2024 IEEE 32nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) | 979-8-3503-7243-4/24/$31.00 ©2024 IEEE | DOI: 10.1109/FCCM60383.2024.00010

2024 1IEEE 32nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

Bandwidth Efficient Homomorphic Encrypted
Discrete Fourier Transform Acceleration on FPGA

Zhihan Xu*, Yang Yang*, Rajgopal Kannant and Viktor K. Prasanna*
* Department of Electrical and Computer Engineering, University of Southern California
t DEVCOM Army Research Office
Email: {zhihanxu, yyangl72, prasanna}@usc.edu, rajgopal.kannan.civ@army.mil

Abstract—Fully Homomorphic Encryption (FHE) plays an
important role in privacy-preserving computation on the cloud.
It allows computations on encrypted data without decryption.
Bootstrapping is a fundamental operation in FHE, enabling an
unlimited number of homomorphic encrypted computations, but
at a significant time cost. A major bootstrapping component,
the Homomorphic Encrypted Discrete Fourier Transform (HE
DFT), is particularly time-consuming and requires the transfer
of a large amount of data from external memory.

In this paper, we propose a bandwidth-efficient FPGA im-
plementation of HE DFT. We design a cost model to evaluate
the on-chip memory requirement and the off-chip data transfer
overhead for HE DFT. Our analysis shows that prior approaches
can lead to significant off-chip data transfers, which process
the entire ciphertext between subroutines. To address DRAM
transfer overhead, we propose LimbFlow, an optimized dataflow
approach for HE DFT that enhances fine-grained data reuse
by rearranging the processing order of ciphertext and merging
several subroutines. Leveraging the LimbFlow, we develop an
FPGA-based accelerator tailored for HE DFT. We evaluate the
accelerator on AMD U280 FPGA across various sets of security
parameters. Our accelerator achieves up to 4.90x and 1.98x
speedup compared with the State-Of-The-Art (SOTA) GPU and
FPGA implementations.

1. INTRODUCTION

Homomorphic Encryption (HE) provides a solution to
privacy-sensitive applications deployed on the cloud. It allows
computations on the encrypted data directly, ensuring that
third-party cloud servers cannot access or infer any details
from the underlying data. As HE operations progress, the
noise term required for security accumulates in the cipher-
text [1], [2]. A decryption error occurs if the noise is over
a threshold. To mitigate this, bootstrapping is employed to
effectively refresh the noise, allowing for an unlimited number
of HE operations [3]. HE schemes with this mechanism are
referred to as FHE. However, bootstrapping is the most time-
consuming operation with a low arithmetic intensity (<1
Op/byte) and more expensive (>100x) in terms of both
compute and memory requirements than other primitive HE
operations [4]. A significant part of this computational burden
arises from HE DFT and HE Inverse-DFT (HE IDFT)!. The
DFT and IDFT operations are used to decode and encode
the original message vector. In comparison, HE DFT and HE
IDFT evaluate these transformations directly on the ciphertext

'"We use HE DFT to denote both HE DFT and HE IDFT in this paper.

with substantially increased complexity, severely affecting the
bootstrapping efficiency in FHE [5].

The complex dataflow involving a variety of HE subroutines
and extensive DRAM data transfers makes HE DFT operation
a significant bottleneck in FHE. Benefiting from the config-
urable on-chip SRAM memory hierarchy and compute cores,
FPGAs can be tailored to reduce data movement significantly.
Prominent FPGA vendors also incorporate High Bandwidth
Memory (HBM) to address the limitations of DRAM band-
width [6], [7]. The latest FPGAs can provide up to 820 GB/s
bandwidth and 32 GB storage capacities, which makes them
highly suitable for boosting performance in memory-intensive
tasks such as HE DFT [8].

The HE DFT operation can be expressed as the product
of a N x N plaintext matrix and an encrypted ciphertext
vector [9]. Given the large dimension of the inputs (e.g., 2'6)
and the substantial coefficient size (e.g., thousand bits) for
each input element, this type of operation is very costly in
FHE [10]. As discussed in [11], it can be efficiently done by
handling the matrix in the diagonal order and utilizing the
SIMD computation. The M x V' product can be achieved by
multiplying each matrix diagonal with the circularly shifted
ciphertext vector and accumulating the partial sums together.
In [12], [13], the computation of the HE DFT is performed
through the homomorphic evaluation of the Cooley-Tukey
algorithm. This approach decomposes the DFT matrix into
several sparse block diagonal matrices, a process known as
matrix factorization. However, HE DFT still requires the
transfer of substantial amounts of data from off-chip memory,
including gigabytes of evaluation keys for ciphertext rotation
and megabytes of plaintext matrices and ciphertexts, which
create significant bandwidth demands.

Efforts to enhance bandwidth efficiency in HE DFT have
produced various accelerators targeting bootstrapping perfor-
mance. Previous SOTA works [14], [15], [16], have attempted
to improve efficiency by amortizing specific operations across
multiple rotations, a technique known as hoisting [17]. Despite
these advancements, a critical gap in these designs is the lack
of a detailed analysis of the bandwidth requirements specific
to HE DFT. In addition, current dataflows in these designs
still operate at the ciphertext level, which is relatively coarse
and suffers from significant off-chip data transfer. Addressing
this challenge is crucial to improving the overall bootstrapping
efficiency and practicality of FHE systems.

2576-2621/24/$31.00 ©2024 IEEE 1
DOI 10.1109/FCCM60383.2024.00010
Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

To overcome these challenges, we propose a bandwidth-
efficient approach for implementing HE DFT on FPGAs.
Firstly, we introduce a detailed cost model to analyze the
memory requirements of the HE DFT. Guided by the mod-
eling results, we propose a new HE DFT dataflow method
named LimbFlow. LimbFlow rearranges the processing order
and processes ciphertext in a fine-grained manner to achieve
greater data reuse. We develop a novel FPGA-based accel-
erator coupled with the LimbFlow, specifically targeting the
HE DFT operation for bootstrapping in FHE. Our design
significantly improves the HE DFT efficiency with reduced
bandwidth requirements. The key contributions of this work
are as follows.

o We design a general cost model to quantitatively analyze
the off-chip memory access and on-chip memory require-
ments for HE DFT. Given the input HE parameters, the
model can calculate the total amount of off-chip data
transfers and determine the required SRAM to facilitate
ciphertext reuse across subroutines.

o We propose a novel dataflow named LimbFlow for HE
DFT, which reorganizes the polynomial processing order
and merges several subroutines. LimbFlow is designed
to achieve fine-grained ciphertext reuse at the limb level,
reducing off-chip data movement.

« We develop a bandwidth-efficient accelerator specifically
tailored for HE DFT based on LimbFlow. Experimental
results show that the accelerator achieves up to 4.90x
and 1.98x speedup compared with the SOTA GPU and
FPGA implementations.

II. BACKGROUND

In this section, we briefly review the CKKS FHE scheme
[10], explain the bootstrapping process, and analyze the HE
DFT operation. In Table I, we summarize the parameters for
CKKS used in this paper.

A. The CKKS FHE scheme

The CKKS scheme supports the encryption of complex
fixed-point vectors. In CKKS, a message m is a vector in
CN/2. The message vector is packed and encoded into a
plaintext polynomial Py, with degree N —1, and then encrypted
into a ciphertext [m] = (a,b) in R, where a and b are a
pair of elements in R = Zg[X]/(X" + 1). The ciphertext
polynomial coefficients are integers modulo (), and the degree
is a power-of-two integer N, typically ranging from 2!° to
216 [18]. The primitive operations of CKKS are shown in Table
II. We refer [16] to the readers for more details.

The coefficient modulus @) typically spans several thousand
bits to ensure the required security level. To allow efficient
operations on such a large number, Residual Number System
(RNS) [19], [20] is employed. The modulus @ can be rep-
resented as the product of the coprime moduli () = HiL:o i,
where each g; is less than a machine word. Therefore, RNS en-
ables operations over values in Zg without native support for
multi-precision arithmetic. The scalar x € Z¢ is represented

TABLE I
CKKS PARAMETERS AND DESCRIPTIONS
Param Description
m Message vector in real or complex numbers

Plaintext polynomial encoding m
Ciphertext encrypting m under key s

Pm
[m], [m]s
N Degree. # of coefficients in a ciphertext polynomial

Q Ciphertext initial modulus = HiL:() qi
P Auxiliary modulus for Keyswitch = Hf:_ol i
L Maximum level of ciphertext
L Current level of ciphertext
k # of moduli in P
B {po, -+ pr—1} a set of prime moduli of P
C qo,- -+ qr} a set of prime moduli of Q
dnum RNS decomposition number. Max # of digits
a Fixed number. # of limbs in one digit = (L + 1)/dnum
B # of digits in ciphertext = [4+ 1]/«
TABLE II
CKKS PRIMITIVE OPERATIONS
Operation Output Keyswitch Rescale NTT
pPAdd([m], Ppy/) [m+Py] N N N
pMult([m],Py/) [m-Ppy] N Y Y
HAdd([m], [m’]) [m + m’] N N N
HMult ([m], [m’]) [m-m’] Y Y Y
Rotate([m],d) [m <« d] Y N Y
Conjugate([m]) [m] Y N Y

with L + 1 integers modulo each of ¢; leveraging the isomor-
phism between Zg and the product group Zg, ®- - - ®Z,, . We
refer to a /imb as one ciphertext polynomial corresponding to
one modulus. A ciphertext at level ¢ in Full-RNS CKKS [19]
has 2- N - (¢4 1) coefficients and 2 - (£ + 1) limbs.

The complexity of polynomial multiplication is O(N?). To
accelerate this time-consuming operation in FHE, Number
Theoretic Transform (NTT) is used to reduce the complexity
to O(Nlog N) [21]. During HMult and Rotate, an inter-
mediate ciphertext [m],s is generated. To switch it back to
[m], the Keyswitch operation is performed, which requires
an evaluation key evk. The Keyswitch operation involves
multiplication between key limbs and ciphertext limbs, thereby
invoking the NTT operation. The original message is multi-
plied by a scaling factor A during encoding. After multiplying
a ciphertext by an operand with a scaling factor A, the scale of
the result becomes AZ2. To reduce the scaling factor, Rescale
is performed by discarding the last prime modulus g, and
multiplying ¢, ' mod ¢; (i =0,...,¢— 1) with the remaining
limbs [19]. This is an approximation of dividing by A.

B. Bootstrapping

As more Rescale operations are performed, the multi-
plicative level of the ciphertext will reduce to 0, with only
one limb ¢y left. No more multiplications can be allowed.
To compute indefinitely on a ciphertext, a complex operation
called bootstrapping is required to raise the modulus while
preserving the correct structure of the ciphertext. Bootstrap-
ping is the main bottleneck for FHE, and we briefly introduce
the steps below. Due to limited space, we refer [9], [22] to
readers for details.

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

e ModUp: Raises the ciphertext modulus from ¢g to Q.
This yields a ciphertext with an increase in noise. The
following three steps aim to homomorphically evaluate
modular reduction operation modulo ¢y on the ciphertext
to remove the related noise term.

« HE IDFT: Evaluates the decoding process (IDFT) ho-
momorphically so that we can perform the slot-wise
evaluation of approximated modular reduction.

o Sine Evaluation: Approximated modular reduction mod-
ulo o utilizing a sine function with period go.

« HE DFT: Functions as the inverse operation of HE IDFT,
producing a ciphertext that encrypts the correct message.

C. HE DFT

The homomorphic linear transformations, specifically HE
DFT and HE IDFT, are the most time-consuming components
of bootstrapping, accounting for over 60% of the total time
in recent studies [9], [16], [23]. Meanwhile, bootstrapping
itself represents the most costly operation in the RNS-CKKS
scheme [24]. Here, we describe the baseline HE DFT [9] in
Algo. 1, a multiplication process between a plaintext matrix
and a ciphertext vector. The plaintext DFT matrix is factorized
or decomposed into fftiter sparse diagonal submatrices, each
containing 7 diagonals. This transforms the operation into
the Hadamard product of plaintext matrix diagonals and the
ciphertext vector, reducing the complexity and enabling SIMD
computation. To align with different diagonals in the plaintext
matrix, the ciphertext has to perform Rotate r times for each
submatrix or fftiter.

Algorithm 1 Baseline Algorithm for HE DFT
Input: Ciphertext: [m] = (a,b), Rotation: {d’,evk’}, Pre-
computed plaintext diagonals: M ;

for s =1,--- fftiter do

1:

2 a; := Decomp(a) > /3 digits
3 a; 1= ModUp(a;) for 1 < j < f > QW — PQ,
4: (ay,by) < (0,0)

5: for ¢ from 1 to r do

6 al,, == Automorph(a;,dl) for 1 < j <

7 (i, V) := KeyMult Sum(al,,, evk’)

8 (u,v) := (ModDown(1), ModDown(V)) > Qy
9: byot := Automorph(b,d?)

10: (ay,by)+ =M, ; © (u,v+ by) > DiagMultSum

11: end for

12: (ay,by) := (Rescale(a,),Rescale(by)) > Qi1
13: (a,b) < (ay,,by)

14: end for

15: return [m] = (a,b)

Each Rotate requires Decomp and ModUp steps, and HE
DFT operation requires multiple rotations of the ciphertext
vector to align with the diagonals of each submatrice. The
baseline algorithm is a widely adopted method by amortiz-
ing Decomp and ModUp among multiple rotations, a.k.a.,
hoisting [9] optimization, lifting both operations out of the

rotation loop (line 5 in Algo. 1). The number of Fast Fourier
Transform (FFT) stages (fftiter) equals log,;, IV, where rdx
denotes the radix, which is a power of 2. The number of
rotations 7 in each iteration equals 2 - rdx — 1, the number
of diagonals in each submatrix. The parameter fftiter affects
both the bandwidth requirements and the raised multiplicative
levels of ciphertext after bootstrapping. We will explore the
trade-off between these factors in Section III.

RNS decomposition (Decomp) splits the ciphertext poly-
nomial into [digits, each of which has « limbs except for
the last digit (< «). We define the digit as one component of
the split ciphertext. Due to the limited space, we refer [19]
to readers for RNS basis conversion (BConv). It is used in
modulus raising and reduction, which converts the residue
of a polynomial into a new basis that is coprime to the
original basis. We present ModUp and ModDown in Algo. 2
and Algo. 3, which correspond to raising and reducing the
ciphertext level, respectively.

Algorithm 2 ModUpe_, g c([a)c)
[fﬂc = (01(0)7 a(1)7 s 70/([))
[a]ec <+ INTT([a]c)

[a}g — BCOHVCAB([a}C)
[a]p + NTT([a]g)

return (a(?,... a*+9)

> coefficient domain

> evaluation domain

A

Algorithm 3 ModDownguc—c([a]suc)
 [a]s + NTT([@]5)

. [l)]c — BConYB—w([a]B)

. [b]e + NTT([ble)

for 0<j<(+1do

. end for

: return (a9, ... al?)

> coefficient domain

> evaluation domain

T T

The Automorph operation is the key of Rotate opera-
tion, which permutes the polynomial given the rotation index
d. The original slot in a ciphertext with index ¢, is mapped
to a correspondingly rotated slot with index j via Eq. 1. The
underlying message vector is circularly shifted by d.

54— 1

Jj= + 5i (mod N) (1)

As discussed, the Keyswitch operation is necessary for
the Rotate operation. In the context of HE DFT, we refer
to it as KeyMultSum.

III. ANALYTICAL MODELING

In this section, we design a cost model for the breakdown
analysis of the on-chip memory requirement and off-chip
data movement for HE DFT. We denote Beocfs as the size
of a polynomial coefficient in bytes. The model takes HE
parameters as inputs and generates the total DRAM transfer
size and the required SRAM size to reuse all ciphertexts

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

TABLE III
SRAM REQUIREMENT ANALYSIS FOR BASELINE HE DFT

Subroutine (X) Input Size (X))

Output Size (Xout)

Required SRAM Size (Xspan)

Decomp (€+1) - Brimp
ModUp (L+1) - Biimp + By
Automorph B-l+E+1)+L+1)) Brims
KeyMultSum Bewk + 8- (L +Ek+1) - Biimp
ModDown 2-(L+k+1) Brimb+ By
DiagMultSum Baiag +5- (£+1) - Biims
Rescale 2-(+ 1) Biimp

(£+1) - Biimp
B-(+k+1) Brims
B-(l+k+1)+(L+1)) Biimbp
2-(L+k+1) Brims
2-(L+ 1) Brimp
2- (64 1) - Brims

2-(€+1) Brimp
B-(+k+1)+(€+1)) - Biimp
2-B-L+E+1D)+U+1) Brims
(B+2)-(L+k+1)+2-(£+1)) Biimp
B-l+E+1)+4-(€+1)) Brims
B-l+k+1)+3-((+1)) Brims

between subroutines. A ciphertext contains two elements a
and b, each composed of £+ 1 degree-(N-1) polynomials. The
initial ciphertext has L + 1 limbs for each element. The size
of one limb in bytes is:

Blimb =N- Bcoeff (2)

A. SRAM Requirement Analysis

This subsection evaluates the amount of SRAM needed to
eliminate the DRAM transfers of ciphertext in the baseline
HE DFT. In the baseline dataflow, each subroutine can only
be performed after the one before completed due to depen-
dency. Therefore, if the on-chip memory size is less than
one ciphertext size, more data transfer will occur from the
DRAM, which is significantly bandwidth-inefficient. The input
and output of each subroutine and the required SRAM size
to store ciphertext on-chip are summarized in Table III. We
explain how we derive the equations as follows.

1) Decomposition: The Decomp operation reads one ele-
ment a of the ciphertext and outputs the decomposed version
of the element into 3 digits with o limbs per digit. It does not
change the ciphertext size.

2) ModUp: The ModUp operation raises the modulus of
each digit to PQy, so the number of limbs of each digit
increases from a to ¢ + k + 1. The size of twiddle factors
for NTT&INTT corresponds to the limb count, given as:

Big = +k+1) Bms ©)

3) Automorph: The Automorph operation permutes each
digit of the element a and the other element b. It is necessary
to store both input and output, as the input is required and
reused in multiple rotation iterations. Although several pre-
computed powers-of-5, as indicated in Eq. 1, are needed, we
exclude them from the cost model since their size is marginal.

4) KeyMultSum: The KeyMultSum requires to read one
rotation key evk and all digits. Each key is a 2 x § matrix of
polynomials, with (¢ + k + 1) degree-(N-1) polynomials for
each matrix element. Therefore, one key size is given as:

Bek =2-8-(L+k+1)- Bimp 4)

After multiplying each digit with the key components, the
results from different digits are accumulated together. This
process reduces the number of digits of a from S to 2.

2-4- Blimb 2-¢- Blim,b
120
100
80
=2
£ 60
3
N
“ 40
20
0
Q R & N &> N
é;e& G%Q & \.@° Q°¢ \@0 é,‘:}
N A & S S S RL
?'& S > S
& $°

Fig. 1. The required SRAM size to store all intermediate ciphertext during
each subroutine in HE DFT baseline dataflow (Set-Al in Table V).

5) ModDown: The ModDown operation reduces the mod-
ulus of ciphertext back to @QQy. This process involves loading
the precomputed P~! (mod q;) for all ¢; € Cy, as illustrated
in Algo. 3. However, this is also excluded from the cost model
as its size is negligible.

6) DiagMultSum: The DiagMultSum is a similar opera-
tion as KeyMult Sum. It requires reading one matrix diagonal
with size:

Bdiag = (K + 1) : Blimb (5)

7) Rescale: The Rescale operation is equivalent to
ModDown operation but reduces only one limb in ciphertext,
resulting in a modulus of Qy_1.

8) Exemplar Study: According to the modeling results of
baseline, the required SRAM size for Set-Al in Table V to
store intermediate ciphertext during each subroutine is shown
in Fig. 1. This does not include auxiliary data such as the
rotation key, plaintext matrix diagonals, and twiddle factors.
The sizes of one rotation key Bey and one diagonal Bg;q, at
the maximum level L are 84.9 MB and 1.3 MB, respectively.

B. Trade-off Analysis of fftiter

The number of evaluation keys relates to how the plaintext
matrix gets factorized. The number of FFT stages fftiter corre-
sponds to the number of factorized diagonal-sparse matrices.
As introduced in Sec. II-C, the fftiter equals log,;, N, and
number of rotations r required in each FFT stage is 2-rdz —1.
If fftiter = 1, the dense N x N DFT matrix has 2N — 1

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

=@ Total Key Size 18

100000 @@= Plaintext Size
Consumed Levels

16

10000 14
= ~ 12 TWJ
% 1000 10 3

) 8
s 100 Z
S — 6 E

10 4

2

1 0

2 3 4 5 16

fftiter

Fig. 2. Trade-off of fftiter on data size and consumed multiplicative levels
with Set-Al.

diagonals, which requires /N — 1 rotations. Therefore, the total
number of rotations 7, 1S given as:

N -1, if fftiter =1
Ttotal = . . (6)
fftiter - (2 - rdz — 1), otherwise

Here, we assume that the radix rdz for each submatrix is the
same. However, for a prime polynomial degree (e.g. N = 2'7),
rdx cannot be the same for each submatrix, which could be
(26,26, 2°) if fftiter is 3.

Each rotation requires one rotation key. Hence, the total size
of rotation keys that needs to be fetched from DRAM is:

fftiter r

Bevks = Z Z eri < Ttotal * Bevk 7

s=1 1=1

The number of diagonals in each submatrix is 2 - rdz — 1.
The total size of the plaintext matrix is:

fftiter r

Bpirtar = > M. < fititer - (2 rdz — 1) - Bgiag (8)

s=1 i=1

Taking the right-hand side of < in Eq. 7 & 8 is useful for
analyzing and understanding HE DFT operation. The right-
hand side is larger because Bew and B,y are derived at
the maximum level L. It does not consider the size shrinking
because the number of limbs reduces by one after each fftiter
due to Rescaling.

Fig. 2 shows the trade-off associated with fftiter, balanc-
ing between the total sizes of the key and plaintext matrix
diagonals against the consumed levels. Increasing fftiter can
decrease both the total key size and the number of required
rotations, simplifying the complexity and reducing main mem-
ory traffic. However, the smallest Beys is still 1.4 GB when
fftiter takes its largest number 16, necessitating the loading
of rotation keys from global memory. Moreover, a larger
fftiter leads to the consumption of more multiplicative levels,
reducing the raised level after bootstrapping. Consequently, it
is impractical to select a very large fftiter.

TABLE IV
OFF-CHIP DATA MOVEMENT FOR BASELINE HE DFT

Subroutine (X) External Memory Traffic (Xprans)

Decomp Decomp;,

ModUp By + ModUp gy
Automorph Automorphy, + Automorphg,
KeyMultSum KeyMultSum;,, + KeyMultSumg,,

ModDown ModDown;, + ModDowneyt — Btf
DiagMultSum DiagMultSum;, + DiagMultSum,,,
Rescale Rescale;, + Rescaleoput

C. Off-chip Data Movement Analysis

The SOTA FPGA-based FHE accelerators [14], [25] with
the acceleration card AMD U280 are equipped with 41 MB
internal SRAM. This capacity is insufficient for the reuse of
intermediate ciphertexts among subroutines, as illustrated in
Fig. 1. In this subsection, we analyze the global memory
access of baseline under the 41 MB constraint with Set-Al.
The main memory traffic for each subroutine of the baseline
dataflow is summarized in Table IV.

The ModUp operation increases the size of each digit from
3.4 MB (a limbs) to 14.2 MB (L + k + 1 limbs). However,
storing 3 () raised digits on-chip is unfeasible, necessitating
their transfer back to DRAM. The Automorph operation
requires reading the entire ciphertext. It is not feasible to
store the original ciphertext and its permuted version on-
chip. Therefore, the off-chip data transfers for Automorph
must include both input and output. For the KeyMultSum
operation, it is impossible to store one rotation key (84.9 MB)
on-chip. This operation is limb-based, which means that the
output polynomials are computed limb by limb, 2-(L+k41) in
total. The ModDown operation reads two elements (28.4 MB)
in modulo PQ),. Twiddle factors (14.2 MB) from ModUp can
be reused. The outputs are two elements (u,v) in modulo @,
(20.3 MB), which have to be written back to DRAM. For the
DiagMultSum operation, the intermediate result of u+ b,.,;
can be stored on-chip. Overall, within the baseline dataflow,
all subroutines, except for Decomp and ModUp, require both
reading from and writing to DRAM.

Therefore, the total off-chip data movement for baseline
dataflow is given as:

Totalpram = fftiter - (DecompDRAM + ModUppraym+
7 - (Automorphpran + KeyMultSumppay+
ModDownppran + DiagMultSumppran)+

Rescalepranm)

©)
IV. PROPOSED DATAFLOW — LIMBFLOW

As discussed above, the intermediate results of most subrou-
tines in the baseline dataflow cannot be stored on-chip due to
the limited SRAM size on the FPGA. Therefore, the baseline
involves significant off-chip data movement. In this section,
we introduce an optimized fine-grained dataflow - LimbFlow,
which significantly reduces off-chip data transfer and saves
SRAM size compared with the baseline dataflow. Fig. 3 shows
an overview of LimbFlow.

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

o limbs T+k+1 limbs 1limb

a (mod Q)

2% limbs

Rotation Key

L1 limbs,

b (mod Q) L1 limbs 1 limb

— S N
1
X .

 ——

1 limb

& ilimb a(mod QA1)

[limbs

J:(mod PQ)
b (mod PQ)

Plaintext
Diagonals

1by 1 Timb

rLimbs.

[l
I

b (mod 0A~1)

b Llimbs

TTimb

Fig. 3. Bandwidth Efficient LimbFlow. On-chip 3 + 1 ciphertext limbs with the same modulus are reused r times for r rotations. Each iteration generates
one limb for a and one limb for b. A total of ¢ + k + 1 iterations are required to generate all output ciphertext limbs.

A. Comparison with the Baseline Dataflow

1) Automorph: After ModUp, the ciphertext at its max-
imum level with the largest size is stored back in global
memory. In the baseline, each digit with £+ k41 limbs is read,
permutated, and written back to DRAM during Aut omorph.
However, in LimbFlow, we read one limb from each digit
(e.g., the first limb) since these limbs with the same modulus
are used for the following computations. Therefore, LimbFlow
achieves a finer-grained limb-level data reuse and removes the
write-back operation of Automorph. The 5 + 1 ciphertext
limbs on-chip are reused r times, as we need r rotations for
DiagMultSumn.

2) KeyMultSum: In LimbFlow, the inputs for this operation
include 541 ciphertext limbs (reused from Automorph) and
2-3 key limbs for computation. This approach significantly re-
duces the off-chip data movement compared with the baseline.
Moreover, two limbs are produced as outputs and stored on-
chip; these can be reused for DiagMult Sum. In the baseline
scenario, the results from KeyMult Sum must be written back
to DRAM.

3) DiagMultSum: In the baseline, the plaintext diagonals
are fetched sequentially, one by one, with a size of By;q, for
each due to multiple rotations. Each diagonal comprises ¢+ 1
limbs. In contrast, LimbFlow reorders the processing sequence
by fetching the limb with the same modulus from different
diagonals (a total of 7 diagonals). Specifically, only one limb
with the same modulus is fetched from each diagonal (e.g., the
first limb) since their results can be immediately accumulated
to produce a single output limb.

In the baseline, the output of each fftiter can be obtained
only after completing all r rotations, resulting in a signifi-
cant amount of off-chip data transfer. In contrast, LimbFlow
processes the output ciphertext limb by limb. Consequently, it
requires a total of £+ k+1 iterations, with the 5+ 1 ciphertext
limbs in each iteration being reused across r rotations.

4) ModDown: In LimbFlow, ModDown is hoisted out of
the rotation loop, which reduces its execution from 2 - fftiter -
r times to only 2 - fftiter times. This change amortizes the
computational cost across multiple rotations. It also facilitates
the merging of ModDown and Rescale, transitioning from
reducing by modulus P to reducing by modulus P - A [4],

[26]. This optimization significantly reduces computation and
memory access, as ModDown involves computation-intensive
NTT/INTT operations.

5) Summary: Overall, LimbFlow significantly reduces off-
chip data transfer among Automorph, KeyMultSum, and
DiagMultSum. It is achieved by reorganizing the processing
order and enabling finer-grained, limb-level data reuse, as the
accumulation within KeyMultSum and DiagMultSum is
performed on the limb with the same modulus. The outer
loop in the baseline is 7, reflecting the number of rota-
tions the ciphertext undergoes. However, r serves as the
inner loop to facilitate limb reuse in LimbFlow. Addition-
ally, LimbFlow’s limb-based processing significantly reduces
SRAM requirements through data reuse and the strategic
hoisting of ModDown.

B. SRAM Requirement Analysis

After the ModUp operation, the ciphertext with increased
size must be stored back in the main memory on FPGA, as
explained in Sec. III-C. However, as we merge the three sub-
routines Automorph, KeyMultSum, DiagMultSum with
fine-grained limb reuse, we only need to store 5+ 1 ciphertext
limbs, 2- 5 key limbs, and r diagonal plaintext limbs on-chip.
Taking into account the twiddle factor reuse, LimbFlow (Set-
Al) only requires 32 MB to eliminate the off-chip ciphertext
movement among these three subroutines.

Although our analysis is conducted on a platform with lim-
ited SRAM, LimbFlow is scalable to larger designs equipped
with more SRAM resources, such as ASICs. By designing
a larger ciphertext buffer to accommodate all intermediate
data, we can seamlessly integrate it into LimbFlow, further
leveraging its advantages in reducing computation cycles.
However, if the platform has a much smaller SRAM capacity,
LimbFlow can prioritize storing the ciphertext limbs and
loading the diagonal limbs in multiple travels. Essentially,
LimbFlow represents a general dataflow technique that is
applicable across a wide range of hardware platforms with
various SRAM availability.

C. Off-chip Data Movement Analysis

In this subsection, we provide a detailed breakdown of the
main memory traffic for LimbFlow compared to the baseline.

6

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

1) Automorph: In the baseline, the ciphertext is rotated
r times, with each rotation requiring the entire ciphertext
to be read from and then the permuted ciphertext to be
written back to main memory. However, in LimbFlow, we
load the ciphertext and perform permutation limb-wise. The
permutated limbs are transferred to KeyMultSum operation
without writing back to the DRAM. The + 1 limbs are
still on-chip for the next Automorph, which achieves data
reuse r times across rotations. Therefore, the total DRAM
transfer is reduced from fftiter - r - Automorphppran to
fftiter - (Automorphppran/2).

2) KeyMultSum: As mentioned, KeyMultSum takes the
permutated /3 ciphertext limbs as input, and it only needs to
load the corresponding 2 - 5 key limbs for computation. How-
ever, we still need to read all the evaluation keys from DRAM.
The loading of keys takes r - (¢ 4+ k + 1) iterations in total.
The result of each iteration is transferred to DiagMultSum
directly without writing back to DRAM. Here, we reduce the
off-chip data movement from fftiter - r - KeyMultSumpprans
to the total evaluation key size Beygs.

3) DiagMultSum: The LimbFlow achieves accumulation
from different diagonals immediately after the element-wise
multiplication, as the results are derived from the same limb.
The plaintext diagonals are loaded in (¢ + k + 1) iterations. In
each iteration, r diagonal limbs with the same modulus from
r different diagonals are loaded. Under the 41 MB SRAM
constraint, the results of DiagMultSum have to be written
back to the main memory before ModDown can proceed.
Therefore, the DRAM access is reduced from fftiter - r -
DiagMultSumpran to Bpinar + fftiter - (ModDown;, —
B; f). Here, we consider the reuse of the twiddle factor.

4) ModDown & Rescaling: The off-chip data movement for
ModDown is reduced from fftiter-r-ModDown pr 4z to fftiter-
ModDownpran. The Rescaling operation is incorporated
into ModDown benefiting from hoisting ModDown.

The total off-chip data movement of LimbFlow is given as:

Totalkll, 4 = fftiter - (Decompppan +ModUppran+
ModDownppran + Automorphpprans/2 + ModDown;,

- Btf) + Bevks + BPtMat
(10)

V. FPGA ACCELERATOR DESIGN

The architecture of the accelerator implemented on the
Alveo U280 FPGA is depicted in Fig. 4. The accelerator
mainly consists of a Processing Element (PE) array, on-chip
memory, interconnect, HBM, and a control unit. The following
subsections will provide detailed descriptions of the design and
functionality of these main units within the accelerator.

A. PE Array

The PE array includes dp PE units, achieving dp data paral-
lelism. Each PE consists of one modular multiplier (MM) and
one modular adder (MA). The PE can also perform modular
subtraction (MS) or multiply-accumulate (MAC) controlled by
the control logic. All computations within the PE are fully

7 2
-» 0t

1256 Lanes 1256 Lanes

rm-=========5======"

Twiddle

_ Plaintext Ciphertext Key Register
7 FaCtorS
Buffer
AXI
460GB/s

Fig. 4. The overview of the accelerator on Alveo U280

Mod Mult Unit (MM)

ino—f—

in1 —
t —

result
>

ctrl —»
clk —>

rst —

out

Fig. 5. The Architecture of PE unit and MM unit.

pipelined, and high-level subroutines are executed through the
PE array.

Fig. 5 shows the architecture of the PE unit and the MM
unit. The MM unit is built based on the Barret Reduction [27].
The fully pipelined MM unit with shift registers can get one
MM result per cycle. The pipelined MM is designed based
on [28], which includes one full coefficient width Integer
Multiplier (IntMult) and two half coefficient width IntMult.

B. On-chip Memory System

The on-chip memory mainly comprises the buffers for
twiddle factor, plaintext diagonal, key, and ciphertext. The
buffer size is designed according to the LimbFlow SRAM
requirement analysis in Sec. IV. The pre-computed twiddle
factors are stored in the twiddle factor buffer and reused
in both ModUp and ModDown. The rotation key limbs and
the plaintext diagonal limbs are loaded from HBM to their
corresponding buffers, respectively.

These on-chip buffers are built by wisely stacking and
combining available on-chip Block RAM (BRAM) and Ultra
RAM (URAM). On the Alveo U280, each BRAM block has
a data width of 18 bits and a depth of 1024. For example,

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

?1

1

L. __ _SpatialPermute __ _ ; TemporalPermute |\ _ _ _ _ SpatialPermute _ _ _ _

Fig. 6. The Architecture of Streaming Permutation Network (SPN)

by combining three BRAMs, we can store 1K 54-bit coef-
ficients [14]. Stacking BRAM blocks achieves storing more
coefficients. Similarly, the URAM block is in the dimension of
72-bitx4096. Three URAM blocks are combined to keep 16K
54-bit coefficients. We also utilize multiple register files (RFs)
to store pre-computed values, e.g., powers-of-5 for Address
Generation Unit (AGU) for Automorph permutation.

C. Interconnect

The interconnect mainly comprises the connection between
the PE array and the memory on the chip, and the Streaming
Permutation Network (SPN) [29] for the required permutation
work in the HE DFT.

The SPN is based on a folded version multi-stage Benes
network [30], which can achieve high-throughput arbitrary
permutations. The SPN has three subnetworks, including two
spatial networks and one temporal network, as shown in
Fig. 6. The spatial network has (dp/2) - log dp numbers of
2 x 2 switches to compose a dp-to-dp connection recursively.
Temporal permutation is realized by issuing reads and writes
to dp dual-port memory using addresses generated from AGU.
The execution of SPN works as follows. First, N coefficients
are streamed into the first spatial network with N/dp cycles,
controlled by the routing table within the control logic. Then,
the data are written into dp memory blocks based on the
addresses from AGU. Lastly, dp coefficients are read out every
cycle for the second spatial permutation, which also takes
N/dp cycles in total.

D. Operation Mapping

In this subsection, we show how subroutines in HE DFT
using LimbFlow are mapped on the accelerator.

1) Basis Conversion: The BConv operation is the core
operation in ModUp and ModDown. Each coefficient output
of a new limb is obtained by several consecutive MM and
MAC operations performed within the PE array. If we are
converting the RNS basis from C to 3, dp outputs are obtained
after (L+1) x K MM and MAC operations. The intermediate
results are stored in the ciphertext buffer, and the pre-computed
moduli are stored in the register files.

TABLE V
PARAMETER SET FOR ANALYSIS AND EXPERIMENT

Param. Set logg N L k dnum fftiter A
Set-Al 54 216 22 9 3 4 128
Set-A2 54 26 22 9 3 3 128
Set-A3 54 216 22 9 3 2 128

Set-B 64 217 39 11 2 4 128
Set-C 32 216 37 15 3 4 128

2) NTT&INTT: The NTT operation is very costly in ModUp
and ModDown to convert the polynomial coefficients between
coefficient domain and evaluation domain. Our datapath uti-
lizes the same data mapping logic for both NTT and INTT with
a unified Cooley-Tukey algorithm [31]. The PE units inside
the PE array function as radix-2 ButterFly Units (BFU). Each
BFU takes two inputs and generates two outputs by two MAC
operations in parallel. One MAC operation performs modular
multiplication and addition, and the other handles modular
multiplication and subtraction. The fully pipelined architecture
of the PE array enables the output of dp coefficients per cycle.
Therefore, we need approximately log N - N/dp cycles for
the computation of NTT or INTT. The twiddle factors are
precomputed and stored within the twiddle factor buffer. In
terms of the permutation process between NTT stages, the
ciphertext coefficients are fetched from the buffer to the SPN
after each stage. The specific permutation step of each NTT
stage is set by the routing table within the control logic, and
the memory access within the temporal network is set by the
AGU, which is also controlled by the control unit.

3) Automorph: The Aut omorph operation is also realized
by the SPN. Unlike the fixed permutation pattern employed
in NTT stages, the AGU initially computes the new mapping
indices through bit-shifting and AND operations with the
precomputed powers-of-5. Based on the new mapping indices,
the coefficients are read from the ciphertext buffer and subse-
quently permuted within the SPN. This permutation process
takes 2- N /dp cycles, with an additional minor delay occurring
within the temporal network of the SPN. Upon completion, the
permutation outputs are written back to the ciphertext buffer.

4) MultSum: The KeyMultSum and DiagMultSum op-
erations are performed in the same manner within the PE array
by the MAC operation. The limbs of key and plaintext matrix
diagonals are loaded from HBM to their corresponding on-
chip buffers. The buffer sizes are carefully designed to save
the SRAM cost based on the LimbFlow SRAM requirement
analysis in Sec. IV.

VI. EVALUATION
A. Experimental Setup

We implement our design on AMD Alveo U280 using
Verilog HDL. The FPGA has 1,304K LUTs, 2,607K FFs, 41
MB on-chip SRAM, and 9,024 DSPs. We implement 256/512
PEs (dp = 256 or 512) and perform synthesis and place-and-
route using Vivado 2023.1. The results are reported after place-
and-route. The accelerator utilizes HBM to transfer off-chip
data with up to 460 GB/s bandwidth.

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

700 2.5
600

a 2
£ 500
[}
£ 400 -
& :
8 300 | &
£
8 200
]
is 0.5
100 I I
0 || | =

Set-A1l Set-A2 Set-A3 Set-B Set-C

mmmm Bascline mmmmm LimbFlow — e==@== Speedup

Fig. 7. HE DFT runtime comparison between baseline and LimbFlow.

We evaluate our design under different parameter settings
in Table V. Our parameter set targets 128-bit security. Set-A is
utilized to explore the impact of fftiter on the HE DFT. Set-B
and Set-C are scaled up and down, respectively. Notably, only
the design under Set-C is capable of achieving dp = 512.

B. Results and Analysis

1) Comparison with Baseline Dataflow:

Runtime & Speedup: The performance comparison is
shown in Fig. 7. We vary fftiter across three different parame-
ter sets within Set-A. As we decrease fftiter, the execution time
increases for both dataflows. The reason is that smaller fftiter
correspond to larger total evaluation key size and plaintext
diagonal size, which leads to more global memory access.
Moreover, smaller fftiter increases the number of diagonals,
where 7,tq; becomes dominated by radix rdx in Eq. 6. For
instance, rdx is 2% under Set-A3. In terms of the speedup, a
smaller fftiter leads to a larger speedup, as LimbFlow benefits
from reducing off-chip data movement. Comparing the results
from Set-A1l with Set-B, we observe that LimbFlow achieves
a greater speedup at a higher degree and maximum level.

Off-Chip Data Movement: Table VI shows the global
memory access for both baseline and LimbFlow under differ-
ent parameter sets. Specifically, the results are derived from
our cost model with the constraints of a limited SRAM size
(41 MB). On average, LimbFlow can reduce global memory
access 4.18x. The off-chip data traffic reduction improves as
we decrease fftiter from Set-Al to Set-A3.

TABLE VI
OFF-CHIP DATA MOVEMENT SIZE (IN GB)
Baseline LimbFlow Traffic Reduction
Set-Al 57.05 14.22 4.01x
Set-A2 74.51 17.72 4.20%
Set-A3 472.23 112.00 4.22%
Set-B 156.72 34.11 4.59x
Set-C 47.97 12.28 391x

Runtime Breakdown: We compare the runtime breakdown
between the baseline and LimbFlow in Fig. 8. Firstly, in
the baseline, KeyMultSum consumes the most time due to

67.43ms

106.04ms
0% 20% 40% 60% 80% 100%
m Decomp ®ModUp m Automorph KeyMultSum
m DiagMultSum mModDown mRescale

Fig. 8. HE DFT runtime breakdown comparison between baseline and
LimbFlow using Set-Al.

significant off-chip data movement. However, in LimbFlow,
KeyMultSum uses only a minimal portion of time, as both
inputs and outputs of this operation are stored in on-chip
memory. Secondly, our fine-grained ciphertext limb reuse
across Automorph, KeyMultSum, and DiagMult Sum re-
duce their execution time notably. The ModUp operation
occupies a larger portion in LimbFlow, as it still requires
writing the raised ciphertext back to HBM. Lastly, by hoisting
ModDown outside the rotation loop and merging Rescale
into ModDown, the consumed time proportion reduces to only
roughly 20% in LimbFlow.

2) Resource Utilization: The resource utilization for
LimbFlow is detailed in Table VII. The design using Set-B de-
mands more BRAM/URAM due to the larger size and higher
number of coefficients. Additionally, compared to Set-A, the
64-bit coefficients in Set-B require more multiplication stages
for each MM unit, leading to increased DSP consumption. The
design under Set-C also utilizes more DSP resources than Set-
A due to the increased number of PE units from 256 to 512.

TABLE VII
LIMBFLOW RESOURCE UTILIZATION
. Utilized
Resource Available Set-A Set-B Set-C
LUTs 1,304K 924,437 1,004K 743,832
FFs 2,607K 1,872K 2,001K 1,694K
DSP 9,024 5,120 8,192 7,168
BRAM 4,032 3,214 3,468 2,722
URAM 962 703 780 576

3) Comparison with SOTA works: Table VIII shows the
performance comparison with the SOTA CPU/GPU works.
LimbFlow achieves more than 100x speedup compared with
the SOTA CPU implementation [9], [32]. Compared to the
SOTA GPU design [16], LimbFlow can achieve a speedup of
4.9x. However, if LimbFlow operates at the same frequency
as the GPU design, the speedup increases to more than 10x.

Table IX shows the performance comparison with the SOTA
FPGA and ASIC implementations. It is important to note that
not all previous studies disclose the runtime of HE DFT or
its proportion within the bootstrapping process. Therefore,

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII
PERFORMANCE COMPARISON WITH SOTA CPU/GPU WORKS

Freq HE DFT

Work (GHz) (loggq, N) (ms) Speedup
Lattigo [9] (CPU) 35 (64,2 8,400 124.57x
100x [16] (GPU) 1.2 (54, 216) 205.81 3.05x
100x [16] (GPU) 1.2 (54, 217) 330.40 4.90x

LimbFlow (FPGA) 0.3 (54, 216) 67.43
TABLE IX

PERFORMANCE COMPARISON WITH SOTA ASIC/FPGA WORKS

Freq HE DFT

Work (GHz) (log g, N) (ms) Speedup
F1 [33] (ASIC) 1.0 (32,21%) 34.98 0.90x
BTS [15] (ASIC) 12 (50,217) 30.25 0.78 %
Poseidon [25] (FPGA) 0.45 (32,216) 76.37 1.98x
LimbFlow (FPGA) 0.3 (32, 216) 38.52 -

we estimate the HE DFT runtime to be 60% of the total
bootstrapping time here. This estimate is conservative since
the HE DFT portion reported by existing works is consistently
above 60%, including CPU [9], GPU [16], and ASIC [23].

ASIC-based acceleration works [33], [15] are still more
efficient than LimbFlow, as they use a substantial number
of PEs and hundreds of megabytes of on-chip SRAM. It
is important to note that LimbFlow, as a general dataflow
technique, can also be implemented on ASICs to achieve
further speedup with more resources. For example, with 512
MB of SRAM, LimbFlow can also eliminate DRAM transfers
for operations such as ModUp and ModDown. Furthermore,
LimbFlow can still see reduced computing cycles through
strategic reordering and merging of subroutines.

For the FPGA implementations, our primary focus is on
Poseidon [25] which maximizes the computing efficiency of
operator cores. We achieve a 1.98x speedup, as Poseidon
employs a baseline-like algorithm for the HE DFT operation,
which still suffers from the main memory traffic. It should
be noted that we select Set-C to ensure a fair comparison.
By utilizing a 32-bit coefficient size, we can achieve data
parallelism of 512, an improvement over the 256 parallelism
achieved with Set-A and Set-B, as depicted in Fig. 4.

VII. RELATED WORK

CPU/GPU: Several FHE libraries like HEAAN [10], [34],
HELIib [35], [36], Lattigo [32], [9] developed supports boot-
strapping. However, the performance is limited due to the
large number of DRAM accesses of the HE DFT operation
on the CPU. For example, it takes roughly eight minutes to
bootstrap 128 slots within a ciphertext of degree 2'¢ using
the HEAAN library. The pioneering GPU-based study [16]
supporting bootstrapping introduced a kernel-fusion technique
to minimize off-chip data access. However, certain kernels
remained unfused due to constraints in on-chip storage ca-
pacity. GPU is not specifically tailored for FHE and lacks
the implementation of key operators within its computing
cores. Moreover, GPUs have higher power consumption than
FPGA/ASICs.

10

FPGAs: Most FPGA-based FHE accelerators [37], [38],
[39], [40] only support small parameter sets or certain opera-
tions without supporting bootstrapping. Recent works support-
ing bootstrapping achieve higher performance and efficiency
in comparison with CPU/GPU-based acceleration. FAB [14]
leveraged the hoisting method, as proposed by Halevi and
Shoup [17], to amortize certain operations across multiple
rotations in HE DFT. The bootstrapping algorithm of Po-
seidon [25] is based on [9]. However, all previous FPGA-
based accelerators do not consider fine-grained ciphertext limb
reuse in bootstrapping and are constrained by the limited
on-chip SRAM. We are the first to propose an accelerator
specifically tailored for the bottleneck of bootstrapping -
HE DFT, reducing the SRAM requirement and off-chip data
movement.

ASICs: F1 [33], which is distinctively designed for parame-
ter sets with a low polynomial degree, is limited to supporting
single-slot bootstrapping operations that exhibit low through-
put. BTS [15] applied the matrix factorization approach for
HE DFT based on [22], yet it did not incorporate bandwidth-
aware optimizations on bootstrapping. ARK [23] developed a
strategy generating matrix plaintext limbs on-the-fly during HE
DFT to reduce main memory access. Although ASIC-based
accelerators achieve high performance, they require substantial
hardware resources, including high operating frequency (e.g.,
2 GHz), a large number of PEs (e.g., 2048), and hundreds of
megabytes of on-chip SRAMs (e.g., 512 MB).

VIII. CONCLUSION

Bootstrapping represents the most costly operation in FHE,
with the HE DFT operation being the most time-consuming
aspect due to the extensive amount of global memory access.
In this paper, we design an analytical cost model to assess off-
chip data movement for the HE DFT operation. Furthermore,
we propose a bandwidth-efficient HE DFT dataflow named
LimbFlow, which enables fine-grained data reuse and de-
creases the dependency on SRAM. LimbFlow significantly re-
duces off-chip memory access compared to baseline dataflow.
This efficiency makes it suitable for practical FPGA platforms
that have limited on-chip memory, without sacrificing its ver-
satility. As a general dataflow technique, LimbFlow can also be
seamlessly adapted to other hardware platforms. Additionally,
we develop an FPGA accelerator tailored for HE DFT based on
LimbFlow, demonstrating 4.90x and 1.98x speedup against
SOTA GPU and FPGA implementations.

IX. ACKNOWLEDGEMENT

This work is supported by the U.S. National Science Foun-
dation (NSF) under grants CCF-1919289 and OAC-2311870.
Equipment and support by AMD AECG are greatly appreci-
ated.

Distribution Statement A: Approved for public release. Distri-
bution is unlimited.

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

(1]

[2]

[3]

[4]

[6

—

[71

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, pp. 1-40,
2009.

V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learn-
ing with errors over rings,” in Advances in Cryptology—-EUROCRYPT
2010: 29th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, French Riviera, May 30-June 3,
2010. Proceedings 29. Springer, 2010, pp. 1-23.

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the forty-first annual ACM symposium on Theory of
computing, 2009, pp. 169-178.

L. de Castro and V. Vaikuntanathan, “Does fully homomorphic en-
cryption need compute acceleration?” arXiv preprint arXiv:2112.06396,
2021.

J. H. Cheon, K. Han, and M. Hhan, “Faster homomorphic
discrete fourier transforms and improved fhe bootstrapping,”
Cryptology ePrint Archive, Paper 2018/1073, 2018. [Online]. Available:
https://eprint.iacr.org/2018/1073

Xilinx, “Xilinx UltraScale+ HBM FPGAs,” 2020. [Online].
Available: https://www.xilinx.com/products/silicon-devices/fpga/virtex-
ultrascale- plus-hbm.html

Intel, “Intel® oneAPI Math Kernel Library,” 2020. [Online].
Available: https://www.intel.com/content/www/us/en/docs/onemkl/get-
started- guide/2023-0/overview.html

AMD, “AMD ACAP versal HBM-series,” 2020. [Online].
Available: https://www.xilinx.com/products/silicon-devices/acap/versal-
hbm.html#productAdvantages

J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux,
“Efficient bootstrapping for approximate homomorphic encryption with
non-sparse keys,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2021, pp.
587-617.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology —
ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. ~ Cham: Springer
International Publishing, 2017, pp. 409—437.

S. Halevi and V. Shoup, “Algorithms in helib,” in Advances in Cryp-
tology - CRYPTO 2014, J. A. Garay and R. Gennaro, Eds. Springer
Berlin Heidelberg, 2014, pp. 554-571.

J. H. Cheon, K. Han, and M. Hhan, “Faster homomorphic
discrete fourier transforms and improved fhe bootstrapping,”
Cryptology ePrint Archive, Paper 2018/1073, 2018. [Online]. Available:
https://eprint.iacr.org/2018/1073

H. Chen, I. Chillotti, and Y. Song, “Improved bootstrapping for ap-
proximate homomorphic encryption,” in Advances in Cryptology —
EUROCRYPT 2019, Y. Ishai and V. Rijmen, Eds. ~Cham: Springer
International Publishing, 2019, pp. 34-54.

R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil, A. Chan-
drakasan, V. Vaikuntanathan, and A. Joshi, “Fab: An fpga-based accel-
erator for bootstrappable fully homomorphic encryption,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2023, pp. 882-895.

S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and
J. H. Ahn, “Bts: An accelerator for bootstrappable fully homomorphic
encryption,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, ser. ISCA ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 711-725. [Online].
Available: https://doi.org/10.1145/3470496.3527415

W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee,
“Over 100x faster bootstrapping in fully homomorphic encryption
through memory-centric optimization with gpus,” IACR Transactions
on Cryptographic ~ Hardware and Embedded Systems, vol.
2021, no. 4, p. 114-148, Aug. 2021. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/9062

S. Halevi and V. Shoup, “Faster homomorphic linear transformations in
helib,” in Advances in Cryptology — CRYPTO 2018, H. Shacham and
A. Boldyreva, Eds. Cham: Springer International Publishing, 2018, pp.
93-120.

T. Ye, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Performance
modeling and fpga acceleration of homomorphic encrypted convolution,”
in 2021 31st International Conference on Field-Programmable Logic
and Applications (FPL), 2021, pp. 115-121.

11

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography—SAC 2018: 25th International Conference, Calgary, AB,
Canada, August 15-17, 2018, Revised Selected Papers 25. Springer,
2019, pp. 347-368.

J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, “A full rns variant of
fv like somewhat homomorphic encryption schemes,” in International
Conference on Selected Areas in Cryptography. Springer, 2016, pp.
423-442.

Z. Liang and Y. Zhao, “Number theoretic transform and its ap-
plications in lattice-based cryptosystems: A survey,” arXiv preprint
arXiv:2211.13546, 2022.

K. Han and D. Ki, “Better bootstrapping for approximate homomorphic
encryption,” in Cryptographers’ Track at the RSA Conference. Springer,
2020, pp. 364-390.

J. Kim, G. Lee, S. Kim, G. Sohn, M. Rhu, J. Kim, and J. H. Ahn, “Ark:
Fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2022, pp. 1237-1254.

S. Cheon, Y. Lee, D. Kim, J. M. Lee, S. Jung, T. Kim, D. Lee, and
H. Kim, “DaCapo: Automatic bootstrapping management for efficient
fully homomorphic encryption,” in 33rd USENIX Security Symposium
(USENIX Security 24). USENIX Association, 2024.

Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Poseidon:
Practical homomorphic encryption accelerator,” in 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA),
2023, pp. 870-881.

R. Agrawal, L. De Castro, C. Juvekar, A. Chandrakasan, V. Vaikun-
tanathan, and A. Joshi, “Mad: Memory-aware design techniques for
accelerating fully homomorphic encryption,” in Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture,
2023, pp. 685-697.

P. Barrett, “Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor,” in Conference
on the Theory and Application of Cryptographic Techniques. Springer,
1986, pp. 311-323.

S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, “Fpga-
based accelerators of fully pipelined modular multipliers for homomor-
phic encryption,” in 2019 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), 2019, pp. 1-8.

R. Chen and V. K. Prasanna, “Automatic generation of high throughput
energy efficient streaming architectures for arbitrary fixed permutations,”
in 2015 25th International Conference on Field Programmable Logic
and Applications (FPL), 2015, pp. 1-8.

V. E. Benes, “Optimal rearrangeable multistage connecting networks,”
Bell system technical journal, vol. 43, no. 4, pp. 1641-1656, 1964.
Norton and Silberger, “Parallelization and performance analysis of
the cooley—tukey fft algorithm for shared-memory architectures,” IEEE
Transactions on Computers, vol. 100, no. 5, pp. 581-591, 1987.

C. V. Mouchet, J.-P. Bossuat, J. R. Troncoso-Pastoriza, and J.-P. Hubaux,
“Lattigo: A multiparty homomorphic encryption library in go,” in
Proceedings of the 8th Workshop on Encrypted Computing and Applied
Homomorphic Cryptography, no. CONF, 2020, pp. 64-70.

N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable acceler-
ator for fully homomorphic encryption,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 238-252.

K. Han, M. Hhan, and J. H. Cheon, “Improved homomorphic discrete
fourier transforms and fhe bootstrapping,” IEEE Access, vol. 7, pp.
57361-57370, 2019.

S. Halevi and V. Shoup, “Algorithms in helib,” in Advances in
Cryptology—CRYPTO 2014: 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I 34.
Springer, 2014, pp. 554-571.

, “Bootstrapping for helib,” Journal of Cryptology, vol. 34, no. 1,
p- 7, 2021.

M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1295-1309.

Y. Yang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Nttgen:
a framework for generating low latency ntt implementations on fpga,” in

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

Proceedings of the 19th ACM International Conference on Computing
Frontiers, 2022, pp. 30-39.

[39] Y. Yang, W. Long, R. Kannan, and V. K. Prasanna, “Fpga acceleration
of rotation in homomorphic encryption using dynamic data layout,” in
2023 33rd International Conference on Field-Programmable Logic and
Applications (FPL). 1EEE, 2023, pp. 174-181.

[40] M. Han, Y. Zhu, Q. Lou, Z. Zhou, S. Guo, and L. Ju, “coxhe: A software-
hardware co-design framework for fpga acceleration of homomorphic
computation,” in 2022 Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2022, pp. 1353-1358.

12

Authorized licensed use limited to: University of Southern California. Downloaded on September 29,2024 at 06:54:53 UTC from IEEE Xplore. Restrictions apply.

