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A B S T R A C T   

Multimodal neuroimaging using electroencephalography (EEG) and functional near-infrared spectroscopy 
(fNIRS) provides complementary views of cortical processes, including those related to auditory processing. 
However, current multimodal approaches often overlook potential insights that can be gained from nonlinear 
interactions between electrical and hemodynamic signals. Here, we explore electro-vascular phase-amplitude 
coupling (PAC) between low-frequency hemodynamic and high-frequency electrical oscillations during an 
auditory task. We further apply a temporally embedded canonical correlation analysis (tCCA)-general linear 
model (GLM)-based correction approach to reduce the possible effect of systemic physiology on fNIRS re
cordings. Before correction, we observed significant PAC between fNIRS and broadband EEG in the frontal region 
(p ≪ 0.05), β (p ≪ 0.05) and γ (p = 0.010) in the left temporal/temporoparietal (left auditory; LA) region, and γ 
(p = 0.032) in the right temporal/temporoparietal (right auditory; RA) region across the entire dataset. Sig
nificant differences in PAC across conditions (task versus silence) were observed in LA (p = 0.023) and RA (p =
0.049) γ sub-bands and in lower frequency (5–20 Hz) frontal activity (p = 0.005). After correction, significant 
fNIRS-γ-band PAC was observed in the frontal (p = 0.021) and LA (p = 0.025) regions, while fNIRS-α (p = 0.003) 
and fNIRS-β (p = 0.041) PAC were observed in RA. Decreased frontal γ-band (p = 0.008) and increased β-band (p 
≪ 0.05) PAC were observed during the task. These outcomes represent the first characterization of electro- 
vascular PAC between fNIRS and EEG signals during an auditory task, providing insights into electro-vascular 
coupling in auditory processing.   

1. Introduction 

As noninvasive hybrid brain-computer interface (BCI) studies grow 
in prominence and approach more widespread adoption, understanding 
the dynamics between direct and indirect noninvasive neuroimaging 
modalities becomes more urgent. By simultaneously measuring con
current neuronal activity and corresponding metabolic changes, it is 
possible to establish the relationships between the two dynamics and 
achieve a more comprehensive characterization of neural activity [1]. 
An improved understanding of neurovascular coupling could elucidate 
the mechanisms underpinning brain disorders including schizophrenia 
[2], Parkinson’s disease [3], Alzheimer’s disease [4–6], among other 
disorders. Furthermore, characterizing normal electro-vascular 

dynamics and identifying changes associated with disease could inform 
emerging treatment approaches, such as transcranial direct-current 
stimulation (tDCS), especially in diseases where current pharmacolog
ical interventions have demonstrated limited efficacy [7]. As the most 
common noninvasive technologies used in hybrid BCIs, electroenceph
alography (EEG) and functional near-infrared technology (fNIRS) have 
received particular attention in studying the relationships between 
electrical signals produced by the cerebral cortex and the metabolic 
signals associated with them [8], which has been bolstered by their 
portable, complementary, and compatible nature [9]. The complemen
tary information provided by hybrid EEG/fNIRS recording paradigms 
has been used to more completely characterize functional cortical net
works [10] and improve both closed-loop and open-loop BCI 
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performance [11]. 
Noninvasive imaging of the neural correlates of auditory processing 

holds particular value in understanding the processes involved in 
normal [12,13] and disordered auditory system function, including the 
disruptions observed in schizophrenia [14], autism spectrum disorder 
[15], and tinnitus [16]. Developing this understanding can provide 
treatment targets and inform new treatment approaches, such as neu
romodulation via transcranial magnetic stimulation (TMS) [17] or 
transcranial direct current stimulation (tDCS) [18,19], while also 
providing information useful for the development of auditory BCIs 
[20–22]. The study of auditory processing further benefits from nonin
vasive multimodal signal acquisition approaches. For example, in a 
recent study, Muñoz-Caracuel et al. (2021) characterized changes in 
neural responses associated with increasing auditory stimulus intensity, 
demonstrating simultaneous increasing magnitude of event-related po
tential (ERP) components and hemodynamic responses [23]. Similarly, 
Rossi et al. (2011) observed simultaneous increases in EEG N400 re
sponses and greater left hemisphere lateralized hemodynamic responses 
measured using fNIRS [24]. Steinmetzger et al. (2022) observed 
right-lateralized differences in EEG ERP responses and hemodynamic 
activity measured using fNIRS in response to vowel pitch changes [25]. 
By recording simultaneous EEG and fNIRS, Steinmetzger et al. (2020) 
were able to propose explanations for unexpected responses in the 
oxygenated hemoglobin concentration change (ΔHbO2) time series by 
comparing with both the deoxygenated hemoglobin concentration 
change (ΔHbR) time series and with EEG-ERP and frequency domain 
features [26], demonstrating the advantages of multimodal signal 
recording in auditory studies. 

Although the benefits of simultaneous EEG and fNIRS data acquisi
tion in auditory studies have been demonstrated [23–26], there has been 
insufficient exploration of the dynamics between the two modalities in 
this context. One potential challenge in these approaches is related to 
the nature of hemodynamic signals recorded using fNIRS. 
Long-separation fNIRS signals, which are typically captured 
source-detector pairs separated by approximately 3 cm [27], contain 
cerebral and extracerebral (i.e., scalp) hemodynamic components [28]. 
By contrast, short-separation fNIRS channels use a shorter (~8 mm) 
source-detector distance to independently measure scalp hemodynamics 
for the purpose of further accounting for or removing their influence 
from the long-separation channels [29]. Physiological sources such as 
respiration [30] and Mayer waves [31] and non-physiological sources 
such as movement [32] also contribute to the recorded signal, compli
cating the estimation of hemodynamic responses. In particular, respi
ration has been shown to couple with both fNIRS signals [30] and 
high-frequency EEG oscillations [33–35]. Many of these potential con
founding signals have been demonstrated to vary with experimental 
conditions [36,37]. As fNIRS recordings are affected by multiple 
potentially unwanted sources of variance (i.e. global hemodynamics, 
respiration-related oscillations, Mayer waves, etc.), several methods 
have been proposed to correct for this variance [38–40]. Recent de
velopments in signal analysis approaches including independent mea
surements (e.g. short-separation fNIRS channels, respiration 
measurements) of these nuisance signals allow experimenters to account 
for their contribution to the fNIRS signals recorded using 
long-separation channels [28]. These developments will allow re
searchers to further explore the deeply interconnected relationships 
between electrocortical signals measured using EEG and cortical he
modynamics measured using fNIRS by providing methods to account for 
the contribution of potential physiological and non-physiological con
founds that make exploring these relationships challenging. Such con
founds have been shown in previous studies such as Tort et al. (2018), 
which describes coupling between nasal respiration and several higher 
frequency oscillations in both cortical and non-cortical brain structures 
of rats [33]. 

Despite the challenges in exploring the coupling between electrical 
oscillations measured by EEG and oscillations in hemodynamic signals 

measured by fNIRS, some studies have demonstrated relationships be
tween these oscillations. For example, Pfurtscheller et al. (2012) found a 
statistically significant correlation between the β-band power envelope 
in the motor cortex and prefrontal ΔHbO2 using a bootstrapped cross- 
correlation approach [41]. Additionally, Dutta et al. (2015) assessed 
neurovascular coupling using the cross-correlation between the intrinsic 
mode functions of both EEG and fNIRS signals generated by empirical 
mode decomposition [42]. Keles et al. (2016) determined significant 
cross-correlation between EEG alpha and beta band activity and HbO2 in 
the parietal and occipital regions [43]. Assessments of neurovascular 
coupling have also shown group level differences between groups with 
neurodegenerative disorders and control groups. For example, Chiarelli 
et al. (2021) reported significantly lower neurovascular coupling in 
participants with Alzheimer’s disease than in a control group. In this 
study, neurovascular coupling was assessed with a general linear model 
(GLM)-based approach using features generated by convolving principal 
components of EEG power time courses with a canonical hemodynamic 
response function and short-separation fNIRS channels as regressors and 
long-separation fNIRS channels as the response variable [5]. Many of the 
reported methods of assessing neurovascular coupling rely on para
metric statistical methods, which rely on assumptions about the un
derlying distribution of the data that may not be met, emphasizing the 
need for reliable, interpretable non-parametric measures of neuro
vascular coupling [44]. Additionally, current research exploring 
electro-vascular coupling has widely relied on the extraction of indi
vidual features of each modality and their linear interaction across 
modalities [44], despite evidence that these interactions may be 
nonlinear and spatiotemporally nonspecific [45]. 

In this study, we propose a novel nonlinear approach to investigate 
electro-vascular phase-amplitude coupling (PAC). We adapt the widely 
adopted modulation index (MI) approach [46] to quantify the rela
tionship between hemodynamic signals measured using fNIRS and 
electrical signals obtained using EEG. This investigation was conducted 
using signals recorded during a block-design auditory task while 
employing state-of-the-art preprocessing techniques to model and cor
rect for the influence of systemic physiology. To explore the potential 
sources of observed electro-vascular PAC, we use a GLM-based approach 
to isolate fNIRS signal components that can be explained by independent 
measurements of systemic physiology. The objectives of this study are 
(1) to establish the presence of PAC between the phase of lower fre
quency hemodynamic signal oscillations during an auditory task in 
healthy individuals and (2) to explore the possible sources of the 
observed coupling using a GLM- and temporally embedded canonical 
correlation (tCCA)-based approach to isolate signal components that can 
be explained by independent measurements of systemic physiology (i.e., 
short-separation channels, respiration effort). This novel investigation of 
interactions between hemodynamic signals and electrocortical oscilla
tions during an auditory task would provide new insights into the 
metabolic and electrical interactions involved in auditory processing 
and inform future multimodal neuroimaging studies by exploring 
instantaneous nonlinear relationships between EEG and fNIRS signals. 

2. Methods 

2.1. Participants and experimental design 

11 participants (age 22.55 ± 3.91, five female) with no known his
tory of neurological or auditory processing disorder were recruited from 
the University of Rhode Island (URI). All research activities were 
approved by the URI institutional review board, and participants pro
vided informed consent prior to participation in the study. Participants 
completed three runs of an auditory task. Each run consisted of 24 blocks 
of six 40 Hz white noise click trains of 500 ms duration and 2s inter- 
stimulus interval per block presented binaurally through a pair of 
headphones (Sony Group Corporation). Each stimulus presentation 
block was followed by a 15s block of silence. A diagram of the 
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experimental protocol is presented in Fig. 1. 
A 15 EEG electrode (256 Hz sampling rate, g.tec g.USBamp, g.tec 

medical engineering GmbH) and 14 channel fNIRS (7.8125 Hz sampling 
rate, NIRScout, NIRx medical technologies) montage was used to record 
neural data. EEG electrodes were placed at locations Fpz, AFz, F5, F6, 
FCz, FC3, FC4, Cz, C5, C6, TTP7h, TTP8h, TPP7h, TPP8h, and Pz. Eight 
short-separation fNIRS channels were also recorded, with short- 
separation detectors embedded in the source housing pads placed at 
an 8 mm distance from each fNIRS source optode. The experimental 
montage across modalities is presented in Fig. 2 fNIRS channel locations 
were selected using the fOLD toolbox to cover the frontal, left auditory, 
and right auditory regions of interest (ROIs) [47]. These locations were 
selected due to their relevance to the auditory task employed [14,48]. 
Respiration signals were recorded alongside EEG signals using a respi
ration effort belt (256 Hz sampling rate, g.tec medical engineering 
GmbH). 

2.2. Data preprocessing 

EEG signal processing was completed using EEGLAB [49] and 
custom MATLAB scripts. EEG signals from the three collected runs were 
mean-centered, concatenated, and band-pass filtered 0.5–55 Hz. The 
first and last 20 s of data corresponding with a pre- and post-run dura
tion were removed from the signal following concatenation and filtering 
to exclude these data from further analysis. Independent component 
analysis (ICA) was applied to the EEG data in EEGLAB [49]. Components 
containing artifacts (eye blinks, motion, instrumentation noise) were 
visually identified and removed. Raw intensity time series signals 
collected using fNIRS were converted to ΔHbO2 time series using the 
modified Beer-Lambert law and low-pass filtered at 0.5 Hz ΔHbO2 time 
series signals were visually inspected and artifactual segments (motion) 
were marked for later rejection. 

2.3. Temporally embedded canonical correlation analysis (tCCA) 

In this study, we adopted the temporally embedded canonical cor
relation analysis (tCCA) approach proposed by von Lühmann et al. 
(2020) as a comprehensive method for generating nuisance regressors 
using auxiliary signals recorded from multiple types of sources [50]. 
This method provides the advantage of accounting for 
non-instantaneous coupling between measurements of systemic physi
ology with long-separation channels. In this study, we included the 
recorded short-separation channels incorporated after visual inspection 
for data quality and respiration effort signals. These nuisance regressors 
were then included in the design matrix of a general linear model (GLM) 
used to model the influence of these regressors on the set of 
long-separation channels. A modified version of canonical correlation 
analysis (CCA), a multivariate statistical method that has been 
commonly applied in physiological signal processing, was used in this 

study to find maximally correlated canonical variables representing the 
two original variable sets of the long-separation channels Y and inde
pendent measurements of systemic physiology (short-separation chan
nels and respiration) Z. CCA finds a set of extraction filters wy,wz for 
signals y(t) and z(t) that maximizes the correlation between the two 
projected signals (i.e. canonical variables): 

Corr
ʀ
y(t)wy, z(t)wz

)
(1) 

The CCA objective function can also be expressed in block matrix 
form as a generalized eigenvalue equation: 
[

0 Cyz
Czy 0

][
wy
wz

]

= λ
[

Cyy 0
0 Czz

][
wy
wz

]

(2)  

where λ is an eigenvalue, Cyy and Czz are the autocovariance matrices of 
y(t) and z(t), respectively, and Cyz and Czy are their cross-covariance 
matrices. In order to solve this equation, the autocovariance matrices 
must be invertible, and as such should be regularized as described in 
Refs. [51,52]. One challenge in the integration of auxiliary signals in 

Fig. 1. Experimental task design. Auditory blocks are 15s in duration and consist of the presentation of six 40 Hz white noise click trains of 500 ms duration with a 2s 
ISI. Rest blocks are 15s in duration. 

Fig. 2. Experimental montage employed in this study. EEG electrodes are 
displayed with green dots. fNIRS sources are displayed with red dots, and fNIRS 
detectors are displayed with blue dots. fNIRS channels are displayed with green 
lines between source-detector pairs. Short separation detectors were placed a 
set distance from each source location. Regions of interest (ROIs) are boxed 
in red. 
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fNIRS processing pipelines is the non-instantaneous coupling between 
the auxiliary signals and long-distance data channels, which is assumed 
by standard CCA. tCCA addresses this problem by finding the ideal time 
lag τ in the set {τ0,…, τD} where D is the number of time lags used to 
maximize the correlation between the two sets of canonical variables: 

Corr

(
∑D

i=0
y(t)wy, z(t − τ)wz(τi)

)

(3) 

Hyperparameters include the maximum time lag τD, the time step 
length between time lags Δt, and the correlation threshold ρ set as an 
inclusion criterion for the GLM design matrix. Canonical variables 
extracted from the nuisance signals that correlate with the correspond
ing canonical variables extracted from the fNIRS signals above the 
correlation threshold are retained, indicated by j, while the remaining 
are rejected. The j retained tCCA regressors are collected as part of the 
construction of a design matrix for use in the subsequent GLM analysis. 

In this study, parameters used for the tCCA algorithm were selected 
to fall within the recommended ranges described in von Lühmann et al. 
(2020) [50]. Specifically, we selected the embedding step width Δt =
0.13 s (1 sample), maximum absolute time lag τD = 3.02 s, and corre
lation threshold ρthresh = 0.4. 

We then constructed a GLM using these regressors and a set of re
gressors used to represent task information formulated as below: 

Y =Gβ + E (4)  

where Y is the matrix of long-separation fNIRS signals, G is the design 
matrix, β is the set of coefficients, and E is the residual term. G contains a 
set of regressors used to model the recorded signals, which can include 
task-related regressors and regressors representing systemic physiology 
and other nuisance regressors. 

In this study, G was generated by appending the tCCA regressors with 
regressors generated by convolving 15s duration boxcar functions rep
resenting the task and the rest blocks with a canonical hemodynamic 
response (spm, MNE-NIRS toolbox) [53], resulting in j + 2 regressors 
used in the design matrix. A GLM was then fit to the long-separation 
channel fNIRS data using the constructed design matrix. The co
efficients corresponding with the task and the tCCA regressors were 
separated as below: 

Y =GTaskβTask + GPhysβPhys + E (5)  

where GTask and βTask are the collected regressors and weights corre
sponding with the task, respectively, and GPhys and βPhys are the collected 
regressors and weights corresponding with the tCCA regressors. The 
resulting coefficients corresponding to the tCCA regressors were 
collected and multiplied by their respective columns of the design ma
trix and subtracted from the original ΔHbO2 signal to remove all phys
iological signal components (presumed to be global systemic activity) 
explained by the GLM to produce YCorrected, which was used in the 
analysis pipeline along with the original signal Y for comparison as 
below: 

YCorrected =Y − GPhysβPhys (6) 

The fNIRS signals were then upsampled to match the sampling rate of 
the EEG signals (256 Hz) and runs were concatenated for the subsequent 
PAC analysis. Adjusted R2 and root mean square error (RMSE) were used 
to quantify model performance [54,55]. Spearman correlation between 
the number of short channels included and adjusted R2 was performed to 
investigate a possible relationship between the two variables. 

2.4. Phase-amplitude coupling (PAC) 

We propose electro-vascular phase-amplitude coupling (PAC) as an 
integrated, nonlinear method to explore interactions between the slow 
hemodynamic oscillatory activity measured by fNIRS and the fast elec

trocortical oscillations recorded by EEG. We adapted the algorithm 
proposed in Tort et al. (2010) [46] for the PAC analysis. To compute PAC 
between two time series signals x(t) and y(t), the signals were 
narrow-band filtered into frequency bands of interest xfilt(t) and yfilt(t)
(5 Hz bins in 5 Hz steps from 5-10 Hz to 50–55 Hz for EEG; 0.06–0.5 Hz 
for fNIRS). Assuming that coupling between the amplitude of x(t) and 
phase of y(t) is of interest (i.e., x(t) is a preprocessed EEG channel and 
y(t) is a preprocessed fNIRS channel, either before or after applying the 
tCCA-GLM preprocessing approach), the Hilbert transform of both sig
nals was taken, and the amplitude envelope of xfilt(t) and instantaneous 
phase of yfilt(t) were extracted, denoted Ax(t) and φy(t), respectively. 

The original signals x(t) and y(t) and Ax(t) were visually inspected 
for artifacts. Marked segments of Ax(t) and φy(t) were removed from 
further analysis. These segments included standard 18s windows around 
each point where the segments were appended to ensure that segments 
containing discontinuities were not included in the subsequent PAC 
analysis. This rejection approach was applied as the following steps in 
the analysis pipeline rely solely on the distributions of data points 
matched by sample index. Furthermore, in order to confirm the presence 
of an auditory steady state response (ASSR) in response to the auditory 
stimuli employed in this study, the power amplitude time series Ax(t)
was epoched − 0.5:1.0s relative to each auditory stimulus onset aver
aged across trials, and baseline corrected to the pre-stimulus period. 

After the previous steps to ensure signal quality, the phases were 
binned in N phase bins and the mean value of Ax(t) that corresponded 
with phase values from φy(t) in each bin was extracted as 〈Ax〉φ(j) for 
phase bin j. The mean amplitude for each bin was then normalized by 
the sum over all bins to produce a distribution of mean amplitudes (P) 
across phase bins as below: 

P(j)=
〈Ax〉φ(j)
∑N

k=1
〈Ax〉φ(k)

(7) 

A modulation index (MI) value is then extracted as a measure of PAC 
by normalizing the Kullback-Leibler distance (DKL) between distribution 
P and the uniform distribution U by log(N) as below: 

DKL(P,U)= log (N) +
∑N

j=1
P(j)log [P(j)] (8)  

MI =
DKL(P,U)

log(N)
(9) 

MI is a positive value in [0,1] that increases with increasing PAC 
between x(t) and y(t). In order to determine whether MI is statistically 
larger than the value expected by chance with the given data, a surro
gate distribution of MI values was then generated. In this study, we 
followed the method described in Cohen (2014) [56], in which a random 
time point in the middle 80 % of Ax(t) was selected and the samples were 
circularly shifted around this point (i.e. appending the end of the later 
segment to the beginning of the earlier segment). MI was calculated 
again using this surrogate version of x(t) and this process was repeated 
M = 200 times to generate a surrogate MI distribution. A p-value cor
responding with each MI value was determined by taking the ratio of the 
number of surrogate MI values greater than the observed MI value to M. 
This surrogate distribution was then used to convert the observed MI 
value to a z-score as below: 

MIz =
MIObserved − mean(MIDistribution)

std(MIDistribution)
(10) 

A permutation clustering-based approach applied across participants 
was used to identify statistically significant spatio-spectral clusters of 
PAC. By conducting a one-sample t-test across participants for MIz cor
responding to each frequency band/channel combination across mo
dalities, test statistics (t-statistics) were generated to compare with the t- 
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statistics obtained from another surrogate distribution. The surrogate t- 
statistics were obtained by performing a one-sample t-test on permuta
tions generated by changing the sign of the observed test statistics (2047 
permutations, corresponding with the total number of possible permu
tations across 11 participants). A p-value for each EEG/fNIRS channel 
pair and EEG/fNIRS frequency band was then generated by taking the 
ratio of the number of surrogate t-values greater than the observed t- 
value to the number of permutations. After this, p-values below a pre
defined threshold (p < 0.05) were clustered based on spectro-spatial 
adjacency and the sum of the test statistics within each are calculated. 
Spectral adjacency was defined as adjacent EEG frequency bands, while 
EEG and fNIRS sensors from the same ROI were considered spatially 
adjacent. A cluster p-value was then calculated for each cluster by taking 
the ratio of the number of surrogate test statistic sums from the largest 
cluster greater than the observed cluster test statistic sum to the number 
of permutations. This permutation clustering approach provides a 
framework for a non-parametric statistical test to find spectro-spatial 
clusters of PAC across a participant population that is robust to the 
multiple comparisons problem [57]. Similarly, this permutation clus
tering approach can be used to compare PAC across conditions. In this 
case, PAC calculated within each condition was compared across par
ticipants using a paired sample t-test. The surrogate distribution was 
similarly constructed by changing the labels of each of the PAC values 
observed across participants and recomputing the test statistic. 

3. Results 

3.1. Electro-vascular PAC 

Fig. 3 illustrates the general analysis pipeline employed in this study. 
EEG and fNIRS signals were preprocessed as previously described and 
statistical PAC between the two signals was extracted. 

Fig. 4 displays significant cluster t-statistics obtained from our 
analysis before and after applying tCCA regressor removal. Our out
comes demonstrated four significant PAC clusters before applying tCCA- 
GLM regressor removal. The first cluster (cluster t = 24.76, p = 4.885e- 
04) includes broadband EEG in the 15–55 Hz range in the frontal (F) 
region. Two significant clusters are observed in the left auditory (LA) 
region, with one appearing in the 15–25 Hz range (cluster t = 18.60, p =
4.885e-04), and the second appearing in the 30–50 Hz range (cluster t =

15.74, p = 0.010). A fourth cluster appears from 35 to 50 Hz in the right 
auditory (RA) region (cluster t = 13.75, p = 0.032). After tCCA regressor 
removal, we observe one cluster in the F region in the 30–50 Hz range 
(cluster t = 15.24, p = 0.021). Another significant cluster (cluster t =
10.79, p = 0.025) appears in the LA region in the 40–50 Hz range. Two 
clusters appear in the RA region, with one appearing in the 10–20 Hz 
range (cluster t = 16.47, p = 0.003) and another in the 25–35 Hz range 
(cluster t = 9.30, p = 0.041). 

3.2. Comparisons across conditions (task and rest) 

Fig. 5 displays cluster t-values from significant positive (top row) and 
negative (bottom row) clusters across the task and rest conditions before 
(left column) and after (right column) applying tCCA regressor removal. 
Comparing across conditions, two positive clusters (i.e., stronger PAC in 
the task condition than in the rest condition) were observed before tCCA 
regressor removal (Fig. 5 top left). We observed a positive cluster in the 
30–45 Hz range (cluster t = 16.26, p = 0.023) in the LA region, while 
another positive cluster in the 45–55 Hz range (cluster t = 13.69, p =
0.049) was observed in the RA region. We also observed a significant 
negative cluster (i.e., stronger PAC in the rest condition than in the task 
condition) in the 5–20 Hz range before tCCA regressor removal (cluster t 
= − 19.90, p = 0.0049) (Fig. 5 bottom left). After tCCA regressor 
removal, one significant positive cluster (cluster t = 14.93, p = 0.00) was 
observed in the 20–35 Hz range in the F region, while one significant 
negative cluster (cluster t = − 12.70, p = 0.0083) was observed in the 
same region (Fig. 5 top and bottom right). 

3.3. tCCA regressor removal 

Table 1 displays the average adjusted R2 of the GLM across all long- 
separation channels for each participant after applying the tCCA-GLM 
pipeline to model the influence of respiration effort and short- 
separation channels along with the number of short detectors 
(NumSDs) included in the tCCA feature generation algorithm. On 
average, the adjusted R2 value was 0.73 ± 0.14, corresponding with an 
approximate 73 % of variance in the long-separation channels explained 
by modeling using the short-separation and respiration effort channels 
and an average of 5.73 ± 2.00 short channels were eventually retained 
per participant. The average RMSE across channels and participants was 

Fig. 3. Block diagram of the proposed analysis pipeline. EEG signals were preprocessed using a band-pass filtering/ICA approach. fNIRS signals were low-pass 
filtered and converted to the oxygenated hemoglobin change time series (ΔHbO2) using the modified beer-lambert law. The tCCA-GLM correction approach is 
applied to long-separation channels, and the resulting EEG and fNIRS signals are further narrow-band filtered and the Hilbert transform of both signals is taken. 
Instantaneous EEG power amplitude and fNIRS phase are fed to the phase-amplitude coupling algorithm, and significant clusters of coupling are identified using the 
proposed permutation clustering approach. 
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20.42 ± 7.72 μM. Spearman correlation between adjusted R2 and the 
number of short detectors included determined a significant relationship 
between the two (Spearman ρ = 0.77, p = 0.005). Fig. 6 illustrates the 
original, modeled, and difference between the original and modeled 
ΔHbO2 time courses from a representative participant/channel (S01, 
F3–F1). Fig. 7 (A) depicts the average response from the same repre
sentative participant/channel across experimental blocks. 

3.4. EEG-auditory steady-state response (ASSR) 

The grand average of baseline corrected power amplitude across 
participants at channel FCz is presented in Fig. 7 (B). A clear ASSR is 
visible in the 35–45 Hz range, while auditory ERP components are re
flected in the 5–15 Hz range. 

4. Discussion 

This study investigated the interactions between slow hemodynamic 

Fig. 4. Cluster t-statistics corresponding to significant clusters within each ROI before (left) and after (right) tCCA regressor removal.  

Fig. 5. Significant positive (stronger PAC during the task than at rest; top row) and negative (stronger PAC during rest than during the task; bottom row) cluster t- 
value maps that correspond with PAC clusters across conditions before (left column) and after (right column) tCCA regressor removal. 
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oscillations measured using fNIRS and fast electrocortical oscillations 
recorded using EEG during an auditory task. The results of this study 
mark the initial documented instance of characterizing electro-vascular 
phase-amplitude coupling (PAC) between fNIRS and EEG. Within the 
scope of this investigation, we have successfully identified, for the first 
time, statistically significant clusters that demonstrate the existence of 
electro-vascular PAC. This coupling was observed between the instan
taneous phase of slow hemodynamics fNIRS signals and instantaneous 

power amplitude of high frequency EEG signals during an auditory task. 
We assessed these interactions before and after applying a tCCA-GLM- 
based fNIRS correction strategy to the recorded long-separation fNIRS 
signals to determine the effect of global hemodynamic activity on this 
relationship. We further explored differences in observed PAC across 
task conditions to investigate the role of electro-vascular PAC in audi
tory processing. 

Our analysis demonstrated that the adopted correction strategy 
could model a substantial (~73 % ± 14 %) proportion of the variance of 
long-separation channels averaged over channels and participants. Our 
correlation analysis suggested a relationship between adjusted R2 and 
the number of short-separation channels available. This finding agrees 
with previous literature, including a study conducted by Santosa et al. 
(2020) demonstrating an increase in the percentage of short-channel 
variance explained with an increase in the number of short channels 
with diminishing returns as more short channels are included [58]. 
Given the substantial percentage of variance in the long-separation 
channels that can be modeled using the short-separation channels and 
respiration effort, the long-separation channels before applying the 
correction strategy may reflect more global changes in the participants’ 
hemodynamic state, while long-separation channels after the correction 
may reflect more localized cerebral hemodynamics. 

Our outcomes further demonstrated significant (p < 0.05) coupling 
across the entire dataset in different frequency bands in all three regions 
of interest (ROIs) both before and after applying the proposed correction 
strategy. The presence of these clusters of PAC between fNIRS and EEG 

Table 1 
Average adjusted R2 and RMSE across channels of the GLM used in the tCCA- 
GLM filtering approach for each participant, along with the number of short 
detectors (NumSDs) included in the tCCA feature generation algorithm.  

Participant Adjusted R2 RMSE (μM) NumSDs 

S01 0.86 20.32 8 
S02 0.84 17.19 7 
S03 0.88 10.70 7 
S04 0.58 38.00 2 
S05 0.68 23.61 7 
S06 0.53 17.16 4 
S07 0.87 15.56 6 
S08 0.56 28.42 3 
S09 0.88 16.94 8 
S10 0.75 13.23 5 
S11 0.65 23.50 6 

Average 0.73 ± 0.14 20.42 ± 7.72 5.73 ± 2.00  

Fig. 6. Observed (blue) and modeled (red) ΔHbO2 time courses from a representative participant using the tCCA-GLM based approach. The cleaned ΔHbO2 signal 
(magenta) is the difference between the observed and modeled ΔHbO2 signals. 

Fig. 7. A) Evoked average ΔHbO2 signal from a representative participant/channel (S01, F3–F1). The vertical dashed magenta lines denote auditory stimulus onset, 
while the vertical black dashed line represents the onset of the rest period. B) Percentage change of the grand average power amplitude from representative channel 
FCz relative to the − 0.5:0.0s pre-stimulus period. Auditory stimulus onset is denoted by a magenta vertical dashed line. A clear ASSR is visible in the 35–45 Hz bands, 
while ERP components are reflected in the 5–15 Hz band. 
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across the three ROIs could be attributed to several possible sources. One 
possibility is that PAC between respiration and EEG could be reflected in 
these results. Respiration has been identified as a source of interference 
in fNIRS signals [59], and we and other groups have demonstrated to 
couple with multiple frequency bands across several cortical regions 
[35,60,61] including the frontal and left/right temporal/temporopar
ietal regions. Respiration-γ-band coupling is one of the more commonly 
reported instances of this phenomenon and is thought to reflect a 
modulatory effect of respiration on cortical excitability [35]. The pres
ence of broad coupling in the frontal region and γ-band coupling in the 
left auditory and right auditory regions before correction could poten
tially be explained by respiration signal components in fNIRS signals. It 
is plausible that other sources of systemic physiology reflected in fNIRS 
could play a role in the differences in PAC observed before and after 
correction. For example, heart rate variability (HRV), which can also be 
reflected in fNIRS signals, has been demonstrated to modulate spectral 
features in EEG in the α, β, and γ bands [62]. However, the presence of 
significant PAC clusters in each region after correction suggests that 
other electro-vascular interactions may take place. This finding provides 
further evidence for nonlinear interactions between cerebral hemody
namics and electrical oscillatory activity, which could have possible 
implications for future hybrid EEG-fNIRS BCI studies. Currently, these 
studies predominantly consider linear unimodal methods for feature 
extraction [9]. Although the proposed PAC approach requires a pro
hibitive amount of data to be used as a feature in a single-trial BCI 
application, our findings suggest instantaneous coupling between EEG 
and fNIRS signals that could be informative in future studies. 

When comparing across conditions, the presence of significant pos
itive and negative PAC clusters suggests that electro-vascular coupling is 
present and related to multiple sources of activity involved in the 
different conditions. General brain-body interactions have been re
ported [63], but remain underexplored to date. Notably, Zelano et al. 
(2016) observed PAC between nasal respiration and electrocortical ac
tivity, and that this relationship could have a role in influencing 
cognitive processing [61]. Another example is the presence of PAC be
tween parietal/occipital alpha and the phase of the gastric basal rhythm 
reported by Richter et al. (2017) [64]. PAC has also been demonstrated 
within fNIRS channels, with lower frequency signal components 
reflecting neurogenic activity and higher frequency signal components 
reflecting systemic physiology (respiration and cardiac components) 
[65]. The results observed before correction suggest that our observed 
electro-vascular coupling could be related to several processes associ
ated with the task. The positive left auditory cluster suggests increased 
gamma coupling with long-separation fNIRS channels during the task 
when compared with rest. As this cluster was not present after correc
tion, it is possible that this could reflect coupling between global he
modynamic components (cardiac, Mayer waves, respiration, etc.) and 
ASSR amplitude. The observed positive right auditory gamma cluster 
extends to the limits of the bands explored in this analysis, which were 
selected due to the 1/f fall-off of relative power observed in scalp EEG 
measurements [66]. It is possible that this cluster could extend further 
into higher EEG frequency bands, but the nonspecificity in the EEG 
frequency domain compared to the observed left auditory cluster and 
lateral position could possibly reflect electromyographic (EMG) activity 
[67]. The significant negative cluster in the frontal region overlapped 
with the frequency bands reflecting ERP components during the task. 
Although no coupling was observed in this region before or after 
applying the correction strategy across the entire dataset, it is possible 
that the presence of ERPs that do not change in amplitude relative to the 
phase values of the hemodynamic signal could reduce coupling relative 
to that observed during resting periods. 

Our outcomes demonstrated significant electro-vascular PAC clusters 
in the frontal and left auditory regions between fNIRS and EEG in 
different γ sub-bands after applying the correction strategy. We 
observed that both sub-bands (frontal, 30–50 Hz and left auditory, 
40–50 Hz) overlapped with auditory stimulation frequency, which may 

suggest that evoked power attributed to the ASSR may be modulated by 
the phase of hemodynamic signals. The frontal/frontocentral region is 
notable for being the location typically reported in ASSR studies, as this 
response is typically maximal in the frontal region [68]. Interestingly, 
the observed PAC coupling was found to be stronger in this band in the 
frontal region during the rest condition than during the task condition. 
This could possibly reflect electro-vascular decoupling in this band 
during the task as a result of the ASSR associated with this frequency 
band. Electro-vascular coupling at rest could be disrupted by the pres
ence of the ASSR in this band, which would be larger in amplitude when 
compared to resting state γ-band activity. 

The left auditory region may be of interest as well, as the left auditory 
cortex has demonstrated a role in the processing of the rapid temporal 
characteristics of sound, as opposed to the right auditory cortex’s role in 
the processing of pitch [69]. Our analysis showed no significant differ
ence across conditions in this band/region. Additionally, the two lower 
frequency clusters appearing in the right auditory region after the 
correction strategy lack a clear explanation in the context of the task. 
Right-lateralized α-band activity is associated with auditory anticipation 
[70], and could be a factor in the repetitive task employed for this study. 
Similarly, β-band oscillations have also been implicated in auditory 
prediction [71]. It is possible that the phase of cortical hemodynamics 
could be related to anticipation of stimuli via PAC. There was no sig
nificant difference across conditions in bands containing either of these 
clusters, however, suggesting that this coupling may occur independent 
of the task. The significant positive cluster observed after correction in 
the β band could possibly reflect hemodynamic modulation of 
attention-related processes, as frontal β band activity has been related to 
attention [72]. 

The outcomes from this study have demonstrated significant clusters 
of coupling between low-frequency hemodynamic signals, measured 
using fNIRS, and high-frequency electrical oscillations, measured by 
EEG, during auditory settings. We assessed this coupling both prior to 
and following the implementation of a tCCA-GLM-based correction 
strategy to limit any potential influence of systemic physiology that 
might have led to any observed coupling, expanding on previous char
acterizations of electro-vascular coupling in which this consideration 
was not made [41,73] or nonlinear spectro-temporal features of fNIRS 
signals were not considered [5]. To the best of our knowledge, this study 
represents the first attempt to characterize any potential interactions 
between hemodynamic and electrocortical oscillations during auditory 
tasks. Furthermore, our results suggest that this electro-vascular PAC 
may be both task-dependent and task-independent, and that the 
instantaneous hemodynamic state could possibly influence multiple 
cortical processes simultaneously. 

The interpretations of the current findings are limited by the sample 
size of this study, which limits the statistical power of the current ana
lyses. Although comparisons were made across experimental conditions, 
the number of samples available in each condition provides relatively 
few (~60) cycles of the lowest frequency of interest (0.06 Hz) in the 
within-condition analysis [46]. Furthermore, the limited number of 
sensor locations for each modality restricts the comprehensive charac
terization of coupling. We additionally only consider one fNIRS fre
quency band due to the exploratory nature of this study; consideration of 
separate distinct fNIRS sub-bands could provide further information. 
Finally, the current electro-vascular coupling exclusively examines 
instantaneous coupling between the two modalities. However, it re
mains plausible that a more comprehensive characterization of these 
relationships could be achieved by adopting an approach that accounts 
for variable delays in coupling, such as the convolution of spectral power 
curves with a pre-defined hemodynamic response function [74]. Future 
work should be conducted to optimize this approach with respect to 
temporal variability in this relationship by adopting optimization 
methods, such as evolutionary algorithms [75,76]. However, this study 
characterizes task-independent and task dependent electro-vascular 
PAC, providing a framework for further investigation of cross-modal 
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nonlinear measurements of electro-vascular coupling, while providing 
evidence for its involvement in auditory task-related and 
task-independent processes. 
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