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ABSTRACT

Fueled by the soaring popularity of foundation models, the ac-
celerated growth of artificial intelligence (AI) models’ enormous
environmental footprint has come under increased scrutiny. While
many approaches have been proposed to make Al more energy-
efficient and environmentally friendly, environmental inequity —
the fact that AT’s environmental footprint can be disproportionately
higher in certain regions than in others — has emerged, raising
social-ecological justice concerns. This paper takes a first step to-
ward addressing AI’s environmental inequity by fairly balancing its
regional environmental impact. Concretely, we focus on the carbon
and water footprints of Al model inference and propose equity-
aware geographical load balancing (eGLB) to explicitly minimize
AT’s highest environmental cost across all the regions. The con-
sideration of environmental equity creates substantial algorithmic
challenges as the optimal GLB decisions require complete offline
information that is lacking practice. To address the challenges,
we introduce auxiliary variables and optimize GLB decisions on-
line based on dual mirror descent. In addition to analyzing the
performance of eGLB theoretically, we run trace-based empirical
simulations by considering a set of geographically distributed data
centers that serve inference requests for a large language AI model.
The results demonstrate that existing GLB approaches may amplify
environmental inequity while eGLB can significantly reduce the
regional disparity in terms of carbon and water footprints.
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1 INTRODUCTION

The success of artificial intelligence (Al) relies heavily on computa-
tionally intensive calculations to learn useful information from data
during training and provide insightful predictions during inference.
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As such, Al models, especially large generative models like GPT-3
[9], are typically trained on large clusters of power-hungry servers
that may each have multiple graphic processing units (GPUs) and
are housed in warehouse-scale data centers. Moreover, for infer-
ence, Al models are often deployed in geographically distributed
data centers to serve users with low transmission latency.

Consequently, the exponentially growing demand for Al has cre-
ated an enormous appetite for energy as well as a negative impact
on the environment [9, 29, 46, 59, 71, 75]. For example, putting aside
the environmental toll of chip manufacturing (e.g., raw material
extraction and toxic chemicals) [23, 57, 76] and the noise pollu-
tion of running Al servers [55], training a large language model
like GPT-3 and LaMDA can easily consume hundreds of megawatt-
hour of electricity, generate many tonnes of carbon emissions, and
evaporate hundreds of thousands of liters of clean freshwater for
cooling [43, 46, 79]. Crucially, in addition to their impacts on the
global climate, AI's environmental footprint also has significant
local and regional impacts. Elevated carbon emissions have local-
ized social costs [13] and may increase local ozone, particulate
matter, and premature mortality [34]; electricity generation, espe-
cially when burning fuels, produces local air pollutants, discharges
pollution such as thermal pollution into water bodies, and gener-
ates solid wastes (possibly including hazardous wastes) [85]; and
staggering water consumption, both directly for on-site cooling
and indirectly for off-site electricity generation, can further stress
the already-limited local freshwater resources and even worsen
extended megadroughts in regions like Arizona [43, 80].

Fueled by the soaring popularity of large language and founda-
tion models, the accelerated growth of AI's environmental foot-
print has come under increased scrutiny recently [25, 86]. To make
Al more energy-efficient and environmentally friendly, research
studies have pursued a variety of approaches, including computa-
tionally efficient training and inference [11, 65], energy-efficient
GPU and accelerator designs [22, 59, 87], carbon-aware task sched-
uling [29, 86], green cloud infrastructures [1, 4, 18], sustainable Al
policy recommendations [25, 57], among others. As supply-side
solutions, data center operators have also increasingly adopted
carbon-free energy such as solar and wind power, (partially) pow-
ering Al servers and lowering carbon emissions [20, 50, 86]. Ad-
ditionally, to reduce on-site water consumption and mitigate the
stress on already-limited freshwater resources, climate-conscious
cooling system designs (e.g., using air-side economizers if the cli-
mate condition permits) have recently seen an uptick in the data
center industry [21, 51].
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While existing efforts are encouraging, a worrisome outcome
— environmental inequity — has unfortunately emerged. That is,
minimizing the total environmental cost of Al across multiple re-
gions does not necessarily mean each region is treated equitably.
In fact, AI’s environmental footprint is often disproportionately
higher in certain regions than in others, potentially exacerbating
other unintended social-ecological consequences [83]. For example,
a data center’s on-site cooling water usage effectiveness (WUE,
the ratio of water consumption to IT energy consumption) highly
depends on the outside temperature [32] — while it can stay well
below 1.0 L/kWh for data centers located in cooler climates, the
monthly average WUE can be as high as 9.0 L/kWh in the summer
in drought-stricken Arizona [37]. Likewise, there exists a signifi-
cant regional difference in terms of the carbon efficiency — as of
2020, only 4% of the energy for Google’s data center in Singapore
is carbon-free, whereas this number goes up to 94% in Finland [59],
creating a 23X disparity. Thus, as a result of such regional differ-
ences, certain data center locations are severely disadvantaged and
more negatively impacted by the environmental toll of AL Further
compounded by enduring socioeconomic disparities and even po-
tentially amplified by existing data center scheduling algorithms,
environmental inequity of Al can pose critical business risks and
hence needs to be properly reconciled.

Indeed, addressing its environmental inequity is increasingly
important and becoming integral to responsible Al and computing
[6, 58]. For example, in the first-ever global agreement to ensure
healthy development of Al, the United Nations Educational, Scien-
tific and Cultural Organization (UNESCO) recommends that “Al
should not be used” if it creates “disproportionate negative impacts
on the environment” [82]. The AI Now Institute even compares the
uneven regional distribution of AI's environmental costs to “histor-
ical practices of settler colonialism and racial capitalism” in its 2023
Landscape report [35]. Among all the environmental-related topics,
Meta ranks environmental justice as the most critical one with the
greatest impact on its business risks and opportunities [50]. More
recently, studies have also emerged to suggest new regulations per-
tinent to AI's growing environmental footprint [25], and holistic
assessment of Al as social-ecological-technological systems using
available tools from environmental justice [5, 66].

In this paper, we take a first step to address the emerging envi-
ronmental inequity of Al by balancing its negative environmental
impact across geographically distributed data centers. More con-
cretely, we focus on the carbon and water footprints of Al model
inference and dynamically schedule users’ inference requests (also
referred to as workloads in this paper) using equity-aware geograph-
ical load balancing (GLB) to fairly distribute AT’s environmental
cost to each region. To mitigate environmental inequity, our key
novelty is to augment the traditional cost-saving objective by ex-
plicitly including minimization of the most significant negative
environmental impacts among all the data centers.

Nonetheless, the consideration of environmental equity in GLB
decisions creates substantial algorithmic challenges. Specifically,
due to their dependency on the long-term carbon and water foot-
prints, the equity-related costs couple all the GLB decisions over
T time slots (see (4a)—(4d)). This means that the optimal GLB de-
cisions require all the offline information (e.g., future workload
arrivals and water efficiency) in advance, while we must make GLB
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decisions online without knowing all the future. To address this
challenge, we propose a new online equity-aware GLB algorithm,
called eGLB, which leverages online information to optimize the
GLB decisions based on dual mirror descent. We also bound the cost
performance of eGLB compared to the offline optimal equity-aware
GLB algorithm (eGLB-0ff).

To empirically evaluate our proposed equity-aware GLB, we run
trace-based simulations by considering a set of 10 geographically
distributed data centers that serve inference requests for a large
language AI model. Our results demonstrate that the proposed
equity-aware GLB can significantly reduce the carbon and water
footprints in the most disadvantaged region. In stark contrast, ex-
isting carbon- and water-saving GLB approaches may even amplify
environmental inequity, showing that minimizing the total envi-
ronmental footprint does not necessarily treat each region fairly.

In summary, our work is the first study to advance AI's envi-
ronmental equity via GLB, connecting research across data center
scheduling, sustainable Al and equitable AL It highlights the need
and great potential of equity-aware GLB to fairly distribute AI’s en-
vironmental cost across different regions for environmental equity.

2 PROBLEM FORMULATION

While Al model training is energy-intensive, the environmental
footprint of its inference phase is also enormous and can even be
several times higher than the training process [12]. As such, we
consider a pre-trained Al model (e.g., large language model) and
focus on the inference phase. The Al model inference service is
deployed over a set N = {1,---, N} of geographically distributed
data centers to serve users in different regions. There are a set
J =A{1,---,]J} of front-end traffic gateways that aggregate users’
requests from their respective surrounding areas and assign the
requests to data centers, which is also referred to as geographical
load balancing (GLB) in the literature [12, 45]. The GLB decisions
are made in a time-slotted manner over a total of T time slots.
Each time slot can range from a few minutes to about an hour,
depending on how frequently the decisions are updated. We also
interchangeably use “workloads” and “requests” when referring to
users’ demand for the AI model inference service. Our model is
consistent with those used in the literature such as [32, 45, 64].

Each data center houses a cluster of servers (typically each
equipped with multiple GPUs) to host Al models for inference.
For the ease of presentation, we assume a homogeneous Al model
on all the servers, while the extension to heterogeneous Al models
with different model sizes is considered in Appendix C. During
each time slot, the maximum service capacity for the AI model
inference is M; for data center i. We use Aj; to denote the total
amount of workloads arriving at gateway j at time ¢, and x;;(¢) > 0
to represent the GLB decision (i.e., the load assigned to data center
i from gateway j). For the convenience of presentation, we also
use x(t) = {x; j(t)|i € N, j € J} as the collection of all the GLB
decisions at time ¢.

The total load assigned to data center i is 3 je g xij(t) < M;
at time ¢, thus resulting in a total server energy consumption of
ei(x(t)) which is an increasing function of } ;¢ ¢ x;;(t). For exam-

Zjegxij(D) &
M.

ple, a common model [45] is e; (x(t)) = piEis + Ei 4

3

where E; ; is the server cluster’s static/idle energy even when no
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workload is processed in data center i, E; 4 is the cluster’s dynamic
i ()
energy consumed when only processing workloads, w is

e xij(t
the cluster-level utilization, and M < pit

how well the cluster is right-sized in proportion to the workloads
Z ]EJ i ]( )
M;

< 1 indicates

(ie., pir = means the cluster is perfectly sized to the
workloads by turning off unused servers, while p; ; = 1 means the
servers are always kept on regardless of the assigned workloads).

Next, we model the energy cost, carbon footprint, and water
footprint in terms of the GLB decisions. Here, we explicitly model
carbon and water footprints separately, as they are two complemen-
tary and non-substitutable measures for ecological impacts [16].

Energy cost. Suppose that the electricity price and power usage
effectiveness (PUE, which accounts for non-IT energy consumption
such as cooling systems and power distribution losses) are p; ; and
Yi,+ for data center i at time ¢, respectively. Then, the total energy
cost at time ¢ can be written as

g (x()) = D pisvisei(x(1)). &)
ieN

Note that, if the Al model inference service is run on virtual machine
(VM) instances rented from public cloud providers, the electricity
price p;; becomes the VM price subject to the VM instance type
and g; (x(t)) = Xje v Pirei(x(t)) is the total VM rental cost at time
t where e;(x(t)) represents the number of VM instances rented to
process the assigned workloads in location i.

Carbon footprint. The carbon footprint of Al model inference
is embedded in the generation of electricity using carbon-intensive
fuels such as coal [19, 23, 46]. The carbon footprint for data center
i at time ¢ can be denoted as follows:

cir(x(1)) = airyirei(x(t)) (2)

The carbon intensity «;; can be obtained by querying the local
utility or averaging the carbon intensity of the grid’s fuel mix [19].

Water footprint. In parallel with the carbon footprint, data
centers’ staggering water footprint has recently become a new
focused area for sustainability (see, e.g., the pledge of “Water Pos-
itive by 2030” by big techs [21, 53]). To serve Al model inference,
data centers consume clean freshwater both directly and indirectly
[21, 33, 43, 74]. The direct water consumption comes from the cool-
ing system to keep servers from overheating. Al servers use either
air or closed-loop liquid to transfer the heat to the facility level (e.g.,
the facility cooling water loop or heat exchanger [73]). Then, to
further reject the heat into the outside environment, data centers
commonly use cooling towers due to their energy efficiency and
applicability to a wide range of weather conditions. Nonetheless, a
large amount of water is evaporated into the outside environment
(i-e., not discharged or returned to the source) and hence considered
“consumed” [21]. For example, depending on the outside wet-bulb
temperature, a cooling tower typically consume 1~4 liters of water
(up to 9 liters of water in the summer) for each kWh server energy
[37]. Importantly, the vast majority of the cooling water supply is
drinking-grade (e.g., nearly 90% for Google’s U.S. data centers in
2021 [21]). Alternatively, air-side economizers (i.e., directly using
outside air to cool down servers) can be used to save water if the
climate condition is suitable, but water is still needed when the
outside temperature is high and/or the humidity is low — Meta’s
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state-of-the-art cooling systems use an average of 0.26 liters of
water for each kWh server energy across its global data center fleet
in 2021 [50]. Al systems are also accountable for water consump-
tion embedded in the electricity generation process. For example,
thermal and nuclear power plants require a large volume of water
consumption for cooling, while hydropower consumes water by
expediting evaporation downstream [68, 72].
Thus, the total water footprint for data center i at time ¢ is

wir (x(t)) = [€ir + Birvie] - ei (x(1)), (3)

where €;; is the direct water usage effectiveness (WUE) for on-site
cooling, f; ; is the indirect WUE for off-site electricity generation,
and y; ¢ is the PUE. The direct WUE is defined as the ratio of water
consumption to IT server energy consumption [78], and hence we
do not need to multiply y; ; when calculating the direct water con-
sumption. In practice, the direct WUE ¢; ; heavily depends on the
outside temperature [37, 43]. Like the carbon intensity, the indirect
WUE p; + measures the water consumption per kWh electricity gen-
eration and can be calculated by averaging over the water intensity
of different energy fuels [32]. The monetary price for on-site water
consumption is typically much smaller compared to the energy cost
and can be factored into the price p; ; for modeling purposes.

3 ENVIRONMENTALLY EQUITABLE GLB

To make Al environmentally equitable, we propose a novel on-
line equity-aware GLB algorithm, called eGLB, to distribute AI's
environmental cost across different data centers in a fair manner.

3.1 Objective

Our goal is not to blindly equalize its regional environmental foot-
print, which, as similarly observed in the context of mitigating
AT’s algorithmic unfairness [14], may artificially elevate the envi-
ronmental footprints in those otherwise advantaged regions and
provide a false sense of fairness. Instead, we adopt the notion of
minimax fairness [14, 49, 77] and exploit the power of GLB as a
software-based approach to explicitly minimize Al’s environmental
impact on the most disadvantaged region.

Mathematically, we augment the traditional cost-saving objective
by including the minimization of the greatest environmental cost
among all the data centers. By normalizing the energy cost and
environmental footprints over T, our equity-aware GLB problem is
formulated as follows

T
mm—Zg:(x(t))wc max [74( Zci,t(x(t»)]

t=1

H; w( ZWH‘ (x(t)))]

VlEN,]EJ,tZl,-“,T,

(4a)

Hilay - max

s.t., xi,j(t) =0, if B;j =0,

(4b)
in,j(l’)SMi, VieN,t=1,---,T, (4¢)
jeg
le‘,j(t):Aj’t, VieJ,t=1,---,T, (4d)
ieN
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where the assignment condition B; j = 0 indicates that the work-
loads cannot be assigned from gateway j to data center i (due to,
e.g., latency constraints or data sovereignty regulations) and hence
enforces x; j = 0 in (4b), the constraint (4c) means that the total
workloads assigned to a data center cannot exceed its processing
capacity, and the constraint (4d) requires that all workloads arriving
at a gateway be assigned to data centers. In the optimization ob-
jective (4a), the monotonically-increasing convex functions H; ¢ ()
and H; () quantify the environmental impacts of Al on data cen-
ter i due to its long-term carbon footprint and water footprint,
respectively, and can be specified based on the local environment
assessment. Note that the carbon footprint is also a good indicator
of the amount of local air/thermal pollution caused by our GLB deci-
sions. For example, coal-based energy sources are carbon-intensive
and also proportionally create air and thermal pollution for local
communities [85].

Using Hiw (+ X1y wir (1)) = % - L, wir (x(1)) as an
illustrative example, we can set a higher 6; > 0 if data center i
is located in a severely water-stressed and drought-prone region.
In line with the principle of proportionality, the carbon footprint
Zthl it (x(t)) in H;() and water footprint Zthl wit(x(t)) in
Hi w() for data center i can also be normalized by the maximum
processing capacity M; to achieve proportional fair distribution of
AT’s environmental cost.

The two functions H;¢() and H; () are general enough and
can also capture the effects of additional sustainability practices
that data center operators may adopt (e.g., installing solar for car-
bon mitigation and restoring watersheds for local water supply
[20, 50]). The term Zthl g (x(¢)) in (4a) is the total energy cost.
The hyperparameters y > 0 and p,, > 0 indicate the relative im-
portance weights of carbon footprint equity and water footprint
equity, respectively, and can be flexibly tuned to balance the impact
of carbon and water footprints. For example, by setting y. = 0,
we focus solely on the negative environmental impact of AI's wa-
ter footprint. In addition, we can also include into (4a) AT’s other
environmental impacts such as concerns with the servers’ noise
pollution if applicable [55].

Importantly, the cost terms max;e [Wi,c (% Zthl ci,t(x(t)))]

and max;e n/ [Wi,w (Z 1T Zthl Wit (x(t)))] improve environmen-
tal equity by explicitly penalizing the greatest environmental im-
pacts that AI model inference creates on different regions. This is
fundamentally different from the existing sustainable GLB tech-
niques that have predominantly focused on minimizing the weighted
sum of energy costs, carbon footprint and/or water footprint [1,
19, 32, 39, 45]. As shown in our experiments (Section 4), minimiz-
ing the total environmental footprint does not necessarily treat
each individual region fairly and can even potentially exacerbate
environmental inequity due to aggressive exploitation of certain
regions.

3.2 An Online Algorithm

The addition of two equity-related costs in (4a) explicitly mitigates
the greatest long-term environmental costs across all the data cen-
ters. Thus, they couple all the GLB decisions over T time slots.
Consequently, the optimal GLB decisions require complete offline
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information (including future workload arrivals and carbon/water
efficiencies) in advance, which is lacking in practice. Next, we pro-
pose an online algorithm, called eGLB, to solve (4a)-(4d) and opti-
mize equity-aware GLB decisions in an online manner.

A crucial step in eGLB is to construct a new optimization prob-
lem that can be solved based on available online information by
removing the dependency of the optimization objective on future
information. To this end, we first transform the original problem
(4a)—(4d) into an equivalent new problem that can be solved us-
ing dual mirror descent (DMD). Specifically, for every time step
t € [1,T], we introduce a set of auxiliary variables {z.(t), z, (%)}
and consider the following new transformed problem:

T T
. 1 He
min = (x(1)) + = ) max |Hic(zic(1))
x(1).ze ()2 () T ;gt T ; ieN [Hic(zie(®)]
. (52)
+E ; max [Hiu(z1.0(1))]
s.t., constraints (4b)(4c)(4d) (5b)
1< 1«
72 7e(D) = = Y ene(x(D), Vie N (50)
t=1 t=1
1 I 1 L
72 @) 2 2 Y i (x(0), VieN (5d)
=1 =1
where the auxiliary variables zc(t) = (z1,c(t) -+ ,zNn,c(t)) and

Zw(t) = (z1,w(t) -+ ,zN,w(t)) are chosen from a fixed feasible
set Z. and Z,,, respectively. Here, we set Z, = {2z¢|0 < z;¢ <
Zie,Vi=1,--- ,N}and Zyy = {zwl0 < zj 1y < Ziw,Vi=1,--- ,N}
to guarantee a feasible solution for any x; € X;. Specifically, we can
choose z; ¢ and Z; ,, to be the maximum possible per-time carbon
footprint and water footprint in data center i, respectively.

Next, we prove the equivalence of the new transformed problem
to the original problem.

LEMMA 1. The transformed problem (5a)—(5d) and the original
problem (4a)—(4d) have the same optimal GLB decisions.

Proor. To prove this, we first define the optimal GLB decisions
as x{p = (x(1)%---,x(T)*) for the original problem (4a)-(4d).
Then, we can construct a feasible solution z; ¢ (¢) = % Zthl cir (x*(1))
and z; (1) = % Zthl wir (x*(t)), Vt € [1,T] for the transformed
problem (5a)-(5d), which results in an equivalent objective function
value as (4a) in the original problem. Therefore, the optimal value
of the transformed objective in (5a) is less than or equal to that in
the original problem.

On the other hand, suppose that there exists another solution,
denoted as {x’(t),z¢(t)’, zw(t)’, t € [1,T]}, which minimizes the
transformed problem and makes the transformed objective in (5a)
strictly smaller than the original one in (4a). By the convexity as-
sumption of H; ,,(-) and H;(-) and Jensen’s inequality, we have

T T
max [‘Hi,c (% ;ZQ,C(t))] < %;rlrg\)(c [Wi,c (Z,‘,C(t))], (6)

1, 1< ,
max [‘Hi,w(szi,w(t))} < ?;?g{c [%,W (zi,w(t))]. )

t=1
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Based on the monotonically increasing assumption on H; () and
Hi,w(-) and by substituting x| . = (x’(t),-- -, x"(T)) back to (4a),
we see that the objective value in (4a) with x”(t) as the solution
is even smaller, which is in contradiction to the assumption that
x} 1 is optimal. Therefore, for the transformed problem, the optimal
objective value has to be the same as the original one, and the action
x].7 = X].r is the optimal solution. ]

Based on the equivalence of the new transformed problem to
the original problem, we now focus on solving the transformed
problem (5a)-(5d). The two added constraints (5c) and (5d) still
involve all the decisions over T time slots. To remove the temporal
coupling, we consider the Lagrangian form of the transformed
problem (5a)—(5d). For the convenience of notation, we first define

He(ze (1) = [Hie(ze (1)), -+ HNe(ze(D))], ®
Huw (2w (1) = [Hiw(zw (D), - -, HNw(zw(D)], ©)
C(t) = [ere(x(2)), -+, ene (x(D)], (10)

W) = [wie (x(1), -, whe (x(2))]- (11)

Then, subject to the constraints (4b)(4c)(4d), we write the Lagrangian
as follows:

L(xlzT) Zc,1:T> Zw,1:T> K)

T
-7 (Z 90 (x(1)) + pellHe (ze (1) oo +pw||ww<zw<t>>||m)
£ (12)

(2L G ) - B ze0)
(ZL, we0) - 21 2 0)

where « is the Lagrangian multipliers associated with the con-
straints (5¢) and (5d), and (a, b) denotes the inner product of two
vectors a and b.

By solving the problem (12) online subject to the constraints
(4b)(4c)(4d), we would obtain the optimal GLB decisions if the op-
timal Lagrangian multiplier k were provided. Nonetheless, k can
only be estimated with online information. Based on this insight,
we sequentially update k using dual mirror descent (DMD) [27]
based on online information and obtain GLB decisions x(t) for
t=1,---,T.

We describe the algorithm in Algorithm 1. More specifically,
at time t, we receive the cost functions and optimize the action
x(t) and auxiliary variable z(t) = (z¢(?), zw(t)) according to the
current estimate of dual variable k;. These variables are optimized
in Line 4 and Line 5, respectively. The insight is that the estimated
dual variable k; controls the adjusted penalty for the GLB action
x(t) based on how much the cumulative actual carbon and water
footprints have deviated from the targets z(t) = (z¢(t), zw(1)).

We update the dual variable x; using DMD. More concretely, by
taking the subgradient of x with respect to the Lagrange function
and using the online information at time ¢, we obtain a stochastic
gradient estimate of k;. In Line 7, the vector d; is set as the opposite
direction to the gradient of k; in order to minimize the Lagrange
function. Finally, the updated dual variable k41 is obtained with
Bregman projection using a reference function A(-) which is dif-
ferentiable and strongly convex. For example, a common choice of
the reference function is h(a) = %||a||2, which results in additive
updates of the dual variable estimate «; [3].

+ (K,

o TN
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Algorithm 1: Online GLB for Environmentally Equitable

Al (eGLB)
2N

1 Input: Initial Lagrange multiplier k1 € R, reference
function h(-) : R®N - R, total length of horizon T and
learning rate 5

2 fort=1,...,T do

3 Receive the cost function of energy, carbon and water as

g (+), ¢+ (+) and w; (+), the action constraint

X; = {x]|x satisfies (4b)(4c)(4d)}.

4 Make the primal decision

x(0) =arg _anin, {g:(x() +x; - [%(fx(ft)))) s

5 Determine the auxiliary variable:

{ze(1), zw(t)} =arg Zcezmin - {cllHe(ze)llo

cZwE€Lw

il el = |2,
6 Obtain a stochastic subgradient of x;:
= [0) - S
T ew®] [ WG]

7 Update the dual variable by mirror descent:

. 1
Ki+1 = arg min (ds, k) + =V (Kk,k¢) ,
o U
where Vj,(x,y) = h(x) — h(y) — Vh(y) " (x — y) is the
Bregman divergence.

Next, we analyze eGLB in terms of the cost objective in (4a).

THEOREM 1. By initializing k1 € R2>IBI as a zero vector, considering
the reference function h(a) = %||a||2, and denoting the GLB actions
as x1.7 = (x(1),---,x(T)) and the overall cost defined in (4a) as
cost(xy.1), we have the following:

2 M
cost(x1.7) < cost(x] ) +nBT +Cy ,;(B +—D) (13)
’ n

where cost(x] ;) is the minimum cost given by optimal offline al-
gorithm, n > 0 is the learning rate, ¢, and wp, are the maxi-
mum possible gradients of carbon and water footprints in (2) and
(3), M = max;en M; is the maximum processing capacity of all
data centers, Op, is the maximum gradient of H; ¢(-) and H; (-),
B= % [max,-eN Zic] + % [maxieN 5iw] (in which z; c and z; » are
the maximum possible per-time carbon and water footprints in data
center i, respectively), C = O (e + i) and D = Oy (fecm + iwWm),
respectively. Moreover, by setting the learning raten = O(1/T), we
have

cost(xy.7) < cost(xy.p) + O(1). (14)

Theorem 1 bounds the gap between eGLB and the optimal offline
algorithm in terms of the overall cost defined in (4a). The constants
B and D are problem-specific and naturally increase as the input
range is larger. In addition, the gap depends on the choice of the
learning rate 1. Specifically, by increasing 1, eGLB updates the dual
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variable k by more aggressively following the stochastic gradient
(Line 6 in Algorithm 1). This can introduce greater drifts due to the
“forgetting” of the past time slots and hence increases the term nBT.
On the other hand, a larger n can reduce the time steps needed
for updating the dual variable to track the optimal dual variable,

and hence reduce the term D, [%(B + %D). Thus, by setting the

learning rate n = O(1/T) to balance the two terms, we can have an
O(1) cost gap. Note that, without further stochastic assumptions
(e.g., all the inputs follow an independent and identical distribution),
eliminating the O(1) cost gap between eGLB and the optimal offline
algorithm remains an open challenge in the literature [3, 56]. For
example, in a relevant context of online budget allocation, having a
zero cost gap is impossible in general adversarial settings that we
consider [3]. Importantly, as is shown in our experimental results
(Section 4.2), eGLB demonstrates a strong empirical performance
even compared to the optimal offline algorithm.

4 EXPERIMENTS

In this section, we report on experiments of different GLB algo-
rithms using trace-based simulations. Our results demonstrate that
eGLB has a great potential to effectively address AI’s environmental
inequity that would otherwise be potentially amplified by other
GLB algorithms. Importantly, the empirical cost performance of
eGLB is close to the optimal offline equity-aware GLB, complement-
ing our theoretical analysis of eGLB in Theorem 1.

4.1 Methodology

As detailed information about Al system and workload settings is
typically proprietary, we run simulations by scaling up workload
traces collected from public sources and considering synthetic data
center settings that approximate realistic scenarios. This is in line
with the prior GLB literature [19, 32, 45, 67]. Next, we describe the
default setup of our experiments, which will later be varied for
sensitivity studies.

4.1.1 Workload Trace. To obtain the workload trace, we extract
the GPU power usage data from [46] for the server cluster hosting
the large language model BLOOM over an 18-day period (between
September 23 and October 11 in 2022). Because there is only a
single workload trace provided for BLOOM in [46], we follow the
data augmentation method in [12] and distribute the workload
trace to the 10 gateways (plus a small perturbation to account for
different time zones). As in [46], we directly quantify the amount
of workload using power demand. We also scale up the workload
trace to let the maximum workload match our data center power
capacity as introduced below. The 18-day workload trace will be
also be extended using data augmentation techniques to evaluate
different GLB algorithms over a longer timescale (Section 4.2.4).

4.1.2  Data Centers. We consider a set of 10 geo-distributed data
centers, including four in the U.S. (Virginia, Georgia, Texas, and
Nevada), four in Europe (Belgium, the Netherlands, Germany, and
Denmark), and two in Asia (Singapore and Japan). These locations
are all a large presence of data centers, including Google’s data
centers [59]. The details of data center locations are available in
the appendix.
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Assuming that there are 10 gateways corresponding to the 10
data center locations, we consider two scenarios: (1) full GLB
flexibility: the workloads can be flexibly dispatched from any
gateway to any data center; and (2) partial GLB flexibility: the
workloads arriving at a gateway can only be dispatched to a certain
subset of data centers. As shown in recent studies [12], even cross-
continent Al workload placement only marginally increases the
end-to-end latency without degrading service quality. Thus, the
“full GLB flexibility” scenario is already feasible in practice, whereas
the “partial GLB flexibility” scenario accounts for various other
constraints such as strict latency and bandwidth.

For processing Al inference workloads, we assume that each data
center houses a cluster of 500 homogeneous servers. Each server is
equipped with four NVIDIA A100 GPUs and has a maximum total
power of 2 kW. Thus, excluding the network switches and servers
for other services beyond the scope of our study, each data center
has a maximum server power of 1 MW for Al inference.

We set the data center PUE as 1.1, which is consistent with the
state-of-the-art PUE value with efficient operation [20, 59]. For
simplicity, we use the actual carbon footprint and water footprint
to measure the regional environmental impact (i.e., Hc(x) = x
and H; 1(x) = x in (4a)).

4.1.3  Energy Price, Carbon Intensity, and WUE. We collect hourly
energy prices for the 10 data centers over the same 18-day period
as our workload trace. Specifically, for each data center in Europe
and Asia, we collect the hourly country-level energy prices from
[30]. For the U.S. data centers, we collect the hourly energy prices
from their respective ISOs [84].

For each of the U.S. data centers, we collect the state-level hourly
energy fuel mix data [84] and calculate the indirect WUE based on
the fuel mix by following [19] and [32], respectively. The carbon
intensity and energy water intensity factor (EWIF) for each fuel
mix are chosen based on [19] and [43]. We do not have free access
to the hourly energy fuel mix data for our data center locations
in Europe and Asia [30]. Thus, we generate synthetic hourly fuel
mixes for these locations based on the U.S. data. Besides, the hourly
carbon intensity of each datacenter is obtained from [48], where
the US locations are ISO level and the Europe and Asia locations
are country-level carbon intensity. The details are available in the
appendix.

To model the on-site WUE, we assume that the data centers
use cooling towers for heat rejection, which are common in the
industry (even in water-stressed regions like Arizona [37]). We
collect the hourly weather data from [31] for the airports closest
to each of our data center locations, and then obtain the wet bulb
temperature from the dry bulb temperature and relative humid-
ity based on [52]. Next, we calculate the on-site WUE using the
empirical formula in terms of the wet-bulb temperature presented
in [32]. While assuming cooling towers for rejecting heat into the
outside environment, our study can be easily adapted to air-side
economizers, which use water for humidity control or when the
outside dry bulb temperature is high [51].

4.1.4  Offline and Online Optimization. Assuming complete knowl-
edge of future information, we first use offline optimization in order
to quantify the maximal potential of equity-aware GLB to address
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Table 1: Comparison of different GLB algorithms. The metric ratio is the maximum water or carbon footprint divided by the
average. The results of eGLB with the learning rate 5 = 1.7 x 10~* are bolded.

GLB Metric Algorithm
Flexibility GLB-Energy | GLB-Carbon | GLB-Water | GLB-C2 | GLB-All | GLB-Nearest | eGLB-Off | eGLB-MPC eGLB
Energy (US$) avg 29170 47708 56184 33735 32466 47038 36106 36199 37643
avg 1525.1 1396.2 1243.9 1486.3 1426.7 1446.7 1431.8 1444.4 1448.7
‘Water (m3) max 2607.5 2671.6 2010.4 2675.7 2358.0 2090.9 1705.2 1898.3 1928.0
Full max/avg 1.71 1.91 1.62 1.80 1.65 1.45 1.19 1.31 1.33
avg 118.17 90.50 103.17 100.75 105.83 111.80 102.59 105.06 105.70
Carbon (ton) max 205.10 166.79 224.49 166.82 171.50 143.46 128.79 134.68 139.39
max/avg 1.74 1.84 2.18 1.66 1.62 1.28 1.26 1.28 1.32
Energy (US$) avg 29659 47694 53976 33729 32822 47038 36013 37210 37768
avg 1524.1 1415.5 1249.9 1490.4 1420.1 1446.7 1440.6 1446.6 1450.1
‘Water (m3) max 2616.1 2700.3 2028.4 2668.8 2344.7 2090.9 1777.3 1891.4 1929.0
Partial max/avg 1.72 1.91 1.62 1.79 1.65 1.45 1.23 1.31 1.33
avg 117.52 92.22 106.07 102.13 106.53 111.80 103.31 105.11 105.65
Carbon (ton) max 205.77 168.42 224.49 166.44 177.43 143.46 133.45 135.42 139.89
max/avg 1.75 1.83 2.12 1.63 1.67 1.28 1.29 1.29 1.32

AT’s environmental inequity. We then use our online algorithm
eGLB to demonstrate how much of that potential can be realized.

In the offline case, we consider hourly GLB decisions and use
cvxpy to solve (4a)—(4d) offline based on the complete informa-
tion about all the future workload arrivals, energy prices, carbon
intensity, and WUE values. We refer to this offline algorithm as
eGLB-Off. It takes about 3 minutes on a desktop with Intel i7-9700K
CPU and 16GB RAM to solve the problem for an 18-day simulation
in our experiments. The weight hyperparameters in (4a) are set as
e = 1500 $/ton and p,, = 60 $/m>. Note that these hyperparam-
eters are only used to adjust the relative importance of different
cost terms in the optimization process and do not reflect the true
monetary costs of carbon or water footprints.

In the online case, we use eGLB to optimize the GLB decisions
according to the sequentially revealed workload arrivals, energy
price, carbon intensity, and water efficiency information. It takes
around 30 seconds on the same machine to calculate GLB decisions
for the 18-day simulation. Besides, we compare eGLB with another
online policy, eGLB-MPC, which leverages model predictive control
(MPC). Specifically, eGLB-MPC optimizes the objective in Eqn (4a)
over a receding 24-hour horizon, utilizing predictions of future
workloads, energy prices, carbon intensities, and water efficiencies.
For a fair comparison, the hyperparameters . and y,, by eGLB and
eGLB-MPC are chosen as the same values as the offline optimizer
eGLB-Off.

4.1.5 Metrics. We evaluate our equity-aware GLB algorithms using
the following metrics: average energy cost, the total energy cost
throughout the 18-day period divided by 10 data center locations;
average carbon/water footprint, the total carbon/water footprint
throughout the 18-day period divided by 10 data center locations;
and the maximum regional carbon/water footprint over the 18-day
period among the 10 data center locations. If scaled up by a factor of
10, the average value is equivalent to the total value. We also include
the maximum regional carbon/water footprint to the average value
to reflect the level of environmental equity, i.e., the smaller max/avg,
the more equitable, and max/avg = 1 means all the regions have the
same environmental cost in terms of the carbon/water footprint.

4.1.6  Baseline Algorithms. We consider the following GLB-related
algorithms for comparison.
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e GLB-Energy: This algorithm is based on [45, 63, 67] and only
minimizes the total energy cost. It is a special case of eGLB
by setting yc = 0 and p,, = 0 in (4a).

e GLB-Carbon: Minimization of the total carbon footprint.

e GLB-Water: Minimization of the total water footprint.

e GLB-C2: This algorithm is based on [19] and minimizes the

weighted sum of the total energy cost and carbon footprint.

GLB-Al1l: This algorithm is based on [32] and minimizes the

weighted sum of the total energy cost, carbon footprint, and

water footprint.

GLB-Nearest: This algorithm is a special case of GLB and

directly routes workloads from each gateway to its nearest

data center. It is commonly used in practice as a default

baseline algorithm [19, 63].

Without considering equity-related costs, the GLB decisions
in these algorithms are not coupled over time and hence can be
optimally obtained online. The weights for carbon and water (if
applicable) in GLB-C2 and GLB-Al1 are set such that their respec-
tive total carbon and water footprints are smaller than those of
eGLB-0Off.

4.2 Results

We show our results in Table 1 by considering two different sce-
narios: GLB with full or partial flexibility. Our results highlight
that eGLB can improve AI’'s environmental equity by reducing the
environmental impact on the most disadvantaged region while still
keeping the average environmental footprint and energy cost close
to or even lower than those of alternative GLB algorithms. In ad-
dition, the empirical performance of eGLB is close to the optimal
offline algorithm eGLB-0ff. Next, we discuss our results in detail.

4.2.1 GLB with Full Flexibility. We first consider the full-flexibility
scenario in which the workloads can be dispatched to any data cen-
ter. Among all the algorithms, eGLB-Off has the lowest carbon and
water footprints for the most disadvantaged regions with complete
information of workload, carbon and water footprints. Meanwhile,
the average energy cost, carbon footprint, and water footprint of
eGLB-Off are comparable to or even lower than the other GLB
algorithms. Thus, eGLB-Off has almost the lowest “maximum to
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Figure 1: The energy cost, carbon and water footprint of eGLB with different learning rates 1 under full GLB flexibility. The
results for eGLB-0ff, GLB-Energy, GLB-Carbon, and GLB-Water are shown for comparison.

average” ratio in terms of both the carbon footprint and water foot-
print, effectively reducing the regional disparity and improving
environmental equity.

Interestingly, while GLB-Energy, GLB-Carbon, and GLB-Water
can minimize the total energy cost, carbon footprint, and water
footprint, respectively, they amplify the environmental inequity
compared to GLB-Nearest. This is due to the inequity unaware-
ness of these algorithms — their aggressive exploitation of certain
regions may come at the cost of harming these regions in terms
of environmental impacts. For example, GLB-Energy exploits the
cheaper energy price of Texas by assigning more workloads to this
region, but this can result in a disproportionately high environ-
mental footprint in Texas due to its worse carbon intensity and/or
WUE than some other regions. While GLB-C2 and GLB-All can
balance the energy cost and environmental footprints in terms of
the average/total metric, they can still result in disproportionately
high environmental burdens on the already-disadvantaged regions
due to the unawareness of equity. This is similar to algorithmic
unfairness against disadvantaged individuals or user groups caused
by an Al model that purely minimizes the average loss [14, 49].

While the prior studies [19, 32] have demonstrated that the total
carbon footprint and water footprint are often in tension with the
energy cost, our results further add that environmental equity may
not be cost-free either. Nonetheless, by balancing the energy cost
and environmental equity as formulated in (4a), the price we pay
for equity can be reasonably low.

eGLB vs. eGLB-0ff. In comparison to the offline optimizer, eGLB
only has access to online causal information. This naturally leads to
worse performance than if full information were available; however,
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the carbon and water footprints for the most disadvantaged regions
in eGLB are still better than all other GLB algorithms. In Table 1, the
maximum/average carbon and water footprints of eGLB are mostly
within 10% of the offline optimal solutions from eGLB-0ff, which
demonstrates the empirical effectiveness of eGLB and complements
our theoretical analysis in Theorem 1.

eGLB vs. eGLB-MPC. Unlike the offline optimal policy eGLB-0ff,
eGLB-MPC is limited to future information within the next 24-hour
prediction window. This limitation reflects real-world constraints,
where perfect foresight of the entire future is unavailable. As ex-
pected, eGLB-MPC outperforms eGLB (with sequentially revealed
information) in terms of the average energy cost, water footprint,
and carbon footprint. Interestingly, the maximum-to-average ratios
for carbon and water footprints are similar between eGLB-MPC and
eGLB, despite eGLB-MPC’s 24-hour prediction window. This observa-
tion emphasizes the fundamental challenge of achieving long-term
environmental equity when faced with limited predictions of the
future.

As shown in Theorem 1, 1 is an important parameter that deter-
mines the cost gap between eGLB and its offline version eGLB-0ff.
Thus, we also evaluate the impact of the learning rate 7 in Fig. 1.
The total cost is calculated by summing up the energy cost and
equity-related carbon/water costs (weighted by i and p,, respec-
tively). Then, in line with Section 4.1.5, we divide the total cost by
10 data center locations and show it in Fig. 1a. As we increase the
learning rate 7, the total cost first decreases and then increases as
suggested by Theorem 1. Empirically, the optimal learning rate 7 is
around 3 X 107> in our setting. In Fig. 1b, the average energy cost
increases as we increase 7, since larger n leads to more aggressive
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Figure 2: The energy cost, carbon footprint, and water footprint of eGLB with different (.., ;i) shown in the legend under full
GLB flexibility. The results for eGLB-0ff, GLB-Energy, GLB-Carbon, and GLB-Water are also shown for comparison.

Table 2: Comparison of different GLB algorithms. The default workload trace is augmented to 180 days to evaluate the long-term
impact of different GLB algorithms. The results of eGLB with the learning rate 7 = 1.7 x 10™* are bolded.

GLB Metric Algorithm
Flexibility GLB-Energy | GLB-Carbon | GLB-Water | GLB-C2 | GLB-All | GLB-Nearest | eGLB-Off eGLB
Energy (US$) avg 279620 454608 539847 326104 312372 450992 341998 359433
avg 14329.6 12992.8 11694.2 13822.4 13338.4 13584.9 13439.3 13591.5
Water (mj) max 23753.4 24779.5 19478.0 25154.2 21307.6 19662.3 16339.6 18199.0
Full max/avg 1.66 1.91 1.67 1.82 1.60 1.45 1.22 1.34
avg 1098.29 830.66 947.89 925.28 975.76 1035.97 951.91 977.92
Carbon (ton) max 1868.37 1544.89 2110.61 1566.99 1656.06 1342.44 1202.91 1294.23
max/avg 1.70 1.86 2.23 1.69 1.70 1.30 1.26 1.32
Energy (US$) avg 283551 456028 516966 324368 314254 450992 342498 359510
avg 14312.2 13249.7 11755.2 13903.6 13298.1 13584.9 13508.3 13619.4
Water (m3) max 23961.6 25347.0 18852.3 24833.9 21734.6 19662.3 16824.7 18267.1
Partial max/avg 1.67 1.91 1.60 1.79 1.63 1.45 1.25 1.34
avg 1093.61 850.24 981.20 942.91 986.54 1035.97 964.03 980.46
Carbon (ton) max 1874.35 1577.51 2110.77 1545.47 1695.69 1342.44 1240.80 1301.70
max/avg 1.71 1.86 2.15 1.64 1.72 1.30 1.29 1.33

updates of the Lagrange multiplier k. The Lagrange multiplier x is
used to penalize the cost objective according to the environmental
footprint, which means larger « shifts the objective function more
towards environmental equity, as compared with purely minimiz-
ing the energy cost. Similarly, as we increase the learning rate 7,
the carbon and water footprints for the most disadvantaged regions
decrease, as shown in Fig 1c and le. The underlying reason is sim-
ilar — a larger learning rate  updates k more rapidly, eventually
leading to more attention to equity-related costs. Interestingly, the
average carbon and water footprints of eGLB are very close to the
offline version, eGLB-Off. Like in the task of machine learning
training, the learning rate hyperparemeter can be tuned based on a
validation dataset to get the desired performance in practice.

4.2.2 GLB with Partial Flexibility. Now, we consider the partial-
flexibility scenario in which intra-continental workload routing
is fully flexible but inter-continental workload routing is partially
restricted. Specifically, we only allow partial inter-continental work-
load routing as follows: workloads can be flexibly routed between
Asia and the western U.S. (Nevada), and between Europe and the
eastern U.S. (Virginia and Georgia).

Our results are similar to those in the full-flexibility scenario.
Specifically, while the inter-continental workload routing restric-
tion limits the GLB decision space, eGLB-Off still has the lowest
carbon and water footprints for the most disadvantaged regions.
Meanwhile, the average energy cost, carbon footprint, and water
footprint of eGLB-Off are all comparable to or even lower than the
other GLB algorithms. Thus, even without full flexibility, eGLB-Of f
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demonstrates a great potential to address AI's environmental in-
equity in today’s geographically distributed data center infrastruc-
tures. Additionally, as shown in Table 1, the performance of eGLB
is very close to its offline counterpart, eGLB-Off.

GLB-Nearest does not route workloads across data centers and
hence is not affected by the partial GLB flexibility. Interestingly,
the result of GLB-Carbon is not affected by the inter-continental
workload routing restriction in our setting, because the workloads
from each continent can be processed in at least one low-carbon
data center in our setup (see Table 3).

With partial GLB flexibility, the impact of the learning rate x
is similar as that with full GLB flexibility. More details about the
empirical results can be found in Appendix B.

4.2.3 GLB with Different yi. and 1,,. Adjusting the weight hyper-
parameters . and p,, allows us to control the relative importance
of the energy cost and environmental equity. Here, by using the
default setup, we evaluate how the weights for carbon and water
footprints impact the performance of different GLB algorithms. We
show the results in in Fig. 2. We only compare the performance of
GLB-C2, GLB-All, eGLB-Off and eGLB, as the other GLB algorithms
are not affected by these weight hyperparameters. Naturally, by
assigning lower weights to carbon and/or footprints, the emphasis
on reducing the environmental inequity in terms of these footprints
is lessened, allowing all the four GLB algorithms to have a reduced
energy cost. However, this also results in a higher maximum car-
bon and/or water footprint (as well as higher maximum-to-average
ratios) for these algorithms, with the only exception being GLB-C2.
More specifically, unlike the other algorithms, GLB-C2 minimizes
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the weighted sum of the energy cost and carbon footprint without
accounting for the impact of water footprint. As a result, it has a
higher (maximum) water footprint as we increase the weight of
carbon for reducing the carbon footprint. This empirical finding
suggests that the goals of reducing carbon emission and water us-
age may not be aligned, or even in opposition, necessitating a joint
optimization of their combined weighted sum.

While eGLB applies with any yc > 0 and p, > 0, it is up to the
Al system operator to tune weight hyperparameters (e.g., based on
validation dataset) to achieve a desired outcome. This is also a com-
mon and standard practice in real systems (see Google’s dynamic
capacity planning to balance the energy cost and environmental
impacts [64]).

4.24  Evaluation over a Longer Timescale. The open-source BLOOM
inference trace is only for 18 days [46] and used in our default setup.
Due to limited availability of public data, we extend the 18-day
BLOOM inference trace to 180 days by using data augmentation
techniques to evaluate the impacts of eGLB in terms of environmen-
tal equity over a longer timescale. More specifically, we add 25%
random perturbations and append the perturbed workload trace to
the original one to construct a 180-day trace. The results are shown
in Table 2, offering similar insights as in the default case for both
full and partial GLB scenarios. We can see that compared to the
other equity-oblivious GLB algorithms, eGLB can effectively reduce
the environmental inequity among different regions in terms of the
maximum-to-average ratio for both carbon and water footprints.
Even compared to eGLB-0ff, eGLB delivers a similar performance
in terms of environmental equity while only marginally increasing
the total energy cost, which demonstrates the potential of eGLB to
address Al's emerging environmental inequity in practice without
knowing all the future information.

5 RELATED WORK

Our work is the first to address the critical concern of A's emerging
environmental inequity by leveraging GLB, and contributes to the
GLB literature for cloud computing and data centers [1, 4, 8, 10,
19, 24, 28, 32, 40, 41, 45, 63, 64, 67, 69]. Specifically, prior studies
focus on reducing the total energy cost, carbon footprint, water
footprint, or a weighted combination of these metrics; ignoring the
potential for regional disparities. We show in this paper that existing
GLB algorithms can potentially amplify environmental inequity by
further exploiting already vulnerable regions. For example, GLB
algorithms that aggressively exploit lower electricity prices [63, 67]
and/or more renewables [19, 45] may schedule more workloads to
data centers (located in, for example, Arizona) that are extremely
water-stressed; thus adding a disproportionately high pressure to
local water systems.

Sustainable Al has received a significant amount of attention
in recent years [9, 29, 59, 60, 71, 75, 79]. To make Al more energy-
efficient and sustainable, a variety of approaches have been ex-
plored and studied, including computationally efficient training
and inference [11, 65], energy-efficient GPU and accelerator de-
signs [22, 59, 87], carbon-aware task scheduling [29, 86], green
cloud infrastructures [1, 4, 18, 42], among others. While they are
useful for overall sustainability, these studies do not address the
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emerging environmental equity among different regions for deploy-
ing Al services. Additionally, they have mostly focused on carbon
footprint, neglecting other crucial environmental footprints, e.g.,
water footprint [20, 36, 43, 50]. In contrast, we holistically consider
both carbon and water footprints and make novel contributions to
sustainable Al from the perspective of environmental equity.

There also exist non-computational approaches to improving
AT’s environmental sustainability. For example, data center oper-
ators have increasingly adopted carbon-free energy such as solar
and wind power to lower Al’s carbon emissions [20, 36, 50, 86].
To cut on-site potable water consumption and mitigate the stress
on already-limited freshwater resources, climate-conscious cool-
ing system designs (e.g., air-side economizers and purifying non-
potable water) have recently seen an uptick in the data center
industry [21, 51]. These non-computational approaches alone are
typically not the most effective solution to sustainable Al and must
be designed in conjunction with computational approaches (e.g.,
workload scheduling) [1, 2, 54, 64]. As such, our study of equity-
aware GLB can inform the planning of on-site carbon-free energy
and cooling system renovation projects to better achieve social and
environmental justice.

Equity and fairness are crucial considerations for AL The existing
research in this space has predominantly focused on mitigating pre-
diction unfairness against disadvantaged individuals and/or groups
under a variety of settings 7, 14, 15, 17, 38, 44, 49, 61, 62, 70, 88, 89].
Our work on environmental equity adds a unique dimension of
fairness and greatly complements the existing rich body of research,
collaboratively and holistically building equitable and socially-
responsible Al

6 CONCLUDING REMARKS

In this paper, we take a first step to address the emerging environ-
mental inequity of Al by balancing its regional negative environ-
mental impact in an equitable manner. Concretely, we focus on the
carbon and water footprints of Al model inference and propose
equity-aware GLB to explicitly address the environmental impact
on the most disadvantaged region. eGLB can optimize GLB decisions
to fairly balance AI's environmental cost across different regions
in an online manner. We run trace-based simulations by consider-
ing a set of 10 geographically distributed data centers that serve
inference requests for a large language Al model. The results high-
light that, compared to the existing GLB approaches, our proposed
equity-aware GLB can significantly reduce the regional disparity
in terms of AI's carbon and water footprints.

Our work demonstrates the need and great potential of equity-
aware GLB to address AI's emerging environmental equity. It opens
up multiple new research directions to further improve AI’s envi-
ronmental equity, such as how to jointly optimize GLB and non-IT
resource (e.g., batteries) management and how to leverage envi-
ronmental science tools to quantify the impact of AI's carbon and
water footprints on each region’s ecological system.
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APPENDIX
A ADDITIONAL DETAILS ABOUT THE
EXPERIMENTAL SETUP

In this section, we provide additional details about the data used
in the experiments, particularly the sources of our data on the fuel
mix and water intensity factors.

We do not have free access to the hourly energy fuel mix data
for our data center locations in Europe and Asia. Thus, we generate
synthetic hourly fuel mixes for these locations based on the U.S. data.
We first obtain from [30] the average percentages of renewable and
non-renewable energy in electricity generation between September
23 and October 11, 2022, for each data center location in Europe
and Asia. Then, we scale the hourly energy fuel mix data in the U.S.
to match the average percentages by mapping Texas’ fuel mixes
between June 1 and June 19, 2022, to Germany with non-renewable
energy fuels scaled by 0.8503, Georgia’s fuel mixes between June
1 and June 19, 2022, to Belgium with non-renewable energy fuels
scaled by 1.5319, Georgia’s fuel mixes between March 1 and March
19, 2022, to the Netherlands with non-renewable energy fuels scaled
by 1.2759, Oregon’s fuel mixes between July 1 and July 19, 2022, to
Denmark with non-renewable energy scaled by 0.2657, Nevada’s
fuel mixes between March 1 and March 19, 2022, to Japan with
non-renewable energy fuels scaled by 3.2374, Georgia’s fuel mixes
between May 1 and May 19, 2022, to Singapore with non-renewable
energy fuels scaled by 4.4875. We choose different 18-day periods
in order to de-correlate the European and Asian energy fuel mix
traces from our actual U.S. data over the workload trace period
(between September 23 and October 11, 2022).

We also show the estimated energy water intensity factor (EWIF)
in m3/MWh for common energy fuel types in the U.S. in Table 4
[43, 47], and the details of our 10 data center locations in Table 3.

B ADDITIONAL RESULTS FOR GLB WITH
PARTIAL FLEXIBILITY

In this experiment, the goal is to evaluate the performance of eGLB
under partial GLB flexibility. Intra-continental workload routing
is fully flexible but inter-continental workload routing is partially
restricted. Specifically, we only allow partial inter-continental work-
load routing as follows: workloads can be flexibly routed between
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Asia and the western U.S. (Nevada), and between Europe and the
eastern U.S. (Virginia and Georgia). Similar to the full GLB flexibil-
ity scenario, the increase of the learning rate 5 helps improve the
environmental equity at the expense of increasing the energy cost.
The results are shown in Fig. 3.

C EXTENSION TO HETEROGENEOUS AI
MODELS

For the same inference service, a set of heterogeneous Al models
with distinct computing resource consumption and accuracy per-
formance may be available via model pruning and compression in
practice [26], offering flexible energy-accuracy tradeoffs. For exam-
ple, there are eight different GPT-3 model sizes, ranging from the
smallest one with 125 million parameters to the largest one with 175
billion parameters [9]. Now, we extend our problem formulation to
this generalized setting.

Suppose that there are a set £ = {1,---,L} of heterogeneous
Al models for our considered inference service. For time ¢, we can
dynamically choose to run one or more Al models to serve the
incoming workloads. This is also equivalent to distributing the
workload 3 j g x; j(t) to L heterogeneous Al models within data
center i. We denote by y;;(t) > 0 as the amount of workloads
distributed to Al model / in data center i. Naturally, y;;(t) = 0
means that the Al model [ is not chosen in data center i at time t.

When deployed in data center i, the energy consumption and
server resource usage of Al model [ for processing workloads y; ; (t)
are denoted by e; ;(y;;(t)) and r; ;(y; ;(t)), respectively. Thus, the
total server energy consumption in data center i becomes é; (y(t)) =
Se r eis(yi (1)), where y(t) = {y;() | i € N.I € L} represents
the collection of decisions for workload assignment to different Al
models. Similarly, with heterogeneous Al models, we can re-define
the carbon footprint and water footprint as ¢;  (y(t)) and w; ¢ (y(t))
by replacing e; (x(t)) with &;(y(t)) = Xje s €;1(y;1(t)) in (2) and
(3), respectively.

To optimally distribute workloads to AI models with different
energy-accuracy tradeoffs, we need to consider the inference cost as-
sociated with different accuracies, since otherwise always choosing
the smallest model can always result in the lowest energy con-
sumption. Specifically, we refer to the cost as performance cost
and denote it by s;(y;;(t)), whose dependency on y; ;(t) can be
explained by noting that the performance cost is potentially more
significant when more users use the model (i.e., y; ;(t) is larger).
Next, by combining the energy cost and performance cost, we con-
sider a generalized operational cost as follows:

Gr®) = > > [pievie - er(@ia(®) + ¢ - sy ()], (15)
ieNleL

where the hyperparameter ¢ > 0 converts the performance cost
s1(y;1(t)) to a monetary value and indicates the importance of
inference performance relative to the energy cost.
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Table 3: The detailed information of our data center locations. The values shown in the table are averaged over the 18-day

period between September 23 and October 11, 2022.

. . Total WUE | Carbon Intensity | Energy Price

Country State/Province City (m®/MWh) (ton/MWh) ($/MWh)
US. Texas Midlothian 5.7397 0.4011 64.931
us. Virginia Loudoun 5.9755 0.3741 77.793
UsS. Georgia Douglas 5.9001 0.4188 80.566
U.S. Nevada Storey 4.9306 0.2980 84.738
Germany Hessen Frankfurt 4.5889 0.3295 315.233
Belgium Hainaut Saint-Ghislain 4.9316 0.4802 247.083
Netherlands Groningen Eemshaven 3.0928 0.4454 248.258
Denmark Fredericia Fredericia 3.8900 0.1391 213.773
Japan Chiba Prefecture Inzai 2.4989 0.3280 129.269
Singapore Singapore Jurong West 5.8652 0.5260 155.462

Table 4: Estimated EWIF for common energy fuel types in the U.S. [47].

Fuel Type

‘ Coal ‘ Nuclear ‘ Natural Gas ‘ Solar (PV) ‘ Wind ‘ Other ‘

Hydro

EWIF (LkWh) | 1.7 | 23 | 11

0 | 0 | 18 |68(0,if excluded)

Finally, we formulate the generalized GLB problem with hetero-
geneous Al models as follows:

T T
x(g{i;(t) ;g}(y(t)) + e - max lﬂi,c (Z Ei,t(y(t)))}

t=1

T
Hi (Z Wit (y(t)))] :
t=1

VieN,jeJ,t=1,---,T,

(16a)

+[14y - Max
ieN

s.t. x,-,j(t) =0, ifB;; =0,

(16b)
Doxijt)=Aje, Viedt=1--.T, (16¢)
xeN

D vk Wik (D) < Mi, VieNt=1,--,T, (16d)
keK

Dixijt)= ) gk, VjeTt=1--.T,  (i6e)

jeg keK
where the objective (16a) is to minimize the generalized operational
cost (including both energy and performance costs) while address-
ing environmental inequity, the constraint (16d) means that the
total resource demand must be no more than the server cluster’s
capacity, and the last constraint (16e) ensures that the workload
assigned to each data center is always served by one of the het-
erogeneous Al models. The problem (16a)—(16e) can be solved by
introducing auxiliary variables and optimizing the Lagrangian with
estimated dual variables. The algorithm is similar to Algorithm 1.
Next, we conduct a trace-based simulation to evaluate the perfor-
mance of different GLB algorithms with heterogeneous Al models.
We consider a similar setup as the default one with homogeneous
Al models, where we keep the weights y,, and p unchanged. As
the open-sourced BLOOM has only one model size and is not suit-
able for the heterogeneous Al model case, we consider the Llama-2
model released by Meta with three different available model sizes
(7B, 13B, and 70B), corresponding to different accuracies and energy
demands [81]. We normalize the average inference accuracy and
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energy consumption by that of the largest model. We set the accu-
racy performance weight such that the average inference accuracy
is roughly the same as that of the model with the medium size.
As each performance weight corresponds to an average inference
constraint, this is essentially equivalent to constraining the average
inference accuracy (weighted by the amount of requests for each
model) to be equal to that of the medium-size model. Each of the
10 geo-distributed data centers can handle a specified quantity of
requests for each model size subject to the total capacity constraint.
By using the same traces for carbon intensity, water usage efficiency,
and workloads as in the homogeneous case, we run different GLB
algorithms and show the results Table 5.

The results provide similar insights as in the homogeneous case
for both full and partial GLB scenarios. Specifically, we see that
compared to the other equity-oblivious GLB algorithms, eGLB can
effectively reduce the environmental inequity among different re-
gions in terms of the maximum-to-average ratio for both carbon
and water footprints. Additionally, even compared to eGLB-Off,
eGLB delivers a comparable performance in terms of environmental
equity while only slightly increasing the total energy cost. Again,
this demonstrates the potential of eGLB to address Al's emerging
environmental inequity.

D PROOF OF THEOREM 1
When the reference function is h(a) = %||a||2, the update rule in

Line 7 in Algorithm 1 can be rewritten as
+

Cr(x(1))
Wi(x(0)]  [zw(D)

1
—Ki+1 =
n

+
1 1
—Kkr—di| = [—Kt +(
n n

where [x]* = x when x is positive, otherwise it’s set as zero. Given
the dual variable k;, the optimization goal of Line 4 and Line 5 can

be written as

1

min (gt(x(t)) + pe||He (2 (1)) |l o
x(t).2c(t),z0(2) 1 (18)
K

+ pwl[Haw (2w () llo | + "

- (=dr)
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Figure 3: The energy cost, carbon and water footprint of eGLB with different learning rates n under partial GLB flexibility. The
results for eGLB-0ff, GLB-Energy, GLB-Carbon, and GLB-Water are shown for comparison.

Table 5: Comparison of different GLB algorithms in terms of energy cost, carbon and water footprint with heterogeneous Al
models. The results of eGLB with the learning rate = 107> are bolded.

GLB Metric Algorithm

Flexibility GLB-Energy | GLB-Carbon | GLB-Water | GLB-C2 | GLB-All | GLB-Nearest | eGLB-Off eGLB
Energy (US$) avg 20656 56891 58345 29047 26071 47038 29279 35034

avg 1549.8 1311.9 1075.8 14767 | 1367.2 1446.7 14161 | 14246

Water (m?) max 45215 45374 27835 3786.7 | 26402 2090.9 16127 | 1830.9

Full max/avg 2.92 3.46 259 256 1.93 1.45 1.14 1.29
avg 121.37 67.21 100.17 87.73 98.63 111.80 96.90 101.77

Carbon (ton) max 352.84 171.07 375.92 23349 | 201.94 143.46 11659 | 129.94

max/avg 291 255 375 2.66 2.05 1.28 1.20 1.28

Energy (US$) avg 21684 49516 54478 27329 | 26094 47038 30011 36170
avg 1561.8 14112 1106.9 15033 | 1385.9 1446.7 14421 | 14376
Water (m®) max 43434 3699.6 27584 4106.1 | 30459 2090.9 17824 | 1885.4

Full max/avg 278 2.62 249 273 2.20 1.45 1.24 131
avg 119.50 79.67 103.45 96.26 103.17 111.80 99.46 10333
Carbon (ton) max 340.16 183.15 351.76 254.43 230.12 143.46 131.22 135.26

max/avg 285 230 340 264 223 1.28 132 131

by multiplying Eqn (18) with 7, it corresponds to the change of Proor. From Eqn (17), we have the following inequality

Lagrange function at time ¢. Now we define a new variable A () =

#(K? | — k%) to quantify the change of Lagrange multiplier «;. 1 s

Our next step is to provide bounds on this dual variable k;, which Ar(r) < ﬁ ((Kt —1de)” ~ Ky ) (20)

is done by the following lemma. 1 1
=~k - (=dy) + =d? (21)

LEMMA 2. Ifthe reference function h(a) = %||a||2 andky = 0, then Z 2
the dual variable x; is bounded by < ks (=dy)+ B (22)

n
M6,

iz sall < ny[2T(B+ T(uccm * HwWm) (19) where B = %-(iﬁﬁiw), the first inequality is based on ([x]*)? < x?
and the second inequality comes from our assumption that z. and
where constant B = % (22+72). Z,y are the largest possible values of the carbon and water footprint.
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Suppose at time ¢, the optimal solution for Eqn (18) is x(¢)",
ze(D), 2, ()T, for any other z;(t)" € Z¢, zw(t) € Zyy we have

Ar(D) + % (90 () pellHe (26 () len + a1 o (D) o)
<B+ % (90 G0 + pellHeze (1))l + ool Hos (z10(8) o

_tT.([cxx(tﬂ) _[zca)'])
N SO /

Zyw (1)
(23)
In the second inequality, we choose z.(t)” and z,,(#)” such that the
Ce(x(t)") ze() | _
term [‘M;t(x(t)'}') - [zw(t)’] =0, then we have
810 <B+ B (I o0 lleo = IHetze(D s +
(24)
£ (||ww(zw<t) Moo = 1 (2 (D))o
<B+ ]w#om(llccm + flwWm) (25)

where the second inequality results from the assumption of maxi-
mum carbon or water price, the maximum datacenter capacity M
and 0p,, the maximum gradient of function H,,(-) and H(-). By
summing up Aq(t) through t = 1 to T, then we have

(26)

]

M6
W(K;H -x¥) < T(B+ Tm(yccm + flyWm))

Using the previous result, we can now proceed by proving the
following technical lemma, which when combined with the analysis
above will let us complete the proof.

) ) bt
LEmMMA 3. Suppose the optimal solution for Eqn (18) is x, ., ZeyT
for any x(t)’,z¢(t)’, zw(t)’ satisfying the constraints in

(5d) we have

andz' W
Egn (5b)

ZAI(t)+ Z

+ pawl|Hoo (2w () )l oo

9:(x()) + pellHe (ze (D) lloo

T
([ G| [z
<BT+BT(T -1+ tzl([wt(x(t)’)] [ZW(fY )

T
Z [g:(x()") + pellHe (ze (1)) loo + pavllHaw (230 (8) ) oo |
= @7)

—_

+ —

=

ProoF. Similar to Eqn (23), for any other x(¢) € X}, z.(t)" €
Ze, zw(t) € Z,y we have

Ar(t) + % (9 () + pellHe (ze (D) Dlew + sl Hon (200 () oo
<B+ % (90 (x(D)) + prellHe (ze (1) Voo + ol Has (23 (1)) 1)
Ce(x(1)")

t . [ ] [Zc(t) ]
n (M/t(x(t) ) Zw(t)
(28)
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Cr (x(2)") ]_
Wi (x(1)")

. According to the update rule of k;, the maximum differ-

Now we define the subgradient of the action x(t)” as d; =

Zc(t),
Zw(t)/
ence between dual variables at t = 1 and t = 7 + 1 is bounded

by

—IN(2+22) < (52 E,d;) < TN(z% + 22, (29)
n
Therefore, for all ¢t € [1,T], we have
K Ky
L (=d}) < L (=) +N(t - 1)(22 + 2%, (30)
n n
By summing up the inequality, we have
T w7 KT T T
PG AR (Z(—d;) +N(EE+2) Y -1
= 1 " \i= t=1 (31)

T (T N

- (Z(—d; ) +T(T -1 (E+ )
V="

By summing up Eqn (28) through t = 1 to T, we finish the proof. O

We are now ready to complete the proof. Note that Zthl Ar(t) =
0. Suppose x] . is the optimal solution to the Eqn (4), which also
satisfies the constraints in Eqn (5b) — (5d). Substituting x} . back
to Eqn (27) gives

T
= 37 [0 GO + el e ze () oo+ palFa 2105 o
T=ly
1 T
<n(B+B(T=1)+ = T;)[gt(x(t)*) + el He(ze(1)") o

+ pal[Huw 2 o
(32)
2e(t)" Cr(x(1)")

where the 3,7 [zw(t)*] Py I[W,( "]

,so the term k1 Zthl dy

is equal to zero.

The left hand side of Eqn (32) is mixed up with GLB decisions
x(1)t and auxiliary variables ze(O)T, 2y (t)T. The next step is to
eliminate these auxiliary variables by bounding their difference.
Based on the update rule of k; and Lemma 2, we have

Ik

Cr(x(1))

0 it Rt
7l 2\ [ W x0)] ™ [zwiey
1 KT+1, _ KL
<3 (1=

2
S\/_(,3+A4_0»n
T

The maximum gradient of yi. |He (ze (1)) ||oo+pw||7-lw(zw(t)*) [|oo
with respect to [z (%), zw(t)], is always bounded by C = 0, (uc +
liy). For simplicity, we define D = 0, (pccm + gwwm), then we
have

(33)

(Heem + pwwm))
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T T
pell e Y Gl + sl D G0

T=t) 7=l
1 < 1 < -
el Mo 3 2e(®)Dlloo + ol Hun( D 20 les
=ty =ty

N [%(ww)],/%(%%m
T

=5 [ycuﬂc(zc(rﬁ Moo + pasllHos (200 () >||oo]

=ty

+ [Qm(uc +#W)H%(B+ %D)

(34)
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where the first inequality is based on the maximum gradient D,
the second inequality is from Jensen’s inequality. By substituting
Eqn (34) back to Eqn (32), we recover the cost objective in Eqn (4a)
and finish the proof.
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