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Abstract

Nonlocal models have demonstrated their indispensability in numerical simulations across a spec-
trum of critical domains, ranging from analyzing crack and fracture behavior in structural engi-
neering to modeling anomalous diffusion phenomena in materials science and simulating convection
processes in heterogeneous environments. In this study, we present a novel framework for construct-
ing nonlocal convection-diffusion models using Gaussian-type kernels. Our framework uniquely
formulates the diffusion term by correlating the constant diffusion coefficient with the variance of
the Gaussian kernel. Simultaneously, the convection term is defined by integrating the variable ve-
locity field into the kernel as the expectation of a multivariate Gaussian distribution, facilitating a
comprehensive representation of convective transport phenomena. We rigorously establish the well-
posedness of the proposed nonlocal model and derive a maximum principle to ensure its stability
and reliability in numerical simulations. Furthermore, we develop a meshfree discretization scheme
tailored for numerically simulating our model, designed to uphold both the discrete maximum
principle and asymptotic compatibility. Through extensive numerical experiments, we validate
the efficacy and versatility of our framework, demonstrating its superior performance compared to
existing approaches.
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Notation

f(x) Source terms
g(x) Boundary values
v(x) Velocity field
ε Positive parameter
Ωs Open domain
∂Ωs Boundary of Ωs

Rn n-dimensional Euclidean space
δ Horizon parameter
p(z, µ,Σ) Probability density function

L̃nd
δ Nonlocal operator

χ2
α(d) Chi-square distribution

B̃nd
δ,A,α(x) Truncated region

Lδ Nonlocal convection-diffusion operator
Lnd
δ Nonlocal diffusion operator

Lnc
δ Nonlocal convection operator

γnd Diffusion kernel function
γnc Diffusion kernel function
Id d-dimensional identity matrix
Bnd

δ,α Truncated influence region of diffusion term

Bnc
δ,α Truncated influence region of convection term

γnd,α Truncated diffusion kernel function
γnc,α Truncated convection kernel function
Ωbd Interaction domain about diffusion term
Ωbc Interaction domain about convection term
Ωc Total interaction domain
Lδ,α Truncated nonlocal convection-diffusion operator
Lnd
δ,α Truncated nonlocal diffusion operator

Lnc
δ,α Truncated nonlocal convection operator

L2
n0(Ω) Constrained space

B(·, ·) Bilinear operator
xi Discrete point
Si Associated volume
Th Grid set
Bδ(x) Euclidean balls
Bδ,h(x) Approximate balls
△Bδ,h(x) Ball difference

L̃2
n0
(Ω) Constrained space

1. Introduction

Nonlocal models, encompassing peridynamics models [3, 19, 27, 28, 30, 35], nonlocal diffu-
sion models [9, 12, 37, 41, 42], nonlocal advection [8, 15, 21], nonlocal convection-diffusion models
[5, 13, 33, 34], nonlocal Stokes equations [11] and so on, have garnered significant attention in recent
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decades from both theoretical and computational perspectives [1, 16, 14, 20, 25, 26, 39, 43]. For
a comprehensive exploration of nonlocal models, we refer to the monograph [17] and the survey
article [6]. Following the establishment of the nonlocal vector calculus framework [10], model-
ing convection-diffusion problems has attracted considerable attention in recent years. A central
challenge lies in identifying an appropriate kernel function and integrating convective information
into it. A nonlocal, nonlinear advection model was firstly introduced in [8] by extending conven-
tional pointwise concepts to account for nonlocal contributions to the flux. Then, [13] developed a
nonlocal convection-diffusion models with volume-constrained boundary condition, while the well-
posedness of such models was investigated in [4]. Furthermore, an upwind nonlocal model for
convection-diffusion problems with a divergence-free velocity field was proposed in [33], the finite
element discritization of which was proved to satisfy the discrete maximum principle. Subsequently,
for general velocity fields, a conservative nonlocal convection-diffusion model with a specially con-
structed upwind convection term was introduced in [34], ensuring both mass conservation and
adherence to the maximum principle. To solve nonlocal convection-dominated diffusion problems,
Leng et al. [24] introduced an asymptotic compatible Petrov-Galerkin method. Based on the
exsiting nonlocal convection-diffusion model, to simulate complicated processes involving chemical
reactions,flows and diffusions, a bond-based peridynamic advection-reaction-diffusion model was
formulated by Tian et al.[32].

In [36], an innovative Gaussian-type kernel-based nonlocal diffusion model was introduced,
revolutionizing the simulation of diffusion processes by incorporating matrix-valued anisotropic
coefficients in non-divergence form. This approach allows for the simulation of both isotropic
and anisotropic diffusion phenomena by integrating the diffusion matrix into the covariance and
establishing the kernel using a multivariate Gaussian distribution. Unlike existing nonlocal models,
where the kernel function may be bounded, the Gaussian-type nonlocal model’s kernel function
is unbounded, enabling the integration of physics information directly into the kernel function.
Building upon this approach, we propose and study a novel nonlocal convection-diffusion model
corresponding to the following partial differential equation (PDE) model defined on an open domain
Ωs ⊂ Rd: {

−ε∆u(x) + v(x) · ∇u(x) = f(x), x ∈ Ωs,

u(x) = g(x), x ∈ ∂Ωs.
(1.1)

Here, ε > 0 serves as a positive parameter, which is relatively more compared to the above velocity
field v(x). In this approach, the velocity field is incorporated into the kernel function, as an
expectation of a multivariate Gaussian distribution. Considering that the support of the Gaussian-
type kernel is unbounded, we strategically truncate the influence region to improve computational
efficiency. Thus volume-constrained boundary condition is prescribed. The well-posedness of the
proposed nonlocal model is successfully established, and the maximum principle is derived. With
direct Riemann quadrature, [31], we further develop a meshfree discretization scheme which satisfies
the discrete maximum principle and the asymptotic compatibility. Through extensive numerical
experiments, we demonstrate that the proposed meshfree scheme achieves first-order accuracy as
the horizon parameter and the grid size simultaneously go to 0 with a fixed ratio (i.e., the so-called
δ-convergence).

Compared with existing nonlocal convection-diffusion models, we would like to highlight three
key contributions of the proposed model. Firstly, we extend the framework of the Gaussian ker-
nel based nonlocal model from anisotropic diffusion to convection-diffusion. Secondly, our model
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enables a direct meshfree discretization, which preserves the discrete maximum principle and
asymptotic compatible convergence and doesn’t need additional modification. Thirdly, our nonlo-
cal convection-diffusion model successfully avoids volume correction issues by introducing an un-
bounded Gaussian-type kernel function, which eliminates the need for volume correction techniques
often required in bounded domain models[18, 2, 7, 29].

The paper is organized as follows. The existing Gaussian-type kerne based nonlocal anisotropic
diffusion model in non-divergence form is briefly reviewed in Section 2. In Section 3, the proposed
nonlocal convection-diffusion model is presented, along with an analysis of its local limit and the
selection of the truncated region. The well-posedness and maximum principle of our nonlocal model
are established in Section 4. Section 5 introduces the meshfree discretization scheme for numerically
simulating the proposed model. Extensive numerical experiments demonstrating the effectiveness
of the proposed model and corresponding numerical scheme are presented in Section 6, followed by
concluding remarks in Section 7.

2. Related work on the Gaussian-type kernel based nonlocal diffusion model

We define a d-dimensional multivariate Gaussian distribution, the probability density function
p(z,µ,Σ) is presented as follows:

p(z,µ,Σ) =
1√

(2π)d |Σ|
exp

(
−(z− µ)TΣ−1(z− µ)

2

)
,

where µ is the expectation and Σ is the covariance matrix. A Gaussian-type kernel based nonlocal
diffusion model in non-divergence form was recently proposed in [36] and given by:

L̃nd
δ u(x) =

∫
Rd

(u(x′)− u(x))γ̃nd(x,x
′)dx′, x ∈ Rd, (2.1)

where the kernel function γ(x,x′) is defined by

γ̃nd(x,x
′) =

2

δ2
p(x′ − x, 0, δ2A(x)), (2.2)

where δ > 0 is a horizon parameter and A(x) is symmetric positive definite and differentiable. As
δ approaches 0, the nonlocal operator L̃nd

δ converges to following form:

L̃nd
δ u(x) → L̃0u(x) :=

d∑
i,j=1

ai,j(x)
∂2u (x)

∂xi∂xj
.

Note that the Gaussian-type kernel function γ̃nd in (2.2) is defined over an unbounded area.
To ensure computational efficiency, it is viable to truncate the influence region as follows:

B̃nd
δ,A,α(x) =

{
x′∣∣ (x′ − x)TA(x)−1(x′ − x) ≤ δ2χ2

α

}
.

An illustration of the Gaussian function p(x, 0, δ2A) with A = [1, 0; 0, 1] and δ = 1/10 and the
correspondingly truncated influence region χ2

α(2) = 36 is presented in Figure 1. Specifically, for
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(a) (b)

Figure 1: Contour plot of the Gaussian density function p(x, 0, δ2A) (left) and the sketch for

the truncated region B̃nd
δ,A,α(x) (right) with χ2

α = 36, where δ = 1/10 and diffusion matrix A =
[1, 0; 0, 1].

any given parameter χ2
α > 0, A(x) shapes the truncated region, while A(x) and δ jointly determine

its size. The truncated kernel function γ̃d,α is then defined as follows:

γ̃d,α(x,x
′) =

{
γ̃nd(x,x

′), x′ ∈ B̃nd
δ,A,α(x),

0, otherwise.
(2.3)

A volume constrained boundary is associated with the truncated kernel function (2.3) and the
domain Ωc is then defined by

Ωc :=
{
x′ ∈ Rn\Ωs | ∃x ∈ Ωs,x

′ ∈ B̃nd
δ,A,α(x)

}
.

Under the volume constraint Dirichlet boundary condition, the corresponding Gaussian-type kernel
based nonlocal diffusion problem is given as follows:{

−L̃nd
δ,αu(x) = f(x), x ∈ Ωs,

u(x) = g(x), x ∈ Ωc,
(2.4)

where

L̃nd
δ,αu(x) =

∫
Rd

(u(x′)− u(x))γ̃d,α(x,x
′)dx′.

The above nonlocal diffusion model showcases its effectiveness in accurately simulating a broad
range of diffusion processes of both isotropic and anisotropic types. This paper is mainly to extend
the capabilities of this nonlocal modeling approach to the convection process and further develop
a nonlocal convection-diffusion model with Gaussian-type kernels, in analog to the classic PDE
problem (1.1).

3. A Gaussian-type kernel based nonlocal convection-diffusion model

In this section, a Gaussian-type kernel based nonlocal convection–diffusion model is presented,
and subsequently, the consistency with its corresponding local counterpart (1.1) is proved.
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3.1. Nonlocal convection-diffusion model based on Gaussian-type kernel

A nonlocal convection-diffusion operator is first defined by:

Lδu(x) := Lnd
δ u(x) + Lnc

δ u(x). (3.1)

Here, Lnd
δ is a nonlocal diffusion operator and takes the specific form of

Lnd
δ u(x) =

∫
Rd

(u(x′)− u(x))γnd(x,x
′)dx′, (3.2)

where

γnd(x,x
′) =

2ε

δ2
p(x′ − x, 0, δ2Id) =

2ε

δ2+d

1√
(2π)d

exp

(
−∥x′ − x∥2

2δ2

)
(3.3)

with Id denoting the d-dimensional identity matrix. We remark that the diffusion kernel function
γnd in (3.3) is different from directly taking A = εId in γ̃nd of (2.2). Instead, we define A = Id
and move ε to the front of the exponential function to deal with the strong scaling effect caused by
the small value of ε in the convection-dominated case (see Remark 1 for detailed explanation).

The nonlocal convection operator Lnc is defined by:

Lnc
δ u(x) =

∫
Rd

(u(x′)− u(x))γnc(x,x
′)dx′, (3.4)

where

γnc(x,x
′) =

1

δ
p(x′ − x,−v(x)δ, δ2Id) =

1

δ1+d

1√
(2π)d

exp

(
−∥x′ − x+ v(x)δ)∥2

2δ2

)
. (3.5)

Note that p(x′−x,−v(x)δ, δ2Id) is the probability density of a multivariate normal random variable
x′−x with expectation µ = −v(x)δ and covariance matrix δ2Id. The proposed nonlocal convection
term differs from the conventional nonlocal convection term in two significant aspects. Firstly,
the parameter δ is intricately linked to the covariance matrix and the expectation. When v(x)
is fixed, as δ decreases, the kernel function γnc(x,x

′) exhibits a higher degree of singularity, as
illustrated in Figure 2. Furthermore, unlike the diffusion term where the center of its density
function p(x′−x, 0, δ2Id) remains at the point itself, here for each point x, the center of its density
function p(x′ − x,−v(x)δ, δ2Id) is displaced by −v(x)δ. When v(x) is fixed, as δ gets smaller,
the center of the density function gets closer to the point x. Secondly, the velocity field v(x) is
incorporated into the kernel function γnc(x,x

′). As previously mentioned, the center of the density
function for the convection term changes due to the influence of v(x), yet its overall shape remains
consistently circular. Consequently, the velocity field exerts a direct and discernible impact on the
kernel function γnc(x,x

′), as demonstrated in Figure 3.
The associated nonlocal convection-diffusion problem, subject to the Dirichlet-type boundary

condition, is then defined as follows:{
−Lδu(x) = f(x), x ∈ Ωs,

u(x) = g(x), x ∈ Rd \ Ωs.
(3.6)

where

Lδu(x) = Lnd
δ u(x) + Lnc

δ u(x) =

∫
Rd

(u(x′)− u(x))(γnd(x,x
′) + γnc(x,x

′))dx′. (3.7)

6
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(x, y)
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Figure 2: Illustration of the Gaussian function p
(
x,−v(x)δ, δ2Id

)
for the convection term (in two

dimensions) with a constant velocity field v = (3,−3)T . The left plot corresponds to δ = 1/20 and
exhibits more spread-out and diffuse contours. The right plot, with δ = 1/30, shows more elongated
and concentrated contours.
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Figure 3: Contour plots of the Gaussian function p(x,−v(x)δ, δ2I2) with different constant velocity
fields v. Left: v = (1, 1)T and δ = 1/20; middle: v = (1, 1)T and δ = 1/10; right: v = (0.5,−0.5)T

and δ = 1/10.

Remark 1. If we follows exactly γ̃nd defined (2.2) for the nonlocal diffusion kernel, taking A(x) =
εId would give us

γ̃nd(x,x
′) =

2

δ2
p(x′ − x, 0, δ2A(x)) =

2

δ2+d

√
(2π)dεd

exp

(
−∥x′ − x)∥2

2δ2ε

)
. (3.8)

The truncated region then becomes

Bδ,εId,α(x) =
{
x′∣∣ ∥x′ − x∥2 ≤ δ2εχ2

}
,

which forms a circle with the radius rd = χ
√
εδ. To numerically guarantee obtaining adequate

information within this truncated area, a uniform grid with h = rd/χ =
√
εδ is deemed necessary
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for numerical simulation as discussed in [36], which implies the need for highly dense grids for the
convection-dominated problem. To resolve this issue, we propose an alternative approach. For a
constant coefficient matrix A, as δ → 0, we obtain with (3.8)∫

Rd

(u(x′)− u(x))γ̃nd(x,x
′)dx′ → ∇ · (A∇)u. (3.9)

By utilizing the eigenvalue decomposition, we have

A = QΛQT , (3.10)

where Λ = diag {λ1, λ2, · · · , λd} is the diagonal eigenvalue matrix of A with eigenvalues arranged
from smallest to largest and Q is the corresponding eigenvector matrix. Then

∇ · (A∇)u = λ1∇ · (Ā∇)u,

where Ā = QΛ̄QT and Λ̄ = diag

{
1,

λ2

λ1
, · · · , λd

λ1

}
. The nonlocal operator corresponding to the local

limit of the reconstructed differential operator λ1∇ · (Ā∇)u is given by∫
Rd

(u(x′)− u(x))γnd(x,x
′)dx′, (3.11)

where

γnd(x,x
′) =

2λ1

δ2
p(x′ − x, 0, δ2Ā).

Specially, in the nonlocal model as proposed in (3.3), γnd(x,x
′) = 2ε

δ2
p(x′ − x, 0, δ2Id).

3.2. Convergence to the local convection–diffusion operator

For the nonlocal diffusion term (3.2), according to [36], as δ → 0, Lnd
δ converges to the local

diffusion operator, i.e.,
Lnd
δ u → Lndu := ε∆u

and the approximation error is O(δ2). Let us consider the nonlocal convection term (3.4) and
suppose the velocity field v(x) is differentiable. Under the assumption that the solution u is
sufficiently smooth, we get

u(x′)− u(x) = ∇u(x)T (x′ − x) +O(δ) (3.12)

by applying Taylor expansion at x. According to the definition of first-order moment of multivariate
normal distribution, the integral of the first term is∫

Rd

(x′ − x)γnc(x,x
′)dx′ = −v(x). (3.13)

Thus we obtain ∫
Rd

(u(x′)− u(x))γnc(x,x
′)dx′ = −v(x) · ∇u(x) +O(δ). (3.14)

Consequently, as δ → 0, Lnc
δ converges to the local convection operator

Lnc
δ u → Lncu := −v(x) · ∇u(x)
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and the convergence rate is O(δ). Thus, the PDE problem, which is the local counterpart of the
nonlocal convection–diffusion problem of (3.6), is given as follows{

−Lu(x) = f(x), x ∈ Ωs,

u(x) = g(x), x ∈ ∂Ωs,
(3.15)

where Lu(x) = ε∆u(x)− v(x) · ∇u(x).

3.3. Truncation of influence region for the kernel function

In practical computations, truncating the influence regions of γnd(x,x
′) and γnc(x,x

′) for two
fundamental reasons is imperative. Firstly, the defined area of the kernel function extends to an
unbounded space Rn. Secondly, as x′ moves further away from x, the kernel function experiences
rapid decay. By selecting an appropriate cut-off distance wisely, the computational domain can
be effectively limited to a finite area without significantly compromising model accuracy. This
approach enables the practical implementation of the proposed nonlocal model while faithfully
capturing the fundamental physical properties of the system being examined.

For the diffusion term, as established in [36], the truncated influence region for x is

Bnd
δ,α(x) =

{
x′∣∣ ∥x′ − x∥2 ≤ δ2χ2

α

}
and α selected very close to 0.

For the convection term, the random variable x′−x is assumed to follow a Gaussian distribution
of d-dimensional with a covariance matrix of δ2Id. Then, ∥x′ −x+v(x)δ∥2/δ2 follows a chi-square
distribution χ2(d). To define the influence region of the kernel function, let us consider all x′

such that |x′ − x+ v(x)δ|2 ≤ δ2χ2
α, where 0 < α ≪ 1, and χ2

α is a parameter of the chi-square
distribution χ2(d), namely the (1− α) quantile. Hence, we have:∫

· · ·
∫

∥x′−x+v(x)δ∥2≤δ2χ2
α

p(x′ − x,−v(x)δ, δ2Id)dx
′ = 1− α. (3.16)

We then define the truncated influence region for a given point x as

Bnc
δ,α(x) =

{
x′∣∣ ∥x′ − x+ v(x)δ∥2 ≤ δ2χ2

α

}
, (3.17)

where α is chosen very close to 0. In Figure 4, the projection of the iso-density contour of the
truncated influence region Bnc

δ,α(x) onto the coordinate plane is depicted for different velocity fields

in two dimensions, where χ2
α(2) = 36, implying α ≈ 1.52× 10−8. Across various velocity fields, the

iso-density contour projections consistently form circular shapes. It is noteworthy that the center
of each circle varies, determined by the offset of −v(x)δ, which is established based on the current
point x.

Note that the bounded ranges for the diffusion and convection operators are different from
each other, Bnd

δ,α(x) and Bnc
δ,α(x) respectively. Thus, we correspondingly define the truncated kernel

functions γnd,α and γnc,α as follows: for any x,x′ ∈ Rd,

γnd,α(x,x
′) =

{
γnd(x,x

′), x′ ∈ Bnd
δ,α(x),

0, otherwise.
(3.18)
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(a) (b)

Figure 4: Sketch of the truncated region Bnc
δ,α(x) with χ2

α = 36. Left: the velocity field v(x) = (1, 1)T ,
the truncated influence region is the circle with (x−δ, y−δ) as the center and 6δ as the radius. Right:
the velocity field v(x) = (3,−3)T , the truncated influence region is the circle with (x − 3δ, y + 3δ)
as the center and 6δ as the radius.

γnc,α(x,x
′) =

{
γc(x,x

′), x′ ∈ Bnc
δ,α(x),

0, otherwise.
(3.19)

The corresponding interaction domains about diffusion term and convection term are defined as

Ωbd : =
{
x′ ∈ Rn\Ωs : x

′∣∣ ∥x′ − x∥2 < δ2χ2
α, x ∈ Ωs

}
, (3.20)

Ωbc : =
{
x′ ∈ Rn\Ωs : x

′∣∣ ∥x′ − x+ v(x)δ∥2 < δ2χ2
α, x ∈ Ωs

}
. (3.21)

For the proposed nonlocal convection-diffusion problem, the volumetric constraints are imposed
on the interaction domain Ωbd ∪ Ωbc. In contrast, the nonlocal operator equation is applied in
the domain Ωs. These volume constraints are natural extensions of the boundary conditions for
problems involving differential equations in the nonlocal context. The interaction domains Ωbd,
Ωbc, and the total interaction domains Ωc = Ωbd ∪ Ωbc are visually depicted in Figure 5.

s

bd

(a)

s

bc

(b)

s

c

(c)

Figure 5: In the scenario where v(x) = (3,−3)T , (a), (b), and (c) depict the computational domain
of the diffusion term, the convection term, and the combined total term, respectively. Ωbd and Ωbc

correspond to the boundary constraints for the diffusion term (3.20) and the convection term (3.21),
respectively, while Ωc = Ωbd ∪ Ωbc.

Finally, under the volumetric constraint Dirichlet boundary condition, the nonlocal convection-
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diffusion model with truncated influence regions is given by:{
−Lδ,αu(x) = f(x), x ∈ Ωs,

u(x) = g(x), x ∈ Ωc,
(3.22)

where

Lδ,αu(x) = Lnd
δ,αu(x) + Lnc

δ,αu(x) =

∫
Ω
(u(x′)− u(x))(γnd,,α(x,x

′) + γnc,,α(x,x
′))dx′ (3.23)

with Ω = Ωs ∪ Ωc.

4. Wellposedness and maximum principle

L2
n0(Ω) =

{
u ∈ L2(Ω) | u(x) = 0 on Ωc

}
is defined as a constrained space. (·, ·) is denoted as

the L2 inner product. For x ∈ Ωs, with g(x) = 0 and f ∈ L2(Ωs), the weak form of our models is
as follows:

B(u, v) = F(v), ∀ v ∈ L2
n0(Ω) , (4.1)

where

B(u, v) = (−Lδ,αu, v) =

∫
Ω

∫
Ω
(u(x)− u(x′))γnd,α(x,x

′)v(x)dx′dx

+

∫
Ω

∫
Ω
(u(x)− u(x′))γnc,α(x,x

′)v(x)dx′dx

= Bnd(u, v) +Bnc(u, v) (4.2)

and

F(v) =

∫
Ω
f(x)v(x)dx.

For γnd,α and γnc,α, we first note the existence of a positive constant K1(δ), dependent on δ, such
that the kernel γnd,α satisfies ∫

Ωc

γnd,α(x,x
′)dx′ ≥ εK1(δ), ∀x ∈ Ω, (4.3)∫

Ω
γnd,α(x,x

′) dx′ =

∫
Ω
γnd,α(x

′,x )dx′ =
2ε

δ2
, ∀x ∈ Ω. (4.4)

Moreover, there exist positive constants K2(δ) and K3(δ), dependent on δ, ensuring that the kernel
γnc,α satisfies ∫

Ωc

γnc,α(x,x
′) + γnc,α(x

′,x)dx′ ≥ K2(δ), ∀x ∈ Ω. (4.5)∫
Ω
γnc,α(x,x

′) dx′ =
1

δ
,

∫
Ω
γnc,α(x

′,x )dx′ ≤ K3(δ), ∀x ∈ Ω. (4.6)

Based on these conditions, the nonlocal operator Lδ,α is bounded in L2
n0(Ω), which guarantees

that a weak solution is also a strong solution of (3.6) in L2
n0(Ω). Consequently, for the nonlocal

problem (3.6), the well-posedness with the following result is established.
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Theorem 1. (Well-posedness) Suppose δ > 0 is fixed and the kernel γc,α(x,x
′) satisfies∫

Ω
γnc,α(x,x

′)− γnc,α(x
′,x)dx′ ≥ 0, ∀x ∈ Ω. (4.7)

Consequently, a unique solution u ∈ L2
n0(Ω) exists for the nonlocal convection-diffusion problem

(3.6). Moreover, this solution adheres to the prior estimate:

∥u∥L2(Ω) ≤
4

4εK1(δ) +K2(δ)
∥f∥L2(Ω). (4.8)

Proof. First, we can simply obtain

|F(v)| ≤ ∥f∥L2(Ω)∥v∥L2(Ωs). (4.9)

With a proof similar to that of Theorem 2 in [34], we demonstrate the boundedness of the
bilinear operator B(·, ·) on L2

n0(Ω) × L2
n0(Ω). For any u, v ∈ L2

n0(Ω), and due to the symmetry of
γnd,α(x,x

′) = γnd,α(x
′,x), the bilinear operator Bnd(u, v) can be expressed as:

Bnd(u, v) =

∫
Ω

∫
Ω
u(x)v(x)γnd,α(x,x

′)dx′dx−
∫
Ω

∫
Ω
u(x)v(x′)γnd,α(x,x

′)dx′dx. (4.10)

Based on (4.4), we obtain For any u, v ∈ L2
n0(Ω),

|Bnd(u, v)| ≤
4ε

δ2
∥u∥L2(Ω)∥v∥L2(Ω). (4.11)

Note that Bnc(u, v) can be rewritten as

Bnc(u, v) =

∫
Ω

∫
Ω
u(x)v(x)γnc,α(x,x

′)dx′dx−
∫
Ω

∫
Ω
u(x′)v(x)γnc,α(x,x

′)dx′dx

:= I1 − I2. (4.12)

By utilizing the Cauchy-Schwartz inequality, as well as the inequalities in (4.5) and (4.6), the first
term to the right of (4.12) can be qualified as follows:

|I1| =
∣∣∣∣∫

Ω
u(x)v(x)

∫
Ω
γnc,α(x,x

′)dx′dx

∣∣∣∣ ≤ 1

δ
∥u∥L2(Ω)∥v∥L2(Ω). (4.13)

Similarly, the second term to the right of (4.12) satisfies

|I2| ≤
(∫

Ω

∫
Ω
u2(x′)γnc,α(x,x

′)dx′dx

) 1
2
(∫

Ω

∫
Ω
v2(x)γnc,α(x,x

′)dx′dx

) 1
2

≤
√

K3(δ)

δ
∥u∥L2(Ω)∥v∥L2(Ω). (4.14)

Then we obtain

Bnc(u, v) ≤ |I1|+ |I2| = (
1

δ
+

√
K3(δ)

δ
)∥u∥L2(Ω)∥v∥L2(Ω). (4.15)
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Thus the combination (4.11) and (4.15) gives us

B(u, v) ≤ (
4ε

δ2
+

1

δ
+

√
K3(δ)

δ
)∥u∥L2(Ω)∥v∥L2(Ω).

Subsequently we demonstrate that the bilinear operator B(·, ·) is coercive on L2
n0(Ω). It holds

that

Bnd(u, u) =

∫
Ω

∫
Ω
u2(x)γnd,α(x,x

′)dx′dx− u(x′)u(x)γnd,α(x,x
′)dx′dx

≥
∫
Ω

∫
Ωc

u2(x)γnd,α(x,x
′)dx′dx− u(x′)u(x)γnd,α(x,x

′)dx′dx. (4.16)

Using the inequality in (4.3), we then can get

Bnd(u, u) ≥ εK1(δ)∥u∥2L2(Ω). (4.17)

For the bilinear operator Bnc(·, ·), we first note that

Bnc(u, u) =

∫
Ω

∫
Ω
(u(x)− u(x′))u(x)γnc,α(x,x

′)dx′dx

=

∫
Ω

∫
Ω
(u(x)− u(x′))u(x)

γnc,α(x,x
′) + γnc,α(x

′,x)

2
dx′dx (4.18)

+

∫
Ω

∫
Ω
(u(x)− u(x′))u(x)

γnc,α(x,x
′)− γnc,α(x

′,x)

2
dx′dx := J1 + J2.

It is evident that
γnc,α(x,x

′)+γnc,α(x
′,x)

2 is always symmetric, even though γnc,α(x,x
′) may not be.

Therefore, the first term of the right of (4.18) can be expressed as:

J1 =
1

2

∫
Ω

∫
Ω
(u(x)− u(x′))2

γnc,α(x,x
′) + γnc,α(x

′,x)

2
dx′dx

≥ 1

2

∫
Ω

∫
Ωc

(u(x)− u(x′))2
γnc,α(x,x

′) + γnc,α(x
′,x)

2
dx′dx (4.19)

=
1

2

∫
Ω
u2(x)

∫
Ωc

γnc,α(x,x
′) + γnc,α(x

′,x)

2
dx′dx ≥ K2(δ)

4
∥u∥2L2(Ω).

With the assumption (4.7) and the equality∫
Ω

∫
Ω
u(x)u(x′)

γnc,α(x,x
′)− γnc,α(x

′,x)

2
dx′dx = 0,

the second term of the right of (4.18) can be rewritten as

J2 =

∫
Ω

∫
Ω
u2(x)

γnc,α(x,x
′)− γnc,α(x

′,x)

2
dx′dx

−
∫
Ω

∫
Ω
u(x)u(x′)

γnc,α(x,x
′)− γnc,α(x

′,x)

2
dx′dx

13



=

∫
Ω
u2(x)

∫
Ω

γnc,α(x,x
′)− γnc,α(x

′,x)

2
dx′dx ≥ 0. (4.20)

With the combination of (4.19) and (4.20), we obtain

Bnc(u, u) ≥
K2(δ)

4
∥u∥2L2(Ω). (4.21)

Therefore, using the Lax-Milgram theorem, the problem (4.1) exists as a unique solution u ∈
L2
n0(Ω). Furthermore, since

(εK1(δ) +
K2(δ)

4
)∥u∥2L2(Ω) ≤ B(u, u) = |F(u)| ≤ ∥f∥L2(Ω)∥u∥L2(Ω), (4.22)

the a priori estimate (4.8) can be obtained.

The condition (4.7) can be considered a nonlocal analog of the following condition

∇ · v(x) ≤ 0, x ∈ Ω. (4.23)

Here is a simple proof: L̃2
n0
(Ω) = {u ∈ L2(Ω) | u(x) = 0 on ∂Ω} is defined as a constrained space.

For any w ∈ L̃2
n0
(Ω), we have∫

Ω
∇ · v(x) · w(x)dx =

∫
∂Ω

w(x) · v(x) · n(x)dx−
∫
Ω
v(x) · ∇w(x)dx

= −
∫
Ω
v(x) · ∇w(x)dx (4.24)

where n(x) is the normal vector pointing to the outside of the domain. With the Taylor expansion
at x, we also have ∫

Ω

∫
Ω
(γnc,α(x,x

′)− γnc,α(x
′,x))dx′w(x)dx

=

∫
Ω

∫
Ω
γnc,α(x,x

′)w(x)− γnc,α(x,x
′)w(x′)dxdx′

=

∫
Ω

∫
Ω
γnc,α(x,x

′)(w(x)− w(x′))dx′dx

=

∫
Ω
v(x) · ∇w(x) +O(δ)dx. (4.25)

Hence, as δ → 0, the condition (4.7) can be considered a nonlocal analog of the condition (4.23).

Theorem 2. (Maximum principle) Suppose −Lδ,αu < 0 in Ωs, then in the interaction domain Ωc,
we can attain a non-negative maximum of u.

Proof. Through proof by contradiction, we aim to demonstrate that a nonnegative maximum cannot
be achieved within Ωs. For the sake of contradiction, let’s assume that a nonnegative maximum u
at x0 ∈ Ωs can be achieved. Consequently,

−Lδ,αu(x0) = −
∫
Ω
(u(x′)− u(x0))γnd,α(x0,x

′)dx′ −
∫
Ω
(u(x′)− u(x0))γnc,α(x0,x

′)dx′. (4.26)
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Cause u(x′)− u(x0) ≤ 0, we can simply demonstrate that

−
∫
Ω

≤0︷ ︸︸ ︷
(u(x′)− u(x0))

≥0︷ ︸︸ ︷
2ε

δ2+d

√
(2π)d

exp

(
−|x′ − x0|2

2δ2

)
dx′ ≥ 0, (4.27)

and

−
∫
Ω

≤0︷ ︸︸ ︷
(u(x′)− u(x0))

≥0︷ ︸︸ ︷
1

δ1+d

√
(2π)d

exp

(
−|(x′ − x0 + v(x0)δ)|2

2δ2

)
dx′ ≥ 0, (4.28)

which give us a contradiction with the assumption of −Lδ,αu(x0) < 0.

5. A meshfree discretization scheme

In order to numerically simulate the proposed nonlocal model (3.22), we discretize it by following
the meshfree approach proposed in [31]. Suppose that the domain Ω is discretized into nodes {xi},
and each node xi in the reference configuration has a known associated volume Si. The nodes within
Ωs are denoted as {x1, · · · ,xNs}, while the nodes along the nonlocal boundary Ωc are denoted as
{xNs+1, · · · ,xNs+Nc}. Collectively, the nodes and the associated volumes constitute a grid set
denoted as Th. The method is considered meshfree, signifying the absence of elements or other
geometrical connections between the nodes.

For the nonlocal diffusion term in (3.23), at the node xi ∈ Ωs, using the meshfree discretization
associated with Th, we have

Lnd
δ,αu(xi) ≈ Lnd

δ,α,hu(xi) =
∑
Sj ̸=∅

(u(xj)− u(xi))γnd,α(xi,xj)Sj , (5.1)

where Sj = Bnd
δ,α(xi)∩Sj . For the nonlocal convection term in (3.23), at the node xi ∈ Ωs, similarly,

we approximate it by

Lnc
δ,αu(xi) ≈ Lnc

δ,α,hu(xi) =
∑
Ŝj ̸=∅

(u(xj)− u(xi))γnc,α(xi,xj)Ŝj , (5.2)

where Ŝj = Bnc
δ,α(xi) ∩ Sj .

For each point xi, the geometries of Sj and Ŝj may exhibit irregularities. The irregular in-
tersection of these regions holds the potential to introduce quadrature errors, thereby influencing
the overall accuracy of the simulation. However, leveraging the unbounded nature of the kernel
function in the context of the diffusion term allows us to slightly extend the integral regions from
the irregular intersection Sj to the regular volume Sj as illustrated later in the section of numerical
experiments. This strategic extension addresses the issue of irregular intersections while circum-
venting the need for volume correction. A similar approach is applied to Ŝj for the convection
term. This expanded integration technique facilitates a straightforward and precise alignment of
the integration area with Th.
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In conclusion, the meshfree discretization scheme to solve the nonlocal convection-diffusion
problem (3.22) is expressed by: find (uh(x1), uh(x2) . . . , uh(xNs)) such that

−Lδ,α,huh(xi) = f(xi), i = 1, · · · , Ns. (5.3)

Let us define

ai,j =



−γnd,α(xi,xj)Sj − γnc,α(xi,xj)Sj , if j ̸= i, Sj ̸= ∅ and Ŝj ̸= ∅,
−γnd,α(xi,xj)Sj , if j ̸= i, Sj ̸= ∅ and Ŝj = ∅,
−γnc,α(xi,xj)Sj , if j ̸= i, Sj = ∅ and Ŝj ̸= ∅,
−
∑

xj∈Ω&j ̸=iai,j , if j = i,

0, otherwise,

(5.4)

for i = 1, 2, · · · , Ns and j = 1, 2, · · · , Ns +Nc. For the meshfree discretization (5.3), the resulting
linear system then can be obtained as

Ahu⃗h = f⃗ , (5.5)

where Ah = (ai,j)Ns×Ns , u⃗h = (uh(x1), uh(x2), · · · , uh(xNs))
T with f⃗ = (f1, f2, · · · , fNs)

T and

fi = f(xi) +

Ns+Nc∑
j=Ns+1

g(xj)ai,j . (5.6)

Remark 2. In contrast to the proposed Gaussian-type kernel based nonlocal model, many existing
nonlocal models restrict nonlocal interactions to bounded neighborhoods, often chosen as Euclidean
balls Bδ(x). The approximate balls Bδ,h(x), typically composed of polygons, impose a challenge
when intersecting for meshfree discretization method. An important question arises: to what extent
do such approximations impact the nonlocal operators and the corresponding solutions? Recent
works have delved into this issue [7, 18]. A notable convergence result, presented in Corollary 4.2
of [7], is as follows:

||uh − ûh||L2(Ωs∪Ωc) ≤ CeK sup
x∈Ωs

∥ △Bδ,h(x)∥,

where Ce represents a norm-equivalence constant, K represents a positive constant depending on
the data f and g but independent of δ and h, and △Bδ,h(x) denotes the ball difference.

Theorem 3. The stiffness matrix Ah given by (5.4) is an M-matrix which is nonsingular. Thus,
the linear system (5.5) is uniquely solvable. Moreover, the discrete maximum principle is satisfied
by uh when the boundary values g = 0: if the source terms f ≤ 0 in Ωs, then max1≤i≤Ns uh(xi) ≤ 0,
and if the source terms f ≥ 0 in Ωs, then min1≤i≤Ns uh(xi) ≥ 0

Proof. It is clear that both γnd,α(xi,xj) > 0 and γnc,α(xi,xj) > 0 for i = 1, · · · , Ns and j =

1, · · · , Ns+Nc. Hence, using (5.4), for any j ̸= i, we can deduce that ai,j < 0 if Sj∩(Bd
δ,α∪Bc

δ,α) ̸= ∅,
and ai,j = 0 if Sj ∩ (Bd

δ,α∪Bc
δ,α) = ∅. This implies ai,i > 0 for i = 1, · · · , Ns. Moreover, it is evident

that
∑Ns

j=1 ai,j > 0 if (Bd
δ,α ∪Bc

δ,α) ∩Ωc ̸= ∅. As a result, we establish that the stiffness matrix Ah

qualifies as an M-matrix. This property ensures the existence of A−1
h and guarantees its absence

of negative entries. Consequently, we can infer that the linear system (5.5) has the unique solution,
and the discrete maximum principle is satisfied.
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Regarding the asymptotic compatibility, while the theoretical proof remains pending, we will
provide numerical evidence in Section 6.2 to illustrate that the meshfree discretization(5.3) achieves
δ-convergence. Notably, we will demonstrate that the numerical solutions of the nonlocal model
under a fixed ratio between δ and h exhibit the first-order convergence towards the corresponding
local PDE solution (3.15).

6. Numerical experiments

In this section, a series of numerical experiments are carried out in two dimensions. These
experiments aim to demonstrate the application of our nonlocal model (3.22) and the effectiveness of
the meshfree discretization scheme (5.3). Additionally, the discrete maximum principle is assessed.
On the approximation accuracy of Lδ,α to Lδ, we examine the impact of how to choose the truncation
parameter χ2

α. It is noteworthy that we consistently set χ2
α = 36 as the default value to truncate

the influence region in Examples 1-4, according to the comparative results observed in Example 5.

6.1. Tests with fixed horizon

To test the convergence of the meshfree discretization to solve our nonlocal model (3.22), we
initially maintain a constant value for δ.

Example 1. We consider the two-dimensional domain Ωs = (0, 1) × (0, 1), with the diffusion
coefficient ε = 1, the vector field v(x, y) = (1, 1)T and the horizon parameter δ = 1/80. Let us
choose u(x, y) = sin(x2 + y2), u(x, y) = exy, and u(x, y) = xy5 as the exact solution for distinct
scenarios. The boundary values g(x, y) are directly determined rom the exact solutions u(x, y). The
source terms f(x, y) are determined by the nonlocal model (3.6).

We utilize a uniform domain partition of Ωs with N×N grid points, where N assumes values of
20, 25, 30, 35, 40, and 50, respectively. Table 1 reports the L2 errors and convergence rates resulting
from the meshfree discretization (5.3). As anticipated, exponential convergence is observed across
all cases until the model errors due to the truncation of the influence regions dominate.

u(x, y) = sin(x2 + y2) u(x, y) = exy u = xy5

N L2 error CR L2 error CR L2 error CR

20 6.9297× 10−3 - 1.3902× 10−3 - 1.1854× 10−2 -

25 1.0488× 10−4 8.46 6.0721× 10−4 3.71 1.2535× 10−3 14.53

30 6.3331× 10−5 15.40 3.4453× 10−5 15.74 5.1920× 10−5 17.46

35 3.4312× 10−6 18.91 2.3773× 10−6 17.34 1.7864× 10−6 21.86

40 2.0284× 10−6 3.94 1.5771× 10−6 3.07 5.0414× 10−7 9.47

50 2.2014× 10−6 -0.37 1.7963× 10−6 -0.58 5.8460× 10−7 -0.66

Table 1: Numerical results on L2 errors and convergence rates for different exact solutions with
δ = 1/80 in Example 1.

6.2. Tests for δ-convergence

We now shift our focus to analyzing the convergence behavior of the proposed meshfree dis-
cretization (5.3) as the horizon parameter δ tends towards zero. Specifically, we explore a scenario
in which both the grid size h and the horizon parameter δ decrease to zero while maintaining a
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fixed ratio between them. This so-called δ-convergence test is a widely adopted method to verify
the asymptotic compatibility of numerical schemes. We anticipate observing the convergence of the
approximate solutions derived from the nonlocal convection-diffusion problem (3.22) towards the
solution that corresponds to classical local problem (3.15). This behavior aligns with the recognized
continuum limit; that is, greater smoothness and continuity are achieved gradually by the under-
lying physical system. Through a meticulous examination of the δ-convergence of the proposed
meshfree scheme, our objective is to assess its accuracy and reliability. This endeavor also provides
valuable insights into the fundamental physics governing the system under scrutiny.

Example 2. Let us consider the two-dimensional domain Ωs = (0, 1)× (0, 1) with the vector field
v(x, y) = (1, 1)T , and set u(x, y) = sin(x2+ y2) as the exact solution for the classical PDE problem
(3.15). Two choices of the diffusion coefficients ε = 1 and ε = 10−7 (strongly convection-dominated)
are used respectively. The boundary values g(x, y) are directly derived from the exact solution u(x, y)
and the source terms f(x, y) are determined from the nonlocal model (3.6).

According to the analysis of truncation about the influence horizon, the influence region for the
diffusion term is given by

Bnd
δ,α(x, y) =

{
(x′, y′)

∣∣ (x′ − x)2 + (y′ − y)2 ≤ 36δ2
}

and that for the convection term by

Bnc
δ,α(x, y) =

{
(x′, y′)

∣∣ (x′ − x+ δ)2 + (y′ − y + δ)2 ≤ 36δ2
}
.

At any given point (x, y), the influence region of the diffusion term is represented by a circle
centered at (x, y) with a radius of 6δ. However, the influence region of the convection term is
a circle centered at (x − δ, y − δ) with a radius of 6δ. The configuration of Ωbd takes the form
of an equal-width band encircling the boundary of Ωs, while Ωbc exhibits an unequal-width band
surrounding the same boundary. Given that the kernel function is defined over an unbounded region
and exponentially decays, volume correction is unnecessary for the irregular tangent part of the
boundary region and the mesh. This allows for the appropriate expansion of the boundary scope,
facilitating more convenient calculations. It is important to note that enlarging the integration area
will not compromise the accuracy of the numerical computations. We divide Ωs into N ×N grids
and record h = 1/N and set δ = h, δ = 2h, and δ = 4h. Figure 6 provides a visual illustration of
the domain Ω = Ωs ∪ Ωc and the influences regions Bnd

δ,α and Bnc
δ,α. Table 2 reports the L2 errors

and convergence rates resulting from the meshfree discretization (5.3), and we clearly observe the
first order convergence along the grid refinement.

Example 3. The configuration for this example closely mirrors that of Example 2, with one notable
distinction: a variable velocity field is introduced, defined as v(x, y) = (sin2(πx + πy), cos2(πx +
πy))T .

This velocity field is visually depicted in Figure 7(a). Similar to Example 2, the influence region
for the diffusion term is given by

Bnd
δ,α(x, y) =

{
(x′, y′)

∣∣ (x′ − x)2 + (y′ − y)2 ≤ 36δ2
}

and that for the convection term by

Bnc
δ,α(x, y) =

{
(x′, y′)

∣∣ (x′ − x+ sin2(πx+ πy)δ)2 + (y′ − y + cos2(πx+ πy)δ)2 ≤ 36δ2
}
.
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6
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6

6

Figure 6: Illustration of the computational domain Ω = Ωs∪Ωc and the influence regions Bnd
δ,α (red

colored) and Bnc
δ,α (black colored) in Example 2.

v(x, y) = (1, 1)T

N
ε = 1 ε = 10−7

L2 error CR L2 error CR

δ = h

10 8.6507× 10−3 - 8.4685× 10−2 -

20 3.7819× 10−3 1.19 4.2179× 10−2 1.01

40 1.7647× 10−3 1.10 2.1741× 10−2 0.96

80 8.6166× 10−4 1.03 1.2383× 10−2 0.81

160 4.1846× 10−4 1.04 5.7204× 10−3 1.11

320 2.0736× 10−4 1.01 2.8990× 10−3 0.98

δ = 2h

10 3.0904× 10−2 - 2.6300× 10−1 -

20 9.8254× 10−3 1.65 1.0153× 10−1 1.37

40 4.0010× 10−3 1.30 4.6345× 10−2 1.13

80 1.8130× 10−3 1.14 2.2794× 10−2 1.02

160 8.6786× 10−4 1.06 1.2057× 10−2 0.92

320 4.2122× 10−4 1.04 5.7877× 10−3 1.06

δ = 4h

10 1.6341× 10−1 - 8.4722× 10−1 -

20 3.6344× 10−2 2.17 3.0255× 10−1 1.49

40 1.0544× 10−2 1.79 1.1086× 10−1 1.45

80 4.1334× 10−3 1.35 4.8598× 10−2 1.19

160 1.8419× 10−3 1.17 2.3354× 10−2 1.06

320 8.7231× 10−4 1.08 1.1902× 10−2 0.97

Table 2: Numerical results on L2 errors and convergence rates for different exact solutions with
δ = h, δ = 2h, and δ = 4h in Example 2.

At any given point (x, y), the influence region for the diffusion term is represented by a circle
centered at (x, y) with a radius of 6δ. However, the influence region for the convection term is a
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Figure 7: Illustration of the velocity field of v(x, y) = (sin2(πx + πy), cos2(πx + πy))T (left), the
computational domain (middle), and the modified volume constrained boundary (right) in Example
3.

circle centered at (x−sin2(πx+πy)δ, y−cos2(πx+πy)δ) with a radius of 6δ. It’s worth noting that
due to the variability of the velocity field, this leads to the inconsistent displacement of the circle’s
center point where the convection term is truncated at the boundary. Consequently, this results
in an irregular boundary, as illustrated in Figure 7(b). Given that the velocity field is bounded,
we extend the boundary by a length of 7δ in both the x and y directions to ensure computational
efficiency. This extension yields a regularized boundary denoted as Ωc, as depicted in Figure 7(c).
Table 3 reports the L2 errors and convergence rates resulting from the meshfree discretization (5.3),
and we again observe the first-order convergence along the grid refinement.

v(x, y) = (sin2(πx+ πy), cos2(πx+ πy))T

N
ε = 1 ε = 10−7

L2 error CR L2 error CR

10 8.2979× 10−3 - 4.9168× 10−2 -

20 3.3121× 10−3 1.33 2.8121× 10−2 0.81

40 1.4632× 10−3 1.18 1.5941× 10−2 0.82

80 6.8512× 10−4 1.09 9.6332× 10−3 0.73

160 3.3141× 10−4 1.05 4.7866× 10−3 1.01

320 1.6267× 10−4 1.03 2.5196× 10−3 0.93

Table 3: Numerical results on L2 errors and convergence rates for different exact solutions with
δ = h in Example 3.

6.3. Tests of the discrete maximum principle

In this subsection, we focus on testing the discrete maximum principle for the meshfree dis-
cretization (5.3).

Example 4. We consider the two-dimensional domain Ωs = [0, 1] × [0, 1] and set δ = 1/40. Two
types of the velocity fields are taken into account:

v1(x, y) = (1, 1)T , v2(x, y) = (sin2(πx+ πy), cos2(πx+ πy))T .
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Two choices of the diffusion coefficients ε = 1 and ε = 10−7 are again used respectively. A Dirichlet
boundary condition is imposed on Ωc: u(x, y) = 1 when x ≤ 0 or y ≤ 0, and u(x, y) = 0 otherwise.
The source term is chosen to be f(x, y) = 0. Although we are the exact solutions of the nonlocal
problem (3.22) aren’t known, their values are confined within the range of 0 to 1.

We utilize a uniform partition of the domain Ωs with 40×40 grid points and employ the meshfree
discretization (5.3) to solve the nonlocal model. Figure 8 showcases the resulting numerical solutions
obtained with the two distinct velocity fields, and it is evident that the discrete maximum principle
is well maintained in all cases.

(a) ε = 1, v1(x, y) (b) ε = 1, v2(x, y)

(c) ε = 10−7, v1(x, y) (d) ε = 10−7, v1(x, y)

Figure 8: Numerical solution for different diffusion coefficients and velocity fields in Example 4,
demonstrating the preservation of the discrete maximum principle.

6.4. Effect of χ2
α on the approximation accuracy of Lδ,α to Lδ

In this subsection, we choose different values for χ2
α to test effectiveness of the truncated nonlocal

operator Lδ,α defined in (3.22) as an approximation of the nonlocal operator Lδ defined in (3.1).

Example 5. The experimental settings are similar to Example 2, with the only alteration being the
exploration of various values for χ2

α. Specifically, we set ε = 1 and consider χ2
α = 9, 16, 25, 36,

and 49, respectively.

Table 4 provides a detailed account of the L2 numerical errors produced by the meshfree dis-
cretization (5.3) with a fixed δ = h under various choices of χ2

α. We observe that the solution errors
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v(x, y) = (1, 1)T

N χ2
α=9 χ2

α=16 χ2
α=25 χ2

α=36 χ2
α=49

40 7.6275× 10−3 2.0655× 10−3 1.8279× 10−3 1.7647× 10−3 1.7647× 10−3

80 5.8906× 10−3 1.2090× 10−3 8.5830× 10−4 8.6166× 10−4 8.5189× 10−4

160 6.6920× 10−3 8.0409× 10−4 4.2443× 10−4 4.1846× 10−4 4.1844× 10−4

v(x, y) = (sin2(πx+ πy), cos2(πx+ πy))T

N χ2
α=9 χ2

α=16 χ2
α=25 χ2

α=36 χ2
α=49

40 7.5229× 10−3 1.7842× 10−3 1.4684× 10−3 1.4632× 10−3 1.4632× 10−3

80 6.0185× 10−3 1.0635× 10−3 6.9245× 10−4 6.8512× 10−4 6.8558× 10−4

160 7.0851× 10−3 7.3080× 10−4 3.3774× 10−4 3.3141× 10−4 3.3141× 10−4

Table 4: Numerical results on L2 errors with different choice of χ2
α in Example 5.

exhibit a rapid decrease as χ2
α increases from 9 to 49. Notably, the disparities in solution errors

between χ2
α = 36 and χ2

α = 49 are almost negligible. Consequently, we suggest the adoption of
χ2
α = 36 in practical applications. This choice strikes a balance between ensuring the accuracy of

the nonlocal convection–diffusion model (3.22) and keeping computational efficiency.

7. Conclusions

In this paper we introduce a novel nonlocal convection-diffusion model based on the Gaussian-
type kernel, expanding upon an existing nonlocal diffusion model. The key innovation lies in the
integration of the velocity field into the expectation, utilizing a truncated multivariate Gaussian
function as the kernel. The well-posedness and elucidation of certain inherent properties are es-
tablished to assess the robustness of our proposed model. For the numerical solution, we design
a direct meshfree discretization method that adheres to the discrete maximum principle. A se-
ries of numerical experiments are also carried out in two dimensions to illustrate the versatility
of our model in tackling diverse convection-diffusion problems and the robustness of the proposed
numerical scheme.
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