2024 IEEE 35th International Conference on Application-specific Systems, Architectures and Processors (ASAP) | 979-8-3503-4963-4/24/$31.00 ©2024 IEEE | DOI: 10.1109/ASAP61560.2024.00023

2024 1IEEE 35th International Conference on Application-specific Systems, Architectures and Processors (ASAP)

A Framework for Generating Accelerators for
Homomorphic Encryption Operations on FPGAs

Yang Yang!, Rajgopal Kannan? and Viktor K. Prasanna

1

!Department of Electrical and Computer Engineering, University of Southern California
2DEVCOM Army Research Office
Email: {yyang172, prasanna}@usc.edu, rajgopal.kannan.civ@army.mil

Abstract—Homomorphic Encryption (HE) is a promising tech-
nique for preserving user data privacy in cloud computing.
Nevertheless, HE operations are magnitudes slower than un-
encrypted computations due to their high computational com-
plexity. FPGAs are attractive platforms for designing domain-
specific accelerators. However, manually programming FPGAs
for HE applications is non-trivial because of the vastly different
parameter settings and latency requirements. To close the gap, we
propose a framework to generate low latency FPGA accelerators
for all the operations supported by HE, enabling users to utilize
FPGA-accelerated HE processing without requiring knowledge
of FPGA implementation details. The framework takes HE
parameters and hardware resource constraints as input, uses
design space exploration to automatically determine the design
parameters that minimize HE computation latency, and produce
synthesizable Verilog code. We propose a layered approach that
decomposes HE operations into basic HE primitives, coupled
with a parameterized HE domain-specific architecture that can
efficiently execute the HE primitives. This approach avoids allo-
cating dedicated FPGA resources to different subroutines within
HE operations and improves compute utilization. Our evaluation
shows that the generated accelerators significantly reduce latency
in various HE operations, achieving up to 215x improvement
over state-of-the-art CPU implementations. We demonstrate our
framework’s capability to compose end-to-end HE applications
using HE CNN inference. Our designs outperform state-of-the-
art CPU designs in latency by up to 60x.

Index Terms—homomorphic encryption, FPGA acceleration
framework, design space exploration

I. INTRODUCTION

Utilizing Homomorphic Encryption (HE) to perform com-
putations directly on encrypted data has gained significant
attention in recent years [1], [2], [3], [4], [5]. However,
computation using HE is orders of magnitude slower than
computation on unencrypted data. All HE computations take
place within a polynomial ring with a large modulus, typically
reaching thousands of bits [6]. Consequently, HE computations
have high computational complexity and require extensive
memory usage [7]. These challenges necessitate the need for
domain-specific accelerators tailored for HE computations [8].

Field Programmable Gate Arrays (FPGAs) [9], [10] are
being adopted rapidly in public clouds to improve performance
and reduce application deployment cost [11], [12]. With the
fine grained programmable architecture of FPGAs, they are
well suited for developing accelerators tailored for dedicated
applications. Data intensive applications such as HE require
high memory bandwidth to supply data to the processing

elements. High-Bandwidth Memory (HBM) has been deployed
by FPGA vendors to address the need for faster data move-
ment [9], [10]. The latest HBM-enabled FPGAs can provide
up to 460 GB/s bandwidth and 16 GB capacity.

However, it is non-trivial to efficiently utilize the resources
offered by state-of-the-art FPGAs. Firstly, the design space for
HE hardware acceleration is large [13]. HE applications [1],
[3], [4] use a wide range of HE parameters (Section II).
It requires significant development effort to comprehensively
support a diverse set of HE parameters under varying FPGA
resource constraints. Secondly, effectively mapping HE oper-
ations onto FPGAs to maximize compute utilization is not an
easy task. Previous FPGA designs and frameworks for HE
allocate dedicated computation resources for different subrou-
tines within an HE operation [14], [15]. Their approaches lead
to underutilized resources and increased latency, as resources
allocated to one subroutine cannot be utilized for others and
remain idle when not in use.

Motivated by the challenges, we propose a framework to
automatically generate FPGA accelerators for low latency
execution of HE operations. The framework takes HE pa-
rameters and resource constraints as input. It performs design
space exploration to identify design options that minimize HE
computation latency and generates Verilog code as the output.
Our framework utilizes a layered approach combined with
a parameterized HE domain-specific architecture to construct
FPGA implementations, enabling effective reuse of compute
datapaths. The framework decomposes HE operations into
HE subroutines, which are composable components in our
framework and determine the processing dataflow. The HE
subroutines are divided into HE primitives, including modular
arithmetic logic and permutation units, which form the basic
building blocks for HE computation. The contributions of this
paper are:

o We present a framework for FPGA acceleration of HE op-
erations. Our framework significantly boosts productivity
by automatically generating FPGA designs for various
HE parameters and resource constraints.

o The framework utilizes a layered approach to improve
compute utilization during the execution of HE opera-
tions. We implement dataflow specifically optimized for
various HE subroutines. We further minimize memory
data transfers by fusing the processing of HE subroutines.

« We develop a design space exploration (DSE) tool for

2160-052X/24/$31.00 ©2024 IEEE 61
DOI 10.1109/ASAP61560.2024.00023
Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

effective FPGA resource allocation and latency estima-
tion. The DSE is used to identify the design parameters
without the need to run through the time-consuming
FPGA implementation flow.

o Our framework generates FPGA accelerators for various
HE operations, achieving up to 215X latency reduction
compared to State-Of-The-Art (SOTA) CPU implemen-
tations. We use HE CNN inference to demonstrate our
framework’s capability for composing end-to-end HE
applications. Our designs outperform SOTA CPU designs
in latency by up to 60x.

II. BACKGROUND

A. Homomorphic Encryption (HE)

Our framework targets the CKKS scheme [16]. The pro-
posed techniques can be applied to other HE schemes [17],
[18]. The CKKS parameters are listed in Table I. A cleartext
vector m of N/2 complex numbers is first encoded as a
plaintext polynomial (p?). This pt is then encrypted into a pair
of ciphertext polynomials (ct), [m] = (a,b), using a secret
key s. Both pr and ct have a polynomial degree of N — 1.
Let R = Z[X]/(XYN + 1). The field of a fresh ciphertext
is R = (R/QR)?, which means a pair of polynomials with
coefficients from Zg, i.e., integers modulo). The modulus)
is chosen to be sufficiently large (hundreds or even thousands
of bits) to avoid data corruption during encrypted computation.
The Residue Number System (RNS) is used to manage this
complexity [16]. Specifically, let Q = HiL:o ¢; be the modulus
of a ciphertext with a computational level L. A polynomial in
Rq has L+1 limbs, where the coefficients of the i-th limb are
in Zg4,. HE operations increase the encryption noise and reduce
the computational level (L) of ciphertext. When the level
reaches zero, decryption becomes impossible. Bootstrapping
can reset the noise and enable Fully Homomorphic Encryption
(FHE). As the number of HE operations is a known priori
in many real-world HE applications, bootstrapping can be
avoided in accordance with prior works [19], [20], [21], [22],
[23]. The security level (\) of the CKKS scheme relies on
polynomial degree N and ciphertext moduli Q.

TABLE I
CKKS PARAMETERS
Parameter Description
N Degree of the plaintext and ciphertext polynomials.
L Maximum computational level of a ciphertext.

Current level of a ciphertext, 0 <1 < L. A
ciphertext with level [has [+ 1 limbs.

Maximum modulus of a ciphertext coefficient. It is
represented by L + 1 co-primes ¢;. Q = HIL:O qi.
Product of k additional co-primes p; for the raised
modulus. P = Hi:ol Di

dnum Number of digits in the switching key.

Number of limbs of a single digit during key
switching decomposition. &« = [(L + 1)/dnum].
An [-limb ciphertext is split into 3 digits during key
switching decomposition, where 8 = [(1 4+ 1)/«].

B. Homomorphically Encrypted (HE) Operations
CKKS supports the following operations.

o PtCtAdd and PtCtSub perform element-wise addition
and subtraction between a plaintext mo and a ciphertext
[m1] respectively.

o CtCtAdd adds two encrypted vectors [mo], [ma1] and
outputs the encryption of the element-wise sum of the
two vectors, [mg+m;]. CtCtSub performs element-wise
subtraction and produces [mg — m;].

o PtCtMult multiplies a plaintext mq with a ciphertext
[m1] and outputs [mg - m1], where - denotes element-
wise multiplication of the two vectors.

o CtCtMult performs element-wise multiplication between
two ciphertext [mo] and [m4] and outputs [mg - mq].

o Let [m] be a ciphertext of vector (cg,c1,C2,...;Cn)s
where n = N/2. Rotate by r slots outputs [¢,(m)] =
(CryCrg1y ey Cn—1,€0,C1, ey Cr_1), 1.€., the elements of
vector are circularly shifted by r slots. Rotate is not a
simple coefficient shift of ciphertext polynomials.

o The Rescale operation adjusts the scaling factors of the
ciphertext, to prevent noise overflow [16].

CtCtMult is carried out by performing multiplications be-
tween limbs of input ciphertext (LimbMult). The output of
LimbMult is encrypted with secret key s2. KeySwitch is used
to homomorphically change the encryption key back to s. The
complete algorithm is outlined in Algorithm 1. The first sub-
routine of KeySwitch is Decomp (Line 4), where the [limbs
are divided into S digits (groups), each containing « limbs.
Subsequently, through the ModUp subroutine, each group is
expanded to af+k—1 limbs. The key switching key (kskq2_,s)
is comprised of a matrix of polynomials with dimensions 2 x /3,
where each matrix element contains a8 + k& — 1 limbs. The
InnerProd subroutine performs matrix-vector multiplication of
limbs between an input vector of size S limbs and the kskgz_.
This is followed by the ModDown subroutine, which reduces
the limb count of the InnerProd output from a5 + &k — 1 to
[4+ 1 limbs. Finally, a limb modular addition is performed
to produce the output ciphertext (LimbAdd, Line 8). Decomp,
ModUp, InnerProd and ModDown are described in Algorithm
3, 2, 10, and 4 respectively in [24]. Ciphertext limbs are
in evaluation domain by applying the Number Theoretic
Transform (NTT). BaseConv operation within ModUp and
ModDown requires that the ciphertext representation be in
polynomial form [16]. Therefore INTT and NTT are used
at the beginning and the end of ModUp and ModDown [24].

Algorithm 1 CtCtMult([mo], [m1], kske)

1: (ao,bo) — I[m()]]

2: (al,b1) < [[mo]]

3: (az, ba, Cg) — (aoal, apbr + aibo, bobl) > LimbMult
4: az < Decompg(az)

5: do +— MOdUp(ag)

6: x,y < InnerProd(kskg_,, d2)

7: &,y < ModDown(z), ModDown(y)

8: return (bs + &, c2 + 9) > LimbAdd

The first step of Rotate is the Automorph subroutine, which
is performed on each limb coefficients via a permutation map-
ping i — o,(2), where 0,.(i) =¢-5" mod N,0<¢< N —1,

62

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

i.e., limb coefficient ¢; becomes coefficient ¢, (;). The output
ciphertext of Automorph is encrypted in a different secret key,
requiring the same KeySwitch subroutine as in CtCtMult to
obtain a valid output. The Rescale operation can be considered
as a special implementation of ModDown subroutine in which
the number of limbs is reduced by one (i.e., from [to [— 1).
For a more formal description of various subroutines, we refer
readers to [16].

III. FRAMEWORK DESIGN METHODOLOGY
A. Decomposition of HE Operations

Developing an FPGA framework for a broad range of
HE parameters and resource constraints is a complex task.
Prior approaches of manually adjusting each FPGA design for
specific HE operations are time-consuming and inefficient for
low latency execution [25], [26]. Having dedicated hardware
blocks for different HE subroutines [14] is also unsuitable for
low-latency execution because HE subroutines cannot always
run in parallel [24], leading to hardware underutilization and
long latency. We propose a layered approach to support all
HE operations in a scalable manner. Our approach enables the
efficient reuse of computation datapaths across different sub-
routines within an HE operation. Our approach defines three
layers to decompose an HE operation into their fundamental
components. The top layer, defined as API Layer, includes HE
operations that are exposed to the users of our framework. The
HE operations are then decomposed into HE subroutines in
the Intermediate Layer. Finally, each HE subroutine is broken
down into HE primitives in the Foundational Layer.

1) API Layer — HE Operations: The API Layer comprises
of application level HE operations and their parameters (Sec-
tion II-B). This layer selects the appropriate HE subroutines
for each operation and implements a top-level control module.
The control module executes control sequences that run the HE
subroutines according to the algorithm of each HE operation.
It also enables the fusion of HE subroutines if the on-chip
SRAMs is large enough to store the intermediate data between
HE subroutines.

2) Intermediate Layer — HE Subroutines: The Intermediate
Layer comprises a variety of HE subroutines, such as Ntt, Intt,
Automorph, ModUp, ModDown, Decomp, BaseConv, and
KskInnerProd. An HE subroutine is defined as an operation
in which the datapath is implemented through multiple HE
primitives while the operation is not exposed directly to the
users of the framework. The main objective of this layer is
to generate control sequences for each HE subroutine. The
control sequences manage the datapaths and oversee the data
movement between external memory and on-chip SRAMs.

3) Foundational Layer — HE Primitives: In the Founda-
tional Layer of our framework, we identify two basic HE
primitives: ModAlu and Permute. The primitives serve as the
building blocks for constructing datapaths of the components
in the higher level layers. ModAlu is responsible for executing
modular arithmetic, and Permute performs arbitrary permuta-
tion of vectors.

63

B. High Level Design of the Framework

Figure 1 shows the workflow of our framework. It takes
HE parameters and resource constraints as input and produces
Verilog code of an FPGA accelerator that can execute the
specified HE operations. HE parameters are specified by:

o CKKS Parameters (P): The CKKS parameters (Table I)

determine the specific algorithm to be accelerated.

o HE Operations (OP): The HE computations are repre-
sented by a dependency graph. Each node in the graph
corresponds to one of the operations defined in the API
Layer.

Hardware resource constraints are specified by:

e DSP (D,sx) and SRAM (R,..c) constraints: DSPs and
on-chip SRAMs that can be used by the generated
hardware. R, is specified by the total available URAM
(Rumm_max) and BRAM (Rbram_max) instances.

o I/O bandwidth (BW,,,,): Available read and write band-

width of the target FPGA design. The bandwidth is used
to transfer input, output and intermediate data on the
Memory Interface of the generated hardware.
Metadata (M): Platform related metadata on the target
FPGA device, such as the bit width of DSP and memory
organization of the on-chip SRAMs. This is used by
the design space exploration to estimate the resource
consumption of different hardware modules.

Design Space Explorer (DSE) (Section V) identifies design
parameters that minimize the latency for executing OP. The
RTL Design Generator takes the design parameters and applies
the proposed layered approach to generate Verilog code. It
first generates the top-level control module, which establishes
the dataflow across HE subroutines. Subsequently, control
sequences and dataflows for each individual HE subroutine
are produced, followed by the instantiation of the computation
datapaths. The generated FPGA accelerator processes HE
operations sequentially, one node at a time.

I HE Parameters

FPGA Framework
Subrouti
HE Operations :‘:::"m—>
RTL Design
Generator
: Control and
HE Subroutines [=p. a0 " =t = -
Parameterized
HE Domain
Primitive
‘Implementation™ |

Specific Arch
Design Candidamst

Latency and Resource
Constraints

Synthesizable
FPGA Design

l Design Space Explorer I

Fig. 1. High level workflow of the proposed framework.

1) Design Parameters: Our framework utilizes an HE do-
main specific architecture (Section IV) to execute all HE op-
erations. The architecture is parameterized to support diverse
resource constraints. The RTL Design Generator interacts with
the DSE using a set of design parameters, each of which
can be adjusted to tune the computation latency while also
impacting FPGA resource usage. The design parameters are:

o Number of Modular ALUs (NumAlu): Number of modu-

lar arithmetic logic units in the design. The ModALUs are

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

fully pipelined. Each can perform one modular addition,
subtraction, and multiplication per cycle.
o Throughput of Permute Pipeline (PermTput): This param-
eter determines the throughput for each permute pipeline.
The permute pipeline can accept and produce PermTput
elements per cycle in steady state.
Capacity of Scratchpad (ScratchSize): Total size of the
scratchpad memory implemented using FPGA URAMs
and BRAMs [27], [10].

IV. HARDWARE DESIGN AND DATAFLOW

A. Architecture Overview

Our framework utilizes a parameterized HE domain specific
architecture to support diverse HE parameters and resource
constraints. The high level architecture is depicted in Fig-
ure 2. It consists of an array of modular ALUs and a
permute pipeline, corresponding to the components in the
HE primitives. A scratchpad memory is implemented to store
intermediate limbs and twiddle factors for Ntt and Intt. The
scratchpad memory has multiple banks to enable parallel
accesses from multiple requesters. The scratchpad is connected
to a Memory Interface module that oversees data transfer
between the scratchpad and external memory. The architec-
ture includes two control units: the HE Subroutines Control
module, which orchestrates control sequences for processing
each HE subroutine, and the HE Operations Control module,
which manages the dataflows across subroutines.

HE Domain Specific Architecture

HE Subroutines

HE Operations
Control
=

Control

—
J

Soocooobooooooooooos

A

Fmmmmmmmm—m e 4

A 4

Permute Pipeline

 }

l Modular ALUs ‘

 ;

l Scratchpad Memory

 ;

[Memory Interface

1
v

Fig. 2. Architecture of the FPGA design generated by the framework.

B. Hardware Implementation Details

1) Modular ALUs: The modular ALUs support modular
additions, subtractions, and multiplications. The bit width for
input and output operands is defined by maxy<;<r, logg;. For
modular multiplication, we implement the Barrett reduction
algorithm [28]. Our modular multiplier implementation is
based on a prior fully pipelined design [29]. The modular
multiplier implementation includes three integer multipliers:
the first two perform full-width multiplications, combining two
input operands to produce the complete output; the remaining
one is a half-width multiplication, producing the lower half
of the output. The modular ALUs have a throughput of
processing NumAlu coefficients per cycle.

64

Control \

.

J
)
.\J

-

Buffer

2x2
Upper Switch |
V2 x 2 '

Network

Upper
U2 x 2
Network

i

Buffer
Buffer

2x2
Switch

Buffer
Buffer

2x2
Switch

Lower
U2 x 12

Network 2x2
[—|_Switch
I

Spatial Permute ____ j\Temporal Permute; | ____Spatial Permute J

Lower
Y2 % t/2
Network

Buffer
Buffer

Fig. 3. Architecture of the permute pipeline.

2) Permute Pipeline: Ntt, Intt and Automorph require
permutation of coefficients for individual limbs. The permute
pipeline enables arbitrary permutations of limb coefficients.
Due to the complex data access patterns, these operations are
difficult to process in parallel [15]. Previous solutions use fully
connected crossbars with carefully designed data placement
to prevent scratchpad bank conflicts [26], [30]. We adopt
the Streaming Permutation Network (SPN) [31] for parallel
permutation of coefficients without the need for an expensive
crossbar. The architecture of an SPN is illustrated in Figure 3.
It consists of three subnetworks — two spatial permutation
networks and one temporal permutation network. The spatial
permutation shuffles ¢ = PermTput coefficients received in the
same cycle, while the temporal permutation rearranges coef-
ficients across N/t cycles. Each spatial permutation network
has logt stages, using 2 x 2 switches recursively to create a
t-to-t connection. Temporal permutation is achieved by read
and write operations to ¢ buffers with pre-computed addresses.
Each buffer stores N/t coefficients.

Scratchpad Requesters 1

'
1 |
I Modular ALUs Permute Memory Interface |
| @Rdiwr (1 Rd 1 Wr) @Rd1Wr) i

N S i S i

BankWidth BankWidth BankWidth

URAM|...|URAM URAM|...|URAM| .. BRAM|...|BRAM

Bank 0 Bank 1

Scratchpad Memory

Bank NumBank - 1

Fig. 4. Architecture of the scratchpad memory and its requesters.

3) Scratchpad Memory: Figure 4 shows the architecture of
the scratchpad. It has multiple banks to store intermediate re-
sults and Ntt/Intt twiddle factors. This memory is configured
as ScratchSize = NumBank x BankWidth x BankDepth. The
value of BankWidth is set to match the peak throughput of
the computation datapaths, ensuring that one bank can supply
max(NumAlu, PermTpur) coefficients per cycle. NumBank is
set based on the requirements of its requesters, ensuring that
all requesters can concurrently access the scratchpad. The
modular ALUs require two read ports and one write port. The
permute pipeline and memory interface need one read port
and one write port each. ScratchSize is adjusted by the DSE
by varying BankDepth.

C. Dataflow Design

HE subroutines have two distinct computation patterns: the
Limb Pattern and the Coefficient Pattern [32]. In the Limb

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

Pattern, the ¢-th output limb is derived from the corresponding
limb in the input ciphertext. In contrast, the Coefficient Pattern
uses the ¢-th coefficient from all limbs to compute the i-th
coefficient of an output limb. Figure 5 illustrates the two com-
putation patterns. In the diagram, a ciphertext’s row represents
a limb, and each square box within represents a coefficient. For
computing the output coefficient highlighted in red, the Limb
Pattern operates on a specific “row” of the input, while the
Coefficient Pattern processes a “column” of coefficients. HE
subroutines following the Limb Pattern include Automorph,
Ntt, Intt, Decomp, and KsklnnerProd, while ModUp and
ModDown falls under the Coefficient Pattern. We design two
dataflows tailored to the computation patterns.

Input
Ciphertext

Output
Ciphertext

Output
Coefficient

EWHHHH
(10 - [

Limb r'

Pattern

N

0.

F1g. 5. Two computation patterns of HE subroutines.

1) Limb Dataflow: In Limb Dataflow, the modular ALUs
calculate one output limb at a time, with each ALU handling
N/NumAlu coefficients. The permute pipeline also handles
one limb at a time for permutation. Data movement mirrors
this limb-focused approach, sequentially transferring coeffi-
cients from a single limb.

2) Coefficient Dataflow: The coefficient dataflow operates
in a different order. It starts by fetching the first set of 2 -
L - NumAlu coefficients from all input limbs, performs the
necessary computations, and then stores 2 - L - NumAlu output
coefficients. This repeats for each subsequent N/NumAlu set
of coefficients.

3) HE Subroutine Fusion: To reduce data transfer on the
memory interface, the top-level dataflow enables fusion of
consecutive HE subroutines using Limb Dataflow. The output
limb from one HE subroutine is immediately used as the input
for the next, eliminating the need to write intermediate outputs
back to external memory and then re-fetch them. However,
when transitioning to Coefficient Dataflow, intermediate data
is saved to external memory (via the memory interface) before
the execution of the next HE subroutine.

Coefficient
Pattern

V. DESIGN SPACE EXPLORATION

Design Space Exploration (DSE) generates design candi-
dates based on the input to the framework. Since both SPN and
the scratchpad require BRAM/URAM resources, DSE allo-
cates these resources by tuning the PermTput and ScratchSize
parameters. Additionally, simply maximizing the usage of DSP
resources is not necessary if other system components become
bottlenecks. To reduce DSE complexity, we use the parametric
search through doubling (approximate) algorithm as defined
in Algorithm 2. We iterate the design parameters in ascending
order, ensuring that designs with lower resource requirements

65

are selected when multiple designs have the same latency. DSE
iterates through possible values of NumAlu and PermTput in
power-of-two steps to reduce design complexity. As discussed
in Section IV-B3, the scratchpad bank width is determined
based on NumAlu and PermTput. DSE then determines the
ScratchSize increment step by considering the BRAM/URAM
properties, number of banks and width of each bank (Line
4). Latency and resource estimators are invoked to project the
latency and resource consumption of each design candidate
(Line 6). DSE stores the design parameters if the latency
is currently minimal and resource consumption satisfies the
constraints (Line 7-9).

Algorithm 2 Design Space Exploration
Inpllt1 7), OP, Dmux, Rmaxa BWmaXa M
Output: NumAlu, PermTput, ScratchSize

L Toin = 00,5 0,5 1

2: while NumAlu < 2° do)

3 while PermTput < 27 do

4: ScratchIncStep < f(NumAlu, PermTput, M)
5: for ScratchSize < (0, Roax, ScratchIncStep) do
6.
7
8
9

> Continue until exceeding 512
> Continue until exceeding 512

Compute 7,D, R
if T < 7;nin7 D S Dma,\f: R S Rmax then

Tnin — T
: Store NumAlu, PermTput, ScratchSize
10: j=7+1
11: i=1i+1

A. Latency Estimator

Let O be the set of HE operations in OP. The total latency
T of OP is sum of the execution times of all the operations
in O. Let S; be the set of HE subroutines in HE operation
i. T is defined by Equation 1, where 7s,; is the latency of
subroutine j in HE operation +.

T=2>Ts

i€O jES;

ey

The latency for each Ts,; is determined based on Equation 2,
where Ts,;_compue a0d Ts,;_memory Tefer to the compute and
memory time respectively.

@)

Compute Time Estimation: 7s,. compue is estimated by di-
viding the total required computations by the throughput of
the execution pipeline. Due to space limitation, we describe
the compute time estimation for Ntt/Intt (Limb Pattern) and
BaseConv (Coefficient Pattern). We omit the details for other
HE subroutine as they follow a similar methodology. Each
stage of Ntt and Intt, there are N/2 multiplications, additions,
and subtractions, with a total of log N stages. Thus,

3-N N)
2 - NumAlu' PermTput

7?5”' = max(%lj_wmputw Ez_i_nlemary)

Tiimb_Ntt/inte = log N - max(3)
The total compute time for Ntt/Intt is then obtained by
Tnet/inte = Tiimb_Net/inee - NumLimbs, where NumLimbs is the
number of limbs processed. Assuming that a BaseConv is
required to process !’ input limbs and reduces them to [output

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

limbs, the computation for each output coefficient involves
(2!" 4+ 2) modular multiplications and one modular addition.
Therefore the total computation time for BaseConv is:

1-N- (2 +3)

4
NumAlu @)

EaseConv =
Memory Time Estimation: We calculate the memory time
for an HE subroutine as per Equation 5.

Bread + Bwrite

Bread and B, represent the total memory read and write
bytes. They are calculated by summing the data transfers re-
quired for the subroutine, including transferring limbs, twiddle
factors and key switching keys. Limb read and write bytes are
estimated based on the algorithm of specific HE subroutine.

Our framework reduces memory transfers through HE sub-
routine fusion, which is applicable to CtCtMult, Rotate,
and KeySwitch. For instance, Automorph can be fused with
Decomp if sufficient space exists in the scratchpad, avoiding
the memory transfers for the intermediate limbs. The DSE
assesses if the scratchpad can store the output limbs of the
preceding subroutine. If so, it eliminates the corresponding
limb bytes from the B;.cqq Oor Byrite calculations.

7-51'_7 _memory —

(%)

B. Resource Estimator

For a given set of design parameters, we calculate the
DSP (D), URAM (R,sam) and BRAM (Rpqm) usage for the
generated design. The estimated resource consumption is then
compared against available constraints to ensure it does not
exceed the limit.

DSP resources (D): DSP usage is defined as D = NumAlu -
dary- It depends on the implementation of the modular ALUs.
The factor dry refers to the number of DSPs required for
a single modular ALU. Only the modular multiplier utilizes
DSPs for its implementation.

URAM and BRAM resources (R): We use BRAM to
construct the buffers for the SPN. Each permute pipeline
has PermTput buffers. Each entry of the buffer stores one
coefficient and each buffer is N/PermTput deep. Each SPN
buffer requires multiple BRAMs to be chained horizontally
and/or vertically. Horizontal chaining occurs when bits per
coefficient (be.r) €xceeds the bits per row of a BRAM (byam).
Vertical chaining is used when N/PermTput is greater than the
number of rows per BRAM (7p,4,). The BRAM consumption
for the permute pipeline (Rpn_pram) 18

N

i beoer
PermTput - rppam

(6

7?fspn_bmm - —I . PermTput

bbmm
In this equation, the first term determines the BRAM instances
for each buffer to supply b, bits per cycle. The second term
calculates the BRAM instances given the depth of each buffer.

The scratchpad memory is implemented using URAMs
and BRAMs. We calculate the number of URAM instances
required for the scratchpad using Equation 7, where b,m

66

refers to the bits per URAM row and 7, is the depth per
URAM instance.

BankWidth BankDepth

Ruram = NumBank - | 1T
BRAM estimation, denoted as Rcrarch_bram> follows a similar
approach. The total BRAM instances required is Rpym =

Rspn_bram + Rscmtch_bram-

I

buram Turam

VI. EXPERIMENTS
A. Experimental Setup

Platform: We evaluate our framework on an AMD Alveo
U280 FPGA. The FPGA has 1,304K LUTs, 2,607K FFs, 41
MB on-chip SRAM and 9,024 DSPs. We perform synthesis,
place-and-route using Vivado 2021.1. The results are reported
after place-and-route. Each of the designs generated through
our framework is configured to operate at a frequency of 250
MHz. In order to evaluate the efficiency of our framework
across a variety of hardware platforms, we conduct experi-
ments under different resource constraints.

TABLE II
HE PARAMETERS FOR THE EVALUATION OF HE OPERATIONS.
Parameter Set N L dnum k A
Set-1 216 44 45 1 98
Set-2 216 23 3 8 128
Set-3 214 g 1 1 128

HE Parameters: We use three sets of HE parameters to
evaluate HE operations as listed in Table II. These parameters
are commonly used in real-world HE applications [33], [24],
[26]. Set-1 and Set-2 are large HE parameters that provides
more computational levels while Set-3 is a small set of HE
parameters. All sets of parameters meet A > 96 bits security
level and use 32-bit RNS prime integers [34], [35].

B. Framework Evaluation

We show that our framework is capable of generating
designs that meet diverse latency targets and resource con-
straints. Figure 6 illustrates the latency variations using the
HE parameter sets. We adjust BW,,, ., between 128 GB/s and
460 GB/s. We gradually increase the DSP resource constraint
(Dinaz) to approach the maximum capacity of the U280
FPGA, which allows more ALUs (NumAlu) to be instantiated.
We perform design space exploration to determine the values
of the design parameters and implement the design on the
target FPGA. All the designs achieve the target frequency of
250 MHz. Our DSE can estimate the latency of the designs
with a very small error margin (less than 5%). The prediction
error is primarily due to not modeling the initial startup and
completion overhead. The generated designs that achieve the
lowest latency are shown in Figure 6. Our framework can
support a wide spectrum of latency by adjusting the DSP
resources. Note, when NumAlu is a small value, HE operations
become compute-bound and shows less sensitivity to changes
in BW,a.. CtCtAdd performs limb element-wise operation
with no data reuse. Its latency is proportional to NumAlu or

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

BW ez, Whichever is lower. CtCtMult and Rotate have a
mixture of memory-bound and compute-bound subroutines.
Therefore, high bandwidth and a large number of ALUs are
both effective ways to reduce latency. Rescale is less sensitive
to memory bandwidth because its latency is largely determined
by the compute intensive Ntt and Intt subroutines.

BW [GBIs] [128 [256 [460

CtCtAdd | Set-1 CtCtMult | Set-1 Rescale | Set-1 Rotate | Set-1

0.6- 200~ 15- 200-

0.4- 150- 10- 150-

g % A M. %

-] 50- 50-

0.0 o s . e 5 (Mo
iy CtCtAdd | Set-2 CtCtMult | Set-2 Rescale | Set-2 Rotate | Set-2
E o3- 15-] 15-

a 0.2- 10- 10-

3 || NN |

g oo ol e o (Mo
- CtCtAdd | Set-3 CtCtMult | Set-3 Rescale | Set-3 Rotate | Set-3

0.75-
0.50

O.ZS:I
0.00- =FFEE -

64 128 256 512

0.75

| 0.4-
0.25- 20
0.00-£E .h 0.0-& .

64 128 256 512 64 128 256 512
NumAlu

0.03-
0.02-
0.01-
0.00-%%

64 128 256 512

Fig. 6. Latency with respect to NumAlu and BWmaq.

Figure 7 shows the execution time breakdown for CtCtMult,
with NumAlu = 256 and BW,,,q. = 460. ModUp, InnerProd,
and ModDown together account for over 85% of the total
execution time. Set-1 (« 1) and Set-2 (o = 8) require
a much larger number of limbs to be generated or reduced
than Set-3 (« 9). Therefore ModUp and ModDown take
a significant portion of the runtime. Rotate has a similar
breakdown than CtCtMult. The execution time of Rescale is
mostly taken up by Ntt and Intt. All other HE operations (e.g.,
CtCtAdd) only involve limb element-wise computations.

¥ LimbMult ® Decomp ModUp ® InnerProd ® ModDown M Others

25%
Fig. 7. Breakdown of the CtCtMult benchmark.

50% 75% 100%

DSE Evaluation: We evaluate the effectiveness of the DSE
in the proposed framework. As discussed in previous sections,
on-chip SRAMs are shared resources between the permute
pipeline and the scratchpad. Allocating the maximum DSP
resources is unnecessary if other modules are the bottleneck.
The DSE can automatically identify design parameters for low
latency implementation of HE operations. Figure 8 illustrates
the possible designs for CtCtMult under parameter Set-1. The
x-axis shows the estimated latency from the DSE, the y-axis
shows PermTput, and each x mark represents a design point
evaluated by the DSE. Designs closer to the bottom left are
better. The DSE explored a wide variety of design points and
constructed a Pareto curve for latency. Clustering regions (e.g.,
design points in 0) indicate that the Permute Pipeline is the
bottleneck, therefore maximizing other design parameters does
not significantly impact latency. In some cases, NumAlu is the

67

bottleneck, so changing the values of PermTput has minimal
effect (e.g., design points in a).

500
‘ X XOOOCX X A X X
= 100 = =
Q. RO X X X X X
2 5 b 3 PO X X
g SPOOOOX X x| X x
a Pareto Frontier | 4)} x X
w —~==—0-
5

0.00 500.00 1000.00

Latency [ms]

1500.00

Fig. 8. DSE of accelerator generation for CtCtMult benchmark.

C. Evaluation of Framework Optimizations

1) Benefits of Sharing Computation Datapaths: Previous
works such as FXHENN and Poseidon [14], [15] allocate
dedicated hardware resources for NTT/INTT and other HE
computations respectively, resulting in underutilized compute
resources and increased latency. Our layered approach enables
all subroutines of HE operations to execute on the same
modular ALUs and the permute pipeline. In Figure 9, we
compare the compute utilization of our design with that of
Poseidon [15]. Compute utilization is defined as the ratio
of active DSPs to the total DSPs in the design during the
execution of an HE subroutine. While Poseidon achieves up
to 82% utilization for NTT/INTT and 53% for other HE
computations, our approach reaches 100% utilization..

B Poseidon M This Paper
100%

75%
50%

25%

Compute Utilization

NTT/INTT

BaseConv / LimbMult /
LimbAdd / LimbSub

Fig. 9. Compute utilization comparison between Poseidon and our work.

2) Benefits of HE Subroutine Fusion: Figure 10 illustrates
the speedup of fusing HE subroutines compared to no fusion.
In this comparison, we assess the execution times of different
HE operations under two I/O bandwidth constraints BW 4"
128 GB/s and 460 GB/s. The fusion technique is beneficial
for HE operations that involve consecutive Limb Dataflow
subroutines. As the available I/O bandwidth decreases, more
subroutines become memory bound, benefiting more from HE
subroutine fusion. We observe up to 1.8x speedup with HE
subroutine fusion.

D. Resource Consumption

Table III shows the resource utilization of a sample design
for CtCtMult. It is implemented using NumAlu 256,
PermTput = 256, ScratchSize = 16 MiB. The modular ALUs
primarily use DSP resources, with each ALU requiring 12
DSPs. The scratchpad memory is divided into four banks, with
each bank consists of 128 URAM instances. The SPN uses

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

W Fusion (128 GB/s BWmax) M Fusion (460 GB/s BWmax)

2.0
1.5
o
3
S 10
2
0 0.5
0.0

CtCtAdd CtCtMult Rotate Rescale

Fig. 10. Speedup on HE subroutine fusion on parameter Set-2.
BRAM resources for its temporal permutation operations. We
observe that the consumption of LUT and FF is relatively low
compared to the available resources.

TABLE IIT
FPGA RESOURCE USAGE OF A GENERATED DESIGN.
Work DSP URAM BRAM LUT FF

Modular ALUs 3072 0 0 286976 489728
Permute Pipeline 0 0 256 102504 195160

Scratchpad 0 512 0 57696 90304
Others 0 0 0 153756 253708
Total 3072 512 256 600932 1028900

[34%] [54%] [18%] [47%] [40%]

E. Comparison with State-of-the-art

We compare the designs generated by our framework with
state-of-the-art CPU, GPU and FPGA designs [24], [15], [26].
We use the same set of HE parameters as reported by the prior
works. We use our framework to generate designs on U280
FPGA. The CPU baseline is measured on Intel Xeon Gold
6234 CPU using a single thread. The GPU baseline uses an
NVIDIA Tesla V100 GPU. The GPU platform has more than
2x peak HBM bandwidth than the FPGA platform used in
our experiments. Table IV shows the CPU and GPU latency
comparison results (in ms) on various HE operations. The
PtCtMult benchmark is purely memory-bound, therefore the
GPU design outperforms our design due to its higher HBM
bandwidth. Benefiting from FPGA’s application-specific logic
(e.g., highly efficient modular ALUs), our generated designs
achieve up to 1.3x speedup over the GPU baselines and over
215x speedup compared to CPU baselines.

TABLE IV
LATENCY COMPARISON WITH CPU AND GPU WORKS.
PtCtMult CtCtMult Rotate
Work Freq [GHz] Lat. [ms] Lat. [ms] Lat. [ms]
CPU [24] 33 26.2 2631.6 2564.1
GPU [24] 1.3 0.18 174 16.8
This paper 0.25 0.29 12.6 11.9
TABLE V
LATENCY COMPARISON WITH FPGA WORKS.
PtCtMult CtCtMult Rotate
Work Freq [GHz] Lat. [ms] Lat. [ms] Lat. [ms]
HEAX [26]" 0.3 0.2 8.4 -
Poseidon [15] 0.45 0.08 3.7 33
This paper 0.25 0.08 4.2 3.9

' HEAX and Poseidon are optimized for specific HE parameters, whereas
our framework supports a broader range of HE parameters.

68

Table V shows the latency (ms) comparison against state-
of-the-art FPGA baselines [26], [15]. HEAX and Poseidon are
FPGA accelerators tailored for a fixed set of HE parameters.
This allows them to incorporate manual implementation op-
timizations for achieving high FPGA frequencies. In all the
benchmarks, our designs demonstrate superior performance
compared to HEAX. While Poseidon shows better perfor-
mance due to its higher FPGA frequency (which is 1.8 faster
than ours), our design proves to be more efficient, requiring
fewer cycles (up to 1.58) to complete the benchmarks. This
efficiency is primarily attributed to our approach of sharing
computation datapaths and implementing dataflow optimiza-
tions.

VII. CoMPOSING END-TO-END HE APPLICATIONS

We demonstrate our framework’s ability to support end-to-
end HE applications using HE Convolution Neural Network
(CNN) inference [36], [19], [23], [22]. In HE CNN, linear op-
erations, such as matrix multiplication and convolution, can be
broken down into sequences of HE operations defined in our
API layer [36], [37]. Non-linear operations are approximated
with high-degree polynomials [38], [39], [40]. An entire HE
CNN inference can be represented as a dependency graph, with
each node corresponding to an HE operation. This dependency
graph is the input to our framework. Our framework performs
a topological sort on the graph to determine the processing
order of the nodes in the generated design.

HE CNN Inference Benchmarks: Several previous stud-
ies have developed HE CNN models for privacy-preserving
inference [19], [22], [23], [33]. In this work, we evaluate
two HE CNN models from LoLa [33]. Table VI lists the
model architecture and computation complexity. We choose
N = 8192 and N = 16384 for the MNIST and Cifar10 models
respectively based on prior works [14], [33]. We follow the
same activations and parameters packing scheme as Lola.

TABLE VI
HE CNN BENCHMARKS.
. Num HE Model
Networks Layers Ops Size [MB]
MNIST Cnvl, Actl, Fel, Act2, Fc2 0.83K 15.57
Cifarl0 Cnvl, Actl, Cnv2, Act2, Fc2 82.73K 2471.25

Table VII and Table VIII summarize the comparison results.
Lola performs a similar number of HE operations as our im-
plementation. The difference in the number of HE operations
is due to Lola’s use of the BFV scheme [17], which differs
from the CKKS scheme we employ. Falcon [41] reduces HE
operations by applying homomorphic DFT in convolutional
and fully connected layers. Both Lola and Falcon run on
an Azure standard B8ms virtual machine with 8 vCPUs.
Compared to CPU implementations, our designs achieve up to
60x improvement. FXHENN [14] targets small-scale FPGAs.
We match the FPGA resource constraints to the ACUISEG
FPGA used by FXHENN to generate accelerators for the two
benchmarks. FXHENN allocates dedicated hardware resources

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

to HE subroutines, resulting in longer latency. Our designs
outperform FXHENN by up to 1.58x.

TABLE VII
COMPARISON OF HE CNN INFERENCE ON MNIST.

Num

‘Work Platform HE Ops A N Q Lat. [s]
Lola [33] 8x vCPUs 798 128 14 440 2.2
Falcon [41] 8x vCPUs 626 128 14 440 1.2
FxHENN [14] ACUISEG 826 128 13 210 0.19
This paper ACUISEG 826 128 13 210 0.12
This paper U280 826 128 13 210 0.02

TABLE VIIT
COMPARISON OF HE CNN INFERENCE ON CIFAR10.

Work Platform Hg“g; S N Q Llat[s]
Lola [33] 8x vCPUs 123K 128 14 440 730
Falcon [41] 8x vCPUs 21K 128 14 440 107
FxHENN [14] ACUI5SEG 82K 192 14 252 54.1
This paper ACUI15EG 82K 192 14 252 423
This paper U280 82K 192 14 252 7.2

VIII. RELATED WORK

CPUs/GPUs. Several libraries [42], [43], [44] have been
developed to enable efficient execution of HE operations
on CPUs. Gazelle [36] proposed low overhead packing ap-
proaches to accelerate HE linear algebra operations. However,
CPU implementations of HE still suffer poor performance
due to the limited computing resources. Jung et al. [24]
implemented GPU acceleration for various HE operations.
Their approach focuses on GPU-specific operation and kernel
fusions to reduce latency.

ASICs. F1 [34] is an ASIC designed for the BGV scheme.
F1 only supports small HE parameters, which limits its prac-
ticality. CraterLake [35] enables unlimited HE operation by
supporting bootstrapping. ARK [45] mitigates the memory
bandwidth bottleneck by generating the key switching keys on-
the-fly instead of loading them from DRAMs/HBMs. BTS [46]
optimizes bootstrapping for a fixed set of HE parameters and
designing a customized ASIC tailored to these parameters.
While ASIC-based HE accelerators deliver high performance,
they require substantial hardware resources, such as hundreds
of megabytes of on-chip SRAMs (BTS, ARK).

FPGAs. Existing works either do not support all the HE
operations [26], [30], [47] or are restricted to fixed HE
parameters [25]. Yang et al. [48] proposed an FPGA accel-
erator for HE matrix-vector multiplication. They developed
techniques to reduce the latency of rotation through exploiting
on-chip limb reuse. The architecture of the design is tailored
to a specific FPGA device, limiting its applicability to de-
vices with different resource characteristics. Poseidon [15]
proposed an FPGA accelerator for HE operations based on
a high throughput implementation of Ntt and Automorph.
FxHENN [14] proposed an HLS-based framework for execut-
ing HE operations on FPGAs. Both Poseidon and FXHENN
assign dedicated FPGA resources to different HE subroutines.

69

Their approaches lead to hardware resource duplications and
compute underutilization, particularly when the subroutines
are not executed simultaneously in an HE operation.

IX. CONCLUSION

In this paper, we presented a framework for generating low
latency FPGA implementations of HE operations. The frame-
work takes HE parameters and FPGA resource constraints as
input and outputs synthesizable Verilog code. We proposed a
layered approach combined with a parameterized HE domain
specific architecture to efficiently reuse computation datap-
aths across different subroutines within an HE operation and
improve compute utilization. We developed a design space
exploration tool for automatically determining the optimal
design parameters. Performance evaluations show that our
framework significantly improves latency compared to state-
of-the-art CPU implementations for various HE operations by
up to 215x.

X. ACKNOWLEDGEMENT

This work has been sponsored by the U.S. National Science
Foundation (NSF) under grants SaTC-2104264 and CSSI-
2311870. Equipment by AMD AECG is greatly appreciated.
Distribution Statement A: Approved for public release. Distri-
bution is unlimited.

REFERENCES

[1] J. Kim, C. Lee, H. Shim, J. H. Cheon, A. Kim, M. Kim, and Y. Song,
“Encrypting controller using fully homomorphic encryption for security
of cyber-physical systems,” IFAC-PapersOnLine, vol. 49, no. 22, pp.
175-180, 2016.
D. Archer, L. Chen, J. H. Cheon, R. Gilad-Bachrach, R. A. Hallman,
Z. Huang, X. Jiang, R. Kumaresan, B. A. Malin, H. Sofia et al.,
“Applications of homomorphic encryption,” in Crypto Standardization
Workshop, Microsoft Research, vol. 14. sn, 2017.
O. Kocabas and T. Soyata, “Towards privacy-preserving medical cloud
computing using homomorphic encryption,” in Virtual and Mobile
Healthcare: Breakthroughs in Research and Practice. 1GI Global, 2020,
pp. 93-125.
0. Kocabas and T. Soyata, “Medical data analytics in the cloud using
homomorphic encryption,” in E-Health and Telemedicine: Concepts,
Methodologies, Tools, and Applications. 1GI Global, 2016, pp. 751-
768.
O. Masters, H. Hunt, E. Steffinlongo, J. Crawford, F. Bergamaschi,
M. E. D. Rosa, C. C. Quini, C. T. Alves, F. de Souza, and D. G. Ferreira,
“Towards a homomorphic machine learning big data pipeline for the
financial services sector,” Cryptology ePrint Archive, 2019.
M. Albrecht, M. Chase, H. Chen, and et al, “Homomorphic encryption
security standard,” Tech. Rep., 2018.
L. de Castro, R. Agrawal, R. Yazicigil, A. Chandrakasan, V. Vaikun-
tanathan, C. Juvekar, and A. Joshi, “Does fully homomorphic encryption
need compute acceleration?” arXiv preprint arXiv:2112.06396, 2021.
J. Hennessy and D. Patterson, “A new golden age for computer ar-
chitecture: domain-specific hardware/software co-design, enhanced,” in
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), 2018.
Xilinx, “Xilinx UltraScale+ HBM FPGAs,”
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-
plus-hbm.html, 2020.
Intel, “Stratix 10 MX FPGAs,”
https://www.intel.com/content/www/us/en/products/programmable/sip/
stratix-10-mx.html, 2020.
] “Amazon f1 instance,” https://aws.amazon.com/ec2/instance-types/f1/.
] Alibaba, “Alibaba Cloud,”

https://www.alibabacloud.com/.

[3]

[71

[8]

(10

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

[13]

(14]

[15]

(16]

[17]

[18]

(19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

Y. Yang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Nttgen:
a framework for generating low latency ntt implementations on fpga,” in
Proceedings of the 19th ACM International Conference on Computing
Frontiers, 2022, pp. 30-39.

Y. Zhu, X. Wang, L. Ju, and S. Guo, “Fxhenn: Fpga-based acceleration
framework for homomorphic encrypted cnn inference,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2023, pp. 896-907.

Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Poseidon:
Practical homomorphic encryption accelerator,” in 2023 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
2023.

J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography — SAC 2018, C. Cid and M. J. Jacobson Jr., Eds. Cham:
Springer International Publishing, 2019, pp. 347-368.

J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, “A full rns variant of
fv like somewhat homomorphic encryption schemes,” in Selected Areas
in Cryptography — SAC 2016, R. Avanzi and H. Heys, Eds., 2017.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homo-
morphic encryption without bootstrapping,” in Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, ser. ITCS *12,
2012.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” ser. ICML’16.

P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in 29th
USENIX Security Symposium (USENIX Security 20).

B. Reagen and et al, “Cheetah: Optimizing and accelerating homo-
morphic encryption for private inference,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2021.
E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: towards deep
learning over encrypted data,” in Annual Computer Security Applications
Conference (ACSAC 2016), Los Angeles, California, USA.

A. QaisarAhmadAlBadawi, J. Chao, and et al, “Hcnn, the first homomor-
phic cnn on encrypted data with gpus,” IEEE Transactions on Emerging
Topics in Computing.

W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x
faster bootstrapping in fully homomorphic encryption through memory-
centric optimization with gpus,” JACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 114-148, 2021.

R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil, A. Chan-
drakasan, V. Vaikuntanathan, and A. Joshi, “Fab: An fpga-based accel-
erator for bootstrappable fully homomorphic encryption,” in 2023 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2023.

M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” ser. ASPLOS ’20.

Xilinx, “Xilinx UltraScale+ FPGAs,”
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html.

D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Berlin, Heidelberg: Springer-Verlag, 2003.

S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, “Fpga-
based accelerators of fully pipelined modular multipliers for homomor-
phic encryption,” in 2019 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). 1EEE, 2019, pp. 1-8.

S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“Fpga-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2019.

R. Chen and V. K. Prasanna, “Automatic generation of high throughput
energy efficient streaming architectures for arbitrary fixed permutations,”
in 2015 25th International Conference on Field Programmable Logic
and Applications (FPL), 2015, pp. 1-8.

Y. Yang, W. Long, R. Kannan, and V. K. Prasanna, “Fpga acceleration
of rotation in homomorphic encryption using dynamic data layout,” in
2023 IEEE Annual International Symposium on Field-Programmable
Logic and Applications (FPL). 1EEE, 2023.

A. Brutzkus, R. Gilad Bachrach, and O. Elisha, “Low latency privacy
preserving inference,” in Proceedings of the 36th International Confer-
ence on Machine Learning, 2019.

N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, F1: A Fast and Programmable Accelerator

70

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

for Fully Homomorphic Encryption. New York, NY, USA: Association
for Computing Machinery, 2021.

N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “Craterlake: a
hardware accelerator for efficient unbounded computation on encrypted
data,” in Proceedings of the 49th Annual International Symposium on
Computer Architecture, 2022, pp. 173-187.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}: A
low latency framework for secure neural network inference,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18), 2018, pp.
1651-1669.

Y. Yang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Band-
width efficient homomorphic encrypted matrix vector multiplication
accelerator on fpga,” in 2022 International Conference on Field-
Programmable Technology (ICFPT), 2022, pp. 1-9.

F. Boemer and et al, “Ngraph-he2: A high-throughput framework for
neural network inference on encrypted data,” in Proceedings of the 7th
ACM Workshop on Encrypted Computing and Applied Homomorphic
Cryptography, ser. WAHC’19, 2019.

E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural
networks over encrypted data,” arXiv preprint arXiv:1711.05189, 2017.
Y. Yang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Fpga
accelerator for homomorphic encrypted sparse convolutional neural
network inference,” in 2022 IEEE 30th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). 1EEE,
2022, pp. 1-9.

Q. Lou, W.-j. Lu, C. Hong, and L. Jiang, “Falcon: Fast spectral inference
on encrypted data,” Advances in Neural Information Processing Systems,
vol. 33, pp. 2364-2374, 2020.

“Microsoft SEAL (release 3.6),” https://github.com/Microsoft/SEAL,
Nov. 2020, microsoft Research, Redmond, WA.

S. Halevi and V. Shoup, “Design and implementation of helib: a
homomorphic encryption library,” Cryptology ePrint Archive, 2020.

A. Al Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee er al, “Openthe:
Open-source fully homomorphic encryption library,” in Proceedings of
the 10th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, 2022, pp. 53-63.

J. Kim, G. Lee, S. Kim, G. Sohn, M. Rhu, J. Kim, and J. H. Ahn, “Ark:
Fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2022, pp. 1237-
1254.

S. Kim, J. Kim, M. J. Kim, W. Jung, M. Rhu, J. Kim, and J. H. Ahn,
“Bts: An accelerator for bootstrappable fully homomorphic encryption,”
arXiv preprint arXiv:2112.15479, 2021.

S. S. Roy, A. C. Mert, S. Kwon, Y. Shin, D. Yoo et al., “Accelerator
for computing on encrypted data,” Cryptology ePrint Archive, 2021.

Y. Yang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Band-
width efficient homomorphic encrypted matrix vector multiplication
accelerator on fpga,” in 2022 IEEE International Conference Field-
Programmable Technology (FPT). 1EEE, 2022.

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

