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Abstract

Existing nonlocal diffusion models are mainly classified into two categories: bond-based models,
which involve a single-fold integral and usually simulate isotropic diffusion, and state-based models,
which contain a double-fold integral and can additionally prototype anisotropic diffusion. While
bond-based models exhibit more computational efficiency, they sometimes could be limited in mod-
eling capabilities. In this paper, we successfully develop a novel bond-based nonlocal model for the
diffusion process with matrix-valued coefficients in non-divergence form. Our approach incorpo-
rates the coefficients into a covariance matrix and employs the multivariate Gaussian function with
truncation to define the kernel function, and subsequently model the nonlocal diffusion through
the bond-based formulation. We establish the well-posedness of the proposed model along with
deriving some of its properties on maximum principle and mass conservation. Furthermore, an
efficient linear collocation scheme is designed for numerical solution of our model. Comprehensive
experiments in two and three dimensions are conducted to showcase application of the proposed
nonlocal model to both isotropic and anisotropic diffusion problems, and to demonstrate high-order
accuracy and conditional J-convergence of the proposed collocation scheme.

Keywords: Nonlocal model, anisotropic diffusion, bond-based model, Gaussian function,
collocation scheme, asymptotic compatibility

1. Introduction

Isotropic and anisotropic diffusion phenomena have received much attention due to their broad
applications, such as inertial confinement fusion (ICF) [30, 36], magnetic confinement fusion (MCF)
[45], skyrmion diffusion in magnetism [28], image processing [35, 48], gas diffusion in fractal porous
media [33], and fluid distribution in fiber-reinforced composites [21]. These diffusion processes are
usually described by partial differential equations (PDEs), for examples, Fick’s law [44], Darcy’s law
[46] and Fourier’s law [20]. The study of these equations is of great interest in numerous scientific
fields due to the importance of diffusion processes in physical systems. The linear diffusion equation
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with matrix-valued coefficients in non-divergence form is given by

.. 2u
—Lu(x) =— aw(m)afiaxj (x) = f(x), xeQ, (1.1)

where 2 € R? is a bounded Lipschitz domain, u(z) : § — R is the unknown function, and the
coefficient matrix A(z) = (a"/(x))
definite and

ii=1 is assumed to be elliptic, i.e., symmetric and positive

MEP < eTA(x)E < A|E]?, VeEeRYzeQ, (1.2)

where A and A are some positive constants. The diffusion process is said to be isotropic if A(x) =
a(x)I where a(x) is a scalar-valued coefficient function and I denotes the identity matrix, and
otherwise it is said to be anisotropic. For the well-posedness of the problem (1.1), we refer to the
comprehensive analysis and results presented in [23]. For simplicity, we assume a*/(z) € C%1()
and f € L?(Q) in this paper, which guarantees the existence and uniqueness of a solution for
(1.1) under the Dirichlet boundary condition. This type of equations have been used in many
applications, such as stochastic optimal control and finance [19], the optimal transportation problem
and geometry [5, 31, 42|, the linearized fully nonlinear problems [3, 34]. Since analytic solutions
are usually unavailable in practice, many numerical methods have been developed to solve the
equation (1.1), including the finite volume (FV) schemes [38, 47, 49|, the finite volume element
(FVE) method [22, 29, 39] and so on.

It is known that classical diffusion models described by PDEs often cannot provide a proper de-
scription of diffusion through heterogeneous materials, and they are limited in describing anomalous
diffusion that does not obey Fick’s law. Nonlocal diffusion model is an alternative to the PDE-based
diffusion equation, which is based on Silling’s reformulation of the theory of elasticity for solid me-
chanic [37, 40]. Bond-based models (i.e., unweighted nonlocal models) and state-based models (i.e.,
weighted nonlocal models) are the two major types of nonlocal diffusion models [11, 13, 17, 24].
the former ones are independent on the influence of other points in their domain of interaction and
the latter ones are opposite.

In the past two decades nonlocal diffusion models based on integral equations have gained ex-
tensive attention [12, 15, 32]. The literature contains advanced engineering applications of nonlocal
diffusion equations. For instance, some studies have explored the peridynamic formulation for heat
transfer, including one-dimensional problems with different boundary conditions [1]. Other stud-
ies have introduced multidimensional peridynamic formulations for transient heat transfer [2], and
refined bond-based peridynamic approaches for thermo-mechanical coupling problems [6]. State-
based peridynamic heat conduction equations and their applications were also investigated, with
examples including the use of peridynamic differential operators for steady-state heat conduction
analysis in plates with insulated cracks [10] and the nonlocal discrete model based on the lattice
particle method for modeling anisotropic heat conduction [7]. Nonlocal diffusion models also have
been applied in fluid transport in porous media and corrosion. For example, state-based peri-
dynamic formulations were developed to simulate convective transport of single-phase flow and
transient moisture flow through heterogeneous and anisotropic porous media, as in [27] and [26],
respectively. Nonlocal fluid transport models were proposed to capture the non-local transport
effects and non-linear mechanical behaviors of fluids in heterogeneous saturated porous media [41].
In the area of corrosion, a variety of coupled mechano-chemical peridynamic models were developed



to describe stress-assisted corrosion and stress corrosion cracking; specific examples include models
introduced in [12, 25, 50], which presents a coupled peridynamic corrosion-fracture model.

A stated-based nonlocal model was successfully proposed and analyzed to simulate the anisotropic
diffusion in [9], but it is theoretically not necessary to use the state-based formulation for modeling
anisotropic diffusion. In [13], a connection between the bond-based nonlocal model and the general
diffusion process was established: the bond-based nonlocal diffusion operator based on the radial-
type kernel function v(|z|) with a compact support Bs(0) converges to —V - (A V) as the horizon
parameter 6 — 0 under suitable conditions on 7(|z|). However, to the best of our knowledge, such
kernel function 7(|z|) has not been found in the literature when A is anisotropic.

In this paper, we successfully develop a novel bond-based nonlocal model which can simulate
both isotropic and anisotropic diffusion processes. Our approach incorporates the coefficient matrix
into a covariance matrix and then forms the kernel function based on the multivariate Gaussian
function. To ensure computational efficiency in practice, we further appropriately truncate the
influence region of the kernel function by considering its rapid decaying nature. We establish
the well-posedness of the proposed model under certain assumption on the coefficient matrix, and
derive its maximum principle, and when A is a constant matrix, the mass conservation. An efficient
linear collocation discretization scheme is also proposed for numerical solution of our model, which
is shown to converge exponentially on uniform rectangular grids and quadratically non-uniform
grids. In terms of asymptotic compatibility, we observe through extensive numerical experiments
that the proposed collocation scheme is d-convergent under a reasonable condition on the ratio
of the horizon parameter over the grid size, while the popular quadrature-based finite difference
scheme [16, 14] fails in the case of anisotropic coefficients.

The rest of the paper is organized as follows. Section 2 briefly reviews some existing nonlocal
models for isotropic and anisotropic diffusion. Section 3 introduces the new bond-based nonlocal
diffusion model with matrix-valued coefficients and discusses the truncation of the influence region
of the kernel function for its efficient implementation in practice. Section 4 establishes the well-
posedness of the proposed model and derive some of its properties. Section 5 presents the linear
collocation discretization scheme for numerical solution of our model. Section 6 provides extensive
numerical experiments in two and three dimensions to illustrate application of our model to various
isotropic and anisotropic diffusion problems and to demonstrate numerical accuracy and conditional
d-convergence of the proposed collocation scheme. Some conclusions are finally given in Section 7.

2. Review of existing nonlocal diffusion models

2.1. Nonlocal modeling for isotropic diffusion

Within the framework of nonlocal vector calculus [13], given v(zx,y) : RY x R? — RY, the
unweighted nonlocal divergence operator D acting on v is defined as

Du(a) = [ (vlw.y) + v(y.2) - ale.y)dy. (2.)

where a(z,y) : R? x R? — R? is a pre-determined antisymmetric vector, i.e. a(x,y) = —a(y, ).
For any u(z) : RY — R, the unweighted adjoint (i.e., nonlocal gradient) operator D* corresponding
to D is then defined as

Dru(z, y) := (u(y) — u(x))o(z, y). (2.2)



Let O(z,y) : R x R? — R4 he a symmetric positive definite matrix-valued function. Under the
above definitions of D and D*, we have

D(©-Du)(z) = 2/Rd("u(’y) —u(x))a(z,y) - (O(z,y) - a(z,y)) dy. (2.3)

If we define the kernel function (&, y) = 2« - (O - ), which is clearly nonnegative and symmetric,
then (2.3) also can be written as

DO Du)(w) = | (uly) — @) (@.v) dy. (24)
Let us take v
a(ma y) = M7 @(:B, y) = a’(m)w(ma y)L

where a(x) : RY — R is the scalar-valued diffusion coefficient and w(z, y) = w(||ly—z||) : R xR? —
R is the influence function with a compact support Bs(x) = {y : |ly — x| < d} (the horizon
parameter 6 > 0). Then we have a bond-based nonlocal isotropic diffusion model as follows:

T

D) — wler) — (@ L") I+ ale ) - Y E ol
DO D) = | ()~ u(@) L= (@) aw)D)  w(e.y) dy
— [ () - @)@y dy. (2.5)
Bs(x)

where y(z,y) = (a(x) + a(y))w(x,y). It is shown [17] that as d goes to 0, the nonlocal diffusion
operator, D(© - D*u), converge to the classic isotropic diffusion operator in divergence form, V -

(a(x)Vu).

2.2. Nonlocal modeling for anisotropic diffusion

A w-weighted nonlocal divergence operator [13] acting on p(x) : R? — R? is defined as
Dyp(x) := D(wp)(x). (2.6)
The w-weighted nonlocal gradient operator D}, corresponding to D, is correspondingly defined as
Diu(a) = | wlzy)D'ue.y)dy. (2.7)
R4

Then a state-based nonlocal anisotropic diffusion model can be defined as follows:
Dy(A -Diu)(x) = / [A(a:)/ w(x, z)D*u(x, z)dz
Rd Rd
+AW) [ w20, 2)0)] ale eyl (29
Note that the state-based model includes a two-fold integral while the bond-based one doesn’t.
Thus the bond-based one is usually more efficient in terms of computational cost. With Taylor

expansion, one can show that as J goes to 0, the nonlocal diffusion operator, D, (A(x) - Dfu),
converges to the classic anisotropic diffusion operator in divergence form, V - (A(xz)Vu). It has



been pointed out that under the suitable conditions on the kernel function v(x,y), the bond-based
nonlocal model (2.4) also can be employed to simulate anisotropic diffusion. Assume that the kernel
function is radially symmetric (i.e., y(z,y) = v(ly — x|)) and satisfies

a™l = lim v(|z|)zizjdz, for di,5=1,2,....d, (2.9)

then the nonlocal operator (2.4) converges to the classic diffusion operator V- (AVu) as § goes to 0
[13]. Unfortunately, such a suitable kernel function has not yet been successfully constructed (i.e.,
appropriate choice of a and ) in the literature.

3. A novel bond-based nonlocal diffusion model with matrix-valued coefficients

In this section, we will first present the bond-based nonlocal diffusion model and then establish
its well-posedness and some of its properties.

8.1. A nonlocal operator based on the Gaussian-type kernel function

Let p(z, u, X) be the probability density function of the d-dimensional multivariate Gaussian
(or normal) distribution with expectation vector g and covariance matrix ¥, which is defined by

1 1
Pz, 1, 8) = ———exp [ —5(z— )" (z—p) . (3.1)
(27) |3 < 2 >

We first propose and study a nonlocal diffusion operator with the coeflicient matrix A defined as
follows:

Lu(a) = [ (uly) ~u@)(e.v)dy, @R (32

where the kernel function ~y(x,y) is defined as

V(@) = ply — 2,0,8°Al2). (33

It is clear that y(z,y) > 0 and has an unbounded support region for any € R?. Instead
of acting directly as the horizon’s radius in the traditional bond-based nonlocal models, here the
parameter 0 is used in constructing the covariance matrix. Note that as § gets smaller, the kernel
function ~y(x, y) would get more singular, as illustrated in Figure 1 for some two dimensional cases.
Another important difference with traditional nonlocal models is that the coefficient matrix A () is
directly incorporated into and impact the kernel function, as illustrated in Figure 2. Although the
influence region of y(x,y) for a point  is the whole space & € R? theoretically, but the magnitude
of the interaction between & and other point y quickly shrinks to 0 when x and y get aways with
each other.

Let us denote the domain in which the nonlocal operator is applied by 25, and then the nonlocal
diffusion problem associated with the operator L5 under the Dirichlet-type boundary condition is
given by:

{_céu@c) =f(®), =eqQ (3.4)

u(z) = g(x), x € R\ Q.
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Figure 1: Plots of the kernel function v(x,y) in two dimensions with the isotropic constant coef-
ficient matriz A = [1,0;0,1] and § = 1/10 (left) and 6 = 1/15 (right), respectively. A smaller &
results in contours that are more elongated and concentrated around the center, while a larger §
leads to contours that are more spread out and diffuse.
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Figure 2: When the diffusion coefficient matrix A = [1,0;0,1], the probability density function
is isotropic and thus the projection of its iso-density contours onto the coordinate plane takes the
form of a circle (left). When the diffusion coefficient matriz A = [10,2;2,1], the probability density
function is anisotropic and subjected to a combined stretching and rotation, resulting in the rotated
image of an elliptical shape upon projection onto the coordinate plane (right).

3.2. Convergence to the local diffusion operator in non-divergence form

Suppose the solution u is sufficiently smooth. By applying Taylor expansion at & € €),, we
obtain that for any y € R?,

uly) ~ ulw) = Va(@)(y @) + 5 (y — o) H(z)(y — @)

)"
d 3 (3.5)
Z 3l Z)axq;xr(y —x)p(y —)g(y —x)r + -,



where the matrix H,, is the Hessians of w. Then by putting (3.5) into (3.2), we have:
[ ) = w@)(@ vy = [ Vu@) - (v

+ / %(y — ) H,(x)(y — z)y(x, y)dy (3.6)

1
/]Rd Z 3' 8l‘pa$qa$r (y a 117)p(y B m)q(y B 213)7«’)/(:13, y)dy o

q,r

According to the definition of moments for the multivariate Gaussian distribution [4], it is easy
to see that the integrals of the first and third terms of the right-hand side of (3.6) are 0, i.e.,

V@) (y—2h(@y)dy =0, (3.7)
and
/Rd p; ?}' a$p8$qa$r (y B w)p(y B a:)Q(y N w)r'y(m, y)dy =0. (38)

For the integral of the second term of the right-hand side of (3.5), we have the following equality:

1

3 /Rd (y—x)i(y — x);y(x,y)dy =a"’(x), 1<4,j<d. (3.9)

Finally, the nonlocal operator defined in (3.2) can be written as:

. 0%u
Lsu(x) = E a’(x) DB () + O(6%), (3.10)
i,j=1 R

where O(62) is obtained by integrating the fourth-order remainder in Taylor expansion. Hence, as
the horizon parameter § — 0, the nonlocal operator Ls converges to the local diffusion operator in
non-divergence form defined in (1.1), i.e

» 0%u
Lsu(x) = Lu(x) = Z al’](w)axiaxj ().

Furthermore, the convergence is expected to be quadratically with respect to §. Thus the partial
differential equation problem, as the local counterpart of the nonlocal diffusion problem (3.4), is
given by

Lu(x) = f(x), x € s,
u(z) = g(x), x € 09;.

In the case of constant coefficient matrix A, we further have Lsu — V - (AV)u since 8;? =0.




3.3. Truncation of the influence region for the kernel function

The nonlocal model (3.2) utilizes a kernel function y(z,y) for L5 defined over an unbounded
area, which presents computational challenges for practical implementation. However, due to the
rapid (exponentially) decay of the kernel function v when y gets away from the given point « € Q,
it is feasible to truncate the influence region of v(, y) to ensure computational efficiency in practice.
By choosing a suitable cut-off distance, one can effectively limit the computational domain to a
finite region with just negligible loss of the model accuracy. This way allows for the application of
the proposed nonlocal model in a more practical manner, while still capturing the essential physics
of the system under consideration.

As is known that with any fixed x, if y — « follows the d-dimensional mean-zero Gaussian
distribution with covariance matrix 62A(z), it holds that (y — )T A(x) ' (y — x)/6? obey the
chi-square distribution x?(d) [4]. If we take the influence region of the kernel function at x to just
include all y such that (y —z)TA(z) 'y — x) < 62x2(d), where 0 < o < 1 is a predetermined
constant parameter and x2(d) denotes the (1 — ) quantile of the chi-square distribution, then we
have

/ / p(y — x, 0, (52A(a:)) dy=1-a. (3.12)
(y— mTAm)_yw<52 2(d)
We will take
Bsaa(@)={y| (y—z) Alx) " (y —z) < 5°x2(d)} (3.13)

as the truncated influence region for & with « selected very close to 0. Figure 3 illustrates the
projection of iso-density contour of the truncated influence region onto the coordinate plane for
different coefficient matrices in two dimensions, where x2(2) = 36, that is a ~ 1.52 x 107, For the
identity matrix, the contour takes on a circular shape, as shown on the left-hand side of the figure.
For other matrices, such as those involving stretching and rotation, the contours may appear as
rotated ellipses. Overall, the shape of the iso-density contours provides insight into the nature of the
underlying probability density function for the kernel function and the effect of the transformation
matrix on its properties. Thus, we correspondingly define the truncated kernel function =, as: for
any x,y € R?,

7a(w7y) _ {7(m7 y)7 yc B(S,A,a(m)a (314)

0, otherwise.

Note that the identities (3.7) and (3.8) still hold exactly for the above truncated kernel function
Yo(x,y), but the equality (3.9) doesn’t and its error depends on the choice of o and converges to
0 as & goes to 0.

In the context of nonlocal operators, it is common to impose constraints on certain interaction
domain €., which has a positive volume. These volume constraints are the natural extensions of
boundary conditions commonly used in differential equation problems. By specifying appropri-
ate volume constraints, one can effectively control the behavior of the nonlocal operator in g,
thereby ensuring the desired properties of the solution. For example, such constraints may include
restrictions on the overall quality or energy of the system, or restrictions on the nonlocal kernel
function support. In this way, volume constraints offer a powerful tool for designing and optimizing
nonlocal operator models, and have wide-ranging applications in the study of physical systems and
processes. Given the domain Q, € R%, we define the corresponding interaction domain associated
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Figure 3: Illustration of the truncated influence region Bs a o(0) with x2(2) = 36 (i.e., a ~ 1.52 x
1078 ) in two dimensions. Left: the identity coefficient matriz A = [1,0;0,1], the truncated influence
region is a disk with radius 60; middle: an anisotropic coefficient matriz A = [10,0;0,1], the
truncated influence region is an elliptic region whose semi-major axis is 63/106 and semi-minor
azis is 66; right: A = [31/4, —9v/3/4; —9v/3/4,13/4], the truncated influence region of is a rotated
(counterclockwisely 30°) elliptic region whose semi-major azis is 64/108 and semi-minor azis is 65.

with the kernel function v, as
Q= {y RN\ Q, | Fz €y, y € Byaal@)

and the corresponding truncated nonlocal diffusion operator as

Lsou(x) = /Rd(u(y) —u(x))Vo(x,y)dy, =€ Q. (3.15)

We remark that the nonlocal diffusion operator L ,u(x) is an approximation of the original nonlocal
diffusion operator Lsu(x), and Lsqu(x) converges to Lsu(x) quickly as o goes to 0, as shown in
[4]. Finally, we obtain the corresponding bond-based nonlocal diffusion problem under the volume
constraint-based Dirichlet boundary condition as follow:

{—ﬁa,au(«’ﬂ) = f(x), =z, (3.16)

u(x) = g(x), x € g,

where Q = Q. U Q.

4. Wellposedness and properties

We now study the well-posedness of the bond-based nonlocal diffusion model (3.16). Let us
define the constrained space L2,(2) = {u € L*(Q)|u = 0 on €.} and denote by (-,-) the L? inner
product. Assume f € L?(Q). Then a weak formulation of the proposed nonlocal diffusion model
(3.16) with the homogeneous boundary value g|g, = 0 is given as follows: find u € L2,(€2) such
that

B(u,v) = F(v), VwveL(Q), (4.1)



where

and

Q
Since p(z, u, X) is a probability density function, it’s easy to get

2
V(@ y)dy = . (4.2)
/ »
Meanwhile, v4(x,y) is a truncated, scaled probability density function as defined in (3.14) with

Yo(z,y) >0, 7aly,x) >0, (4.3)

and the coefficient matrix A is elliptic. It is not hard to see that the kernel ~, satisfies: for any
x €,

[y [ aw.a)dy < 5i0)
Q Q
(4.4)
/Q Vo, Y) + Ya(y, @) dy = K5(9),
where K7(6) and K3(d) are two positive constants depending on §. Note that v, (x,y) isn’t sym-
metric except when A(x) is a constant matrix, thus the bilinear operator B(u, v) is not symmetric

in general. We then obtain the following result on the well-posedness of the nonlocal diffusion
problem (3.16).

Theorem 1. (Well-posedness) Let the parameter 6 > 0 be fived. Assume that the kernel function
Yo, y) satisfies

/ Ya(Z,Y) —Ya(y,x)dy >0, Ve (4.5)
Q

Then there exists a unique solution u € L2,(Q) to the nonlocal diffusion problem (3.16). Further-
more, the solution satisfies the a priori estimate

ullL2(0) < ( )||f||L2(Q) (4.6)

Proof. First, it is easy to see that F is a bounded linear functional:

[E@)] < [ fllz2 [0l 22(0,)- (4.7)

We now show that the bilinear operator B(-, -) is bounded on L2,(Q) x L2,(£2) by using a similar
proof as that of Theorem 2 in [14]. For any u,v € L2,(Q), it holds

(u,v) // x)y,(x,y)dyde — // )Y, (x,y)dyde := I, — I. (4.8)

Using the inequality in (4.4) and the Cauchy-Schwartz inequality, the first term of the right-hand
side of (4.8) satisfies

1= | [ w@w(@) [ vol@v)dyda| < Slulizo ol

10



and the second term of the right-hand side of (4.8) satisfies

1
| I < // Y)Va(T,y) dyd:c // z)v, (. y) dydw>2

2K1(6
< V2O ) o ol e
Thus we obtain
2 2K1(0
B(u,v) < ||+ 112 = ((52 + 5”) ull @yl (19

Next we show that the bilinear operator B(, ) is coercive on L2({2). Note that

B (u,u) = /Q /Q (u(e) — u(y)) u(@)va (@, y) dyde

- /Q /Q (u(m)u(y))u(mﬂa(m’y);%(y"’”) dydz (4.10)

Yo, ¥) — Yoy, ) _
—l—/g/ﬂ(u(w)—u(y))u(w) 5 dydx := J1 + Jo.

It is easy to see that (v,(x,y) +v.(y,x))/2 is always symmetric although v,(x,y) isn’t. Then
the first term in the right-hand side of (4.10) satisfies

— 1/ / (u(a:) o u(y))2 7a(may) + 7a(y7$) d’yd:l)

2
(4.11)
_ /u (m)/ Yol®,y) +va (Y, @ )dydm
2 Jo . 2
Kz( )
> 202,
Using the assumption (4.5) and the equality
// vawy) YolY, )dyda:—O
2
we obtain for the second term in the right-hand side of (4.10)
Ty — // 'yawy) dydm_// vamy)27a(y,w) dyda
(4.12)

Ya(z, y) Yoy, x)
/Q u?(x )/ﬂc 5 dydx > 0.

The combination of (4.11) and (4.12) gives us

K5(5)
B(u,u) > =42 ul )

11



Thus, by the Lax-Milgram theorem, there exists a unique weak solution u € L2,(Q) for the
nonlocal diffusion problem (3.16). Furthermore, since

K>(0)
4

lull2(q) < B(u,u) = [F ()| < [|fllz2(@)llull 2 (@), (4.13)
we have the a priori estimate (4.6). O

Remark 1. Note that (4.5) is a sufficient but not necessary condition for the nonlocal diffusion
problem (3.16) to be well-posed. In the case of a*I(x) € C*(Q), notice that the classic diffusion
operator in non-divergence form also can be written as

d 2,,
—Lu(x) == — Z ai’j(ac)agam (x) = -V - (A(z)Vu(zx)) + b(x) - Vu(zx), (4.14)
ij=1 v

where b(x) = (b'(x)) with b'(x) = Z?:l %“;;j (x). Thus the condition (4.5) can be regarded as an

analogue in the nonlocal sense to the well-known condition for the convection velocity
V- -b(x) <0, xe€q. (4.15)

Lemma 1. (Maximum principle) If L5,u > 0 in Qg, then a mazimum of u is only attained in the
interaction domain ..

Proof. Assume that u attains a maximum at xg € {25, then we have

Lsaulao) = /Q (uly) — u(@o))ya(e, y) dy. (4.16)

Since u(y) — u(xg) < 0, it is easy to verify that

>0
<0
2 1 —x0) (%A (z0)) Ny — x
/Q (uty) —ulwo)) Gy (—2<y 0)7 (5°Alwo)) " (y o>>so, (417)

which is a contradiction with the assumption of L;u(xo) > 0. O

Let us consider the case of the coefficient matrix A(x) being constant. In this case v, (x,y) =
Ya(y, ), and we can further show that the proposed nonlocal diffusion model (3.16) satisfies global
mass conservation. Integrating both sides of (3.16) on 25, we have

- [ Loty = / s / (@)~ u(y)) (e, y) dyda

-/ S / () — ufy) (. ) dyda + / S | (u(@) - uly)a(. ) dyda.

’ (4.18)
Interchanging the variable  and y, we get

/QS / S w@)va(T,y) — u(y)ra(e,y) dyde
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=5 ([ [ @)~ vt v) + uly) — u(@)uly, @) dyde) = 0

which means the flux from 2. into itself is zero. Thus we can get

— | Lsqu(x)dx —/ / Y)) ez, y) dyde, (4.19)
Qs s c

and the mass conservation of the proposed nonlocal model is then obtained as

/ / ) — u(y))va(z, y) dydw—/ flz (4.20)

Here, the left-hand side term is the nonlocal flux out of €2 into 25, which is a proxy for the interaction
between ). and (), while the right-hand side term is the source from 2., and putting together,
they cancel out each other. Note that such mass conservation doesn’t hold anymore if A(x) isn’t
a constant matrix.

5. Numerical discretization

In this section we propose and analyze an efficient linear collocation scheme for discretizing the
nonlocal diffusion problem (3.16). We refer to [8] for a comprehensive review of existing numerical
methods for nonlocal models.

5.1. A linear collocation discretization scheme

Without loss of generality, suppose a rectangular grid 7, of the domain € is given. Note that the
discretization scheme developed below can also be similarly generalized to triangular/tetrahedral
meshes with linear interpolation. Let us denote the nodes of Ty, as {x1,x2, - ,xn,} € Qs (interior
nodes) and {&nN,+1, TN, 42, , EN.+N, } € £ (nonlocal boundary nodes). We assume that the grid
matches the boundary of {2;. Denote by ¢;(x) the standard continuous piecewise bilinear (if d = 2)
or trilinear (if d = 3) basis function at the point @; and by S; the support region for each ¢;(x).
At each interior node x; for i =1,2,--- , Ny, we have for the equation (3.16) that

L5 qula:) = / (u(s) — u(y))va (i y) dy, (5.1)
Bs.a.o(xi)
then we approximate it by
—Ch (i) = / T ((u(@:) — u(y))ra(@:v)) dy, (5.2)
Bs A o(xi)

where Zj () represents the piecewise bilinear (or trilinear) interpolation operator associated with
the grid 7p,. Note that (5.2) can be further rewritten as

b)) = S (@) — ulwy)al@ @) / 6;(y) dy. (5.3)

x;€EQ & j#i Bs A,a(xi)

Finally, a linear collocation scheme for solving the nonlocal diffusion problem (3.16) can be
given as follows: find (up(x1), - ,up(xy,)) such that

—ﬁf{auh(mi) = f(:l?l), 1= 1, s ,NS. (54)
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Let us define
by = alwiz) [ Gi(w)dy. 52, (5.5)

Bs,A,a(xi)

and
bij=— > by ifj=i, (5.6)
x;€EQ & j#i

for 1 <7 < Nygand 1 < j < Ng+ N.. Then the resulting linear system from the collocation
discretization scheme (5.4) can be expressed by

By, = f, (5.7)
where @y, = (up(z1), -, un(xn,)Ts F= (f1,-, fn.)" with By = (bij)n, <, and
Na+Ne
fi=f@)+ > gl@;)bi. (5.8)
]:N5+1

It is worth noting that the bandwidth of the stiffness matrix By, is related to (3.13):

Bsaa(®) ={y | (y — =) Alz) " (y — ) < 6°xa(d)}, (5.9)

i.e., the bandwidth of the stiffness matrix By, is related to the truncation range and the coefficient
matrix A(z). The larger x2(d), the larger the bandwidth of the stiffness matrix. Similarly, the
larger the eigenvalue of A(x), the larger the bandwidth of the stiffness matrix.

Theorem 2. The stiffness matriz By, defined in (5.6) is a nonsingular M-matriz. Consequently,
the linear system (5.7) produced from the collocation discretization (5.4) for the nonlocal diffu-
sion problem (3.16) is uniquely solvable, and uj, always satisfies the following discrete maximum
principle when g = 0: if f < 0 in Q,, then maxj<i<n, up(x;) < 0, and if f > 0 in Qg, then
minlgiSNS uh(ccz) > 0.

Proof. 1t is obvious that for 1 < i < Ny and 1 < j < Ny + N, we have v,(x;, ;) > 0 and
fBé,A,a(zi) bij(y)dy > 0 if i # j and Bsa o(x;) NS; # 0. Thus by (5.6), it holds that for any
J # 1, we have b; j < 0 if Bs o o(xi) N S; # 0 and b; j = 0 if Bsa o(xi) N S; =0 (since ¢;(y) =0
for y ¢ Sj). Consequently we have b;; > 0 for 1 < i < N,. Furthermore, it is easy to see that
Zj}f:sl bij > 0if Bsao(®i) N Qe # 0. Thus, the stiffness matrix By, is an M-matrix, which means
that B, 1 exists and does not have negative entries. The unique solvability of the linear system
(5.7) and the discrete maximum principle then directly follows. O

Theorem 2 guarantees the numerical stability of the proposed linear collocation discretization
scheme (5.4). In the proposed model, the influence region Bs a (x;) of each node x;, is a rotated
ellipse. The intersection between Bja o(x;) and the support region S; of another node x; may
be irregular, especially when @; is near the edge of Bjsa o(x;). This irregular intersection could
introduce quadrature errors and potentially impact the accuracy of the simulation. To address this
issue, we expand the integral region from the irregular intersection Bja (i) N S; to the regular
support domain S;. This expansion allows for easy integration by aligning the integration area
precisely with the grid.
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5.2. Discussion on convergence and asymptotic compatibility

Let us assume that the parameter « is small enough so that the difference between the original
operator Ls (3.4) and the truncated operator Ls o, (3.15) is negligible. We first consider a rectangular
grid T, of € which is uniform along each space direction with respective grid sizes. If we extend
the grid to the whole space R?, then

~Chu() = [ Ti((ut@) — u(w)r (@) dy.

in fact gives the trapezoidal rule for evaluating the original nonlocal diffusion operator (3.2) (no
truncation of the influence region)

~Loutai) = [ (ula:) ~ uy)eny) dy

_ 2 u(x;) — u ! exp [ — (y —z) Axi) 'y — x)
-2 [ (e~ uty) T ( o, ) dy
= %Ld/g /Rd (u(xi) — u(z; + V26 AY 2y) exp (—yTy) dy.

Based on the analysis results of [43, 18], a remarkable conclusion is that for any fixed horizon
parameter § > 0, such approximation is exponentially convergent with respect to the grid size if u
is analytic in RY. Therefore, we expect the numerical solution produced by the linear collocation
scheme (5.4) to converge exponentially to the solution of the nonlocal diffusion model (3.16) at the
set of all grid points {w;} since |Lsu(z;)—Ls ou(;)| and |LAu(x;)—LE u(z;)| are negligible. On the
other hand, if the rectangular grid is not uniform, then the convergenée order will downgrade to the
regular second-order for linear schemes since the exponential convergence doesn’t exist anymore.
These results will be numerically demonstrated by experiments in Section 6.1.

Ensuring asymptotic compatibility (i.e., the approximate solution of the nonlocal model problem
(3.16) converges to the exact solution of the corresponding local PDE problem (3.11) when the
horizon parameter 6 — 0 and the grid size h — 0 simultaneously in arbitrary fashion) is of
fundamental importance in guaranteeing the accuracy and reliability of numerical schemes for
nonlocal models. In particular, when the ratio between ¢ and h keeps fixed (i.e., §/h = Kk being
a constant) along the grid refinement, it is called the d-convergence test. This behavior is a
manifestation of the well-known continuum limit in which the underlying physical system becomes
increasingly smooth and continuous. Although the theoretical proof still remains open, we will
numerically show in Section 6.2 that the collocation discretization scheme (5.4) is d-convergent
under a reasonable condition on the ratio k, in particular, the numerical solution obtained for the
nonlocal diffusion model (3.16) will converge quadratically to the solution of the corresponding
local problem (3.11) on uniform rectangular grids.

Remark 2. For the traditional bond-based nonlocal diffusion model, in order to achieve asymp-
totic compatibility, a popular quadrature-based finite difference discretization for multidimensional
problems was developed in [16, 14]: fori=1,---, Ng,

—L! u(zy) = ulz;) = uly) x; x; = f(x;
)= [ 5 (M) Ve = 1@, 610



where the weight function W(x,y) is usually given by

2
Ny —=|

W _
@) = 1y =2l

with the notation ||||; standing for the L' norm. However, the numerical scheme (5.10) could not be
asymptotically compatible for our bond-based nonlocal diffusion model (3.16) and the original model
(3.4) developed in this paper. One of the main reasons is that the proof of asymptotic compatibility
of the scheme (5.10) heavily depends on the radial symmetry (for isotropic diffusion) of the influence
region of the kernel function 7o, which doesn’t hold anymore for the case of anisotropic diffusion
for the proposed nonlocal model. Numerical tests presented in Section 6.2 will show that the scheme
(5.10) even fails to be d-convergent in the case of anisotropic coefficients.

6. Numerical experiments

In this section, we will conduct various numerical experiments in two and three-dimensional
space to showcase application of the proposed bond-based nonlocal diffusion model (3.16), as an
approximation to the original nonlocal diffusion model (3.4), to both isotropic and anisotropic
diffusion problems, and numerically demonstrate the numerical accuracy and §-convergence of the
proposed linear collocation scheme (5.4). In addition, we also test the discrete maximum principle
and the effect of the choice of the truncation parameter x2(d) on the approximation accuracy of Ls o
to Ls. Note that in Examples 1-5 we always take x2(d) = 36 by default based on the comparison
result observed from Example 6 in Subsection 6.4. The choices of A(x) in all examples satisfy
the condition (4.5). The solution errors are measured under the discrete mazimum norm, which is
defined to be the maximum absolute value among all grid points {x;}.

6.1. Tests with the fixed horizon parameter

We first keep the 0 fixed and test the convergence of the linear collocation scheme (5.7) for
solving the nonlocal diffusion model (3.16).

Example 1. Let us take the 2D domain Qs = [0,1] x [0,1], the isotropic diffusion coefficient
matriz Ay = [1,0;0,1], and 6 = 1/40 for the nonlocal diffusion problem (3.16). The exact solution
is chosen to be u(x1, x2) = 1173, u(r1, v2) = €122, and u(x1,x2) = sin(z} +23), respectively. Then
the boundary value g(x1,x2) is directly obtained from the exact solution u(x1,x2) and the source
term f(x1,x2) are determined accordingly based on the original nonlocal diffusion model (3.4).

For the coefficient matrix Aj, we have the influence region of the kernel function v, (x,vy)
associated with a point « € Q) as:

(1 —21)* | (g2 —2)* _ o
B «a = ) ‘ <é )

which corresponds to the disk of radius 69 centered at x. Figure 4-(a) illustrates the computational
domain 2 = Q; U Q. and the influence regions for A;.

In the following, we perform numerical experiments with three types of rectangular grids.
Firstly, we uniformly partition the domain to N x N rectangular cells , where N = 20, 25, 30, 35, 40, 50,
respectively. The grid spacing are clearly the same for both z- and y- directions, h, = hy = h =
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1/N. Table 1 reports the discrete L solution errors produced by the linear collocation scheme
(5.4). We clearly observe the exponential convergence in all three exact solution cases as discussed
in Section 5. Furthermore, it is also seen that after N = 40 is reached, the errors don’t change
much anymore or even slightly increase. This is caused by the truncation of the influence region
with the parameter x2(2) = 36 to the original nonlocal model (3.4). The model errors gradually
dominate the solution errors along with the mesh refinement.

u(wy, w2) = 125 u(xy, xe) = €172 u(xy, w2) = sin(2? + 23)
N L error ‘ CR L error ‘ CR L error ‘ CR
20 || 3.1594 x 1072 - | 1.0367 x 1072 - | 2.0841 x 1072 -

25 || 2.4209 x 1073 | 11.51 | 8.6355 x 10~* | 11.14 | 1.9893 x 10~3 10.53
30 || 1.2152x107* | 16.41 | 4.3467 x 107° | 16.39 | 1.0027 x 10~* 16.39
35 || 3.0658 x 1076 | 23.87 | 9.5991 x 10~7 | 24.74 | 2.4812 x 106 24.00
40 || 7.5238 x 1078 | 27.76 | 9.6315 x 108 | 17.22 | 2.8200 x 107 16.29
50 || 9.5161 x 10~% | -1.05 | 5.8425 x 10~8 2.24 | 3.1212x 1077 -0.46

Table 1: Numerical results on the discrete L* solution errors and corresponding convergence rates
produced by the linear collocation scheme (5.4) for the nonlocal diffusion model (3.16) with fixed
d = 1/40 in Example 1. Uniform rectangular grids of N x N are used.

Secondly, we divide the domain in the z-direction non-uniformly: [0,0.5] is partitioned to N,
subintervals and [0.5,1) N, subintervals. The y-direction of the domain is then partitioned uni-
formly into IV, subintervals. Consequently, the obtained rectangular grids are globally non-uniform
with (Ng 4+ Ngp) x N, rectangular cells. Table 2 presents the discrete L> solution errors obtained
by using the linear collocation scheme (5.4). We now observe only second-order convergence in all
cases as discussed in Section 5.

u(wy, w2) = 125 u(xy, xe) = €172 u(wy, w2) = sin(z? + 23)
Ny Ny Ny L error ‘ CR L error ‘ CR L error ‘ CR
10 15 20 3.0391 x 102 - | 2.2799 x 1072 - | 1.4295 x 1072 -
20 30 40 8.2144 x 10~* | 5.21 | 1.5704 x 103 | 3.86 | 1.1348 x 1073 3.66

40 60 80 1.8793 x 10~% | 2.13 | 3.7312x 10~% | 2.07 | 2.7345 x 10~* 2.05
80 120 | 160 || 4.5641 x 107° | 2.04 | 9.1977 x 10~ | 2.02 | 6.7871 x 10~ 2.01
160 | 240 | 320 || 1.1393 x 1072 | 2.00 | 2.2804 x 10~ | 2.01 | 1.6774 x 107° 2.01

Table 2: Numerical results on the discrete L® solution errors and corresponding convergence rates
with fixed 0 = 1/40 produced by the linear collocation scheme (5.4) for the nonlocal diffusion model
(3.16) in Example 1. Non-uniform rectangular grids of (N + Ng») X N, are used.

Example 2. We still take the 2D domain Qs = [0,1] x [0, 1] and 6 = 1/40 for the nonlocal diffusion
problem (3.16). The exact solution is chosen to be u(xy,z2) = sin(z? + x3). Then the boundary
value g(x1,x2) are directly obtained from the exact solution u(xi,x2) and the source term f(x1,x2)
are determined accordingly based on the original nonlocal diffusion model (3.4). Two 2 x 2 constant
anisotropic diffusion coefficient matrices are tested:

10 0 cos % sin % 10 0 cos % —sin %
Ay = , Az = -
0 1 —sin % cos % 0 1 sin % cos %
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It is easy to see that the influence region for the coefficient matrix As is given by

—rq)2 — 15)2
Bﬁ,Ag,a(w) = {(yl’yz)‘ (yl 3601) + (y2 % 2) < 52}’

which is the elliptic region centered at & with the major axis of length 124/10d and the minor axis
of length 12§. Figure 4-(b) illustrates the computational domain €2 and the influence regions for
As. The influence area for the coefficient matrix Aj is given by

Bs Aga(®) = {(ybyz) ) 13(y114;0:v1)2 + V3 = fgo)(yz i) T 31(912420332)2 < 52} C(6.)

The diagonalization of Ag shows that Bsa, () is obtained by rotating the elliptic region cor-
responding to Ag with an angle of 30° counterclockwisely. Figure 4-(c) shows the computational
domain €2 and the influence regions for Aj. We uniformly partition the domain to N x N rectangu-
lar celles, where N = 20, 25, 30, 35, 40 respectively. Table 3 reports the discrete L*° solution errors
produced by the linear collocation scheme (5.4). We again observe the exponential convergence
behavior as that in Example 1 although some oscillations appear in the case of As.

A2 A3
N L error CR L error CR
15 9.7644 x 10~3 - | 1.2143 x 1073 -

20 || 2.0781 x 1073 5.38 | 2.0976 x 106 22.11
25 || 1.4874 x 107* | 11.82 | 2.0492 x 10~7 | 10.40
30 || 9.4193 x 1079 | 15.14 | 2.0038 x 10—~ 0.12
35 || 2.4064 x 10~7 | 23.79 | 2.6240 x 108 13.33
40 || 2.9376 x 10~8 | 15.75 | 1.1368 x 10~7 | -10.98

Table 3: Numerical results on the discrete L solution errors and corresponding convergence rates
produced by the linear collocation scheme (5.4) for the nonlocal diffusion model (3.16) with fixed
9 = 1/40 in Example 2. Uniform rectangular grids of N x N are used.

6.2. Tests for §-convergence

We now investigate the asymptotic compatibility of the proposed collocation scheme (5.4) as
0 and h approach zero simultaneously. Specifically, we consider the so-called §-convergence test
on uniform grids. We compute the error between the numerical solution obtained for the nonlocal
problem (3.16) and the exact solution of the corresponding classical local problem (3.11) and observe
its behaviors as h tend to zero. By characterizing the d-convergence of the proposed collocation
scheme, we can assess its accuracy and reliability, and gain insight into the underlying physics of the
system under consideration. We numerically observe that our scheme is quadratically convergent
on uniform rectangular grids when the ratio of the horizon parameter over the grid size satisfies
the condition

51

> 2

Y (6.2)
where A|€|? < ¢TA(x)€ for any € € RY, x € Q.
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Figure 4: Illustration of the computational domain = Q; U €2, and the influence regions with
grids in the background.

Example 3. We consider the 2D domain Qs = [0,1] x [0,1] and take u(x1,z2) = sin(z? + 23) as
the exact solution of the classic diffusion (PDE) problem (3.11). The three different 2 x 2 constant
coefficient matrices A1, As and As defined in FExamples 1 and 2 are tested. For the nonlocal
diffusion model (3.16), the boundary value g(x1,x2) is directly obtained from the exact solution
u(z1,z2) and the source term f(x1,x2) is determined accordingly based on the classic diffusion
problem (3.11).

Table 4 reports the discrete L* solution errors and corresponding convergence rates produced
by the linear collocation scheme (5.7) with 6 = 2h, § = h, and 6 = 0.5h respectively. When 6 = 2h
and ¢ = h which satisfy the ratio condition (6.2), we observe the second-order convergence of the J-
convergence test along the grid refinement. When § = 0.5h which violates the ratio condition (6.2),
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we still observe the quadratic convergence for the case of Aj, but the results fail to be convergent
for the cases of A; and As.

| N A, | CR | A, | CR | A | CR |
§=2h

40 1.9448 x 1073 - 1.6667 x 102 - 1.3550 x 1072 -

80 4.7061 x 10=* | 2.04 | 3.6585 x 1073 | 2.18 | 2.9302 x 103 | 2.20
160 || 1.1569 x 10~* | 2.02 | 8.5145x 10™* | 2.10 | 6.8036 x 10~% | 2.11
320 || 2.8669 x 107° | 2.01 | 2.0433 x10~* | 2.06 | 1.7019 x 10~* | 2.00
S=h
40 4.8765 x 1074 - 3.5896 x 1073 - 2.8574 x 1073 -

80 1.1504 x 10™* | 2.08 | 8.4238 x 10~* | 2.09 | 6.7127 x 10~* | 2.09
160 || 2.8346 x 107° | 2.02 | 2.0492 x 10~* | 2.04 | 1.5967 x 10~* | 2.07
320 || 6.6997 x 107 | 2.08 | 4.5901 x 107° | 2.16 | 3.9727 x 107° | 2.01
§ =0.5h
40 2.1182 x 1072 - 1.4436 x 1073 - 6.8538 x 10~* -

80 2.1088 x 1072 | 0.01 | 1.4772x 1073 | -0.03 | 1.6219 x 10~% | 2.08
160 || 2.1026 x 1072 | 0.00 | 1.5628 x 1072 | -0.08 | 4.1364 x 10~° | 1.97
320 || 2.1070 x 10~2 | 0.00 | 1.6113x 1073 | -0.04 | 1.1121 x 10~° | 1.89

Table 4: Numerical results on the discrete L* solution errors and corresponding convergence rates
produced by the linear collocation scheme (5.4) for the nonlocal diffusion model (3.16) with § = 2h,
0 = h, and § = 0.5h in Example 3. Uniform rectangular grids of N x N are used.

For comparison purpose, the numerical results for the case of § = h obtained using the
quadrature-based finite difference discretization (5.10) on uniform grids are also presented in Table
5. It is evident from the results that the scheme (5.10) produces second-order convergence for the
isotropic diffusion case (A1), but fails to converge for the anisotropic diffusion cases (A2 and Ag)
as discussed in Remark 2.

Il A, | CR | A, | CR | A; | CR |
40 5.7139 x 10~4 - 4.1611 x 1073 - 4.4236 x 1073 -

80 1.3425 x 1074 | 2.09 | 1.8107 x 1073 | 1.20 | 2.3123 x 10~3 | 0.94
160 || 3.3151 x 107 | 2.02 | 1.3431 x 1072 | 0.43 | 1.8423 x 10~2% | 0.33
320 || 7.8984 x107% | 2.07 | 1.2238x 1073 | 0.13 | 1.7201 x 10~3 | 0.10

Table 5: Numerical results on the discrete L* solution errors and corresponding convergence rates
produced by the quadrature-based finite difference discretization scheme (5.10) for the nonlocal
diffusion model (3.16) with 6 = h in Example 3. Uniform rectangular grids of N x N are used.

Example 4. We consider the 3D domain Qs = [0,1] x [0,1] x [0,1] and take u(z1,x2,23) =
sin(z? 4+ 23 + 23) as the exact solution of the classic diffusion (PDE) problem (3.11). The following
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three different 3 x 3 constant coefficient matrices are tested:

1 00 4 00
Air=101 0 |, A= 01 0 |,
0 01 0 0 1
cosy —sin% 0 4 0 0 cosy siny O
As=| sin7 cosi O |.] 0 1 0 —sing cosy 0
0 0 1 0 0 1 0 0 1

For the nonlocal diffusion model (3.16), the boundary value g(x1,x2,x3) are directly obtained
from the exact solution u(x1,x2,x3) and the source term f(x1,xe,x3) are determined accordingly
based on the classic diffusion problem (3.11).

In this example, the influence region for the isotropic diffusion coefficient matrix A; associated
with a point € (), is given by

2

—x — 19)? — x3)?
B57A170¢($) = {(ylay27y3)) (yl 36 1) + (y2 36 2) + (y3 36 3> < 52},

which corresponds to the ball of radius 6 centered at . The influence region for the anisotropic
diffusion coefficient matrix Ay is given by

(1 —21)? | (e —x2)?  (y3—23)° _
B « = » Y25 ) < )
0,Az, ({IJ) {(yl Y2 3/3) 144 + 36 + 36 0

which is the ellipsoid region centered at @ with the three axises of length 244, 12§, and 124,
respectively. The influence area for the coefficient matrix Aj is given by

(ys —23)*
_ <% 5.
28862 48 + 288 * 36 -

Bs,ag,0(®) = {(ylay2>y3) ‘ Sy —=1)* (1 —x)(y2 —m2) | 5(ye — 22)°

(6.3)
The diagonalization of Az shows that Bjsa, () can be obtained by rotating the ellipsoid region
corresponding to As clockwisely with an angle of 45° along the z-axis. We divide the domain €2
into a uniform grid of N x N x N cells with the grid size h = 1/N, where N = 20, 30, 40, 50,
respectively. We set § = h on all level of grids, which satisfies the ratio assumption (6.2). Table 6
reports the discrete L* solution errors and corresponding convergence rates produced by the linear
collocation scheme (5.7). We again observe the second-order convergence along the refinement for
these §-convergence tests.

Example 5. In this example we consider the case of variable diffusion coefficient matriz. We
consider the 2D domain Qs = [0,1] x [0,1] and take u(x1,x2) = sin(z? + 23) as the exact solution
of the classic diffusion (PDE) problem (3.11). The following two different variable 2 x 2 coefficient
matrices are considered:

ki (z1,z2) 0 )

Az, ) =
1(z1,22) ( 0 ka1, 22)
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Bl A, | CR | A, | CR | A; | CR |
20 || 2.4291 x 1073 - 6.1233 x 1073 - 6.9361 x 1073 -

30 || 1.0677 x 1072 | 2.03 | 2.7587 x 1072 | 1.97 | 3.041 x 10~3 | 2.03
40 || 6.1470 x 107* | 1.92 | 1.4588 x 1072 | 2.21 | 1.6902 x 10~2 | 2.04
50 || 3.8099 x 107* | 2.14 | 9.2431 x 10~* | 2.05 | 1.0767 x 103 | 2.02

Table 6: Numerical results on the discrete L* solution errors and corresponding convergence rates
produced by the linear collocation scheme (5.4) for the nonlocal diffusion model (3.16) with 6 = h
in Example 4. Uniform rectangular grids of N x N x N are used.

and

cos %r sin %r ki (1, z2) 0 cos % —sin %
As(zy,29) =
S —sin 3T cos 5T 0 ko(z1, z2) sin 3T cos 3 ’
12 12 2415 2 12 12

where ky(x1,12) = 4 — 223 — 23 and ko(x,22) = 4 — 23 — 223. For the nonlocal diffusion model
(3.16), the boundary value g(z1,x2) is directly obtained from the exact solution u(x1,x2) and the
source term f(x1,x2) are determined accordingly based on the classic diffusion problem (3.11).

The shape of the influence region associated with a point in €, varies from place to place
in this example. For example, for Aj(x1,z2), the influence regions at the point (1,1) and (0,0)
are a circle, but the influence at the point (0,1) is an elliptic region. The influence region of
As(x1,22) can be obtained by counterclockwisely rotating the influence region corresponding to
A (z,y) with an angle of 75°. We use a uniform grid of N x N cells with the grid size h = 1/N,
where N = 40, 80, 160, 320, respectively. We again set § = h on all level of grids, which satisfies
the ratio assumption (6.2). Table 7 reports the discrete L* solution errors and corresponding
convergence rates produced by the linear collocation scheme (5.4). We again observe the second-
order convergence along the refinement for these §-convergence test cases although the diffusion
coefficient matrices are varying now.

’ N H Aq(xy,29) ‘ CR ‘ Ao (xq,20) ‘ CR ‘
40 1.4229 x 1073 - 1.4595 x 1073 -

80 || 3.5517 x 10~* | 2.00 | 3.6506 x 10~* | 2.00
160 || 8.5297 x 1075 | 2.06 | 8.9876 x 107° | 2.02
320 || 2.0096 x 10=° | 2.09 | 2.5342 x 107> | 1.83

Table 7: Numerical results on the discrete L* solution errors and corresponding convergence rates
produced by the linear collocation scheme (5.4) for the nonlocal diffusion model (3.16) with 6 = h
in Example 5. Note that the two diffusion coefficient matrices are varying. Uniform rectangular
grids of N x N x N are used

6.3. Tests for discrete mazximum principle

In this subsection we test the discrete maximum principle of the linear collocation scheme (5.7).

Example 6. We take the 2D domain Qs = [0,1] x [0,1] and 6 = 1/40 for the nonlocal diffusion
problem (3.16). Four different 2 x 2 coefficient matrices (two constant and two variable matrices)
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are considered:

10 0

Al - )
0 1

Ay — cos % sin % 10 0 cos % —sin %
—sin % cos % 0 1 sin % cos % 7

kl(xl,.%'g) 0
A 5 - )
3(x1,x2) ( 0 - >

5T s b 5w . b
- Cos 75 Sl 75 k1 (;L‘l’ g;2) 0 COs 753 —SIl 75
Ay(xy,20) =
A2 —sin 2T cos 22 0 ka(z1,z2) sin 2% cos 2% ’
12 12 ? 12 12

where ki(z1,72) = 4 — 223 — 2% and ko(x1,72) = 4 — 22 — 203, In this evample, we impose a
Dirichlet boundary condition on Q. as follows: u(x1,x2) =1 if x1 <0 or xg <0 and u(z1,x2) =0
otherwise. The source term is chosen as f(x1,x9) = 0. Although the exact solution of the nonlocal
diffusion problem (3.16) is unknown, we know its value must fall between 0 and 1.

We take a uniform grid of 80 x 80 and solve the nonlocal model using the linear collocation
scheme (5.7). Figure 5 plots the numerical solutions produced with these four different coefficient
matrices. We can see that the discrete maximum principle is well preserved in all cases.

6.4. Effect of x%(d) on the model approzimation of L to Ls

In this subsection, we test the effect of the choice of x2(d) on the accuracy of the truncated
nonlocal diffusion operator L, defined in (3.15) as an approximation of the original nonlocal
diffusion operator Ls defined in (3.2).

Example 7. We take exactly the same experimental settings as those of Example 3, except that we
now test different values of x2(2). Specifically, we choose x%(d) = 9,16, 25,26, 49, respectively.

We take a uniform grid of N x N cells with the grid size h = 1/N, where N = 40,80, 160
respectively. Table 8 reports the numerical results on the discrete L solution errors produced by
the linear collocation scheme (5.4) for the nonlocal diffusion model (3.16) with 6 = h under different
choices of x2(2). We can see from Table 8 that the solution errors decrease and converge rapidly
along with the increasing of x2(2) from 9 to 49, and the differences of solution errors between
2 (2) = 36 and x2(2) = 49 are almost negligible. Therefore, we suggest the selection of x2(2) = 36
in practice, in order to ensure the model accuracy of the truncated nonlocal diffusion model (3.16)
while still maintaining the efficiency of numerical simulations.

7. Conclusions

This paper presents a novel bond-based nonlocal diffusion model with matrix-valued coefficients
in non-divergence form. Our approach involves integrating the coefficient matrix into the covariance
matrix and employing the multivariate Gaussian function with truncation as the kernel function
to accurately encapsulate the diffusion process. Substantiating the robustness of our model, we
establish its well-posedness along with elucidating certain inherent properties. To numerically
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12 ¢ 02 0.4

(¢) The coeflicient matrix As(z1,z2) (d) The coefficient matrix A4(z1,z2)

Figure 5: Numerical solutions produced by the linear collocation scheme (5.4) for the nonlocal
diffusion model (3.16) with the four different diffusion coefficient matrices in Example 6. Uniform
rectangular grids of N x N are used.

solve the model, we also design an efficient linear collocation discretization scheme. Extensive
experiments are conducted in two and three dimensions to showcase the versatility of our model in
addressing various isotropic and anisotropic diffusion problems. The numerical results demonstrate
high-order accuracy of the proposed collocation scheme for solving the proposed nonlocal diffusion
model, and furthermore, we also numerically observe the §-convergence of our scheme on uniform
rectangular grids under a reasonable condition on the ratio §/h.

On the other hand, there are also many interesting problems on needed to further investi-
gated. Firstly, it remains an open question on how to rigorously prove the observed conditional
d-convergence of the proposed collocation scheme and what the exact condition is to guarantee the
complete d-convergence. Secondly, an intriguing question is whether and how one can appropriately
modify the classic quadrature-based finite difference scheme to recover its §-convergence and even
asymptotic compatibility. Finally, it is also highly desired to generalize the proposed work to de-
velop bond-based nonlocal diffusion and convection-diffusion models in conservative or divergence
form.
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| | Ay =1[1,0,0;1] |
N 2@=9 X2)=16 | 2@=2 | 2@=3 [ xZ2@2=49

40 6.3785 x 1072 | 9.7359 x 10~* | 4.7136 x 10~* | 4.8765 x 10™* | 4.6316 x 10~*
80 1.0611 x 1072 | 6.8071 x 10~* | 1.2696 x 10~* | 1.1503 x 10~* | 1.1788 x 10~*
160 || 1.0517 x 1072 | 8.9142 x 10™* | 4.2278 x 10° | 2.8346 x 107° | 2.8360 x 10~°
A, =[10,0,0;1]
N Xa(2) =9 X@2)=16 [ 2@=2 | X@=3 [ xX@=49

40 1.7101 x 1072 | 4.0173 x 1073 | 3.7986 x 1073 | 3.5896 x 102 | 3.5861 x 10~3
80 1.3309 x 1072 | 1.3378 x 1073 | 8.4862 x 10~% | 8.4238 x 10~* | 8.4376 x 10~*
160 || 1.2548 x 1072 | 7.5558 x 10~* | 2.0819 x 107> | 2.0492 x 10~° | 2.0315 x 10~°
As = [31/4,-9V3/4;—9/3/4,13/4]
N[ 2@=9 @ =16 | ¥2@=2 [ x2@=3 [ x2@2 =49

40 1.6155 x 1072 | 3.3413 x 1073 | 2.8710 x 1073 | 2.8574 x 10~3 | 2.8573 x 102
80 1.3834 x 1072 | 1.1772 x 1073 | 6.8493 x 10~* | 6.7127 x 10~* | 6.7122 x 10~*
160 || 1.3154 x 1072 | 6.8957 x 10~* | 1.7647 x 10~* | 1.6276 x 10~* | 1.6276 x 10~*

Table 8: Numerical results on the discrete L* solution errors with fixed § = h produced by the
linear collocation scheme (5.4) for the nonlocal diffusion model (3.16) under different choices of
x2(d) in Example 7. Uniform rectangular grids of N x N are used.
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