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Abstract. In this paper, a linear second order numerical scheme is developed and
investigated for the Allen-Cahn equation with a general positive mobility. In partic-
ular, our fully discrete scheme is mainly constructed based on the Crank-Nicolson
formula for temporal discretization and the central finite difference method for s-
patial approximation, and two extra stabilizing terms are also introduced for the
purpose of improving numerical stability. The proposed scheme is shown to un-
conditionally preserve the maximum bound principle (MBP) under mild restric-
tions on the stabilization parameters, which is of practical importance for achieving
good accuracy and stability simultaneously. With the help of uniform boundedness
of the numerical solutions due to MBP, we then successfully derive H1-norm and
L∞-norm error estimates for the Allen-Cahn equation with a constant and a variable
mobility, respectively. Moreover, the energy stability of the proposed scheme is also
obtained in the sense that the discrete free energy is uniformly bounded by the one
at the initial time plus a contant. Finally, some numerical experiments are carried
out to verify the theoretical results and illustrate the performance of the proposed
scheme with a time adaptive strategy.
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1 Introduction

In this paper, we study numerical solution of the following Allen-Cahn equation with
a general mobility M(φ) ≥ M0 > 0:

∂φ

∂t
= −M(φ)

(
− ε2∆φ + F′(φ)

)
, (x, t) ∈ Ω× (0, T],

φ(x, 0) = φ0(x), x ∈ Ω,
(1.1)
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which often arises from modeling of phase transitions and interfacial dynamics in
materials science. Here, Ω is a bounded Lipschitz domain in Rd (d = 1, 2, 3), T > 0
is the terminal time, φ(x, t) is the unknown phase function, the positive parameter ε is
called the diffuse interface width parameter, and F(φ) = 1

4 (1− φ2)2 is the double-well
potential function. We also assume that the problem is subject to suitable boundary
conditions such as the homogeneous Neumann, the periodic, or the homogeneous
Dirichlet boundary condition. The Allen–Cahn equation (1.1) can be viewed as the L2

gradient flow of the energy

E(φ) =
∫

Ω

( ε2

2
|∇φ|2 + F(φ)

)
dx, (1.2)

which leads to the dissipation of the free energy E(φ) over time, that is

d
dt

E(φ) = −
∫

Ω
M(φ)µ2dx ≤ 0. (1.3)

Another intrinsic property of the Allen–Cahn equation (1.1) is the maximum bound
principle (MBP), i.e., if |φ(x, 0)| ≤ 1 for all x ∈ Ω then |φ(x, t)| ≤ 1 for all x ∈ Ω
and t ≥ 0, and one can refer to [29] for more discussions. To numerically investigate
the Allen-Cahn equation (1.1), it is essentially important for the numerical schemes to
preserve these physical properties in the discrete level, particularly the preservation
of MBP, otherwise it could encounter the negativity of the mobility M(φ) which may
lead to failing of the numerical schemes.

Over the past few decades, a great deal of works [9,29,31,35,36] has been devoted
to developing structure-preserving time-stepping schemes for the Allen-Cahn equa-
tion, particularly for the models with constant mobility. Among the existing works,
first order (in time) liner stabilized semi-implicit schemes combined with the central
finite difference method for spatial discretization were proposed for the Allen-Cahn
equation (1.1) in [31] and the generalized case with a advection term in [29]. These pro-
posed schemes unconditionally preserve the discrete MBP in both cases and the ener-
gy stability in the constant mobility case. A nonlinear second-order Crank-Nicolson
scheme for the space-fractional Allen-Cahn equation was developed in [14], in which
the convex splitting approach was taken to deal with the nonlinear term. This scheme
was proved to conditionally preserve the discrete MBP and the discrete energy dissi-
pation law, and some corresponding error estimates were also obtained. A nonlinear
two-step second-order backward differentiation formula (BDF2) scheme with nonuni-
form grids for the Allen-Cahn equation was studied in [26], in which the nonlinear
term was treated fully implicitly. The MBP preservation and energy stability of the
developed scheme were obtained under some constraints on the time step size and
the ratio of two successive time steps. Recently, Hou et al. [13] proposed a linear sta-
bilized second-order Crank-Nicolson/Adams-Bashforth scheme for the Allen-Cahn
equation. It was shown that the numerical scheme preserved the discrete MBP and a
modified energy stability conditionally. Very recently, a linear stabilized BDF2 scheme
with variable time steps was numerically studied for the Allen-Cahn equation (1.1)
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in [12], and the discrete MBP of the developed variable-step scheme has been rig-
orously obtained with certain constrains on the time-step sizes and the adjacent time
step ratios. We would like to remark that there is no linear second-order unconditional
MBP preservation scheme among the above existing works.

A series of structure-preserving exponential time differencing (ETD) and integrat-
ing factor Runge-Kutta (IFRK) methods were also investigated for a class of semilinear
parabolic equations in [3,7,16,17,20,23,24,27], all of them unconditionally and condi-
tionally preserve the discrete MBP. In recent work [8], Du et al. established an abstract
framework of MBP investigation for problem (1.1), where sufficient conditions on lin-
ear and nonlinear operators are given such that the equation satisfies MBP and the cor-
responding MBP preserving first-order ETD and second-order ETDRK schemes were
developed and analyzed. It was proved in [10] that the stabilized first and second or-
der ETD Runge-Kutta schemes unconditionally preserve the discrete energy dissipa-
tion law for the Allen-Cahn equation. By combining the scalar auxiliary variable (SAV)
approach with linear stabilized ETD methods, some novel SAV-EI schemes for the
Allen-Cahn equation were proposed [18,19] which satisfy both the energy dissipation
law and MBP in the discrete level. Several third- and fourth-order MBP-preserving
schemes [5, 24, 37–39] were developed and analyzed for the Allen–Cahn equation us-
ing the integrating factor Runge–Kutta approach. An arbitrarily high-order multistep
exponential integrator method was given in [22] by enforcing the maximum bound vi-
a a cut-off operation. Due to that fact that these high-order MBP-preserving methods
are derived from either the variation-of-constant formula or an exponential transfor-
mation of the solution, it seems not easy to extend these approaches to the Allen-Cahn
equation (1.1) with a general variable mobility.

The goal of this paper is to propose and analyze a linear second-order, uncondi-
tionally MBP preserving scheme for the Allen-Cahn equation (1.1) with a general mo-
bility, based on the Crank-Nicolson time-stepping formula and the linear stabilizing
approach. The novelties and significance of this paper include: first, a linear doubly
stabilized Crank-Nicolson scheme for the model is constructed for the first time, which
is of second order accuracy and possesses the property of unconditional MBP preser-
vation; second, energy stability of the proposed scheme is established in the sense that
the discrete energy at all time steps is uniformly bounded by the initial one; third,
error estimates for the proposed scheme with nonuniform temporal mesh are success-
fully established in the H1-norm for the case of constant mobility and in the L∞-norm
for the case with variable mobility, respectively; fourth, the proposed scheme is very
efficient (there are only two Poisson-type equations to be solved at each time step) and
can be easily adopted with existing time adaptive strategies.

The rest of the paper is organized as follows. In Section 2 , we present the fully-
discrete linear doubly stabilized Crank-Nicolson scheme for the Allen-Cahn equation
with ageneral mobility (1.1) and prove its unconditional preservation of discrete MBP.
Some fully-discrete error estimates in the L∞ and H1 norms and energy stability are
then derived for the propose scheme in Section 3. In Section 4, various numerical
experiments are presented to verify the theoretical results and demonstrate the per-
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formance of the proposed scheme. Finally, concluding remarks are drawn in Section
5.

2 The fully-discrete linear doubly stabilized Crank-Nicolson
scheme

Without loss of generality, the two-dimensional problem (d = 2) with the homoge-
nous Neumann boundary condition, i.e., ∂φ

∂n

∣∣
∂Ω = 0 is considered in what follows. We

also note that it is straightforward to extend the proposed scheme and correspond-
ing analysis results to the cases of higher dimensional spaces and/or other boundary
conditions.

2.1 Spatial discretization by central difference

We use the notations and preliminary results of the central difference function spaces
and operators reported in [1, 2, 15, 25, 30, 32–34]. For more complete details, one can
refer to these works. For simplicity, we consider a square computational domain Ω =
(0, L)× (0, L), and the uniform spatial grid spacing h = L/M. Define the following
discrete function spaces:

Ch = {U : CM × CM → R
∣∣ Ui,j, 1 ≤ i, j ≤ M},

ex
h = {U : EM × CM → R

∣∣ Ui+ 1
2 ,j, 0 ≤ i ≤ M, 1 ≤ j ≤ M},

ey
h = {U : CM × EM → R

∣∣ Ui,j+ 1
2
, 1 ≤ i ≤ M, 0 ≤ j ≤ M},

ex
0,h = {U ∈ ex

h
∣∣ U 1

2 ,j = UM+ 1
2 ,j = 0, 1 ≤ j ≤ M},

ey
0,h = {U ∈ ey

h

∣∣ Ui, 1
2
= Ui,M+ 1

2
= 0, 1 ≤ i ≤ M},

where the two types of point sets EM and CM are given by

EM = {xi+ 1
2
= ih

∣∣ i = 0, 1, · · · , M}, CM = {xi =
(
i− 1

2

)
h
∣∣ i = 1, · · · , M}.

Then, we define the discrete gradient operator ∇h = (∇x
h,∇y

h) : Ch → (ex
0,h, ey

0,h) by

(∇x
hU)i+ 1

2 ,j =
Ui+1,j −Ui,j

h
, 1 ≤ i ≤ M− 1, 1 ≤ j ≤ M, (2.1)

(∇y
hU)i,j+ 1

2
=

Ui,j+1 −Ui,j

h
, 1 ≤ i ≤ M, 1 ≤ j ≤ M− 1, (2.2)

for any U ∈ Ch, and the discrete divergence operator ∇h· : (ex
h , ey

h)→ Ch by

(∇h · (Ux, Uy)T)i,j =
Ux

i+ 1
2 ,j
−Ux

i− 1
2 ,j

h +
Uy

i,j+ 1
2
−Uy

i,j− 1
2

h , 1 ≤ i, j ≤ M (2.3)
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for any (Ux, Uy)T ∈ (ex
h , ey

h). Note that the above discrete gradient and divergence op-
erators are compatible with the homogeneous Neumann boundary condition. Then,
we use the discrete gradient and divergence operators to obtain the discrete LapLacian
∆h : Ch → Ch, given by

(∆hU)i,j = (∇h · (∇hU))i,j, 1 ≤ i, j ≤ M. (2.4)

Next we are ready to define the following discrete inner-products:

〈
U, V

〉
Ω = h2

M

∑
i,j=1

Ui,jVi,j, ∀U, V ∈ Ch,

[Ux, Vx]x =
〈

ax(UxVx), 1
〉

Ω, ∀Ux, Vx ∈ ex
h ,

[Uy, Vy]y =
〈

ay(UyVy), 1
〉

Ω, ∀Uy, Vy ∈ ey
h,

[(Ux, Uy)T, (Vx, Vy)T]Ω = [Ux, Vx]x + [Uy, Vy]y,

where ax : ex
h → Ch and ay : ey

h → Ch are the two average operators defined by
(axU)i,j = (Ui+1/2,j + Ui−1/2,j)/2 and (ayU)i,j = (Ui,j+1/2 + Ui,j−1/2)/2 for 1 ≤ i, j ≤
M, respectively. Then, for any U ∈ Ch, its corresponding discrete L2, H1 semi-norms
and norms, and the L∞-norm are respectively given by:

‖U‖2
h =

〈
U, U

〉
Ω, ‖∇hU‖2

h = [∇hU,∇hU]Ω = [dxU, dxU]x + [dyU, dyU]y,

‖U‖2
H1

h
= ‖U‖2

h + ‖∇hU‖2
h, ‖U‖∞ = max

0≤i≤N

N

∑
j=0
|Ui,j|.

From these above definitions, we obtain the following results.

Lemma 2.1 ( [25, 32]). For any U, V ∈ Ch, it holds

−
〈
∆hU, V

〉
Ω = [∇hU,∇hV]Ω. (2.5)

2.2 Time integration by linear Crank-Nicolson scheme

Let 0 = t0 < t1 < t2 < · · · < tN = T be a general partition of the time interval [0, T]
with time step size τn = tn − tn−1 for n = 1, 2, · · · , N. We denote the maximum time
step size of such time partition by τ = max1≤n≤N τn, and the operator pointwisely
limiting a function onto Ch by ΠCh . Let ~U = [U1,1, · · · , U1,M; · · · ; UM,1, · · · , UM,M]T ∈
RM2

be vector form of U ∈ Ch.
The fully-discrete linear stabilized first-order BDF scheme for solving the Allen-

Cahn equation with general mobility (1.1) reads as follows, seeing also [29, 31]: given
Φ0 = ΠCh φ0, for n = 0, 1, · · · , N − 1, find Φn+1 ∈ Ch such that

Φn+1 −Φn

τn+1
− ε2M(Φn)∆hΦn+1 + f (Φn) + S1(Φn+1 −Φn) = 0, (2.6)
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where f (φ) = M(φ)F′(φ) and S1 is a nonnegative stabilizing parameter. Hereafter,
we call the above scheme BDF1 and denote it as Φn+1 = BDF1(Φn, τn+1). Moreover, it
also can be rewritten in vector form as follows:

~Φn+1 − ~Φn

τn+1
− ε2ΛnDh~Φn+1 + f (~Φn) + S1(~Φn+1 − ~Φn) = 0, (2.7)

where Dh = I ⊗ Gh + Gh ⊗ I ∈ RM2×M2
. Here, I denotes the identity matrix (with the

matched dimensions) and Gh is a diagonally dominant tridiagonal Matrix, given by

Gh =
1
h2


−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1


M×M

.

The matrix f (~Φn) is defined elementwise, that is f (~Φn) = Λn((~Φn).3
+ ~Φn) with a

diagonal matrix Λn = diag(M(~Φn)).
From the definition of the free energy E(φ) in (1.2), we define an analogous discrete

energy Eh(Φn) in the form of

Eh(Φn)=
ε2

2
[∇hΦn,∇hΦn]Ω +

〈
F(Φn), 1

〉
Ω

= −h2ε2

2
(~Φn)TDh~Φn + h2

M2

∑
i=1

F(~Φn
i ).

(2.8)

As reported in Theorem 3.2 in [29] and Theorem 3 in [31], the fully-discrete BDF1
scheme (2.6) is unconditionally energy stable and MBP preserving in the discrete sense
with a mild restriction on the stabilizing parameter S1, stated in the following lemma.

Lemma 2.2 ( [29, 31]). Assume that ‖~Φ0‖∞ ≤ 1 and the stabilizing parameter S1 satisfies

S1 ≥ max
ρ∈[−1,1]

(
M′(ρ)F′(ρ) + M(ρ)F′′(ρ)

)
. (2.9)

For the BDF1 scheme (2.6), it holds that ‖~Φn+1‖∞ ≤ 1 for n = 0, 1, · · · , N− 1. Furthermore,
in the case of the mobility function M(φ) ≡ 1, we have

Eh(Φn+1) ≤ Eh(Φn), ∀ n = 0, 1, · · · , N − 1, (2.10)

provided that S1 ≥ 2.

W are now ready to present a fully-discrete linear second-order Crank-Nicolson
(CN) scheme with two stabilizing terms for the Allen-Cahn equation with general
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mobility (1.1), which reads: given Φ0 = ΠCh φ0, and for n = 1, 2 · · · , N− 1, find Φn+1 ∈
Ch such that

Φn+ 1
2 = BDF1(Φn, τn+1/2),

Φn+1 −Φn

τn+1
− ε2M(Φn+ 1

2 )∆h
Φn+1 + Φn

2
+ f (Φn+ 1

2 )

+ S1

(Φn+1 + Φn

2
−Φn+ 1

2

)
+ S2τn+1(Φn+1 −Φn) = 0,

(2.11a)

(2.11b)

where the constants S1 and S2 are two nonnegative constant stabilizing parameters.
The linear doubly stabilized CN scheme (2.11) also can be rewritten in the following
vector form, as follows:

~Φn+ 1
2 = BDF1(~Φn, τn+1/2)

~Φn+1 − ~Φn

τn+1
− ε2Λn+ 1

2 Dh
~Φn+1 + ~Φn

2
+ f (~Φn+ 1

2 )

+ S1

(~Φn+1 + ~Φn

2
− ~Φn+ 1

2

)
+ S2τn+1(~Φn+1 − ~Φn) = 0,

(2.12a)

(2.12b)

where Λn+ 1
2 = diag(M(~Φn+ 1

2 )).

2.3 Discrete maximum bound principle

Let us first recall some useful lemmas needed for the analysis of the discrete MBP for
the proposed scheme (2.11).

Lemma 2.3 ( [14, 26, 31]). Suppose that B = (bi,j) is a real P× P matrix satisfying

bi,i < 0, |bi,i| ≥ max
1≤i≤P

∑P
j 6=i |bi,j|.

Let A = aI − B where a > 0 is a constant, then

‖A
−→
U ‖∞ ≥ a‖−→U ‖∞, ∀−→U ∈ RP.

Lemma 2.4 ( [12, 31]). If the stabilizing parameter S1 satisfies (2.9), then it holds∣∣S1ρ− f (ρ)
∣∣ ≤ S1, ∀ ρ ∈ [−1, 1]. (2.13)

Next, we study the MBP preservation of the proposed CN scheme (2.11) in the
following theorem.

Theorem 2.1. Assume that the stabilizing parameter S1 satisfies (2.9) and ‖~Φ0‖∞ ≤ 1. When
S2 = 0, the CN scheme (2.11) is conditionally MBP-preserving in the sense that if

τn+1 ≤
2

S1 + 4Lε2/h2 (2.14)



8 Dianming Hou, Lili Ju and Zhonghua Qiao

with L := maxρ∈[−1,1] M(ρ), then ‖~Φn+1‖∞ ≤ 1 for all n = 0, 1, · · · , N − 1. When

S2 ≥
(S1

4
+

Lε2

h2

)2
, (2.15)

the CN scheme (2.11) is unconditionally MBP-preserving.

Proof. For any 1 ≤ n ≤ N − 1, we assume ‖~Φk‖∞ ≤ 1 for 1 ≤ k ≤ n. Using
~Φn+ 1

2 = BDF1(~Φn, τn+1/2), ‖~Φn‖∞ ≤ 1, and Lemma 2.2, we obtain ‖~Φn+ 1
2 ‖∞ ≤ 1.

Thus, together with (2.12b), Lemmas 2.3 and 2.4, we have( 1
τn+1

+
S1

2
+ S2τn+1

)
‖~Φn+1‖∞

≤
∥∥∥(( 1

τn+1
+

S1

2
+ S2τn+1

)
I − ε2

2
Λn+ 1

2 Dh

)
~Φn+1

∥∥∥
∞

= ‖Qn+1~Φn + S1~Φn+ 1
2 − f (~Φn+ 1

2 )‖∞

≤ ‖Qn+1‖∞‖~Φn‖∞ + ‖S1~Φn+ 1
2 − f (~Φn+ 1

2 )‖∞

≤ ‖Qn+1‖∞‖~Φn‖∞ + S1,

(2.16)

where

Qn+1 :=
( 1

τn+1
− S1

2
+ S2τn+1

)
I +

ε2

2
Λn+ 1

2 Dh. (2.17)

If S2 = 0, it follows from (2.14), (2.17), and the definition of Λn+ 1
2 and Dh that

Qn+1 ≥ 0,

which means that all the entries of Qn+1 are nonnegative. If S2 satisfies (2.15), we can
use (2.17) and the definition of Λn+ 1

2 and Dh to obtain

Qn+1 ≥
(

2
√

S2 −
S1

2

)
I +

ε2

2
Λn+ 1

2 Dh ≥
2Lε2

h2 I +
ε2

2
Λn+ 1

2 Dh ≥ 0.

Thus, it follows for both of the above choice of S2 that

‖Qn+1‖∞ ≤
1

τn+1
− S1

2
+ S2τn+1, (2.18)

where we have used the fact ∑M2

j=1
(
Λn+ 1

2 Dh
)

i,j = 0 for any 1 ≤ i ≤ M2. Combining
(2.16) and (2.18) gives( 1

τn+1
+

S1

2
+ S2τn+1

)
‖~Φn+1‖∞ ≤ ‖Qn+1‖∞‖~Φn‖∞ + S1

≤ 1
τn+1

+
S1

2
+ S2τn+1,

which leads to ‖~Φn+1‖∞ ≤ 1.



A linear doubly stabilized Crank-Nicolson scheme for the Allen-Cahn equation 9

Remark 2.1. Th requirement (2.15) implies that the selection of the stabilizing parameter S2
depends on the size of spatial mesh size h. For practical simulation problems, the interface
width parameter ε is rather small and h is usually set to be the same level of ε to capture the
phase interface, i.e., ε/h = O(1), thus S2 needs not be too large.

3 Error analysis and energy stability

In this section, we perform error analysis and energy stability of the proposed CN
scheme (2.11) for the Allen-Cahn equation (1.1) with a general mobility. Note below
that C and Ci denote some generic positive constants independent of h and τn.

3.1 Discrete H1 error estimate and energy stability for the constant mobil-
ity case

In this subsection, the discrete H1 error estimate and energy stability of the CN scheme
(2.11) are investigated for the constant mobility case. Without loss of generality, we
assume M(φ) ≡ 1, which leads to f (φ) = F′(φ) = φ3 − φ, the condition (2.9) being

S1 ≥ 2, and the condition (2.15) being S2 ≥
(

S1
4 + ε2

h2

)2
.

Define the error functions en = Φn − Φ(tn) and en+ 1
2 = Φn+ 1

2 − Φ(tn+ 1
2
) with

Φ(t) = ΠCh φ(t). Then, a discrete H1 error estimate for the CN scheme (2.11) is estab-
lished in the following theorem with a reasonable regularity requirement on the exact
solution φ.

Theorem 3.1. Assume that S1 ≥ 2, S2 ≥
(

S1
4 + ε2

h2

)2
, and

φ ∈W3,∞(0, T; L∞(Ω)) ∩ L∞(0, T; W4,∞(Ω)).

Then it holds for the CN scheme (2.11) in the constant mobility case that

ε2‖∇hen+1‖2
h + S1‖en+1‖2

h ≤ C1 exp(C2T)
(

τ4 + h4
)

(3.1)

for all 0 ≤ n ≤ N − 1.

Proof. We use ‖Φ‖∞ ≤ 1, ‖Φn‖∞ ≤ 1 (by the discrete MBP stated in Theorem 2.1),
and f (·) ∈ C1(R) to obtain that

max{‖ f (Φ)‖∞, ‖ f
′
(Φ)‖∞, ‖ f (Φn)‖∞, ‖ f

′
(Φn)‖∞} ≤ C3 (3.2)

for all n = 0, 1, · · · , N. It follows from (1.1) and (2.11)that the error equations of en+ 1
2
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and en+1 read

en+ 1
2 − en

τn+1/2
− ε2∆hen+ 1

2 + S1en+ 1
2

= S1en − S1(Φ(tn+ 1
2
)−Φ(tn)) + f (Φ(tn+ 1

2
))− f (Φn) + Tn

1 + Tn
2 , (3.3a)

en+1 − en

τn+1
− ε2∆h

en+1 + en

2
+ S1

en+1 + en

2
+ S2τn+1(en+1 − en+1)

= S1en+ 1
2 − S1

(Φ(tn+1) + Φ(tn)

2
−Φ(tn+ 1

2
)
)

(3.3b)

− S2τn+1(Φ(tn+1)−Φ(tn)) + f (Φ(tn+ 1
2
))− f (Φn+ 1

2 ) + Tn
3 + Tn

4

for n = 1, 2, · · · , N − 1. Let us denote the righthand sides of the above two equalities
as Rn

1 and Rn
2 , respectively. For simplicity of expression, we also define the following

error terms {Tn
i }4

i=1:

Tn
1 = Φt(tn+ 1

2
)−

Φ(t
n+ 1

2
)−Φ(tn)

τn+1/2 , Tn
2 = ε2∆Φ(tn+ 1

2
)− ε2∆hΦ(tn+ 1

2
),

Tn
3 = Φt(tn+ 1

2
)− Φ(tn+1)−Φ(tn)

τn+1
, Tn

4 = ε2∆Φ(tn+ 1
2
)− ε2∆h

Φ(tn+1)+Φ(tn)
2 ,

(3.4)

Taking the discrete L2 inner products of (3.3a) and (3.3b) with τn+1en+ 1
2 and 2(en+1 −

en), respectively, and using Lemma 2.1 and the identity 2a(a− b) = a2− b2 + (a− b)2,
we obtain

‖en+ 1
2 ‖2

h − ‖en‖2
h + τn+1ε2‖∇hen+ 1

2 ‖2
h + τn+1S1‖en+ 1

2 ‖2
h ≤ τn+1

〈
Rn

1 , en+ 1
2
〉

Ω, (3.5a)

2‖en+1 − en‖h

τn+1
+ ε2[‖∇hen+1‖2

h − ‖∇hen‖2
h
]
+ S1

[
‖en+1‖2

h − ‖en‖2
h
]

+ S2τn+1‖en+1 − en‖2
h ≤ 2

〈
Rn+1

2 , en+1 − en〉
Ω. (3.5b)

From (3.2), it follows that

‖ f (Φ(tn+ 1
2
))− f (Φn+ 1

2 )‖2
h ≤ (C3)

2‖en+ 1
2 ‖2

h.

Then we obtain the following estimate for the righthand side of (3.5b) by using Cauchy-
Schwarz inequality and Young’s inequality

2
〈

Rn+1
2 , en+1 − en〉

Ω

≤
τn+1‖Rn+1

2 ‖2
h

2
+

2‖en+1 − en‖2
h

τn+1

≤
(

S2
1‖en+ 1

2 ‖2
h +

S2
1|Ω|‖φ‖2

W2,∞(0,T;L∞(Ω))

64
τ4

n+1 + S2
2|Ω|‖φ‖2

W1,∞(0,T;L∞(Ω))τ
4
n+1

+(C3)
2‖en+ 1

2 ‖2
h + ‖Tn

3 ‖2
h + ‖Tn

4 ‖2
h

)τn+1

2
+

2‖en+1 − en‖2
h

τn+1

≤ C4τn+1‖en+ 1
2 ‖2

h +
τn+1

2
(‖Tn

3 ‖2
h + ‖Tn

4 ‖2
h) + C5τ4

n+1 +
2‖en+1 − en‖2

h
τn+1

,

(3.6)
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where C4 := (S2
1 + (C3)2)/2 and

C5 =
S2

1|Ω|‖φ‖2
W2,∞(0,T;L∞(Ω))

128
+

S2
2|Ω|
2
‖φ‖2

W1,∞(0,T;L∞(Ω)).

Therefore, we deduce from (3.5b) and (3.6) that

ε2[‖∇hen+1‖2
h − ‖∇hen‖2

h
]
+ S1

[
‖en+1‖2

h − ‖en‖2
h
]

≤ C4τn+1‖en+ 1
2 ‖2

h +
τn+1

2
(‖Tn

3 ‖2
h + ‖Tn

4 ‖2
h) + C5τ4

n+1.
(3.7)

Similarly, we can obtain the following estimate from (3.5a)

‖en+ 1
2 ‖2

h − ‖en‖2
h + τn+1ε2‖∇hen+ 1

2 ‖2
h + τn+1S1‖en+ 1

2 ‖2
h

≤
τ2

n+1

2

(
[S2

1 + (C3)
2]‖en‖2

h +
[S2

1 + (C3)2]|Ω|‖φt‖2
W1,∞(0,T;L∞(Ω))

4
τ2

n+1

+‖Tn
1 ‖2

h + ‖Tn
2 ‖2

h

)
+ 1

2‖en+ 1
2 ‖2

h

(3.8)

where we have used

‖ f (Φ(tn+ 1
2
))− f (Φn)‖2

h ≤ ‖ f (Φ(tn+ 1
2
))− f (Φ(tn))‖2

h + ‖ f (Φ(tn))− f (Φn)‖2
h

≤ (C3)
2(‖Φ(tn+ 1

2
)−Φ(tn)‖2

h + ‖en‖2
h
)

≤ (C3)
2
(τ2

n+1

4
|Ω|‖φ‖2

W1,∞(0,T;L∞(Ω)) + ‖e
n‖2

h

)
.

Then it follows from (3.8) and the definition of C4 in (3.6) that

‖en+ 1
2 ‖2

h ≤ 2‖en‖2
h + τ2

n+1
(
2C4‖en‖2

h + C6τ2
n+1 + ‖Tn

1 ‖2
h + ‖Tn

2 ‖2
h
)

(3.9)

with C6 := C4
2 |Ω|‖φt‖2

W1,∞(0,T;L∞(Ω))
. Substituting the estimate (3.9) for en+ 1

2 into (3.7),
we have

ε2[‖∇hen+1‖2
h − ‖∇hen‖2

h

]
+ S1

[
‖en+1‖2

h − ‖en‖2
h

]
≤ C7τn+1‖en‖2

h + (C5 + C4C6)τ
5
n+1 + C4τ3

n+1(‖Tn
1 ‖2

h + ‖Tn
2 ‖2

h)

+
τn+1

2
(‖Tn

3 ‖2
h + ‖Tn

4 ‖2
h),

(3.10)

where C7 := 2C4(1 + C4τ2). For the truncation errors Tn
i , i = 1, 2, 3, 4, we have the

following estimates (see [25, 26]):

‖Tn
1 ‖2

h ≤
|Ω|
16

τ2
n+1‖φ‖2

W2,∞(0,T;L∞(Ω)),

‖Tn
2 ‖2

h ≤
ε4|Ω|

36
h4‖φ‖2

L∞(0,T;W4,∞(Ω)),

‖Tn
3 ‖2

h ≤
|Ω|
242 τ4

n+1‖φ‖2
W3,∞(0,T;L∞(Ω)),

‖Tn
4 ‖2

h ≤ ε4
[ |Ω|

64
τ4

n+1‖φ‖2
W3,∞(0,T;W2,∞(Ω)) +

|Ω|
36

h4‖φ‖2
L∞(0,T;W4,∞(Ω))

]
.

(3.11)
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Thus, we sum up the inequality (3.10) from 0 to n to derive that

ε2‖∇hen+1‖2
h + S1‖en+1‖2

h ≤ C7

n

∑
k=1

τk+1‖ek‖2
h + C8τ4 + C9h4. (3.12)

where

C8 := T
[
C5 + C4C6 +

C4|Ω|
16
‖φ‖2

W2,∞(0,T;L∞(Ω)) +
|Ω|

2× 242 ‖φ‖
2
W3,∞(0,T;L∞(Ω))

+
|Ω|
64

ε4‖φ‖2
W3,∞(0,T;W2,∞(Ω))

]
,

C9 := ε4T
[
C4T +

1
2

] |Ω|
36
‖φ‖2

L∞(0,T;W4,∞(Ω)).

Using (3.12) and the discrete Gronwall’s lemma, we then obtain the desired estimate
(3.1).

The energy stability of the proposed CN scheme (2.11) is established in the follow-
ing theorem by using its the MBP property (Theorem 2.1) and the discrete H1 error
estimate (Theorem 3.1).

Theorem 3.2. Under the assumption of Theorem 3.1, the CN scheme (2.11) in the constant
mobility case satisfies

Eh(Φn+1)− Eh(Φn) ≤ Cτn+1(h4 + τ2), (3.13)

and consequently,
Eh(Φn+1) ≤ Eh(Φ0) + CT(h4 + τ2) (3.14)

for all 0 ≤ n ≤ N − 1, i.e., the discrete free energy is uniformly bounded by the energy at the
initial time plus a constant.

Proof. We take the discrete L2-inner product of (2.11b) with Φn+1 − Φn, to obtain
that[ 1

τn+1
+ S2τn+1

]
‖Φn+1 −Φn‖2

h +
ε2

2
(
‖∇hΦn+1‖2

h − ‖∇hΦn‖2
h
)

= −
〈

f (Φn+ 1
2 ), Φn+1 −Φn〉

Ω − S1
〈Φn+1 + Φn

2
−Φn+ 1

2 , Φn+1 −Φn〉
Ω.

(3.15)

Noting that
(a3 − a)(a− b)= a3(a− b)− a(a− b)

≥ a4 − b4

4
− 1

2
(
a2 − b2 + (a− b)2)

=
(a2 − 1)2

4
− (b2 − 1)2

4
− (a− b)2

2
,

(3.16)

we deduce〈
F(Φn+1)− F(Φn), 1

〉
Ω ≤

〈
f (Φn+1), Φn+1 −Φn〉

Ω +
1
2
‖Φn+1 −Φn‖2

h. (3.17)
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From (3.15), (3.17) and the definition of Eh(Φn), it follow that

Eh(Φn+1)− Eh(Φn)

=
ε2

2
(
‖∇hΦn+1‖2

h − ‖∇hΦn‖2
h
)
+
〈

F(Φn+1)− F(Φn), 1
〉

Ω

≤
〈

f (Φn+1)− f (Φn+ 1
2 ), Φn+1 −Φn〉

Ω − S1
〈Φn+1 + Φn

2
−Φn+ 1

2 , Φn+1 −Φn〉
Ω

−
[ 1

τn+1
+ S2τn+1 −

1
2
]
‖Φn+1 −Φn‖2

h.

Furthermore, using the Cauchy-Schwarz inequality and Young’s inequality, we obtain

Eh(Φn+1)− Eh(Φn)

≤ (C3)
2τn+1‖Φn+1 −Φn+ 1

2 ‖2
h + S2

1τn+1

∥∥∥Φn+1 + Φn

2
−Φn+ 1

2

∥∥∥2

h

+
‖Φn+1 −Φn‖2

h
2τn+1

−
[ 1

τn+1
+ S2τn+1 −

1
2
]
‖Φn+1 −Φn‖2

h

= (C3)
2τn+1‖Φn+1 −Φn+ 1

2 ‖2
h + S2

1τn+1

∥∥∥Φn+1 + Φn

2
−Φn+ 1

2

∥∥∥2

h

−
[ 1

2τn+1
+ S2τn+1 −

1
2
]
‖Φn+1 −Φn‖2

h.

(3.18)

By the triangle inequality, we obtain that

‖Φn+1 −Φn+ 1
2 ‖2

h = ‖en+1 + Φ(tn+1)−Φ(tn+ 1
2
)− en+ 1

2 ‖2
h

≤ ‖en+1‖2
h + ‖en+ 1

2 ‖2
h +

τ2
n+1|Ω|

4 ‖φt‖2
L∞(0,T;L∞(Ω)),∥∥∥Φn+1+Φn

2 −Φn+ 1
2

∥∥∥2

h
=
∥∥∥ en+1+en

2 + Φ(tn+1)+Φ(tn)
2 −Φ(tn+ 1

2
) + en+ 1

2

∥∥∥2

h

≤ ‖en+1‖2
h + ‖en‖2

h + ‖en+ 1
2 ‖2

h +
τ2

n+1|Ω|
4 ‖φt‖2

L∞(0,T;L∞(Ω)).

(3.19)

Thus, it follows from (3.18) and (3.19) that

Eh(φ
n+1)− Eh(φ

n) ≤ C10τn+1
(
‖en‖2

h + ‖en+1‖2
h + ‖en+ 1

2 ‖2
h + τ2

n+1
)

−
[ 1

2τn+1
+ S2τn+1 −

1
2
]
‖Φn+1 −Φn‖2

h.
(3.20)

with

C10 = max
{
(C3)

2, S2
1,
(C3)2|Ω|

4
‖φt‖2

L∞(0,T;L∞(Ω)),
S2

1|Ω|
4
‖φt‖2

L∞(0,T;L∞(Ω))

}
.

Furthermore, since S1 ≥ 2 and S2 satisfying (2.15) in the constant mobility case, we
get

1
2τn+1

+ S2τn+1 −
1
2
≥ 2

√
S2

2
− 1

2
> 0. (3.21)
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Together with (3.1) and (3.9), we then obtain

Eh(φ
n+1)− Eh(φ

n)≤ C10τn+1
(
‖en‖2

h + ‖en+1‖2
h + ‖en+ 1

2 ‖2
h + τ2

n+1
)

≤ Cτn+1(h4 + τ2).
(3.22)

Summing up the above inequality from 0 to n gives the desired result (3.14).

3.2 L∞ error estimate and energy stability for the general mobility case

In this subsection, the discrete L∞ error estimate and energy stability of the CN scheme
(2.11) are investigated for the case with a general mobility M(φ) ≥ M0 > 0.

Theorem 3.3. Assume M(·) ∈ C1(R), S1 satisfies (2.9), S2 satisfies (2.15), and

φ ∈W3,∞(0, T; L∞(Ω)) ∩ L∞(0, T; W4,∞(Ω)).

Then it holds for the CN scheme (2.11) in the general mobility case that

‖~en+1‖∞ ≤ C1 exp
(
C2T

)(
τ2 + h2) (3.23)

for all 0 ≤ n ≤ N − 1.

Proof. The exact solution ~Φ(·) satisfies

~Φ(tn+1)− ~Φ(tn)

τn+1
+ Λ(~Φ(tn+ 1

2
))
(
− ε2Dh

~Φ(tn+1) + ~Φ(tn)

2
+ F′(~Φ(tn+ 1

2
))
)

+
−→
T n

3 + Λ(~Φ(tn+ 1
2
))
−→
T n

4 = 0

for any 1 ≤ n ≤ N − 1, where Λ(~Φ(tn+1/2)) := diag(M(~Φ(tn+1/2)) and
−→
T n

3 and
−→
T n

4

are the vector forms of Tn
3 and Tn

4 in (3.4), respectively. Moreover,
−→
T n

4 can be expressed
as

−→
T n

4 = −ε2∆~Φ(tn+ 1
2
) + ε2Dh

~Φ(tn+1) + ~Φ(tn)

2
. (3.24)

Furthermore, it is easy to verify that

‖−→T n
3‖∞≤

1
24

τ2
n+1‖φ‖W3,∞(0,T;L∞(Ω)),

‖−→T n
4‖∞≤ ε2

[τ2
n+1

8
‖φ‖W3,∞(0,T;W2,∞(Ω)) +

h2

6
‖φ‖2

L∞(0,T;W4,∞(Ω))

]
.

(3.25)

Together with (2.12b), the error equation of~en+1 reads as

~en+1 −~en

τn+1
+ S1

(~en+1 +~en

2
−~en+ 1

2

)
+ S2τn+1(~e

n+1 −~en)− ε2Λn+ 1
2 Dh

~en+1 +~en

2
= S1(~Φ(tn+ 1

2
)− ~Φ(tn+1)+~Φ(tn)

2 )− S2τn+1
(
~Φ(tn+1)− ~Φ(tn)

)
−Λn+ 1

2
[
F′(~Φn+ 1

2 )− F′(~Φ(tn+ 1
2
))
]

−
[
Λn+ 1

2 −Λ(~Φ(tn+ 1
2
))
][
− ε2Dh~Φ(tn+ 1

2
) + F′(~Φ(tn+ 1

2
))
]
+
−→
T n

3 + Λ(~Φ(tn+ 1
2
))
−→
T n

4 .
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Let us denote the right-hand side term of the above equality as Rn. Then, the above
equality can be rewritten as:

~en+1

τn+1
+

S1

2
~en+1 + S2τn+1~e

n+1 − ε2

2
Λn+ 1

2 Dh~e
n+1 = Qn+1~en + S1~e

n+ 1
2 + Rn, (3.26)

where Qn+1 is defined in (2.17). Using the estimate for the matrix Qn+1 in (2.18), we
deduce that

‖Qn+1~en‖∞ ≤
( 1

τn+1
− S1

2
+ S2τn+1

)
‖~en‖∞ ≤

( 1
τn+1

+
S1

2
+ S2τn+1

)
‖~en‖∞ (3.27)

From the definition of F(ρ) = 1
4 (1− ρ2)2, it follows that maxρ∈[−1,1] F′(ρ) = 2

3
√

3
and

maxρ∈[−1,1] F′′(ρ) = 2. Moreover, we derive that

‖F′(~Φn+ 1
2 )− F′(~Φ(tn+ 1

2
))‖∞ ≤ 2‖~en+ 1

2 ‖∞. (3.28)

Furthermore, we can use (3.24) and (3.25) to obtain

‖ − ε2Dh~Φ(tn+ 1
2
) + F′(~Φ(tn+ 1

2
))‖∞

= ‖ − ε2∆~Φ(tn+ 1
2
)−−→T n

4 + F′(~Φ(tn+ 1
2
))‖∞

≤ ε2‖φ‖L∞(0,T,W2,∞(Ω)) + ‖
−→
T n

4‖∞ + 2
3
√

3
≤ ε2‖φ‖L∞(0,T,W2,∞(Ω)) +

2
3
√

3

+ε2( τ2

8 ‖φ‖W3,∞(0,T;W2,∞(Ω)) +
h2

6 ‖φ‖2
L∞(0,T;W4,∞(Ω))

)
=: C3.

(3.29)

The definitions of Λn+1/2 and Λ(·) give us

‖Λn+ 1
2 −Λ(~Φ(tn+ 1

2
))‖∞ ≤ max

ρ∈[−1,1]

∣∣M′(ρ)∣∣‖~en+ 1
2 ‖∞. (3.30)

Multiplying (3.26) with τn+1, and combining it with (3.25) and (3.27)-(3.30), we deduce
from Lemma 2.3 that

‖~en+1‖∞ ≤
∥∥∥~en+1 + S1

2 τn+1~e
n+1 + S2τ2

n+1~e
n+1 − ε2τn+1

2 Λn+ 1
2 Dh~e

n+1
∥∥∥

∞

= τn+1‖Qn+1~en + S1~e
n+ 1

2 + Rn‖∞

≤ ‖~en‖∞ + τn+1

[
( S1

2 + S2τn+1)~e
n + S1‖~en+ 1

2 ‖∞

+
S1‖φ‖W2,∞(0,T;L∞(Ω))

8 τ2
n+1 + S2‖φ‖W1,∞(0,T;L∞(Ω))τ

2
n+1 + 2L‖~en+ 1

2 ‖∞

+C3 maxρ∈[−1,1]
∣∣M′(ρ)∣∣‖~en+ 1

2 ‖∞ + ‖−→T n
3‖∞ + L‖−→T n

4‖∞

]
≤ ‖~en‖∞ + τn+1

[
C4‖~en‖∞ + C5‖~en+ 1

2 ‖∞

+C6τ2
n+1 +

ε2Lh2

6 ‖φ‖L∞(0,T;W4,∞(Ω))

]
,

(3.31)
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where C4 = S1/2 + S2τ, C5 = S1 + 2L + C3 max
ρ∈[−1,1]

∣∣M′(ρ)∣∣, and

C6 =
S1‖φ‖W2,∞(0,T;L∞(Ω))

8
+ S2‖φ‖W1,∞(0,T;L∞(Ω)) +

‖φ‖W3,∞(0,T;L∞(Ω))

24

+
ε2L‖φ‖W3,∞(0,T;W2,∞(Ω))

8
.

(3.32)

Following the similar process of deriving (3.26), we can easily obtain the error equa-
tion of~en+ 1

2 from (1.1) and (2.12a):

~en+ 1
2

τn+1
+ S1~e

n+ 1
2 − ε2ΛnDh~e

n+ 1
2

=
~en

τn+1
+ S1~e

n − S1(~Φ(tn+ 1
2
)− ~Φ(tn))−Λn[F′(~Φn)− F′(~Φ(tn+ 1

2
))
]

−
[
Λn −Λ(~Φ(tn+ 1

2
))
][
− ε2Dh~Φ(tn+ 1

2
) + F′(~Φ(tn+ 1

2
))
]

+
−→
T n

1 + Λ(~Φ(tn+ 1
2
))
−→
T n

2 ,

(3.33)

where
−→
T n

1 and
−→
T n

2 are vector forms of Tn
1 and Tn

2 , respectively. Moreover, we have

‖−→T n
1‖∞ ≤

τn+1

4
‖φ‖W2,∞(0,T;L∞(Ω)), ‖−→T n

2‖2
∞ ≤

ε2

6
h2‖φ‖L∞(0,T;W4,∞(Ω)). (3.34)

Using the triangle inequality we get

‖F′(~Φn)− F′(~Φ(tn+ 1
2
))‖∞

= ‖F′(~Φn)− F′(~Φ(tn)) + F′(~Φ(tn))− F′(~Φ(tn+ 1
2
))‖∞

≤ 2‖~en‖∞ + ‖φ‖W1,∞(0,T;L∞(Ω))τn+1,∥∥Λn −Λ(~Φ(tn+ 1
2
))
∥∥

∞
≤
∥∥Λn −Λ(~Φ(tn))

∥∥
∞ +

∥∥Λ(~Φ(tn))−Λ(~Φ(tn+ 1
2
))
∥∥

∞

≤ max
ρ∈[−1,1]

∣∣M′(ρ)∣∣[‖~en‖∞ +
τn+1

2
‖φ‖W1,∞(0,T;L∞(Ω))

]
.

(3.35)

Multiplying (3.33) with τn+1, and using Lemma 2.3, (3.34), and (3.35), we obtain that

‖~en+ 1
2 ‖∞ ≤

∥∥~en+ 1
2 + S1τn+1~e

n+ 1
2 − ε2τn+1ΛnDh~e

n+ 1
2
∥∥

∞

≤ ‖~en‖∞ + C5τn+1‖~en‖∞ +
S1+2L+C3 maxρ∈[−1,1]

∣∣M′(ρ)∣∣
2 ‖φ‖W1,∞(0,T;L∞(Ω))τ

2
n+1

+
τ2

n+1

4
‖φ‖W2,∞(0,T;L∞(Ω)) + τn+1

ε2Lh2

6
‖φ‖L∞(0,T;W4,∞(Ω)).

Therefore, we obtain

‖~en+ 1
2 ‖∞ ≤ C7‖~en‖∞ + C8τ2

n+1 + τn+1
ε2Lh2

6
‖φ‖L∞(0,T;W4,∞(Ω)), (3.36)
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where C7 = 1 + C5τ, and

C8 =
S1 + 2L + C3 maxρ∈[−1,1]

∣∣M′(ρ)∣∣
2

‖φ‖W1,∞(0,T;L∞(Ω)) +
1
4
‖φ‖W2,∞(0,T;L∞(Ω)).

Substituting the estimate (3.36) for ‖en+1/2‖ into (3.31), gives

‖~en+1‖∞ ≤ ‖~en‖∞ + τn+1
[
(C4 + C5C7)‖~en‖∞ + (C5C8 + C6)τ

2
n+1

+(C5τ + 1)
ε2Lh2

6
‖φ‖L∞(0,T;W4,∞(Ω))

]
≤ ‖~en‖∞ + τn+1

[
C2‖~en‖∞ + C1(τ

2
n+1 + h2)

]
,

(3.37)

where C1 = max
{

C5C8 + C6, (C5τ + 1)ε2L‖φ‖L∞(0,T;W4,∞(Ω))/6
}

and C2 = C4 + C5C7.
Summing up (3.37) from 0 to n, and together with the discrete the Gronwall’s Lemma,
the desired estimate (3.23) can be derived, which completes the proof.

Theorem 3.4. Under the assumption of Theorem 3.3 and the additional condition S2 ≥ L2/8,
the CN scheme (2.11) in the general mobility case satisfies

Eh(Φn+1)− Eh(Φn) ≤ Cτn+1(h4 + τ2), (3.38)

and consequently,

Eh(Φn+1) ≤ Eh(Φ0) + CT(h4 + τ2), 0 ≤ n ≤ N − 1, (3.39)

for all 0 ≤ n ≤ N − 1, i.e., the discrete free energy is uniformly bounded by the energy at the
initial time plus a constant.

Proof. From 0 < M0 ≤ M(ρ) ≤ L for ρ ∈ [−1, 1] and the definition of Λn+1/2 in
(2.12b), it follows that the matrix Λn+1/2 is invertible. Moreover, we get

(Λn+1/2)−1 = diag
(

1
M(~Φn+1/2

1 )
, 1

M(~Φn+1/2
2 )

, · · · , 1
M(~Φn+1/2

M2 )

)
, (3.40)

and 1/L ≤ 1/M(~Φn+1/2
i ) ≤ 1/M0 for i = 1, 2, · · · , M2. Therefore, we multiply both

sides of (2.12b) with (Λn+1/2)−1 to obtain that[ 1
τn+1

+ S2τn+1
]
(Λn+ 1

2 )−1(~Φn+1 − ~Φn)− ε2Dh
~Φn+1 + ~Φn

2
+ F(~Φn+ 1

2 )

+S1(Λn+ 1
2 )−1

(~Φn+1 + ~Φn

2
− ~Φn+ 1

2

)
= 0,

Furthermore, multiplying the above equality with (~Φn+1 − ~Φn)T, gives

− ε2

2
(~Φn+1 − ~Φn)TDh(~Φn+1 + ~Φn) + (~Φn+1 − ~Φn)T F′(~Φn+1)

= (~Φn+1 − ~Φn)T(F′(~Φn+1)− F′(~Φn+ 1
2 ))

−
[ 1

τn+1
+ S2τn+1

]
(~Φn+1 − ~Φn)T(Λn+ 1

2 )−1(~Φn+1 − ~Φn)

−S1(~Φn+1 − ~Φn)T(Λn+ 1
2 )−1(~Φn+1 + ~Φn

2
− ~Φn+ 1

2
)
.

(3.41)
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Due to (3.16), we have

M2

∑
i=1

(F(~Φn+1
i )− F(~Φn

i )) ≤ (~Φn+1 − ~Φn)T F′(~Φn+1) +
1
2
|~Φn+1 − ~Φn|2. (3.42)

Using the fact max−1≤ρ≤1 F′′(ρ) ≤ 2, the Cauchy-Schwarz inequality, and the Young’s
inequality together with (3.40), we deduce that

(~Φn+1 − ~Φn)T(F′(~Φn+1)− F′(~Φn+ 1
2 ))

≤ 4τn+1L|~Φn+1 − ~Φn+ 1
2 |2 + |

~Φn+1 − ~Φn|2
4τn+1L

,

−
[ 1

τn+1
+ S2τn+1

]
(~Φn+1 − ~Φn)T(Λn+ 1

2 )−1(~Φn+1 − ~Φn)

≤ −
[ 1

τn+1
+ S2τn+1

] |~Φn+1 − ~Φn|2
L

,

−S1(~Φn+1 − ~Φn)T(Λn+ 1
2 )−1(~Φn+1 + ~Φn

2
− ~Φn+ 1

2
)

≤ S2
1Lτn+1

M2
0

∣∣∣~Φn+1 + ~Φn

2
− ~Φn+ 1

2

∣∣∣2 + |~Φn+1 − ~Φn|2
4τn+1L

.

(3.43)

Combining (3.41) with (3.42) and (3.43), together with the definition of Eh(Φn) in (2.8),
we obtain

Eh(Φn+1)− Eh(Φn)

= h2
[
− ε2

2

[
(~Φn+1)TDh~Φn+1 − (~Φn)TDh~Φn]+ ∑M2

i=1(F(~Φn+1
i )− F(~Φn

i ))
]

≤ h2[− ε2

2 (
~Φn+1 − ~Φn)TDh(~Φn+1 + ~Φn)

+(~Φn+1 − ~Φn)T F′(~Φn+1) + 1
2 |~Φn+1 − ~Φn|2

]
≤ h2[4τn+1L|~Φn+1 − ~Φn+ 1

2 |2 + S2
1 Lτn+1

M2
0

∣∣∣ ~Φn+1+~Φn

2 − ~Φn+ 1
2

∣∣∣2
−
( 1

2τn+1
+ S2τn+1 − L

2

) |~Φn+1−~Φn|2
L

]
.

(3.44)

Similar to derive (3.19), we can use the triangle inequality to obtain that

h2|~Φn+1 − ~Φn+ 1
2 |2

≤ h2[|~en+1|2 + |~en+ 1
2 |2
]
+

τ2
n+1|Ω|

4
‖φt‖L∞(0,T;L∞(Ω)),

≤ |Ω|
[
‖~en+1‖2

∞ + ‖~en+ 1
2 ‖2

∞
]
+

τ2
n+1|Ω|

4
‖φt‖L∞(0,T;L∞(Ω)),

h2
∣∣∣~Φn+1 + ~Φn

2
− ~Φn+ 1

2

∣∣∣2
≤ h2[|~en+1|2 + |~en|2 + |~en+ 1

2 |2
]
+

τ2
n+1|Ω|

4
‖φt‖L∞(0,T;L∞(Ω))

≤ |Ω|
[
‖~en+1‖2

∞ + ‖~en‖2
∞ + ‖~en+ 1

2 ‖2
∞
]
+

τ2
n+1|Ω|

4
‖φt‖L∞(0,T;L∞(Ω)).

(3.45)
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Thus, we deduce from (3.44), (3.45), (3.23) and (3.36) that

Eh(φ
n+1)− Eh(φ

n)≤ C9τn+1
(
h4 + τ2

n+1

)
−
( 1

2τn+1
+ S2τn+1 − L

2

) |~Φn+1−~Φn|2
L

≤ C9τn+1
(
h4 + τ2

n+1
)
,

where we have used

1
2τn+1

+ S2τn+1 −
1
2
≥ 2

√
S2

2
− L

2
≥ 0.

for any S2 ≥ L2/8. Summing the above inequality up from 0 to n gives the desired
result (3.39).

4 Numerical experiments

In this section, some numerical experiments are presented to validate the theoretical
results of the proposed CN scheme (2.11) in terms of accuracy and preservation of
the MBP. Throughout the numerical tests, the models are subject to the homogenous
Neumann boundary condition, and the central finite difference method is exploited
for the spatial discretization.

4.1 Temporal convergence

We consider the Allen-Cahn equation (1.1) with the parameter ε = 0.01, the initial
value

φ0(x, y) = 0.1(cos 3x cos 2y + cos 5x cos 5y),

and two types of mobility functions: one is the constant mobility M(φ) ≡ 1 and the
other is the nonlinear degenerate mobility M(φ) = 1− φ2. The computational domain
is set to be Ω = (0, 1)2 and the terminal time is chosen to be T = 1. We fix the uniform
spatial mesh size h = 1/1024 which is small enough so that the spacial discretization
error is negligible compared to that by the temporal discretization. The stabilizing
parameters are chosen to be S1 = S2 = 2. Due to no analytical solution available for
this numerical experiment, we evaluate the numerical solution errors in the discrete
L∞ and H1 norms, respectively, as follows:

eT
∞(N) = ‖ΦN −Φ2N‖∞, eT

H1(N) = ‖ΦN −Φ2N‖H1
h
,

where N denotes the number of subintervals for the time domain [0, 1] and ΦN is the
corresponding numerical solution at the terminal time T = 1.

Firstly, we test the convergence rate of the CN scheme (2.11) on the uniform tem-
poral meshes with time step size τ ranging from 1/10 to 1/320 (i.e., N changes from
10 to 320). In Fig. 1, we present the H1 and L∞ errors at T = 1 as functions of the
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time step sizes in log-log scale. It is shown that the CN scheme (2.11) achieves the ex-
pected second-order temporal accuracy for both mobility cases. Next, we numerically
investigate the error behaviors of the CN scheme (2.11) with a sequence of nonuni-
form temporal meshes, which is produced by 40% perturbation of the uniform ones
{tn = n/N}N

n=0. We denote by
{

γn = τn/τn−1
}N

n=2 the adjacent time-step ratios. col-
orredOnce again the observed error behaviors in Table 1 achieve the desired second
order accuracy in time for all cases.
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Figure 1: The error behavior with respect to the time step size for the CN scheme (2.11) with uniform time
steps. Left: M(φ) ≡ 1; right: M(φ) = 1− φ2.

Table 1: Numerical solution errors and convergence rates of the CN scheme (2.11) with nonuniform time
steps.

Time steps M(φ) = 1 M(φ) = 1− φ2

N τ max{γn} eT
H1

h
Order eT

∞ Order eT
H1

h
Order eT

∞ Order

10 1.629e-1 4.322 9.236e-2 – 1.090e-2 – 7.823e-2 – 7.927e-3 –
20 8.254e-2 4.660 2.768e-2 1.77 3.198e-3 1.80 2.334e-2 1.78 2.310e-3 1.81
40 3.953e-2 4.950 6.721e-3 1.92 7.659e-4 1.94 5.657e-3 1.93 5.511e-4 1.95
80 2.105e-2 6.901 1.933e-3 1.98 2.184e-4 1.99 1.625e-3 1.98 1.569e-4 1.99
160 1.075e-2 6.997 4.562e-4 2.15 5.141e-5 2.15 3.838e-4 2.15 3.689e-5 2.15
320 5.546e-3 8.084 1.119e-4 2.12 1.261e-5 2.12 9.517e-5 2.11 8.980e-6 2.14

4.2 MBP preservation

To test the MBP preservation of the proposed CN scheme (2.11), we consider two well-
known benchmark problems governed by the Allen-Cahn equations. One is the grain
coarsening dynamic process and the other is the shrinking bubble problem [4].

The grain coarsening dynamics In this numerical experiment, we investigate the
coarsening dynamics governed by the Allen-Cahn equation (1.1) with a nonlinear de-
generate mobility M(φ) = 1− φ2 and a random initial data ranging from −0.1 to 0.1.
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The domain is set to be Ω = (0, 1)2 with the width parameter ε = 1/256 ≈ 3.91e-3,
and the uniform spatial mesh with h = 1/256 is used for spatial discretization. In par-
ticular, for such a nonlinear mobility function, it is of essential importance to preserve
the numerical solutionφ ∈ [−1, 1] in the numerical algorithm. Otherwise, it may lead
to the ill-posedness of the proposed numerical scheme, and the numerical solution
blowing up during the time simulation, as shown in Fig. 2 (a).

The MBP preservation of the proposed CN scheme (2.11) is investigated for this
example through a long time simulation up to T = 3000 using the CN scheme (2.11)
with several large time step sizes. We set S1 = 4/5 satisfying the condition (2.9), and
choose two values for the stabilizing parameter S2: one is the case of S0 = 0 leading
to the conditional MBP preservation of the CN scheme, the other is S2 =

( S1
4 + Lε2

h2

)2

satisfying (2.15) to guarantee the unconditional MBP preservation of the CN scheme
(2.11) as stated in Theorem 2.1. The evolutions of the supremum norm and energy of
the simulated solutions for both cases are presented in Fig. 2. We observe that the CN
scheme (2.11) with S2 = 0 and τ = 2 preserve the MBP, and the numerical solutions
blow up at a finite time about t = 30, see 2-(a). It is also seen in Fig. 2-(b) that the CN
scheme preserve the MBP under all tested time step sizes when the two stabilizing
parameters S1 and S2 satisfy the conditions (2.9) and (2.15), respectively; furthermore,
it also achieves energy dissipation for all cases in the sense of Eh(φ

n+1) ≤ Eh(φ
n) for

n = 0, · · · , N − 1.
One of main advantages of the unconditionally stable schemes is that it can be eas-

ily adopted by an adaptive time strategy. This is particularly useful for the long time
simulation of the coarsening dynamic process, in which the phase transition usually
goes through several different stages within a long period: changes quickly at the be-
ginning and then rather slowly until it reaches a steady state. Thus we will exploit the
use of the following robust time adaptive strategy with he CN scheme (2.11), which
is based on the energy variation [28] to efficiently simulate the coarsening dynamic
process:

τn+1 = max
(
τmin,

τmax√
1 + α|E′(t)|2

)
, (4.1)

where τmin, τmax are the predetermined minimum and maximum time step sizes, and
α is a positive constant parameter. Obviously according to this type of time strate-
gy, the numerical scheme will automatically select large time step sizes when energy
variation is big and a small ones otherwise. The parameters are set to be τmin = 10−5,
τmax = 0.1, and α = 105 in this test. In the simulation, we choose S1 = 4/5 and
S2 =

( S1
4 + Lε2

h2

)2 such that both of the conditions (2.9) and (2.15) are satisfied. As
shown in Fig. 4-(a), the CN scheme always preserves the MBP property during the
simulation up to T = 150000. Moreover, we also display several snapshots of the
simulated phase structures (around the times t = 500, 1000, 5000, 10000, 13000, 15000)
in Fig. 3, and the evolutions of the energy and the adaptive time step sizes in Fig.
4-(b)&(c). As shown in Fig. 4-(b)&(c), the computed energy is always dissipative in
time and the adaptive time stepping strategy scheme automatically select the time step
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sizes according the changing rate of the free energy, which demonstrates the efficiency
of our proposed scheme adopted with the time adaptive strategy (4.1).
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Figure 2: The evolutions in time of the supremum norm (left) and the energy (right) of the simulated
solution produced by the CN scheme (2.11) with some uniform time steps for the grain coarsening problem
with the degenerate mobility.

The shrinking bubble problem We next use the shrinking bubble problem [4] to test
the performance of the proposed CN scheme (2.11) again with the time adaptive strat-
egy (4.1). The shrinking bubble problem is driven by the Allen-Cahn equation (1.1)
with M(φ) ≡ 1 and ε = 0.01 in a rectangular domain (−0.5, 0.5)2. The initial bubble is
a sphere of radius R0 = 0.2 located at the center of the computational domain, given
by

φ0(x) =

{
1, |x|2 < 0.22,

−1, |x|2 ≥ 0.22.
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Figure 3: Snapshots of the simulated phase structures around the times t = 500, 1000, 5000, 10000, 13000,
and 15000 produced by the CN scheme (2.11) with the time adaptive strategy (4.1) for the grain coarsening
problem with the degenerate mobility.
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Figure 4: The evolutions in time of the supremum norm, the energy, and the time step sizes produced by
the CN scheme (2.11) with the time adaptive strategy (4.1) for the grain coarsening problem (4.1) with the
degenerate mobility.

As stated in [6,11,21], such a bubble is not stable and will shrink and finally disappear
due the interface driving force. Moreover, with assumption of a sufficient small ε, the
radius of the circle at time t can be approximately expressed as follows

R(t) =
√

R2
0 − 2ε2t. (4.2)

We perform the simulation by combining the CN scheme (2.11) with h = 1/512
and the time adaptive strategy (4.1) with τmin = 10−5, τmax = 0.01, and α = 105. Sever-
al snapshots of the computed bubble at the times t = 0, 20, 80, 120, 180, 200 are plotted



24 Dianming Hou, Lili Ju and Zhonghua Qiao

in Fig. 2, showing that the bubble disappears at t = 200 as predicted. Moreover, it
is observed in Fig. 6 (a) that the simulated radius of the bubble is monotonously de-
creasing with a rate almost identical to the theoretical prediction (4.2). Furthermore,
we present the evolution of the supremum norm of the numerical solutions along with
the time in Fig. 6-(b), which shows the MBP preservation of the proposed CN scheme
(2.11) during the whole simulation. In the last line of Fig. 6, we plot the evolutions
of the energy and the adaptive time step sizes to numerically demonstrate the energy
dissipation and the efficiency of the proposed CN scheme (2.11) adopted with the time
adaptive strategy (4.1).

Figure 5: Snapshots of the simulated phase structures at the times t = 0, 20, 80, 120, 180, and 200 produced
by the CN scheme (2.11) for with the time adaptive strategy (4.1) for the shrinking bubble problem.

5 Concluding remarks

A linear doubly stabilized CN scheme is constructed for the Allen-Cahn equation with
general mobility in this paper. The resulting fully-discrete system is formed by apply-
ing the central finite difference method for spatial discretization, and requires two
Poisson-type equations to be solved at each time step. Two stabilizing terms are in-
troduced to unconditionally preserve the discrete MBP of the proposed scheme. The
discrete H1 and L∞ error estimates are rigorously derived for the constant mobility
case and the general one, respectively. Furthermore, the corresponding energy sta-
bility of the proposed scheme is also established for both cases. Finally, a series of
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Figure 6: The evolutions in time of the radius, the supremum norm, and the energy of the simulated solution
and the time step size produced by the CN scheme (2.11) with the adaptive time stepping approach (4.1)
for the shrinking bubble problem.

numerical experiments were carried out to verify the theoretical claims and illustrate
the efficiency of the doubly stabilized CN scheme with a time adaptive strategy. It
remains interest to further theoretically explore the unconditional energy dissipation
preservation of the proposed scheme, which has been numerically observed in our
numerical experiment.

Acknowledgments

The work of D. Hou is partially supported by Natural Science Foundation of Chi-
na grant 12001248, Jiangsu Province Higher Education Institutions grant BK20201020,
Jiangsu Province Universities Science Foundation grant 20KJB110013 and Hong Kong
Polytechnic University grant 1-W00D; L. Ju’s work is partially supported by US Na-
tional Science Foundation grant DMS-2109633; Z. Qiao‘s work is partially supported
by Hong Kong Research Council RFS grant RFS2021-5S03 and GRF grant 15302919,



26 Dianming Hou, Lili Ju and Zhonghua Qiao

Hong Kong Polytechnic University grant 4-ZZLS, and CAS AMSS-PolyU Joint Labo-
ratory of Applied Mathematics.

References

[1] A. Baskaran, Z. Hu, J. S. Lowengrub, C. Wang, S. M. Wise, and P. Zhou. Energy stable
and efficient finite-difference nonlinear multigrid schemes for the modified phase field
crystal equation. J. Comput. Phys., 250:270–292, 2013.

[2] A. Baskaran, J. S. Lowengrub, C. Wang, and S. M. Wise. Convergence analysis of a second
order convex splitting scheme for the modified phase field crystal equation. SIAM J.
Numer. Anal., 51(5):2851–2873, 2013.

[3] Y. Cai, L. Ju, R. Lan, and J. Li. Stabilized exponential time differencing schemes for the
convective Allen–Cahn equation. Commun. Math. Sci., 21(1):127–150, 2023.

[4] L. Chen and J. Shen. Applications of semi-implicit fourier-spectral method to phase field
equations. Comput. Phys. Commun., 108(2-3):147–158, 1998.

[5] X. Chen, X Qian, and S. Song. Fourth-order structure–preserving method for the conser-
vative Allen–Cahn equation. Adv. Appl. Math. Mech., 15(1):159–181, 2023.

[6] J. M. Church, Z. Guo, P. K. Jimack, A. Madzvamuse, K. Promislow, B. Wetton, S. M. Wise,
and F. Yang. High accuracy benchmark problems for Allen-Cahn and Cahn-Hilliard dy-
namics. Commun. Comput. Phys., 26(4), 2019.

[7] Q. Du, L. Ju, X. Li, and Z. Qiao. Maximum principle preserving exponential time differ-
encing schemes for the nonlocal Allen–Cahn equation. SIAM J. numer. anal., 57(2):875–
898, 2019.

[8] Q. Du, L. Ju, X. Li, and Z. Qiao. Maximum bound principles for a class of semilinear
parabolic equations and exponential time differencing schemes. SIAM Rev., 63(2):317–
359, 2021.

[9] X. Feng, H. Song, T. Tang, and J. Yang. Nonlinear stability of the implicit–explicit methods
for the Allen–Cahn equation. Inverse Probl. Imag., 7(3), 2013.

[10] Z. Fu and J. Yang. Energy-decreasing exponential time differencing Runge–Kutta meth-
ods for phase-field models. J. Comput. Phys., 454:110943, 2022.

[11] D. Hou, M. Azaiez, and C. Xu. A variant of scalar auxiliary variable approaches for
gradient flows. J. Comput. Phys., 395:307–332, 2019.

[12] D. Hou, L. Ju, and Z. Qiao. A linear second-order maximum bound principle-preserving
BDF scheme for the Allen-Cahn equation with general mobility. arXiv:2211.00852, pages
1–25, 2022.

[13] T. Hou and H. Leng. Numerical analysis of a stabilized Crank–Nicolson/Adams–
Bashforth finite difference scheme for Allen–Cahn equations. Appl. Math. Lett.,
102:106150, 2020.

[14] T. Hou, T. Tang, and J. Yang. Numerical analysis of fully discretized Crank–Nicolson
scheme for fractional-in-space Allen–Cahn equations. J. Sci. Comput., 72(3):1214–1231,
2017.

[15] Z. Hu, S. M. Wise, C. Wang, and J. S. Lowengrub. Stable and efficient finite-difference
nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys.,
228(15):5323–5339, 2009.

[16] Q. Huang, K. Jiang, and J. Li. Exponential time differencing schemes for the Peng-
Robinson equation of state with preservation of maximum bound principle. Adv. Appl.
Math. Mech, 14(2):494–527, 2022.



A linear doubly stabilized Crank-Nicolson scheme for the Allen-Cahn equation 27

[17] K. Jiang, L. Ju, J. Li, and X. Li. Unconditionally stable exponential time differencing
schemes for the mass-conserving allen–cahn equation with nonlocal and local effects.
Numer. Methods Partial Differ. Equ., 38(6):1636–1657, 2022.

[18] L. Ju, X. Li, and Z. Qiao. Generalized SAV–exponential integrator schemes for Allen–
Cahn type gradient flows. SIAM J. Numer. Anal., 60(4):1905–1931, 2022.

[19] L. Ju, X. Li, and Z. Qiao. Stabilized exponential–SAV schemes preserving energy dis-
sipation law and maximum bound principle for the Allen–Cahn type equations. J. Sci.
Comput., 92(2):66, 2022.

[20] L. Ju, X. Li, Z. Qiao, and J. Yang. Maximum bound principle preserving integrating factor
Runge–Kutta methods for semilinear parabolic equations. J. Comput. Phys., 439:110405,
2021.

[21] L. Ju, J. Zhang, L. Zhu, and Q. Du. Fast explicit integration factor methods for semilinear
parabolic equations. J. Sci. Comput., 62(2):431–455, 2015.

[22] B. Li, J. Yang, and Z. Zhou. Arbitrarily high-order exponential cut-off methods for pre-
serving maximum principle of parabolic equations. SIAM J. Sci. Comput., 42(6):A3957–
A3978, 2020.

[23] J. Li, L. Ju, Y. Cai, and X. Feng. Unconditionally maximum bound principle preserv-
ing linear schemes for the conservative Allen–Cahn equation with nonlocal constraint.
Journal of Scientific Computing, 87(3):1–32, 2021.

[24] J. Li, X. Li, L. Ju, and X. Feng. Stabilized integrating factor Runge–Kutta method
and unconditional preservation of maximum bound principle. SIAM J. Sci. Comput.,
43(3):A1780–A1802, 2021.

[25] X. Li, J. Shen, and H. Rui. Energy stability and convergence of SAV block-centered finite
difference method for gradient flows. Math. Comput., 88(319):2047–2068, 2019.

[26] H. Liao, T. Tang, and T. Zhou. On energy stable, maximum-principle preserving, second
order BDF scheme with variable steps for the Allen-Cahn equation. SIAM J. Numer. Anal.,
58(4):2294–2314, 2020.

[27] C. Nan and H. Song. The high-order maximum-principle-preserving integrating factor
Runge-Kutta methods for nonlocal Allen-Cahn equation. J. Comput. Phys., 456:111028,
2022.

[28] Z. Qiao, Z. Zhang, and T. Tang. An adaptive time-stepping strategy for the molecular
beam epitaxy models. SIAM J. Sci. Comput., 33(3):1395–1414, 2011.

[29] J. Shen, T. Tang, and J. Yang. On the maximum principle preserving schemes for the
generalized Allen–Cahn equation. Commun. Math. Sci., 14(6):1517–1534, 2016.

[30] J. Shen, C. Wang, X. Wang, and S. M. Wise. Second-order convex splitting schemes
for gradient flows with ehrlich–schwoebel type energy: application to thin film epitaxy.
SIAM J. Numer. Anal., 50(1):105–125, 2012.

[31] T. Tang and J. Yang. Implicit–explicit scheme for the Allen–Cahn equation preserves the
maximum principle. J. Comput. Math., 34(5):451–461, 2016.

[32] A. Weiser and M. F. Wheeler. On convergence of block-centered finite differences for
elliptic problems. SIAM J. Numer. Anal., 25(2):351–375, 1988.

[33] S. M Wise. Unconditionally stable finite difference, nonlinear multigrid simulation of the
Cahn-Hilliard-Hele-Shaw system of equations. J. Sci. Comput., 44(1):38–68, 2010.

[34] S. M. Wise, C. Wang, and J. S. Lowengrub. An energy-stable and convergence finite–
difference scheme for the phase field crystal equation. SIAM J. Numer. Anal., 47(1):2269–
2288, 2009.

[35] X. Xiao, R. He, and X. Feng. Unconditionally maximum principle preserving finite ele-
ment schemes for the surface Allen–Cahn type equations. Numer. Methods Partial Differ.



28 Dianming Hou, Lili Ju and Zhonghua Qiao

Equ., 36(2):418–438, 2020.
[36] J. Yang, Z. Yuan, and Z. Zhou. Arbitrarily high-order maximum bound preserving

schemes with cut-off postprocessing for Allen–Cahn equations. J. Sci. Comput., 90(2):1–
36, 2022.

[37] H. Zhang, J. Yan, X. Qian, X. Chen, and S. Song. Explicit third-order unconditionally
structure-preserving schemes for conservative Allen–Cahn equations. J. Sci. Comput.,
90:1–29, 2022.

[38] H. Zhang, J. Yan, X. Qian, X. M. Gu, and S. Song. On the maximum principle preserving
and energy stability of high-order implicit-explicit Runge-Kutta schemes for the space-
fractional Allen-Cahn equation. Numer. Algor., 88:1309–1336, 2021.

[39] H. Zhang, J. Yan, X. Qian, and S. Song. Numerical analysis and applications of explicit
high order maximum principle preserving integrating factor Runge-Kutta schemes for
Allen–Cahn equation. Appl. Numer. Math., 161:372–390, 2021.


