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Multimodal neuroimaging using electroencephalography (EEG) and functional near-infrared spectroscopy
(fNIRS) provides complementary views of cortical processes, including those related to auditory processing.
However, current multimodal approaches often overlook potential insights that can be gained from nonlinear
interactions between electrical and hemodynamic signals. Here, we explore electro-vascular phase-amplitude
coupling (PAC) between low-frequency hemodynamic and high-frequency electrical oscillations during an
auditory task. We further apply a temporally embedded canonical correlation analysis (tCCA)-general linear
model (GLM)-based correction approach to reduce the possible effect of systemic physiology on fNIRS re-
cordings. Before correction, we observed significant PAC between fNIRS and broadband EEG in the frontal region
(p < 0.05), p (p < 0.05) and y (p = 0.010) in the left temporal/temporoparietal (left auditory; LA) region, and y
(p = 0.032) in the right temporal/temporoparietal (right auditory; RA) region across the entire dataset. Sig-
nificant differences in PAC across conditions (task versus silence) were observed in LA (p = 0.023) and RA (p =
0.049) y sub-bands and in lower frequency (5-20 Hz) frontal activity (p = 0.005). After correction, significant
fNIRS-y-band PAC was observed in the frontal (p = 0.021) and LA (p = 0.025) regions, while fNIRS-a (p = 0.003)
and fNIRS-p (p = 0.041) PAC were observed in RA. Decreased frontal y-band (p = 0.008) and increased p-band (p
< 0.05) PAC were observed during the task. These outcomes represent the first characterization of electro-
vascular PAC between fNIRS and EEG signals during an auditory task, providing insights into electro-vascular
coupling in auditory processing.

1. Introduction

As noninvasive hybrid brain-computer interface (BCI) studies grow
in prominence and approach more widespread adoption, understanding
the dynamics between direct and indirect noninvasive neuroimaging
modalities becomes more urgent. By simultaneously measuring con-
current neuronal activity and corresponding metabolic changes, it is
possible to establish the relationships between the two dynamics and
achieve a more comprehensive characterization of neural activity [1].
An improved understanding of neurovascular coupling could elucidate
the mechanisms underpinning brain disorders including schizophrenia
[2], Parkinson’s disease [3], Alzheimer’s disease [4-6], among other
disorders. Furthermore, characterizing normal electro-vascular
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dynamics and identifying changes associated with disease could inform
emerging treatment approaches, such as transcranial direct-current
stimulation (tDCS), especially in diseases where current pharmacolog-
ical interventions have demonstrated limited efficacy [7]. As the most
common noninvasive technologies used in hybrid BCIs, electroenceph-
alography (EEG) and functional near-infrared technology (fNIRS) have
received particular attention in studying the relationships between
electrical signals produced by the cerebral cortex and the metabolic
signals associated with them [8], which has been bolstered by their
portable, complementary, and compatible nature [9]. The complemen-
tary information provided by hybrid EEG/fNIRS recording paradigms
has been used to more completely characterize functional cortical net-
works [10] and improve both closed-loop and open-loop BCI
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performance [11].

Noninvasive imaging of the neural correlates of auditory processing
holds particular value in understanding the processes involved in
normal [12,13] and disordered auditory system function, including the
disruptions observed in schizophrenia [14], autism spectrum disorder
[15], and tinnitus [16]. Developing this understanding can provide
treatment targets and inform new treatment approaches, such as neu-
romodulation via transcranial magnetic stimulation (TMS) [17] or
transcranial direct current stimulation (tDCS) [18,19], while also
providing information useful for the development of auditory BCIs
[20-22]. The study of auditory processing further benefits from nonin-
vasive multimodal signal acquisition approaches. For example, in a
recent study, Munoz-Caracuel et al. (2021) characterized changes in
neural responses associated with increasing auditory stimulus intensity,
demonstrating simultaneous increasing magnitude of event-related po-
tential (ERP) components and hemodynamic responses [23]. Similarly,
Rossi et al. (2011) observed simultaneous increases in EEG N400 re-
sponses and greater left hemisphere lateralized hemodynamic responses
measured using fNIRS [24]. Steinmetzger et al. (2022) observed
right-lateralized differences in EEG ERP responses and hemodynamic
activity measured using fNIRS in response to vowel pitch changes [25].
By recording simultaneous EEG and fNIRS, Steinmetzger et al. (2020)
were able to propose explanations for unexpected responses in the
oxygenated hemoglobin concentration change (AHbO2) time series by
comparing with both the deoxygenated hemoglobin concentration
change (AHDR) time series and with EEG-ERP and frequency domain
features [26], demonstrating the advantages of multimodal signal
recording in auditory studies.

Although the benefits of simultaneous EEG and fNIRS data acquisi-
tion in auditory studies have been demonstrated [23-26], there has been
insufficient exploration of the dynamics between the two modalities in
this context. One potential challenge in these approaches is related to
the nature of hemodynamic signals recorded using fNIRS.
Long-separation fNIRS signals, which are typically captured
source-detector pairs separated by approximately 3 cm [27], contain
cerebral and extracerebral (i.e., scalp) hemodynamic components [28].
By contrast, short-separation fNIRS channels use a shorter (~8 mm)
source-detector distance to independently measure scalp hemodynamics
for the purpose of further accounting for or removing their influence
from the long-separation channels [29]. Physiological sources such as
respiration [30] and Mayer waves [31] and non-physiological sources
such as movement [32] also contribute to the recorded signal, compli-
cating the estimation of hemodynamic responses. In particular, respi-
ration has been shown to couple with both fNIRS signals [30] and
high-frequency EEG oscillations [33-35]. Many of these potential con-
founding signals have been demonstrated to vary with experimental
conditions [36,37]. As fNIRS recordings are affected by multiple
potentially unwanted sources of variance (i.e. global hemodynamics,
respiration-related oscillations, Mayer waves, etc.), several methods
have been proposed to correct for this variance [38-40]. Recent de-
velopments in signal analysis approaches including independent mea-
surements (e.g. short-separation fNIRS channels, respiration
measurements) of these nuisance signals allow experimenters to account
for their contribution to the fNIRS signals recorded using
long-separation channels [28]. These developments will allow re-
searchers to further explore the deeply interconnected relationships
between electrocortical signals measured using EEG and cortical he-
modynamics measured using fNIRS by providing methods to account for
the contribution of potential physiological and non-physiological con-
founds that make exploring these relationships challenging. Such con-
founds have been shown in previous studies such as Tort et al. (2018),
which describes coupling between nasal respiration and several higher
frequency oscillations in both cortical and non-cortical brain structures
of rats [33].

Despite the challenges in exploring the coupling between electrical
oscillations measured by EEG and oscillations in hemodynamic signals
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measured by fNIRS, some studies have demonstrated relationships be-
tween these oscillations. For example, Pfurtscheller et al. (2012) found a
statistically significant correlation between the f-band power envelope
in the motor cortex and prefrontal AHbO; using a bootstrapped cross-
correlation approach [41]. Additionally, Dutta et al. (2015) assessed
neurovascular coupling using the cross-correlation between the intrinsic
mode functions of both EEG and fNIRS signals generated by empirical
mode decomposition [42]. Keles et al. (2016) determined significant
cross-correlation between EEG alpha and beta band activity and HbO; in
the parietal and occipital regions [43]. Assessments of neurovascular
coupling have also shown group level differences between groups with
neurodegenerative disorders and control groups. For example, Chiarelli
et al. (2021) reported significantly lower neurovascular coupling in
participants with Alzheimer’s disease than in a control group. In this
study, neurovascular coupling was assessed with a general linear model
(GLM)-based approach using features generated by convolving principal
components of EEG power time courses with a canonical hemodynamic
response function and short-separation fNIRS channels as regressors and
long-separation fNIRS channels as the response variable [5]. Many of the
reported methods of assessing neurovascular coupling rely on para-
metric statistical methods, which rely on assumptions about the un-
derlying distribution of the data that may not be met, emphasizing the
need for reliable, interpretable non-parametric measures of neuro-
vascular coupling [44]. Additionally, current research exploring
electro-vascular coupling has widely relied on the extraction of indi-
vidual features of each modality and their linear interaction across
modalities [44], despite evidence that these interactions may be
nonlinear and spatiotemporally nonspecific [45].

In this study, we propose a novel nonlinear approach to investigate
electro-vascular phase-amplitude coupling (PAC). We adapt the widely
adopted modulation index (MI) approach [46] to quantify the rela-
tionship between hemodynamic signals measured using fNIRS and
electrical signals obtained using EEG. This investigation was conducted
using signals recorded during a block-design auditory task while
employing state-of-the-art preprocessing techniques to model and cor-
rect for the influence of systemic physiology. To explore the potential
sources of observed electro-vascular PAC, we use a GLM-based approach
to isolate fNIRS signal components that can be explained by independent
measurements of systemic physiology. The objectives of this study are
(1) to establish the presence of PAC between the phase of lower fre-
quency hemodynamic signal oscillations during an auditory task in
healthy individuals and (2) to explore the possible sources of the
observed coupling using a GLM- and temporally embedded canonical
correlation (tCCA)-based approach to isolate signal components that can
be explained by independent measurements of systemic physiology (i.e.,
short-separation channels, respiration effort). This novel investigation of
interactions between hemodynamic signals and electrocortical oscilla-
tions during an auditory task would provide new insights into the
metabolic and electrical interactions involved in auditory processing
and inform future multimodal neuroimaging studies by exploring
instantaneous nonlinear relationships between EEG and fNIRS signals.

2. Methods
2.1. Participants and experimental design

11 participants (age 22.55 + 3.91, five female) with no known his-
tory of neurological or auditory processing disorder were recruited from
the University of Rhode Island (URI). All research activities were
approved by the URI institutional review board, and participants pro-
vided informed consent prior to participation in the study. Participants
completed three runs of an auditory task. Each run consisted of 24 blocks
of six 40 Hz white noise click trains of 500 ms duration and 2s inter-
stimulus interval per block presented binaurally through a pair of
headphones (Sony Group Corporation). Each stimulus presentation
block was followed by a 15s block of silence. A diagram of the
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experimental protocol is presented in Fig. 1.

A 15 EEG electrode (256 Hz sampling rate, g.tec g.USBamp, g.tec
medical engineering GmbH) and 14 channel fNIRS (7.8125 Hz sampling
rate, NIRScout, NIRx medical technologies) montage was used to record
neural data. EEG electrodes were placed at locations Fpz, AFz, F5, F6,
FCz, FC3, FC4, Cz, C5, C6, TTP7h, TTP8h, TPP7h, TPP8h, and Pz. Eight
short-separation fNIRS channels were also recorded, with short-
separation detectors embedded in the source housing pads placed at
an 8 mm distance from each fNIRS source optode. The experimental
montage across modalities is presented in Fig. 2 fNIRS channel locations
were selected using the fOLD toolbox to cover the frontal, left auditory,
and right auditory regions of interest (ROIs) [47]. These locations were
selected due to their relevance to the auditory task employed [14,48].
Respiration signals were recorded alongside EEG signals using a respi-
ration effort belt (256 Hz sampling rate, g.tec medical engineering
GmbH).

2.2. Data preprocessing

EEG signal processing was completed using EEGLAB [49] and
custom MATLAB scripts. EEG signals from the three collected runs were
mean-centered, concatenated, and band-pass filtered 0.5-55 Hz. The
first and last 20 s of data corresponding with a pre- and post-run dura-
tion were removed from the signal following concatenation and filtering
to exclude these data from further analysis. Independent component
analysis (ICA) was applied to the EEG data in EEGLAB [49]. Components
containing artifacts (eye blinks, motion, instrumentation noise) were
visually identified and removed. Raw intensity time series signals
collected using fNIRS were converted to AHbO; time series using the
modified Beer-Lambert law and low-pass filtered at 0.5 Hz AHbO, time
series signals were visually inspected and artifactual segments (motion)
were marked for later rejection.

2.3. Temporally embedded canonical correlation analysis (tCCA)

In this study, we adopted the temporally embedded canonical cor-
relation analysis (tCCA) approach proposed by von Lithmann et al.
(2020) as a comprehensive method for generating nuisance regressors
using auxiliary signals recorded from multiple types of sources [50].
This method provides the advantage of accounting for
non-instantaneous coupling between measurements of systemic physi-
ology with long-separation channels. In this study, we included the
recorded short-separation channels incorporated after visual inspection
for data quality and respiration effort signals. These nuisance regressors
were then included in the design matrix of a general linear model (GLM)
used to model the influence of these regressors on the set of
long-separation channels. A modified version of canonical correlation
analysis (CCA), a multivariate statistical method that has been
commonly applied in physiological signal processing, was used in this

Auditory Stimulus (0.50 s)

Auditory Block (15.00 s)
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Fig. 2. Experimental montage employed in this study. EEG electrodes are
displayed with green dots. fNIRS sources are displayed with red dots, and fNIRS
detectors are displayed with blue dots. fNIRS channels are displayed with green
lines between source-detector pairs. Short separation detectors were placed a
set distance from each source location. Regions of interest (ROIs) are boxed
in red.

study to find maximally correlated canonical variables representing the
two original variable sets of the long-separation channels Y and inde-
pendent measurements of systemic physiology (short-separation chan-
nels and respiration) Z. CCA finds a set of extraction filters wy,w;, for
signals y(t) and 2z(t) that maximizes the correlation between the two
projected signals (i.e. canonical variables):

Corr (y(t)wy, z()w,) (€]

The CCA objective function can also be expressed in block matrix
form as a generalized eigenvalue equation:

0 G.[w] _,[Cy 07w
& FlllS el @

where A is an eigenvalue, Cy, and C,, are the autocovariance matrices of
y(t) and z(t), respectively, and Cy, and C,, are their cross-covariance
matrices. In order to solve this equation, the autocovariance matrices
must be invertible, and as such should be regularized as described in
Refs. [51,52]. One challenge in the integration of auxiliary signals in

Inter-Stimulus Interval (2.00 s)

Rest Block (15.00 s)

Fig. 1. Experimental task design. Auditory blocks are 15s in duration and consist of the presentation of six 40 Hz white noise click trains of 500 ms duration with a 2s

ISI. Rest blocks are 15s in duration.
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fNIRS processing pipelines is the non-instantaneous coupling between
the auxiliary signals and long-distance data channels, which is assumed
by standard CCA. tCCA addresses this problem by finding the ideal time
lag 7 in the set {7, ...,7p} where D is the number of time lags used to
maximize the correlation between the two sets of canonical variables:

Corr <iy(t)wy7z(t - T)W:(Ti)> ®

i=0

Hyperparameters include the maximum time lag 7p, the time step
length between time lags At, and the correlation threshold p set as an
inclusion criterion for the GLM design matrix. Canonical variables
extracted from the nuisance signals that correlate with the correspond-
ing canonical variables extracted from the fNIRS signals above the
correlation threshold are retained, indicated by j, while the remaining
are rejected. The j retained tCCA regressors are collected as part of the
construction of a design matrix for use in the subsequent GLM analysis.

In this study, parameters used for the tCCA algorithm were selected
to fall within the recommended ranges described in von Lithmann et al.
(2020) [50]. Specifically, we selected the embedding step width At =
0.13 s (1 sample), maximum absolute time lag 7p = 3.02 s, and corre-
lation threshold py,., = 0.4.

We then constructed a GLM using these regressors and a set of re-
gressors used to represent task information formulated as below:

Y=GB+E )

where Y is the matrix of long-separation fNIRS signals, G is the design
matrix, f§ is the set of coefficients, and E is the residual term. G contains a
set of regressors used to model the recorded signals, which can include
task-related regressors and regressors representing systemic physiology
and other nuisance regressors.

In this study, G was generated by appending the tCCA regressors with
regressors generated by convolving 15s duration boxcar functions rep-
resenting the task and the rest blocks with a canonical hemodynamic
response (spm, MNE-NIRS toolbox) [53], resulting in j + 2 regressors
used in the design matrix. A GLM was then fit to the long-separation
channel fNIRS data using the constructed design matrix. The co-
efficients corresponding with the task and the tCCA regressors were
separated as below:

Y = GrusPraos + GeysPpiys + E 5)

where Grg and frog are the collected regressors and weights corre-
sponding with the task, respectively, and Gpnys and fipy, are the collected
regressors and weights corresponding with the tCCA regressors. The
resulting coefficients corresponding to the tCCA regressors were
collected and multiplied by their respective columns of the design ma-
trix and subtracted from the original AHbO, signal to remove all phys-
iological signal components (presumed to be global systemic activity)
explained by the GLM to produce Ycomrecred, Which was used in the
analysis pipeline along with the original signal Y for comparison as
below:

Y Corrected — Y - GPhy.\ﬂ Phys (6)

The fNIRS signals were then upsampled to match the sampling rate of
the EEG signals (256 Hz) and runs were concatenated for the subsequent
PAG analysis. Adjusted R? and root mean square error (RMSE) were used
to quantify model performance [54,55]. Spearman correlation between
the number of short channels included and adjusted R2 was performed to
investigate a possible relationship between the two variables.

2.4. Phase-amplitude coupling (PAC)

We propose electro-vascular phase-amplitude coupling (PAC) as an
integrated, nonlinear method to explore interactions between the slow
hemodynamic oscillatory activity measured by fNIRS and the fast elec-
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trocortical oscillations recorded by EEG. We adapted the algorithm
proposed in Tort et al. (2010) [46] for the PAC analysis. To compute PAC
between two time series signals x(t) and y(t), the signals were
narrow-band filtered into frequency bands of interest xz,(t) and yj (t)
(5 Hz bins in 5 Hz steps from 5-10 Hz to 50-55 Hz for EEG; 0.06-0.5 Hz
for fNIRS). Assuming that coupling between the amplitude of x(t) and
phase of y(t) is of interest (i.e., x(t) is a preprocessed EEG channel and
y(t) is a preprocessed fNIRS channel, either before or after applying the
tCCA-GLM preprocessing approach), the Hilbert transform of both sig-
nals was taken, and the amplitude envelope of xg;(t) and instantaneous
phase of yj;(t) were extracted, denoted Ay(t) and ¢, (t), respectively.
The original signals x(t) and y(t) and A,(t) were visually inspected
for artifacts. Marked segments of Ay(t) and ¢, (t) were removed from
further analysis. These segments included standard 18s windows around
each point where the segments were appended to ensure that segments
containing discontinuities were not included in the subsequent PAC
analysis. This rejection approach was applied as the following steps in
the analysis pipeline rely solely on the distributions of data points
matched by sample index. Furthermore, in order to confirm the presence
of an auditory steady state response (ASSR) in response to the auditory
stimuli employed in this study, the power amplitude time series A,(t)
was epoched —0.5:1.0s relative to each auditory stimulus onset aver-
aged across trials, and baseline corrected to the pre-stimulus period.
After the previous steps to ensure signal quality, the phases were
binned in N phase bins and the mean value of A,(t) that corresponded
with phase values from ¢, (t) in each bin was extracted as (Ay),(j) for
phase bin j. The mean amplitude for each bin was then normalized by
the sum over all bins to produce a distribution of mean amplitudes (P)
across phase bins as below:
pgy =400 -
2 (A, (k)

A modulation index (MI) value is then extracted as a measure of PAC
by normalizing the Kullback-Leibler distance (Dg;) between distribution
P and the uniform distribution U by log(N) as below:

Dy (P,U)=log (N) + ZPO)log (PG ®)
_DKL(P, U)
~ log(N) ©)

MI is a positive value in [0,1] that increases with increasing PAC
between x(t) and y(t). In order to determine whether MI is statistically
larger than the value expected by chance with the given data, a surro-
gate distribution of MI values was then generated. In this study, we
followed the method described in Cohen (2014) [56], in which a random
time point in the middle 80 % of A,(t) was selected and the samples were
circularly shifted around this point (i.e. appending the end of the later
segment to the beginning of the earlier segment). MI was calculated
again using this surrogate version of x(t) and this process was repeated
M = 200 times to generate a surrogate MI distribution. A p-value cor-
responding with each MI value was determined by taking the ratio of the
number of surrogate MI values greater than the observed MI value to M.
This surrogate distribution was then used to convert the observed MI
value to a z-score as below:

vl — Mlopservea — mean(Mlpisyipution)
- std (MIDis[ribl([iOH )

(10

A permutation clustering-based approach applied across participants
was used to identify statistically significant spatio-spectral clusters of
PAC. By conducting a one-sample t-test across participants for MI, cor-
responding to each frequency band/channel combination across mo-
dalities, test statistics (t-statistics) were generated to compare with the t-
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statistics obtained from another surrogate distribution. The surrogate t-
statistics were obtained by performing a one-sample t-test on permuta-
tions generated by changing the sign of the observed test statistics (2047
permutations, corresponding with the total number of possible permu-
tations across 11 participants). A p-value for each EEG/fNIRS channel
pair and EEG/fNIRS frequency band was then generated by taking the
ratio of the number of surrogate t-values greater than the observed t-
value to the number of permutations. After this, p-values below a pre-
defined threshold (p < 0.05) were clustered based on spectro-spatial
adjacency and the sum of the test statistics within each are calculated.
Spectral adjacency was defined as adjacent EEG frequency bands, while
EEG and fNIRS sensors from the same ROI were considered spatially
adjacent. A cluster p-value was then calculated for each cluster by taking
the ratio of the number of surrogate test statistic sums from the largest
cluster greater than the observed cluster test statistic sum to the number
of permutations. This permutation clustering approach provides a
framework for a non-parametric statistical test to find spectro-spatial
clusters of PAC across a participant population that is robust to the
multiple comparisons problem [57]. Similarly, this permutation clus-
tering approach can be used to compare PAC across conditions. In this
case, PAC calculated within each condition was compared across par-
ticipants using a paired sample t-test. The surrogate distribution was
similarly constructed by changing the labels of each of the PAC values
observed across participants and recomputing the test statistic.

3. Results
3.1. Electro-vascular PAC

Fig. 3 illustrates the general analysis pipeline employed in this study.
EEG and fNIRS signals were preprocessed as previously described and
statistical PAC between the two signals was extracted.

Fig. 4 displays significant cluster t-statistics obtained from our
analysis before and after applying tCCA regressor removal. Our out-
comes demonstrated four significant PAC clusters before applying tCCA-
GLM regressor removal. The first cluster (cluster t = 24.76, p = 4.885e-
04) includes broadband EEG in the 15-55 Hz range in the frontal (F)
region. Two significant clusters are observed in the left auditory (LA)
region, with one appearing in the 15-25 Hz range (cluster t = 18.60, p =
4.885e-04), and the second appearing in the 30-50 Hz range (cluster t =

Ba n.d—Pass ICA
Filter

Long- Corrected
Modified Separation Long-
Beer- 4 Separation
Lambert YCmrez:ted
Law

Short-
Separation

Low-Pass
Filter

Max Time
Lag T,
Step Size At

Correlation
Threshold p

Respiration
Effort
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15.74, p = 0.010). A fourth cluster appears from 35 to 50 Hz in the right
auditory (RA) region (cluster t = 13.75, p = 0.032). After tCCA regressor
removal, we observe one cluster in the F region in the 30-50 Hz range
(cluster t = 15.24, p = 0.021). Another significant cluster (cluster t =
10.79, p = 0.025) appears in the LA region in the 40-50 Hz range. Two
clusters appear in the RA region, with one appearing in the 10-20 Hz
range (cluster t = 16.47, p = 0.003) and another in the 25-35 Hz range
(cluster t = 9.30, p = 0.041).

3.2. Comparisons across conditions (task and rest)

Fig. 5 displays cluster t-values from significant positive (top row) and
negative (bottom row) clusters across the task and rest conditions before
(left column) and after (right column) applying tCCA regressor removal.
Comparing across conditions, two positive clusters (i.e., stronger PAC in
the task condition than in the rest condition) were observed before tCCA
regressor removal (Fig. 5 top left). We observed a positive cluster in the
30-45 Hz range (cluster t = 16.26, p = 0.023) in the LA region, while
another positive cluster in the 45-55 Hz range (cluster t = 13.69, p =
0.049) was observed in the RA region. We also observed a significant
negative cluster (i.e., stronger PAC in the rest condition than in the task
condition) in the 5-20 Hz range before tCCA regressor removal (cluster t
= —19.90, p = 0.0049) (Fig. 5 bottom left). After tCCA regressor
removal, one significant positive cluster (cluster t = 14.93, p = 0.00) was
observed in the 20-35 Hz range in the F region, while one significant
negative cluster (cluster t = —12.70, p = 0.0083) was observed in the
same region (Fig. 5 top and bottom right).

3.3. tCCA regressor removal

Table 1 displays the average adjusted R? of the GLM across all long-
separation channels for each participant after applying the tCCA-GLM
pipeline to model the influence of respiration effort and short-
separation channels along with the number of short detectors
(NumSDs) included in the tCCA feature generation algorithm. On
average, the adjusted R? value was 0.73 + 0.14, corresponding with an
approximate 73 % of variance in the long-separation channels explained
by modeling using the short-separation and respiration effort channels
and an average of 5.73 £ 2.00 short channels were eventually retained
per participant. The average RMSE across channels and participants was

Narrow-Band Narrow-Band
Filter/Hilbert Filter/Hilbert

Power

Cluster

Amplitude
At) p-values

Phase ¢,(t)

Segment ‘ ‘ Segment Cluster Test Surrogate
Removal Removal Statistics Distribution
Distribution of Test Statistics
Mean Amplitude (t-test)

Binned by Phase P

Kullback-Leibler Distance
between P and Uniform
Distribution U Dy, (RU)

Modulation

Index M Z-score M,

Surrogate
Distribution

Fig. 3. Block diagram of the proposed analysis pipeline. EEG signals were preprocessed using a band-pass filtering/ICA approach. fNIRS signals were low-pass
filtered and converted to the oxygenated hemoglobin change time series (AHbO,) using the modified beer-lambert law. The tCCA-GLM correction approach is
applied to long-separation channels, and the resulting EEG and fNIRS signals are further narrow-band filtered and the Hilbert transform of both signals is taken.
Instantaneous EEG power amplitude and fNIRS phase are fed to the phase-amplitude coupling algorithm, and significant clusters of coupling are identified using the

proposed permutation clustering approach.
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Fig. 4. Cluster t-statistics corresponding to significant clusters within each ROI before (left) and after (right) tCCA regressor removal.

Significant Positive Clusters

Before tCCA Regressor Removal
/ AN

o°
<
©
4]
>
o
=4
[}
S
o
L
w
o]
w
w

After tCCA Regressor Removal
/ AN

t-value
20
£ 10
5 45-50
§ 40-45
"i 35-40
83035 0
§ 2530
S 2025
£ 1520
@ 10-15 -10
w
w
-20

Significant Negative Clusters

Before tCCA Regressor Removal

N\

EEG Frequency Band (Hz)

After tCCA Regressor Removal

Z b3

Fig. 5. Significant positive (stronger PAC during the task than at rest; top row) and negative (stronger PAC during rest than during the task; bottom row) cluster t-
value maps that correspond with PAC clusters across conditions before (left column) and after (right column) tCCA regressor removal.

20.42 + 7.72 M. Spearman correlation between adjusted R? and the
number of short detectors included determined a significant relationship
between the two (Spearman p = 0.77, p = 0.005). Fig. 6 illustrates the
original, modeled, and difference between the original and modeled
AHDbO; time courses from a representative participant/channel (S01,
F3-F1). Fig. 7 (A) depicts the average response from the same repre-
sentative participant/channel across experimental blocks.

3.4. EEG-auditory steady-state response (ASSR)
The grand average of baseline corrected power amplitude across
participants at channel FCz is presented in Fig. 7 (B). A clear ASSR is

visible in the 35-45 Hz range, while auditory ERP components are re-
flected in the 5-15 Hz range.

4. Discussion

This study investigated the interactions between slow hemodynamic
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Table 1

Average adjusted R? and RMSE across channels of the GLM used in the tCCA-
GLM filtering approach for each participant, along with the number of short
detectors (NumSDs) included in the tCCA feature generation algorithm.

Participant Adjusted R? RMSE (M) NumSDs
S01 0.86 20.32 8

S02 0.84 17.19 7

S03 0.88 10.70 7

S04 0.58 38.00 2

S05 0.68 23.61 7

S06 0.53 17.16 4

S07 0.87 15.56 6

S08 0.56 28.42 3

S09 0.88 16.94 8

S10 0.75 13.23 5

S11 0.65 23.50 6
Average 0.73 + 0.14 20.42 +£7.72 5.73 + 2.00

oscillations measured using fNIRS and fast electrocortical oscillations
recorded using EEG during an auditory task. The results of this study
mark the initial documented instance of characterizing electro-vascular
phase-amplitude coupling (PAC) between fNIRS and EEG. Within the
scope of this investigation, we have successfully identified, for the first
time, statistically significant clusters that demonstrate the existence of
electro-vascular PAC. This coupling was observed between the instan-
taneous phase of slow hemodynamics fNIRS signals and instantaneous
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power amplitude of high frequency EEG signals during an auditory task.
We assessed these interactions before and after applying a tCCA-GLM-
based fNIRS correction strategy to the recorded long-separation fNIRS
signals to determine the effect of global hemodynamic activity on this
relationship. We further explored differences in observed PAC across
task conditions to investigate the role of electro-vascular PAC in audi-
tory processing.

Our analysis demonstrated that the adopted correction strategy
could model a substantial (~73 % =+ 14 %) proportion of the variance of
long-separation channels averaged over channels and participants. Our
correlation analysis suggested a relationship between adjusted R? and
the number of short-separation channels available. This finding agrees
with previous literature, including a study conducted by Santosa et al.
(2020) demonstrating an increase in the percentage of short-channel
variance explained with an increase in the number of short channels
with diminishing returns as more short channels are included [58].
Given the substantial percentage of variance in the long-separation
channels that can be modeled using the short-separation channels and
respiration effort, the long-separation channels before applying the
correction strategy may reflect more global changes in the participants’
hemodynamic state, while long-separation channels after the correction
may reflect more localized cerebral hemodynamics.

Our outcomes further demonstrated significant (p < 0.05) coupling
across the entire dataset in different frequency bands in all three regions
of interest (ROIs) both before and after applying the proposed correction
strategy. The presence of these clusters of PAC between fNIRS and EEG
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across the three ROIs could be attributed to several possible sources. One
possibility is that PAC between respiration and EEG could be reflected in
these results. Respiration has been identified as a source of interference
in fNIRS signals [59], and we and other groups have demonstrated to
couple with multiple frequency bands across several cortical regions
[35,60,61] including the frontal and left/right temporal/temporopar-
ietal regions. Respiration-y-band coupling is one of the more commonly
reported instances of this phenomenon and is thought to reflect a
modulatory effect of respiration on cortical excitability [35]. The pres-
ence of broad coupling in the frontal region and y-band coupling in the
left auditory and right auditory regions before correction could poten-
tially be explained by respiration signal components in fNIRS signals. It
is plausible that other sources of systemic physiology reflected in fNIRS
could play a role in the differences in PAC observed before and after
correction. For example, heart rate variability (HRV), which can also be
reflected in fNIRS signals, has been demonstrated to modulate spectral
features in EEG in the o, p, and y bands [62]. However, the presence of
significant PAC clusters in each region after correction suggests that
other electro-vascular interactions may take place. This finding provides
further evidence for nonlinear interactions between cerebral hemody-
namics and electrical oscillatory activity, which could have possible
implications for future hybrid EEG-fNIRS BCI studies. Currently, these
studies predominantly consider linear unimodal methods for feature
extraction [9]. Although the proposed PAC approach requires a pro-
hibitive amount of data to be used as a feature in a single-trial BCI
application, our findings suggest instantaneous coupling between EEG
and fNIRS signals that could be informative in future studies.

When comparing across conditions, the presence of significant pos-
itive and negative PAC clusters suggests that electro-vascular coupling is
present and related to multiple sources of activity involved in the
different conditions. General brain-body interactions have been re-
ported [63], but remain underexplored to date. Notably, Zelano et al.
(2016) observed PAC between nasal respiration and electrocortical ac-
tivity, and that this relationship could have a role in influencing
cognitive processing [61]. Another example is the presence of PAC be-
tween parietal/occipital alpha and the phase of the gastric basal rhythm
reported by Richter et al. (2017) [64]. PAC has also been demonstrated
within fNIRS channels, with lower frequency signal components
reflecting neurogenic activity and higher frequency signal components
reflecting systemic physiology (respiration and cardiac components)
[65]. The results observed before correction suggest that our observed
electro-vascular coupling could be related to several processes associ-
ated with the task. The positive left auditory cluster suggests increased
gamma coupling with long-separation fNIRS channels during the task
when compared with rest. As this cluster was not present after correc-
tion, it is possible that this could reflect coupling between global he-
modynamic components (cardiac, Mayer waves, respiration, etc.) and
ASSR amplitude. The observed positive right auditory gamma cluster
extends to the limits of the bands explored in this analysis, which were
selected due to the 1/f fall-off of relative power observed in scalp EEG
measurements [66]. It is possible that this cluster could extend further
into higher EEG frequency bands, but the nonspecificity in the EEG
frequency domain compared to the observed left auditory cluster and
lateral position could possibly reflect electromyographic (EMG) activity
[67]. The significant negative cluster in the frontal region overlapped
with the frequency bands reflecting ERP components during the task.
Although no coupling was observed in this region before or after
applying the correction strategy across the entire dataset, it is possible
that the presence of ERPs that do not change in amplitude relative to the
phase values of the hemodynamic signal could reduce coupling relative
to that observed during resting periods.

Our outcomes demonstrated significant electro-vascular PAC clusters
in the frontal and left auditory regions between fNIRS and EEG in
different y sub-bands after applying the correction strategy. We
observed that both sub-bands (frontal, 30-50 Hz and left auditory,
40-50 Hz) overlapped with auditory stimulation frequency, which may
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suggest that evoked power attributed to the ASSR may be modulated by
the phase of hemodynamic signals. The frontal/frontocentral region is
notable for being the location typically reported in ASSR studies, as this
response is typically maximal in the frontal region [68]. Interestingly,
the observed PAC coupling was found to be stronger in this band in the
frontal region during the rest condition than during the task condition.
This could possibly reflect electro-vascular decoupling in this band
during the task as a result of the ASSR associated with this frequency
band. Electro-vascular coupling at rest could be disrupted by the pres-
ence of the ASSR in this band, which would be larger in amplitude when
compared to resting state y-band activity.

The left auditory region may be of interest as well, as the left auditory
cortex has demonstrated a role in the processing of the rapid temporal
characteristics of sound, as opposed to the right auditory cortex’s role in
the processing of pitch [69]. Our analysis showed no significant differ-
ence across conditions in this band/region. Additionally, the two lower
frequency clusters appearing in the right auditory region after the
correction strategy lack a clear explanation in the context of the task.
Right-lateralized a-band activity is associated with auditory anticipation
[70], and could be a factor in the repetitive task employed for this study.
Similarly, p-band oscillations have also been implicated in auditory
prediction [71]. It is possible that the phase of cortical hemodynamics
could be related to anticipation of stimuli via PAC. There was no sig-
nificant difference across conditions in bands containing either of these
clusters, however, suggesting that this coupling may occur independent
of the task. The significant positive cluster observed after correction in
the p band could possibly reflect hemodynamic modulation of
attention-related processes, as frontal p band activity has been related to
attention [72].

The outcomes from this study have demonstrated significant clusters
of coupling between low-frequency hemodynamic signals, measured
using fNIRS, and high-frequency electrical oscillations, measured by
EEG, during auditory settings. We assessed this coupling both prior to
and following the implementation of a tCCA-GLM-based correction
strategy to limit any potential influence of systemic physiology that
might have led to any observed coupling, expanding on previous char-
acterizations of electro-vascular coupling in which this consideration
was not made [41,73] or nonlinear spectro-temporal features of fNIRS
signals were not considered [5]. To the best of our knowledge, this study
represents the first attempt to characterize any potential interactions
between hemodynamic and electrocortical oscillations during auditory
tasks. Furthermore, our results suggest that this electro-vascular PAC
may be both task-dependent and task-independent, and that the
instantaneous hemodynamic state could possibly influence multiple
cortical processes simultaneously.

The interpretations of the current findings are limited by the sample
size of this study, which limits the statistical power of the current ana-
lyses. Although comparisons were made across experimental conditions,
the number of samples available in each condition provides relatively
few (~60) cycles of the lowest frequency of interest (0.06 Hz) in the
within-condition analysis [46]. Furthermore, the limited number of
sensor locations for each modality restricts the comprehensive charac-
terization of coupling. We additionally only consider one fNIRS fre-
quency band due to the exploratory nature of this study; consideration of
separate distinct fNIRS sub-bands could provide further information.
Finally, the current electro-vascular coupling exclusively examines
instantaneous coupling between the two modalities. However, it re-
mains plausible that a more comprehensive characterization of these
relationships could be achieved by adopting an approach that accounts
for variable delays in coupling, such as the convolution of spectral power
curves with a pre-defined hemodynamic response function [74]. Future
work should be conducted to optimize this approach with respect to
temporal variability in this relationship by adopting optimization
methods, such as evolutionary algorithms [75,76]. However, this study
characterizes task-independent and task dependent electro-vascular
PAC, providing a framework for further investigation of cross-modal
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nonlinear measurements of electro-vascular coupling, while providing
evidence for its involvement in auditory task-related and
task-independent processes.
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