DE6A389s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib04654AF7D095ACCE787CC3E00DE6A389s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib04654AF7D095ACCE787CC3E00DE6A389s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib39496651B360415B87711DF4567EFABFs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib39496651B360415B87711DF4567EFABFs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib39496651B360415B87711DF4567EFABFs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib54EDEDF1148F635F86F466B616BB67DAs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib54EDEDF1148F635F86F466B616BB67DAs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib54EDEDF1148F635F86F466B616BB67DAs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib54EDEDF1148F635F86F466B616BB67DAs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib2DEF94D8DB244201A043C910B86CEC6Cs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib2DEF94D8DB244201A043C910B86CEC6Cs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib2DEF94D8DB244201A043C910B86CEC6Cs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib2DEF94D8DB244201A043C910B86CEC6Cs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib65E7019BADDEA51BE107ED6473E30EECs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib320BE118C47E0072D979337E5E9F0D3Cs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib320BE118C47E0072D979337E5E9F0D3Cs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib320BE118C47E0072D979337E5E9F0D3Cs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibC680A2E8794B726C239CA32B8B2540D4s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibC680A2E8794B726C239CA32B8B2540D4s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibC680A2E8794B726C239CA32B8B2540D4s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibC680A2E8794B726C239CA32B8B2540D4s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib05B21EF7388388F03548C55B258CBA4Bs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib05B21EF7388388F03548C55B258CBA4Bs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib05B21EF7388388F03548C55B258CBA4Bs1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib5E9B3EF657E513FDEF08A44BB90D8062s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib5E9B3EF657E513FDEF08A44BB90D8062s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib5E9B3EF657E513FDEF08A44BB90D8062s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib234C53716542FFE1B30BBE96B3E23825s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib234C53716542FFE1B30BBE96B3E23825s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibFAB72B2B44777B580E0E6F284837AF40s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibFAB72B2B44777B580E0E6F284837AF40s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibFAB72B2B44777B580E0E6F284837AF40s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bibFAB72B2B44777B580E0E6F284837AF40s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib3693B55440AA53A9D7D55E79FF2A7DA6s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib3693B55440AA53A9D7D55E79FF2A7DA6s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib3693B55440AA53A9D7D55E79FF2A7DA6s1
http://refhub.elsevier.com/S0743-7315(24)00042-X/bib3693B55440AA53A9D7D55E79FF2A7DA6s1

	SCIPIS: Scalable and concurrent persistent indexing and search in high-end computing systems
	1 Introduction
	2 Related work
	3 Framework architecture and design
	3.1 Search engine background
	3.2 SCANNS framework overview
	3.2.1 SCANNS components
	3.2.2 SCANNS optimizations

	3.3 SCIPIS framework architecture
	3.3.1 Indexing engine execution
	3.3.2 Inverted index design
	3.3.3 Persistent index structure

	4 Performance evaluation
	4.1 Experimental setup
	4.2 Evaluation datasets
	4.3 SCANNS performance evaluation
	4.3.1 SCANNS end-to-end TFIDF indexing and search

	4.4 SCIPIS performance evaluation
	4.4.1 SCIPIS index depth tuning
	4.4.2 Indexing throughput (SCIPIS vs SCANNS)
	4.4.3 Indexing throughput (various datasets)
	4.4.4 TFIDF search latency

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

