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Abstract

Nonlocal models have demonstrated their indispensability in numerical simulations across a spec-
trum of critical domains, ranging from analyzing crack and fracture behavior in structural engi-
neering to modeling anomalous diffusion phenomena in materials science and simulating convection
processes in heterogeneous environments. In this study, we present a novel framework for construct-
ing nonlocal convection-diffusion models using Gaussian-type kernels. Our framework uniquely
formulates the diffusion term by correlating the constant diffusion coefficient with the variance of
the Gaussian kernel. Simultaneously, the convection term is defined by integrating the variable ve-
locity field into the kernel as the expectation of a multivariate Gaussian distribution, facilitating a
comprehensive representation of convective transport phenomena. We rigorously establish the well-
posedness of the proposed nonlocal model and derive a maximum principle to ensure its stability
and reliability in numerical simulations. Furthermore, we develop a meshfree discretization scheme
tailored for numerically simulating our model, designed to uphold both the discrete maximum
principle and asymptotic compatibility. Through extensive numerical experiments, we validate
the efficacy and versatility of our framework, demonstrating its superior performance compared to
existing approaches.

Keywords: Nonlocal convection-diffusion; Asymptotic compatibility; Meshfree discretization

*H. Tian’s work is partially supported by Chinese Fundamental Research Funds for the Central Universities
under grant number 202264006 and National Natural Science Foundation of China under grant numbers 11801533
and 11971482. L. Ju’s work is partially supported by U.S. National Science Foundation under grant number DMS-
2109633.

*Corresponding author.

Email addresses: ~ haot@ouc.edu.cn (Hao Tian), xiaojuan_l@stu.ouc.edu.cn (Xiaojuan Liu),
liuchenguang@stu.ouc.edu.cn (Chenguang Liu), ju@math.sc.edu (Lili Ju)

Preprint submitted to Numerical Methods for Partial Differential Equations September 29, 2024



Notation

f(x) Source terms
g(x) Boundary values
v(x) Velocity field
€ Positive parameter
Qs Open domain
082 Boundary of €2
R"” n-dimensional Euclidean space
1) Horizon parameter
p(z,p, %)  Probability density function
ng Nonlocal operator
2 (d) Chi-square distribution
ng o(x)  Truncated region
Ls Nonlocal convection-diffusion operator
Egd Nonlocal diffusion operator
5e Nonlocal convection operator
Ynd Diffusion kernel function
Yne Diffusion kernel function
Iy d-dimensional identity matrix
Bg’:i Truncated influence region of diffusion term
(’ig Truncated influence region of convection term
Tnd,o Truncated diffusion kernel function
Yne,o Truncated convection kernel function
Qpa Interaction domain about diffusion term
Qpe Interaction domain about convection term
Q. Total interaction domain
Ls o Truncated nonlocal convection-diffusion operator
E?,i Truncated nonlocal diffusion operator
33 Truncated nonlocal convection operator
L2,(Q) Constrained space
B(,,) Bilinear operator
X; Discrete point
S Associated volume
Th Grid set
Bs(x) Euclidean balls
B;n(x) Approximate balls
ABgsp(x)  Ball difference
Z,%O (Q) Constrained space

1. Introduction

Nonlocal models, encompassing peridynamics models [3, 19, 27, 28, 30, 35], nonlocal diffu-
sion models [9, 12, 37, 41, 42], nonlocal advection [8, 15, 21], nonlocal convection-diffusion models
[5, 13, 33, 34], nonlocal Stokes equations [11] and so on, have garnered significant attention in recent



decades from both theoretical and computational perspectives [1, 16, 14, 20, 25, 26, 39, 43|. For
a comprehensive exploration of nonlocal models, we refer to the monograph [17] and the survey
article [6]. Following the establishment of the nonlocal vector calculus framework [10], model-
ing convection-diffusion problems has attracted considerable attention in recent years. A central
challenge lies in identifying an appropriate kernel function and integrating convective information
into it. A nonlocal, nonlinear advection model was firstly introduced in [8] by extending conven-
tional pointwise concepts to account for nonlocal contributions to the flux. Then, [13] developed a
nonlocal convection-diffusion models with volume-constrained boundary condition, while the well-
posedness of such models was investigated in [4]. Furthermore, an upwind nonlocal model for
convection-diffusion problems with a divergence-free velocity field was proposed in [33], the finite
element discritization of which was proved to satisfy the discrete maximum principle. Subsequently,
for general velocity fields, a conservative nonlocal convection-diffusion model with a specially con-
structed upwind convection term was introduced in [34], ensuring both mass conservation and
adherence to the maximum principle. To solve nonlocal convection-dominated diffusion problems,
Leng et al. [24] introduced an asymptotic compatible Petrov-Galerkin method. Based on the
exsiting nonlocal convection-diffusion model, to simulate complicated processes involving chemical
reactions,flows and diffusions, a bond-based peridynamic advection-reaction-diffusion model was
formulated by Tian et al.[32].

In [36], an innovative Gaussian-type kernel-based nonlocal diffusion model was introduced,
revolutionizing the simulation of diffusion processes by incorporating matrix-valued anisotropic
coefficients in non-divergence form. This approach allows for the simulation of both isotropic
and anisotropic diffusion phenomena by integrating the diffusion matrix into the covariance and
establishing the kernel using a multivariate Gaussian distribution. Unlike existing nonlocal models,
where the kernel function may be bounded, the Gaussian-type nonlocal model’s kernel function
is unbounded, enabling the integration of physics information directly into the kernel function.
Building upon this approach, we propose and study a novel nonlocal convection-diffusion model
corresponding to the following partial differential equation (PDE) model defined on an open domain
Q, C R%:

—eAu(x) + v(x) - Vu(x) = f(x), x € Qs, L1
u(x) = g(x), x € 9. (1.1)

Here, € > 0 serves as a positive parameter, which is relatively more compared to the above velocity
field v(x). In this approach, the velocity field is incorporated into the kernel function, as an
expectation of a multivariate Gaussian distribution. Considering that the support of the Gaussian-
type kernel is unbounded, we strategically truncate the influence region to improve computational
efficiency. Thus volume-constrained boundary condition is prescribed. The well-posedness of the
proposed nonlocal model is successfully established, and the maximum principle is derived. With
direct Riemann quadrature, [31], we further develop a meshfree discretization scheme which satisfies
the discrete maximum principle and the asymptotic compatibility. Through extensive numerical
experiments, we demonstrate that the proposed meshfree scheme achieves first-order accuracy as
the horizon parameter and the grid size simultaneously go to 0 with a fixed ratio (i.e., the so-called
d-convergence).

Compared with existing nonlocal convection-diffusion models, we would like to highlight three
key contributions of the proposed model. Firstly, we extend the framework of the Gaussian ker-
nel based nonlocal model from anisotropic diffusion to convection-diffusion. Secondly, our model



enables a direct meshfree discretization, which preserves the discrete maximum principle and
asymptotic compatible convergence and doesn’t need additional modification. Thirdly, our nonlo-
cal convection-diffusion model successfully avoids volume correction issues by introducing an un-
bounded Gaussian-type kernel function, which eliminates the need for volume correction techniques
often required in bounded domain models[18, 2, 7, 29].

The paper is organized as follows. The existing Gaussian-type kerne based nonlocal anisotropic
diffusion model in non-divergence form is briefly reviewed in Section 2. In Section 3, the proposed
nonlocal convection-diffusion model is presented, along with an analysis of its local limit and the
selection of the truncated region. The well-posedness and maximum principle of our nonlocal model
are established in Section 4. Section 5 introduces the meshfree discretization scheme for numerically
simulating the proposed model. Extensive numerical experiments demonstrating the effectiveness
of the proposed model and corresponding numerical scheme are presented in Section 6, followed by
concluding remarks in Section 7.

2. Related work on the Gaussian-type kernel based nonlocal diffusion model

We define a d-dimensional multivariate Gaussian distribution, the probability density function
p(z, p, X) is presented as follows:

p(z7uv E) = 1dexp (_
(2m)" X

(z—p)'S(z—p)
)

where p is the expectation and X is the covariance matrix. A Gaussian-type kernel based nonlocal
diffusion model in non-divergence form was recently proposed in [36] and given by:

Lr(x) = / (u(x') — w(x))¥,q(x, x)dx', x € R, (2.1)
Rd
where the kernel function v(x,x’) is defined by

~ 2
Yna(%, %) = ﬁp(x’ —x,0, 52A(x)), (2.2)

where § > 0 is a horizon parameter and A(x) is symmetric positive definite and differentiable. As
& approaches 0, the nonlocal operator E?d converges to following form:

Bt = B = 3 090 2100
5 ulX ou(X .—ij:1a X axiaxj.

Note that the Gaussian-type kernel function 7,,; in (2.2) is defined over an unbounded area.
To ensure computational efficiency, it is viable to truncate the influence region as follows:

Bih o) = {x'] (¢ =x)TA() (X —x) < 6*x2}

An illustration of the Gaussian function p(x,0,62A) with A = [1,0;0,1] and § = 1/10 and the
correspondingly truncated influence region x2(2) = 36 is presented in Figure 1. Specifically, for
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Figure 1: Contour plot of the Gaussian density function p(x,0,02A) (left) and the sketch for

the truncated region B(;Aa( x) (right) with x% = 36, where § = 1/10 and diffusion matriz A =
[1,0;0,1].

any given parameter x2 > 0, A(x) shapes the truncated region, while A (x) and ¢ jointly determine
its size. The truncated kernel function 7, , is then defined as follows:

(2.3)

~ N 'Vnd(X?X/)’ x/ EB(iAoz( )
Yd a(x X ) -
0, otherwise.

A volume constrained boundary is associated with the truncated kernel function (2.3) and the
domain Q. is then defined by

0o = {x e R™MQ, | Ix € Q% € B4 . (x )}.

Under the volume constraint Dirichlet boundary condition, the corresponding Gaussian-type kernel
based nonlocal diffusion problem is given as follows:

{—Eg’iu(x) = f(x), x€Qq,
u(x) =g(x), xé€Q,,

Etut) = [ (u

The above nonlocal diffusion model showcases its effectiveness in accurately simulating a broad
range of diffusion processes of both isotropic and anisotropic types. This paper is mainly to extend
the capabilities of this nonlocal modeling approach to the convection process and further develop
a nonlocal convection-diffusion model with Gaussian-type kernels, in analog to the classic PDE
problem (1.1).

(2.4)

where
/

X') = u(x))¥ g0 (%, x)dx"

—~

3. A Gaussian-type kernel based nonlocal convection-diffusion model

In this section, a Gaussian-type kernel based nonlocal convection—diffusion model is presented,
and subsequently, the consistency with its corresponding local counterpart (1.1) is proved.



3.1. Nonlocal convection-diffusion model based on Gaussian-type kernel
A nonlocal convection-diffusion operator is first defined by:

Lsu(x) := L3%(x) + LFu(x). (3.1)

Here, Egd is a nonlocal diffusion operator and takes the specific form of

£3u(x) = / (u(x) — w() )Y g, X)X, (3.2)
Rd
where ) ) , H / ”2
£ 1 X — X
Yna(X:X') = ﬁp(xl - X,O,CSQId) = s+ e )deXP <—252> (3.3)
T

with I; denoting the d-dimensional identity matrix. We remark that the diffusion kernel function

Yna I (3.3) is different from directly taking A = €I; in 4,4 of (2.2). Instead, we define A = I,

and move ¢ to the front of the exponential function to deal with the strong scaling effect caused by

the small value of € in the convection-dominated case (see Remark 1 for detailed explanation).
The nonlocal convection operator £¢ is defined by:

) = [ () = () e . X (3.4
where
A 1 1 X —x + v(x)d)|]?
Yne(X,X') = gp(x — x, —v(x)4,0%1) = Sid (QF)deXp (— 252 ) . (3.5)

Note that p(x’ —x, —v(x)d, §2I,) is the probability density of a multivariate normal random variable
x’ —x with expectation y = —v(x)§ and covariance matrix §2I;. The proposed nonlocal convection
term differs from the conventional nonlocal convection term in two significant aspects. Firstly,
the parameter § is intricately linked to the covariance matrix and the expectation. When v(x)
is fixed, as § decreases, the kernel function «,,.(x,x’) exhibits a higher degree of singularity, as
illustrated in Figure 2. Furthermore, unlike the diffusion term where the center of its density
function p(x’ —x, 0, 4%I,) remains at the point itself, here for each point x, the center of its density
function p(x’ — x, —v(x)d,d%1,) is displaced by —v(x)d. When v(x) is fixed, as & gets smaller,
the center of the density function gets closer to the point x. Secondly, the velocity field v(x) is
incorporated into the kernel function ~,,.(x,x’). As previously mentioned, the center of the density
function for the convection term changes due to the influence of v(x), yet its overall shape remains
consistently circular. Consequently, the velocity field exerts a direct and discernible impact on the
kernel function +,,.(x,x’), as demonstrated in Figure 3.

The associated nonlocal convection-diffusion problem, subject to the Dirichlet-type boundary
condition, is then defined as follows:

{—E(;u(x) = f(x), x¢€ QZ, (3.6)
u(x) =g(x), xe€ R\ Q.
where
Lau(x) = L5Mu(x) + L5 u(x) = /Rd(U(X') = (%)) (Yna (%, X') + ¥y (3, X)) dx. (3.7)
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(a) (b)
Figure 2: Illustration of the Gaussian function p (X, —v(x)0, 52Id) for the convection term (in two
dimensions) with a constant velocity field v = (3,—3)T. The left plot corresponds to § = 1/20 and
exhibits more spread-out and diffuse contours. The right plot, with § = 1/30, shows more elongated
and concentrated contours.

(a) (b) (c)

Figure 3: Contour plots of the Gaussian function p(x, —v(x)d, 6%Iz) with different constant velocity
fields v. Left: v = (1,1)T and § = 1/20; middle: v = (1,1)T and § = 1/10; right: v = (0.5, —0.5)7
and § = 1/10.

Remark 1. If we follows exactly 7,4 defined (2.2) for the nonlocal diffusion kernel, taking A(x) =
ely would give us

- 2 2 x' — x)||?
Fnd(%,x') = ﬁp(x' —x,0,0%A(x)) = ————exp (—W) . (3.8)
§2+dy /(27)%ed c

The truncated region then becomes
Bserga(x) = {x| %' —x|* < 6%x?},

which forms a circle with the radius rq = x/€0. To numerically guarantee obtaining adequate
information within this truncated area, a uniform grid with h = rq/x = /€0 is deemed necessary



for numerical simulation as discussed in [36], which implies the need for highly dense grids for the
convection-dominated problem. To resolve this issue, we propose an alternative approach. For a
constant coefficient matriz A, as § — 0, we obtain with (3.8)

/ (w(x') — u(x))¥pg(x, X )dx" — V - (AV)u. (3.9)
Rd
By utilizing the eigenvalue decomposition, we have

A = QAQT, (3.10)
where A = diag {1, N2, -+, A\q} is the diagonal eigenvalue matriz of A with eigenvalues arranged

from smallest to largest and @ is the corresponding eigenvector matriz. Then
V- (AV)u =MV (AV)y,

whereA:Q]\QT and A = diag 1,&,~-- ,ﬁ
A A

limit of the reconstructed differential operator MV - (AV)u is given by

}. The nonlocal operator corresponding to the local

[ ) = gl ¥ )x (311)

where ’
Ynd(X,X') = T;p(x’ —x,0,0%A).

Specially, in the nonlocal model as proposed in (3.3), ¥,a(x,X') = %p(x/ —x,0,6%1,).

3.2. Convergence to the local convection—diffusion operator

For the nonlocal diffusion term (3.2), according to [36], as § — 0, ﬁgd converges to the local

diffusion operator, i.e.,
L3% — LM = eAu

and the approximation error is O(62). Let us consider the nonlocal convection term (3.4) and
suppose the velocity field v(x) is differentiable. Under the assumption that the solution w is
sufficiently smooth, we get

u(x') — u(x) = Vu(x)T (x' — x) + 0(6) (3.12)

by applying Taylor expansion at x. According to the definition of first-order moment of multivariate
normal distribution, the integral of the first term is

/ (X' = X) Ve (%, X )dX = —v(x). (3.13)
Rd

Thus we obtain

Rd(u(x’) — (X)) Ve (X, X )dX = —v(x) - Vu(x) + O(6). (3.14)

Consequently, as 6 — 0, L§¢ converges to the local convection operator

$u — L™ = —v(x) - Vu(x)



and the convergence rate is O(d). Thus, the PDE problem, which is the local counterpart of the
nonlocal convection—diffusion problem of (3.6), is given as follows

_ﬁu(X) = f(x)7 x € Q,
{ u(x) = g(x), x € 0, (3.15)

where Lu(x) = eAu(x) — v(x) - Vu(x).

3.8. Truncation of influence region for the kernel function

In practical computations, truncating the influence regions of ~,,;(x,x’) and =,,.(x, x’) for two
fundamental reasons is imperative. Firstly, the defined area of the kernel function extends to an
unbounded space R™. Secondly, as x’ moves further away from x, the kernel function experiences
rapid decay. By selecting an appropriate cut-off distance wisely, the computational domain can
be effectively limited to a finite area without significantly compromising model accuracy. This
approach enables the practical implementation of the proposed nonlocal model while faithfully
capturing the fundamental physical properties of the system being examined.

For the diffusion term, as established in [36], the truncated influence region for x is

Bja(x) = {x| [Ix' —x|* < 6°x3}

and « selected very close to 0.

For the convection term, the random variable x’ —x is assumed to follow a Gaussian distribution
of d-dimensional with a covariance matrix of 62I;. Then, ||x’ — x 4+ v(x)d||?/62 follows a chi-square
distribution x?(d). To define the influence region of the kernel function, let us consider all x’
such that [x' —x + v(x)d|* < 62x%, where 0 < a < 1, and X2 is a parameter of the chi-square
distribution x?(d), namely the (1 — ) quantile. Hence, we have:

p(x' — x, —v(x)3,0%I4)dx' =1 — a. (3.16)

[[ %" —x+v(x)5]|2<6%x3
We then define the truncated influence region for a given point x as
Bgfg{(x) = {x" [x' —x+ v(x)<5||2 < 52X§} , (3.17)

where « is chosen very close to 0. In Figure 4, the projection of the iso-density contour of the
truncated influence region BJ,(x) onto the coordinate plane is depicted for different velocity fields
in two dimensions, where x2(2) = 36, implying a ~ 1.52 x 10~8. Across various velocity fields, the
iso-density contour projections consistently form circular shapes. It is noteworthy that the center
of each circle varies, determined by the offset of —v(x)d, which is established based on the current
point x.

Note that the bounded ranges for the diffusion and convection operators are different from
each other, Bg‘i (x) and Bj¢ (x) respectively. Thus, we correspondingly define the truncated kernel
functions ’ynd’; and ¥, o as follows: for any x,x’ € Ry,

7nd(x7 X/), X, S Bgi(x)v

’7nd,o¢(x7 X,) = { 7 (318)

0, otherwise.



(a) (b)

Figure 4: Sketch of the truncated region Bgf‘;(x) with x2 = 36. Left: the velocity field v(x) = (1,1)7,
the truncated influence region is the circle with (x—0,y—9) as the center and 69 as the radius. Right:
the wvelocity field v(x) = (3,—3)T, the truncated influence region is the circle with (x — 35,y + 36)
as the center and 69 as the radius.

(3.19)

) Ye(x,%x'), x' € Byg(x),
7nc,a(x7 X ) = .
0, otherwise.

The corresponding interaction domains about diffusion term and convection term are defined as

Qg = {x e RN\Q x| ||x' —x|* <62, x €}, (3.20)
Qe+ = {X eRMN\Q: x| ¥ —x+v(x)5]]” < 0*x2, x € A} (3.21)

For the proposed nonlocal convection-diffusion problem, the volumetric constraints are imposed
on the interaction domain 2pq U Q.. In contrast, the nonlocal operator equation is applied in
the domain ;. These volume constraints are natural extensions of the boundary conditions for
problems involving differential equations in the nonlocal context. The interaction domains g,
Qpe, and the total interaction domains Q. = Qpq U Q4 are visually depicted in Figure 5.

. S ) )
Q Q, Q,
s ch Qc
\ de / k / \\ /

(a) (b) (c)

Figure 5: In the scenario where v(x) = (3,—3)T, (a), (b), and (c) depict the computational domain
of the diffusion term, the convection term, and the combined total term, respectively. Qpq and Qpe
correspond to the boundary constraints for the diffusion term (3.20) and the convection term (3.21),
respectively, while Q. = Qpg U Qpe.

Finally, under the volumetric constraint Dirichlet boundary condition, the nonlocal convection-
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diffusion model with truncated influence regions is given by:

_55,au(x) = f(X), X E QS’
{ u(x) = g(x), x€Q, (3.22)
where

Lsau(x) = Ligux) + Ligux) = [ (u(x') = ulx)(Ynd,a(6X) +Vne olx,x))dx" (3.23)

S~

with = Q5 U Q.

4. Wellposedness and maximum principle

L20(Q) = {u e L*(Q) | u(x) =0 on .} is defined as a constrained space. (-,-) is denoted as
the L? inner product. For x € Q, with g(x) = 0 and f € L?(£)), the weak form of our models is
as follows:

B(u,v) = F(v), Ve L3 (Q), (4.1)
where
B(u,v) = (—Lsuv) = /Q /Q (4(3%) — () Yna (5, 3 Y0 (x) ' dix
" /Q /Q (4(3%) — 4(X) Y nea (, X' 0(3) ' dx
= Ba(u,v) + Bpe(u,v) (4.2)
and

F(v)z/ﬁf(x)v(x)dx.

For 7,44 and vy, o, we first note the existence of a positive constant /1(d), dependent on §, such
that the kernel =, , satisfies

/ Yndo(X, X )dx' > eK1(5), YxeQ, (4.3)
Qe
2
/7nd7a(x,x') dx' = / Ynd,o (X' x)dx" = 5—; Vx e Q. (4.4)
Q Q

Moreover, there exist positive constants K2(d) and K3(J), dependent on §, ensuring that the kernel
Vne,a Satisfies

/ ’ync,a(x, x') + ’ync,a(x/,x)dx’ > Ky(d), Vxe. (4.5)

c

1
/ 'ync’a(x,x’) dx' = 5 / 'ynqa(x’,x)dx’ < K3(5), Vxe. (4.6)
Q Q
Based on these conditions, the nonlocal operator L5, is bounded in LiO(Q), which guarantees

that a weak solution is also a strong solution of (3.6) in L2,(f2). Consequently, for the nonlocal
problem (3.6), the well-posedness with the following result is established.
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Theorem 1. (Well-posedness) Suppose 6 > 0 is fized and the kernel v, (x,x’) satisfies
/ Tne,a (X, x’) — Wnc,a(x',x)dx’ >0, Vxe. (4.7)
Q

Consequently, a unique solution u € L%O(Q) exists for the monlocal convection-diffusion problem
(3.6). Moreover, this solution adheres to the prior estimate:

4
< . 4.
ullL2(0) < 4€K1(5)+K2(5)||f||L2(Q) (4.8)
Proof. First, we can simply obtain
F )] < [Ifllz2@llvllz2(0,)- (4.9)

With a proof similar to that of Theorem 2 in [34], we demonstrate the boundedness of the
bilinear operator B(-,-) on L2,(Q) x L2,(Q). For any u,v € L2,(Q), and due to the symmetry of
Yndo (% X') = Ypao(X',x), the bilinear operator B,q(u,v) can be expressed as:

Ba(u,v) / / X)Ynd,o (%, X' )dx'dx — / / X )Y .o (X, x")dx'dx. (4.10)
Based on (4.4), we obtain For any u,v € L2,(Q),

4e
[Bra(u, v)l < s llullr2@llvllz20)- (4.11)

Note that By.(u,v) can be rewritten as

B, // X) Y0 (X, X dxdx—// X) Yo (X, X' )dx'dx

By utilizing the Cauchy-Schwartz inequality, as well as the inequalities in (4.5) and (4.6), the first
term to the right of (4.12) can be qualified as follows:

(4.12)

1
] = < <lull2@)llvllz2(0)- (4.13)

[ a61060) [ Aoy

Similarly, the second term to the right of (4.12) satisfies

e %caxxdxdx) (] [ MQXX)dxdx)%

K3( )

IN

lull L2y llvll 2 (4.14)
Then we obtain

1 Ks(o
Bueon,0) < 1]+ 18] = (4 20 o oy ol ey (4.15)

12



Thus the combination (4.11) and (4.15) gives us

de 1 [K3(0)

B(u,v) < (52 t5 T 5 Ml vl

Subsequently we demonstrate that the bilinear operator B(-,-) is coercive on LELO(Q). It holds
that

Buain) = [ [ 00 e X ) dx = 0l Ju(x) T (5, Xl

/ / ’Ynda x,x')dx'dx — u(x')u (x)7nd7a(x,x')dx’dx. (4.16)

Y

Using the inequality in (4.3), we then can get
Bu(w,u) > Ki(0)]ulsq. (4.17)

For the bilinear operator B,(+,-), we first note that

Bo(u,u) = /Q /Q (1(3) — u(K)) (%)Y (3, X' )l

/ / (u(x) = u(x))u(x) Tnea (X X) -;vnc,a(x’,x)

’ A/nc,oc (X’ X,) - 7710,04 (X/7 X) / L
_|_/ /(u(x) —u(x"))u(x) 5 dx'dx := Jy + Jo.

dx’'dx (4.18)

’Y’nc,a (x7x/)+7nc,a (x/’x)

It is evident that is always symmetric, even though =, ,(x,x’) may not be.
Therefore, the first term of the right of (4.18) can be expressed as:

J = / / QFYnc oz(x X ) _;’Ync,a(x,vx) dx’dx
nc,x + nc,x /7
s L[t -y )+ sl0) o
’YTLC Q(X X ) +77’LC,C¥(X,? X) K
= 2/u (X)/ 5 dx'dx > (0 )||u||L2(Q)
Q Qe

With the assumption (4.7) and the equality

/
/ / ’Ync a(x X) 5 ’Ync,oz(x 7X)dX/dX _ 07

the second term of the right of (4.18) can be rewritten as

/ / ’7nca X X) 5 7nc,a(X/’X) dX,dX

/ / 7nc a(x X) 5 7nc,a(xlvx) dX,dX

13



N ’
_ / UQ(X)/ 7nc,a(X7X) ‘Ync,a(x 7X) dx'dx > 0. (420)
Q Q 2

With the combination of (4.19) and (4.20), we obtain
K5 (%)
4

Bre(u,u) = ||UH%Q(Q)' (4.21)

Therefore, using the Lax-Milgram theorem, the problem (4.1) exists as a unique solution u €
L2,(9). Furthermore, since

K(0)

(eK1(8) + =) [ullf20) < Blu,u) = [F(u)] < || fll 2o lull 2 (@) (4.22)

the a priori estimate (4.8) can be obtained. O
The condition (4.7) can be considered a nonlocal analog of the following condition
V-v(x) <0, xe. (4.23)

Here is a simple proof: Z%O(Q) ={u € L2() | u(x) = 0 on 9N} is defined as a constrained space.
For any w € L2 (), we have

|9 ve0-wedx = [ i) ve0 - nixjax— [ vix) - Vulx)ax

Q

= - / v(x) - Vw(x)dx (4.24)
Q

where n(x) is the normal vector pointing to the outside of the domain. With the Taylor expansion
at x, we also have

[ [ Ornaloex) = Ao 30 (0
= ] a6 X000 = X ol
= [ Al wlx)  wixixax
- /Q v(x) - Vw(x) + O(8)dx. (4.25)

Hence, as 6 — 0, the condition (4.7) can be considered a nonlocal analog of the condition (4.23).

Theorem 2. (Maximum principle) Suppose —Lsqu < 0 in g, then in the interaction domain ),
we can attain a non-negative mazximum of u.

Proof. Through proof by contradiction, we aim to demonstrate that a nonnegative maximum cannot
be achieved within 5. For the sake of contradiction, let’s assume that a nonnegative maximum u
at xg € ()5 can be achieved. Consequently,

—Lsqu(X0) = —/

(u(x) = u(X0))Ynd,a(x0, X )dx" — / (u(x) = u(X0))Yne,a (%0, x")dx". (4.26)
Q

Q

14



Cause u(x") — u(xp) < 0, we can simply demonstrate that

>0
<0 -
—— 2 '~
- / (u(x') — u(xq)) ————exp <_’X;‘°‘> dx' > 0, (4.27)
Q 52+d, /(27) 20
and
>0
<0 -\ 5
e N 1 ! _ 6
- / (u(x') — u(xq)) —————exp <— [(x XO;S;’(XO) ) > dx' > 0, (4.28)
Q §1+d (27r)d
which give us a contradiction with the assumption of —Lsu(zg) < 0. O

5. A meshfree discretization scheme

In order to numerically simulate the proposed nonlocal model (3.22), we discretize it by following
the meshfree approach proposed in [31]. Suppose that the domain €2 is discretized into nodes {x;},
and each node x; in the reference configuration has a known associated volume S;. The nodes within
)5 are denoted as {xi,---,xn,}, while the nodes along the nonlocal boundary €2, are denoted as
{xn,+1, - »xn,4nN.}. Collectively, the nodes and the associated volumes constitute a grid set
denoted as 7;. The method is considered meshfree, signifying the absence of elements or other
geometrical connections between the nodes.

For the nonlocal diffusion term in (3.23), at the node x; € €25, using the meshfree discretization
associated with 7T, we have

Lplu(xi) = L34 pu(xi) = > (u(x)) = u(Xi)) Vo (Xi, %), (5.1)
5,20
where S; = B34 (x;)NS;. For the nonlocal convection term in (3.23), at the node x; € s, similarly,
we approximate it by
Liculxi) = L35 pu(xi) = D () = ulxi)Vnea(Xis X5) S5, (5.2)
5,40

where Sj = By (x;) NS;.

For each point x;, the geometries of S; and S'j may exhibit irregularities. The irregular in-
tersection of these regions holds the potential to introduce quadrature errors, thereby influencing
the overall accuracy of the simulation. However, leveraging the unbounded nature of the kernel
function in the context of the diffusion term allows us to slightly extend the integral regions from
the irregular intersection S; to the regular volume S; as illustrated later in the section of numerical
experiments. This strategic extension addresses the issue of irregular intersections while circum-
venting the need for volume correction. A similar approach is applied to S'j for the convection
term. This expanded integration technique facilitates a straightforward and precise alignment of
the integration area with 7y,.
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In conclusion, the meshfree discretization scheme to solve the nonlocal convection-diffusion
problem (3.22) is expressed by: find (up(x1), un(x2) ..., un(xn,)) such that

_£5,017huh(xi) = f(Xi)a =1, aNs- (53)

Let us define

~Ynd.a(Xis X)) S) = Vne,a(Xi:%5)Sj, if j #i, S;#0 and S; #0,
_’Ynd,a(xiuxj>5j lfj 7é i, Sj 7é Q) and Sj = @,
Qij = ~Ynea(XiX;)S; if j #i, S; =0 and S; # 0, (5.4)
—ijeg&#iai,jv if j =1,
L0, otherwise,

fori=1,2,--- Ny and j = 1,2,---, Ny + N.. For the meshfree discretization (5.3), the resulting
linear system then can be obtained as

Aptly, = f, (5.5)
where Ap, = (aij)NyxNes Tn = (un(x1), up(x2), - up(xn,))T with f = (f1, fa, -+, fn,)" and
Ns+N,
fi=f(xi) + Z 9(x;j) ;- (5.6)
]:Ns+1

Remark 2. In contrast to the proposed Gaussian-type kernel based nonlocal model, many existing
nonlocal models restrict nonlocal interactions to bounded neighborhoods, often chosen as Fuclidean
balls Bs(x). The approzimate balls Bsp(x), typically composed of polygons, impose a challenge
when intersecting for meshfree discretization method. An important question arises: to what extent
do such approximations impact the nonlocal operators and the corresponding solutions? Recent
works have delved into this issue [7, 18]. A notable convergence result, presented in Corollary 4.2
of [7], is as follows:
[un = tnl|r2(@.u0.) < CeK sup || A Bsp(x)],
x€Ng

where C, represents a norm-equivalence constant, K represents a positive constant depending on
the data f and g but independent of § and h, and ABgp(x) denotes the ball difference.

Theorem 3. The stiffness matriz Ay given by (5.4) is an M-matrixz which is nonsingular. Thus,
the linear system (5.5) is uniquely solvable. Moreover, the discrete maximum principle is satisfied
by up, when the boundary values g = 0: if the source terms f < 0 in Q, then max;<i<n, up(xi) <0,
and if the source terms f > 0 in Q,, then minj<;<n, up(x;) >0

Proof. Tt is clear that both 7, ,(xi,x;) > 0 and 7, ,(xi,x;) > 0 for i = 1,--- Ns and j =
1,--+,Ng+N,. Hence, using (5.4), for any j # i, we can deduce that a; ; < 0 if Sjﬂ(Bg’aUBgﬂ) + 0,
and a; ; = 0if S;N (Bf{a UBg’a) = (). This implies a;; > 0 fori =1,---, N5. Moreover, it is evident
that Zj\f;l a;j > 0if (Bg{a UB§,) NQc # 0. As a result, we establish that the stiffness matrix Ay,

qualifies as an M-matrix. This property ensures the existence of Agl and guarantees its absence
of negative entries. Consequently, we can infer that the linear system (5.5) has the unique solution,
and the discrete maximum principle is satisfied. ]
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Regarding the asymptotic compatibility, while the theoretical proof remains pending, we will
provide numerical evidence in Section 6.2 to illustrate that the meshfree discretization(5.3) achieves
d-convergence. Notably, we will demonstrate that the numerical solutions of the nonlocal model
under a fixed ratio between ¢ and h exhibit the first-order convergence towards the corresponding
local PDE solution (3.15).

6. Numerical experiments

In this section, a series of numerical experiments are carried out in two dimensions. These
experiments aim to demonstrate the application of our nonlocal model (3.22) and the effectiveness of
the meshfree discretization scheme (5.3). Additionally, the discrete maximum principle is assessed.
On the approximation accuracy of L5 o to L5, we examine the impact of how to choose the truncation
parameter x2. It is noteworthy that we consistently set 2 = 36 as the default value to truncate
the influence region in Examples 1-4, according to the comparative results observed in Example 5.

6.1. Tests with fixed horizon

To test the convergence of the meshfree discretization to solve our nonlocal model (3.22), we
initially maintain a constant value for 4.

Example 1. We consider the two-dimensional domain Qs = (0,1) x (0,1), with the diffusion
coefficient ¢ = 1, the vector field v(x,y) = (1,1)T and the horizon parameter 6 = 1/80. Let us
choose u(z,y) = sin(z? + y?), u(x,y) = ¥, and u(z,y) = xy° as the evact solution for distinct
scenarios. The boundary values g(x,y) are directly determined rom the exact solutions u(z,y). The
source terms f(x,y) are determined by the nonlocal model (3.6).

We utilize a uniform domain partition of {25 with NV x N grid points, where N assumes values of
20, 25, 30, 35, 40, and 50, respectively. Table 1 reports the L? errors and convergence rates resulting
from the meshfree discretization (5.3). As anticipated, exponential convergence is observed across
all cases until the model errors due to the truncation of the influence regions dominate.

u(x,y) = sin(z® +y?) u(z,y) = e u = xy’
N L? error CR L? error CR L? error CR
20 6.9297 x 10~3 - 1.3902 x 103 - 1.1854 x 102 -

25 1.0488 x 104 8.46 6.0721 x 10~ 3.71 1.2535 x 1073 14.53
30 6.3331 x 107° 15.40 3.4453 x 107° 15.74 5.1920 x 107° 17.46
35 3.4312 x 1076 18.91 2.3773 x 1076 17.34 1.7864 x 106 21.86
40 2.0284 x 10~ 3.94 1.5771 x 1076 3.07 5.0414 x 10~7 9.47
50 2.2014 x 1076 -0.37 1.7963 x 1076 -0.58 5.8460 x 1077 -0.66

Table 1: Numerical results on L? errors and convergence rates for different exact solutions with
d =1/80 in Example 1.

6.2. Tests for d-convergence

We now shift our focus to analyzing the convergence behavior of the proposed meshfree dis-
cretization (5.3) as the horizon parameter § tends towards zero. Specifically, we explore a scenario
in which both the grid size h and the horizon parameter ¢ decrease to zero while maintaining a
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fixed ratio between them. This so-called d-convergence test is a widely adopted method to verify
the asymptotic compatibility of numerical schemes. We anticipate observing the convergence of the
approximate solutions derived from the nonlocal convection-diffusion problem (3.22) towards the
solution that corresponds to classical local problem (3.15). This behavior aligns with the recognized
continuum limit; that is, greater smoothness and continuity are achieved gradually by the under-
lying physical system. Through a meticulous examination of the Jd-convergence of the proposed
meshfree scheme, our objective is to assess its accuracy and reliability. This endeavor also provides
valuable insights into the fundamental physics governing the system under scrutiny.

Example 2. Let us consider the two-dimensional domain Qs = (0,1) x (0,1) with the vector field
v(z,y) = (1,1)T, and set u(x,y) = sin(z? +y?) as the exact solution for the classical PDE problem
(3.15). Two choices of the diffusion coefficients e = 1 and e = 10~7 (strongly convection-dominated)
are used respectively. The boundary values g(z,y) are directly derived from the exact solution u(x,y)
and the source terms f(x,y) are determined from the nonlocal model (3.6).

According to the analysis of truncation about the influence horizon, the influence region for the
diffusion term is given by

Bit(z,y) = {(",y)] (' —2)* + (4 —y)* < 366%}
and that for the convection term by
By (z,y) = {(2".y))| (z' —z+8)%+ (¥ —y+06)* < 366°}.

At any given point (x,y), the influence region of the diffusion term is represented by a circle
centered at (z,y) with a radius of 66. However, the influence region of the convection term is
a circle centered at (z — 6,y — J) with a radius of 66. The configuration of 2, takes the form
of an equal-width band encircling the boundary of €, while . exhibits an unequal-width band
surrounding the same boundary. Given that the kernel function is defined over an unbounded region
and exponentially decays, volume correction is unnecessary for the irregular tangent part of the
boundary region and the mesh. This allows for the appropriate expansion of the boundary scope,
facilitating more convenient calculations. It is important to note that enlarging the integration area
will not compromise the accuracy of the numerical computations. We divide 25 into NV x N grids
and record h = 1/N and set § = h, 6 = 2h, and § = 4h. Figure 6 provides a visual illustration of
the domain 2 = Q, U €. and the influences regions B"‘é and Bj,. Table 2 reports the L? errors
and convergence rates resulting from the meshfree dlscret1zat10n (5 3), and we clearly observe the
first order convergence along the grid refinement.

Example 3. The configuration for this example closely mirrors that of Example 2, with one notable
distinction: a variable velocity field is introduced, defined as v(x,y) = (sin?(mz + my), cos®(mx +

my))T.

This velocity field is visually depicted in Figure 7(a). Similar to Example 2, the influence region
for the diffusion term is given by

Bia(z,y) = {(«".y)] (@' —2)* + (¢ —y)* < 366}
and that for the convection term by

By (x,y) = {(@",y)| (@' —x+ sin®(mz + 7y)8)* + (v — y + cos®(wx + my)6)* < 366%} .
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\

Figure 6: Illustration of the computational domain Q = Q4U€), and the influence regions B?,i (red

LTI

[T T

colored) and By, (black colored) in Example 2.

v(z,y) = (1, 1)T
N e=1 e=10"7
L2 error ‘ CR L? error ‘ CR
S=h
10 8.6507 x 10~3 8.4685 x 102 -
20 3.7819 x 1073 1.19 4.2179 x 1072 1.01
40 1.7647 x 103 1.10 2.1741 x 10~2 0.96
80 8.6166 x 10~* 1.03 1.2383 x 102 0.81
160 4.1846 x 10~* 1.04 5.7204 x 1073 1.11
320 2.0736 x 10~* 1.01 2.8990 x 10~° 0.98
5 =2h
10 3.0904 x 102 - 2.6300 x 10~ 1 -
20 9.8254 x 1073 1.65 1.0153 x 10! 1.37
40 4.0010 x 1073 1.30 4.6345 x 1072 1.13
80 1.8130 x 1073 1.14 2.2794 x 1072 1.02
160 8.6786 x 10~* 1.06 1.2057 x 102 0.92
320 4.2122 x 1074 1.04 5.7877 x 1073 1.06
§ = 4h
10 1.6341 x 107! - 8.4722 x 1071 -
20 3.6344 x 102 2.17 3.0255 x 10~ 1 1.49
40 1.0544 x 102 1.79 1.1086 x 101 1.45
80 4.1334 x 1073 1.35 4.8598 x 1072 1.19
160 1.8419 x 1073 1.17 2.3354 x 1072 1.06
320 8.7231 x 10~* 1.08 1.1902 x 1072 0.97

Table 2: Numerical results on L? errors and convergence rates for different exact solutions with
6 =h, d =2h, and § = 4h in Example 2.

At any given point (z,y), the influence region for the diffusion term is represented by a circle
centered at (x,y) with a radius of 65. However, the influence region for the convection term is a
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(a) (b) (c)

Figure 7: Illustration of the velocity field of v(z,y) = (sin?(nz + Ty), cos?(rx + 7y))T (left), the
computational domain (middle), and the modified volume constrained boundary (right) in Example
3.

circle centered at (x — sin?(wz+my)d, y — cos?(rx+my)d) with a radius of 65. It’s worth noting that
due to the variability of the velocity field, this leads to the inconsistent displacement of the circle’s
center point where the convection term is truncated at the boundary. Consequently, this results
in an irregular boundary, as illustrated in Figure 7(b). Given that the velocity field is bounded,
we extend the boundary by a length of 7§ in both the x and y directions to ensure computational
efficiency. This extension yields a regularized boundary denoted as Q., as depicted in Figure 7(c).
Table 3 reports the L? errors and convergence rates resulting from the meshfree discretization (5.3),
and we again observe the first-order convergence along the grid refinement.

v(z,y) = (sin?(nx + 1Y), cos? (nx + my))T
N e=1 e=10""

L? error CR L? error CR
10 8.2979 x 1073 - 4.9168 x 1072 -
20 3.3121 x 1073 1.33 2.8121 x 1072 0.81
40 1.4632 x 1073 1.18 1.5941 x 102 0.82
80 6.8512 x 10~ 1.09 9.6332 x 1073 0.73
160 3.3141 x 10~* 1.05 4.7866 x 1073 1.01
320 1.6267 x 1074 1.03 2.5196 x 1073 0.93

Table 3: Numerical results on L? errors and convergence rates for different exact solutions with
0 = h in Example 3.

6.3. Tests of the discrete maximum principle

In this subsection, we focus on testing the discrete maximum principle for the meshfree dis-
cretization (5.3).

Example 4. We consider the two-dimensional domain Qs = [0,1] x [0,1] and set § = 1/40. Two
types of the velocity fields are taken into account:

vi(z,y) = (1,1)7T, va(z,y) = (sin®(mx + 1y), cos®(mx + my))”.
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Two choices of the diffusion coefficients e = 1 and e = 10~7 are again used respectively. A Dirichlet
boundary condition is imposed on Qc: u(x,y) =1 when x <0 ory <0, and u(x,y) = 0 otherwise.
The source term is chosen to be f(x,y) = 0. Although we are the exact solutions of the nonlocal
problem (3.22) aren’t known, their values are confined within the range of 0 to 1.

We utilize a uniform partition of the domain 24 with 40 x40 grid points and employ the meshfree
discretization (5.3) to solve the nonlocal model. Figure 8 showcases the resulting numerical solutions
obtained with the two distinct velocity fields, and it is evident that the discrete maximum principle
is well maintained in all cases.

0.6 0.8 1 0

1 0
02 0o 02 04 06 o8 02 0 02 04

(c) e =10"7, vi(z,y) (d) e=1077, vi(z,y)

Figure 8: Numerical solution for different diffusion coefficients and velocity fields in Example 4,
demonstrating the preservation of the discrete maximum principle.

6.4. Effect of X2 on the approzimation accuracy of Lso to Ls

In this subsection, we choose different values for x2 to test effectiveness of the truncated nonlocal
operator Ls, defined in (3.22) as an approximation of the nonlocal operator L5 defined in (3.1).

Example 5. The experimental settings are similar to Example 2, with the only alteration being the
exploration of various values for x%. Specifically, we set ¢ = 1 and consider x? = 9, 16, 25, 36,
and 49, respectively.

Table 4 provides a detailed account of the L? numerical errors produced by the meshfree dis-
cretization (5.3) with a fixed 6 = h under various choices of x2. We observe that the solution errors

21



v(z,y) = (1,17
N X2=9 X2=16 X2=25 X2=36 Xa=49
40 7.6275 x 1073 2.0655 x 1073 1.8279 x 1073 1.7647 x 1073 1.7647 x 1073
80 5.8906 x 1073 1.2090 x 1073 8.5830 x 1074 8.6166 x 10~ 8.5189 x 10~*
160 6.6920 x 1073 8.0409 x 104 4.2443 x 104 4.1846 x 104 4.1844 x 10~
v(z,y) = (sin?(nx + my), cos?(rx + my)) T
N X2=9 X2=16 x2=25 X2=36 X2=49
40 7.5229 x 1073 1.7842 x 1073 1.4684 x 1073 1.4632 x 1073 1.4632 x 1073
80 6.0185 x 10~3 1.0635 x 1073 6.9245 x 104 6.8512 x 10~ 6.8558 x 104
160 7.0851 x 1073 7.3080 x 10~4 3.3774 x 1074 3.3141 x 10~4 3.3141 x 10~4

Table 4: Numerical results on L? errors with different choice of x2 in Example 5.

exhibit a rapid decrease as x2 increases from 9 to 49. Notably, the disparities in solution errors
between 2 = 36 and x2 = 49 are almost negligible. Consequently, we suggest the adoption of
x2 = 36 in practical applications. This choice strikes a balance between ensuring the accuracy of
the nonlocal convection—diffusion model (3.22) and keeping computational efficiency.

7. Conclusions

In this paper we introduce a novel nonlocal convection-diffusion model based on the Gaussian-
type kernel, expanding upon an existing nonlocal diffusion model. The key innovation lies in the
integration of the velocity field into the expectation, utilizing a truncated multivariate Gaussian
function as the kernel. The well-posedness and elucidation of certain inherent properties are es-
tablished to assess the robustness of our proposed model. For the numerical solution, we design
a direct meshfree discretization method that adheres to the discrete maximum principle. A se-
ries of numerical experiments are also carried out in two dimensions to illustrate the versatility
of our model in tackling diverse convection-diffusion problems and the robustness of the proposed
numerical scheme.
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