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Abstract—Many real world problems require the result of
a query to fulfill domain specific constraints, e.g., at least a
certain fraction of applicants selected for an interview based
on their qualifications should be female. In this work, we
envision a framework that allows such requirements to be
expressed as constraints on the result of a query that combine
aggregation results through arithmetic expressions. When a
user’s query violates a constraint, then our framework re-
pairs the query to satisfy the constraint. While our approach
is related to prior work on query-based explanations for
missing answers and enforcement of fairness constraints for
query results, it supports more expressive constraints and
is applicable to use cases other than fairness. We demon-
strate the infeasibility of a brute force solution and discuss
directions for future work to improve the performance of
generating query repairs.

Index Terms—query-based explanation for missing answers,
query repair, query refinement

1. Introduction

Large volumes of data are frequently examined to
obtain information that is needed to make important deci-
sions, such as examining genomic data for cancer predic-
tion or examining customer data to detect trends in con-
sumer behaviour. When data is retrieved from a database
for analysis, it is essential to guarantee that query results
adhere to legal and ethical regulations, such as fairness,
and/or fulfill other constraints. Typically, it will be quite
challenging to express such constraints as the conditions
of a query. In this work, we model such constraints on
query results as arithmetic expressions involving aggregate
queries evaluated over the output of a user query. When
the result of a query fails to adhere to such an aggregate
constraint, we would like the system to fix the constraint
violation by repairing the query, similar to [1], [2].

The problem we investigate is related to query-based
explanations [3], [4] and repairs [5] for missing answers,
why-not [4], [6] as well as query refinement / relaxation
approaches [2], [7], [8]. We will use the term “query
repair” to mean changes to query predicates through a
combination of relaxation (weakening a predicate) and re-
finement (strengthening a predicate) and use the more spe-
cific terms “query refinement / relaxation” for approaches
that do not allow the combination of both types of repairs.
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We allow for constraints that involve non-monotone arith-
metic expressions over aggregation results. Li et al. [8]
consider the problem of ensuring fairness for query re-
sults. In this work, fairness requirements are expressed
as constraints on the cardinality of query results from
a specified group. [8] introduces optimizations for such
monotone conditions. However, many common fairness
metrics (e.g., statistical parity [10]) are non-monotone
in nature and cannot be expressed as a conjunction of
cardinality constraints. Thus, the optimizations proposed
in [8] and other existing work on query relaxation and
refinement are not applicable to our problem. The main
contributions of this work are:

« Identification of real-world problems that require query
results to adhere to aggregate constraints in Section 2.

o Formulation of aggregation constraints and the corre-
sponding query repair problem in Section 4.

« Identifying under which conditions an aggregate con-
straint is non-monotone and discussing the challenges
arising from non-monotone constraints (Section 4.1)

« Implementation of a brute force algorithm for the query
repair which is applied to both real-world and standard
benchmark datasets in Section 5.

o We sketch potential solutions for an efficient query
repair algorithm in Section 6.

2. Use Cases

We describe two example use cases to highlight the
need for repairing user queries to fulfill aggregate con-
straints on the query’s result.

2.1. Fairness Constraint

Consider a job applicant dataset D for a tech-company
that contains six attributes: ID, Gender, Field,
GPA, TestScore, and OfferInterview. The at-
tribute Of ferInterview was generated by an external
Al model suggesting which candidates should receive an
interview. The employer uses the query shown below to
prescreen candidates: every candidate should be a CS
graduate and should have a high GPA and test score.

Ql: SELECT x FROM D
WHERE Major = ’'CS’
AND TestScore > 30 AND GPA > 3.80



The Aggregate Constraint. The employer would like
to ensure that their decision to interview a candidate is
not biased against a specific gender. One way to measure
such a bias is to measure the statistical parity difference
(SPD) [10], [11] between demographic groups. Given
a set of data points that belong to one of two groups
(e.g., male and female) and a binary outcome attribute
Y where Y = 1 is assumed to be a positive outcome
(OfferInterview=l in our case), the SPD is the dif-
ference between the probability for individuals from the
two groups to receive a positive outcome. For instance,
SPD is zero if the outcome is perfectly fair, i.e., the group
membership of an individual does not affect the probabil-
ity of a positive outcome. Such probabilities are typically
computed using empirical data, e.g., in our example, the
statistical parity difference can be computed as shown
below (G is Gender and Y is OfferInterview).

cnt(G=MAY =1) cnt(G=FAY =1)

cnt(G = M) cnt(G = F)

The employer would like to ensure that the SPD is
below 0.2. The model generating the Of ferInterview
attribute is trusted by the company, but is provided by an
external service and, thus, cannot be fine-tuned to improve
fairness. However, the employer is willing to change their
prescreening criteria. Using our framework, the employer
can express their fairness requirement as an aggregate con-
straint SPD > 0.2. Our framework will change the condi-
tions of the prescreening query to ensure a fair outcome.
Prior work on ensuring fairness by repairing queries [8]
only consider cardinality constraints for a single group in
the query result which cannot express statistical parity.
In general, fulfilling such aggregate constraints requires
changing multiple predicates in the query. The reader may
expect that fairness can be ensured by using different
conditions for each demographic group. However, this
introduces a different type of bias as now individuals with
the same credentials are treated differently.

SPD =

2.2. Company Product Management

Consider a supply and demand scenario over the TPC-
H Benchmark schema [12]. A company would like to
have a list of the suppliers in Europe for the parts of
type “Large Brushed” whose size is greater than 10.

Q2: SELECT »*
FROM part, supplier, partsupp,
nation, region

WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND p_size >= 10
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND p_type = ’LARGE_BRUSHED’
AND r_name = ’'EUROPE’

The Company is concerned about cash flow problems
and wants the average price of parts not to exceed the aver-
age amount owed to the selected suppliers (s_acctbal):

avg(p_retailprice) —avg(s_acctbal) > 2.0

Prior work on query repair for average [13] only
supports constraints on a single aggregation result while
the constraint shown above is an arithmetic combination
of aggregation results as supported in our framework.

3. Related Work

Li et al. [8] determine all minimal refinements of
a conjunctive query by changing constants in selection
conditions such that the refined query fulfills a conjunction
of cardinality constraints, e.g., the query should return at
least 5 answers where gender = female. A refinement
is minimal if it fulfills the constraints and there does not
exist any refinement that is closer to the original query in
terms of similarity of constants used in predicates. The
cardinality constraints considered in that work involve
filter-aggregation queries that we also consider in our
work, but do not allow for arithmetic combinations of
the results of such queries, e.g., as required by stan-
dard fairness conditions. Both our work and [8] face the
challenge of an exponential search space (all possible
combinations of changes to individual predicates in a
query). For monotone constraints (either only relaxation of
predicates or restriction of predicates is required to fix the
query), the problem can be solved in PTIME by exploiting
the ordering induced by monotonicity. We will discuss this
in more detail in Section 4.

Query refinement. Another line of work related to our
approach is query refinement [2], [3], [14]. Mishra et al.
[2] refine a query to return a given number k of results.
Koudas et al. [14] refine a query that returns an empty
result to produce at least one answer. Another line of
work uses refinement to repair a query to return missing
results of interest provided by the user [3], [5]. For a query
with n predicates, the number of possible refinements is
exponential in n: for each predicate one can choose a
constant from the domain of the attribute restricted by the
predicate. Most work on query refinement has limited the
scope to constraints that are monotone in the size of the
query answer. Monotonicity is then exploited to prune the
search space [2], [15]-[18]. However, real-world use cases
are often inherently non-monotone.

How-to queries. Like our work and [8], the purpose of
how-to queries [19] is to achieve a desired change to
the result of a query. However, in how-to queries this
is achieved by changing the input database rather than
changing the query. Wang et al. [20] study the problem
of deleting operations from an update history to fulfill
a constraint over the current database expressed as tuple
substitutions (replace ¢; in the result with ¢;). However,
this approach does not consider query repair (changing
predicates) nor aggregate constraints.

Explanations for Missing Answers. Query-based expla-
nations for missing answers [4], [9], [21] are operators or
sets of operators that are responsible for the failure of a
query to return a result of interest. However, this line of
work does not generate query repairs.

4. Problem Definition

Consider a database D = {R;,---,R,} with one
or more relations R;. Let us assume for convenience
that attribute names are unique within D. We use A =
{a1,...,an} to denote the set of all attributes in D.
User Query. A user query () is an SPJ (Select-Project-
Join) query. Such queries can be expressed as relational
algebra expressions of the form w4 (og(Ry ... Ry,)).



We consider selection predicates # that are comparisons
of the form a;opc; where op € {<,>,<,>} for the
numerical attributes a; and constants ¢; and op € {=,#}
for the categorical attributes a; and constants c;. We use
Q(D) to denote the result of Q over D.

Aggregate Constraints. The user specifies the desired
requirements for a query result as aggregate con-
straints. That is, thresholds on the result of an arith-
metic expression over the result of filter-aggregation
queries. Such queries are of the form 7y, (09(Q(D))
where f is an aggregation function — one of
count, sum, min, max,avg — and 6 is a selection
condition. We use @, to denote such a filter-aggregation
query. These queries are evaluated over the user query’s
result Q(D). An aggregate constraint « is of the form:

a:=7opP(Qa,--sQu,)-

Here, ® is an arithmetic expression using operators
(4, —,*,/) over {Qa,}, op is a comparison operator, and
7 is a threshold.

The Query Repair Problem. Given a user query @),
database D, and aggregate constraint « that is violated
on Q(D), we want to generate a repaired version Q i,
of @ such that Q,(D) fulfills . In this work, we
restrict repairs to changes of the selection condition 6 of )
(recall that @) is an SPJ query with a conjunctive selection
condition). That is, the user query condition is of the form:
0 = 01 /1...N0,, where each 6; is a comparison of the form
a;opc;. A repair candidate is a query Q) ¢;, that differs
from @ only in the constants used in selection conditions,
ie., Qi uses a COIldlthIl 0 =6, AN...N0, where
6;' is a condition a; op ¢;’. A repair candldate is called a
repair if Qi (D) = a.

Ideally, we would want to achieve a repair that mini-
mizes the changes to the user’s query. Additionally, we
may be interested in minimizing changes to the result
returned by the user’s query. In fact, many different opti-
mization criteria are reasonable and which criteria is most
important will depend on the application. In this paper,
we focus on minimizing changes to the user’s query. For
that, we define a distance metric between repair candidates
based on their selection conditions. Consider the user
query  with selection condition 61 A ... A 6,, and repair
Q fi with selection condition 6:" A...N6,. Then the
distance d(Q, Qi) is defined as:

Q Qfm Zd 9“0

where the distance between two predicates 6; = a; op ¢;
and 6, = a; op ¢;/ on a numeric attribute a; is:
/
lei’ — cil
|

For categorical attributes, the distance is 1 if ¢; # ¢;/ and
0 otherwise.

Example 1. For use case 2.1, the repair candidate Ma jor
= ’EE’, Testscore > 33, and GPA > 3.9 is more
similar to the user query than the candidate Major =
"EE’, Testscore > 37, and GPA > 3.85 based on our
distance metric. For the first candidate, the distance is
1422222 33 30 4 3.9-3.8 9 3 8 — 1.13 while for the second candidate
it is 1 24

We are now ready to formulate the problem studied in
this work:

o Input: user query (), database D, and aggregate con-
straint o
b Olltpllt: argmianiw is a repair d(Qa szx)

We will focus here on non-monotone constraints as
they are more challenging. In a practical solution we
may detect if a constraint is monotone and apply existing
optimizations for repairs of monotone queries.

4.1. Non-monotonicity of Aggregate Constraints

An aggregation function f is monotonically increasing
(decreasing), if f(S1) < f(S2) when S; C Sy (S1 2 S)
for any two bags of values S; and S2. As mentioned
in Section 3, query refinement and relaxation techniques
exploit the monotonicity of aggregation functions to op-
timize search as relaxing (refining) a query )’s selection
conditions is bound to increase (decrease) f(Q(D)) if f
is monotonically increasing, e.g., by pruning unpromising
candidates to find the refined query faster without probing
all candidates in the search space [8], [15], [18].

The aggregate constraints we use in this work are not
monotone in general. However, under certain restrictions
such constraints are monotone and the some of the opti-
mization proposed in past work are applicable. Consider a
constraint o := 7o ®. The arithmetic expression & may be
non-monotone if one of the following conditions holds:

1) Using a non-monotone arithmetic operator like divi-
sion or subtraction.

2) Using a non-monotone aggregation function (sum
over the integers 7).

3) At least one monotonically increasing and one mono-
tonically decreasing aggregation function is used
(e.g., min 4 count or max + min)

5. Naive Algorithm and Preliminary Results

To gain a better understanding of the computational
challenges of finding a repair, we evaluate a brute force al-
gorithm that enumerates and tests all possible refinements.
We measure runtime using multiple queries and datasets
that yield various number of possible refinements. The
algorithm was implemented in Python and the experiment
was performed on a macOS Sonoma 14.2.1 machine with
a 2.3 GHz Quad-Core Intel i7 and 32 GB memory.

Datasets. We have chosen two datasets, Adult Census
Income (Adult-CSI) [22] and Healthcare [23], to eval-
uate the fairness use case. Adult-CSI has 1M rows and
14 attributes while for Healthcare we varied the dataset
size between 100 and ~800 rows (subsets of the original
dataset). We utilize TPC-H [12] as a common benchmark
which contains 61 attributes in total. We varied dataset
size from a scale factor of 0.001 to 1 (roughly 1GB).

Queries. For Adult-CSI and Healthcare, we use queries
from [8]: Q7 to Q10 (Adult-CSI) and Q3 to Q6 (Health-
care). These queries have between 3 and 4 selection
predicates. For TPC-H, we generated two SPJ queries Q1
and Q2 with 3 predicates inspired by TPC-H’s Q2.

Number of Possible Refinement Candidates. The num-
ber of possible refinements is calculated as the product of
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Figure 1: Comparison of runtime varying dataset, dataset size and query.
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Figure 2: Comparison of number of possible refinements varying dataset, dataset size and query.

all predicates’ possible values. For Adult-CSI, the number
varies between ~19K to ~293M while, for Healthcare, it
is between ~2K and ~105K. For the TPCH queries, we
have up to ~37K possible refinement candidates.

Aggregate Constraints. For Adult-CSI and Healthcare,
we enforce that the statistical parity difference (SPD)
between two demographic groups is within a certain range.
For Adult-CSI, we determine groups based on gender and
require that the SPD is within [-0.1,0.1]. For Healthcare,
we determine demographic groups based on race and
requiring a SPD in the range [-0.3,0.2]. For TPC-H, we
use the aggregate constraint from Section 2.2 which is a
difference between two aggregation functions.

Results. Figure 1 shows the runtime varying datasets,
dataset sizes, and queries. Q8 to Q10 over Adult-CSI did
not finish within the allocated time as the search space is
too large. Q7 over the same size of the dataset completed
due to having the smallest number of possible refinements
(shown in Figure 2) among all considered queries for this
dataset. As expected, larger datasets in general have longer
runtime. Although Q8 to Q10 use a smaller dataset than
QI and Q2, these queries did not finish due to a large
number of possible refinements as shown in Figure 2. As
expected, this confirms that the number of possible re-
finements significantly impacts runtime, supporting further
investigation into query repair for aggregate constraints.

6. Challenges and Open Problems

The use of the arithmetic expression in this work
invalidates past solutions that rely upon the monotonicity
property for query refinement. We propose three possible
optimizations that we believe to have potential for improv-
ing performance.

Calculating bounds. In order to improve the performance
of evaluating refinement candidates, we propose to cal-

culate lower and upper bounds on aggregation function
results for subsets of the data and propagate these bounds
to calculate bounds on the result of arithmetic expressions
used in an aggregate constraints. The rationale for this
approach is that it is sometimes possible to combine
bounds for aggregation function results (or their arithmetic
combination) over different subgroups without reevaluat-
ing the aggregation over the base tables. Such bounds
can then be used to prune candidates. For example, for
a constraint %&2) < 10, if a repair candidate has a
bound [0, 4], then we know it is a repair as it is bound to
fulfill the aggregate constraint. As another example, if a
candidate has bounds [15,20], then we can prune it as it
cannot possibly fulfill the aggregate constraint.
Estimating bounds. If we are ok with excepting approxi-
mate results, then we could utilize approximate query pro-
cessing (AQP) techniques to estimate bounds over samples
or use statistics [24]. If we approach the problem using
AQP, then we have to investigate how errors propagate for
our setting.

Incremental aggregation. Note that evaluating the aggre-
gations used in aggregate constraints for different candi-
date repairs is essentially evaluation of an aggregate query
over different subsets of the data determined based on
the selection conditions of the candidate query. Similar
to techniques for the cube operator and other types of
aggregation with multi-dimensional grouping criteria [25],
[26], we may be able to reuse intermediate results and
benefit from incrementally maintaining aggregation results
when computing results for an aggregation over related
subgroups. As a trivial example, consider computing the
result of sum(a) for all settings of a single predicate
b < c. Similar to aggregation by sorting, we can sort the
data on b and then incrementally compute sum(a) and
output the current result for each distinct value ¢’ of b
(corresponding to the refinement b < ¢’ of the predicate).
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