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Abstract—Applications of multimodal neuroimaging tech-
niques, including electroencephalography (EEG) and func-
tional near-infrared spectroscopy (fNIRS) have gained promi-
nence in recent years, and they are widely practiced in
brain—-computer interface (BCI) and neuro-pathological diag-
nosis applications. Most existing approaches assume obser-
vations are independent and identically distributed (i.i.d.),
as shown in the top section of the right figure, yet ignore the
difference among subjects. It has been challenging to model
subject groups to maintain topological information (e.g.,
patient graphs) while fusing BCI signals for discriminant
feature learning. In this article, we introduce a topology-
aware graph-based multimodal fusion (TaGMF) framework
to classify amyotrophic lateral sclerosis (ALS) and healthy
subjects, illustrated in the lower section of the right image.
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Our framework is built on graph neural networks (GNNs)

but with two unique contributions. First, a novel topology-aware graph (TaG) is proposed to model subject groups by
considering: 1) intersubject; 2) intrasubject; and 3) intergroup relations. Second, the learned representation of EEG and
fNIRS signals of each subject allows for explorations of different fusion strategies along with the TaGMF optimizations.
Our analysis demonstrates the effectiveness of our graph-based fusion approach in multimodal classification by
achieving a 22.6% performance improvement over classical approaches.
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I. INTRODUCTION
ESEARCH efforts have been actively pursuing mul-
Rtiple measurements to support effective decoding
of neural activities to improve brain—computer interface
(BCI) systems [1], [2] and have developed a variety of
techniques, including electroencephalography (EEG), and
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functional near-infrared spectroscopy (fNIRS) [3], [4] for
studying brain signals. Most studies have conducted uni-
modal investigations, using either EEG or fNIRS to learn
and detect neural responses [4], [5]. However, each of
these modalities can capture limited information regard-
ing brain functions due to the underlying technical con-
straints and complex nature of neural processing in the
brain [2], [6], [7].

Applications of multimodal fusion have gained promi-
nence in recent years and are widely practiced in BCI and
neuro-pathological diagnosis applications [8], [9]. In this
regard, integrating EEG and fNIRS signals provides two
cost-effective sources of information: electrical activities and
hemodynamic responses of the brain from EEG and fNIRS,
respectively [10], [11]. Earlier studies with EEG-fNIRS
fusion for classification reported improved performance
over a single modality [1], [8], [12], [13]. These fusion
approaches usually follow independent and identically dis-
tributed (i.i.d.) assumptions and use either decision-level [14],
[15] or feature-level [12], [16], [17], [18], [19] fusion
strategy to integrate features and classify observations
independently.

republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Rhode Island. Downloaded on September 29,2024 at 14:19:36 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-8013-4997
https://orcid.org/0000-0002-1475-575X
https://orcid.org/0000-0002-6159-0257
https://orcid.org/0000-0002-3164-6440
https://orcid.org/0000-0003-1640-0749
https://orcid.org/0000-0002-7686-8784

RAHIMI et al.: TOPOLOGY-AWARE MULTIMODAL FUSION

21063

Recent explorations have opened new frontiers in modeling
brain signals using graph-based methods, which have achieved
appealing performance in analyzing, classifying, and interpret-
ing neurological disorders and disease prediction in cases such
as Alzheimer’s and autism [10], [20], depression [21], and
anxiety [22]. In addition, brain signals can be modeled by
a graph according to regional connectivity to represent the
underlying networks in brain responses [23], [24]. Moreover,
graphs have the potential to represent topology within larger
populations where nodes (i.e., individuals) are connected based
on their similarities [20] or to provide knowledge bases
for recognized challenges such as depression detection [25].
While graph-based models offer insights into neural dynamics
through regional connectivity, our study diverges by focusing
on an end-to-end representation learning framework for EEG
and fNIRS signals using graph neural networks (GNNs) [26]
for groups of subjects. This decision stems from the chal-
lenges of interpreting functional connectivity in fNIRS due
to extracerebral hemodynamic interactions, which can con-
found true neural activity, especially without short channels
to mitigate these effects [27]. By prioritizing the integration
of EEG and fNIRS data for representation learning, our work
seeks to harness the complementary strengths of these modal-
ities, thus contributing novel methodological advancements
to neuroimaging research beyond the traditional functional
connectivity approach.

As an extension to previous works, we also explore
graph-guided BCI fusion for groups of subjects (i.e.,
healthy/patient) and their classification. The local smoothness
assumption in graphs allows us to model different subjects and
groups that are usually non-i.i.d. for representation learning.
The framework is built on GNNs for representation learning,
while the learned features can be verified through various
classifiers. GNN approaches generally consider node features
and their interaction as edges to aggregate node features over
local neighborhoods and pursue optimal representations layer
by layer [28]. The efficacy of GNNs hinges on accurately
reflecting the topology among subjects and observations in
the graph. Assuming there are multiple observations per
subject, when building the graph for GNN, several distinct
relations would be considered, including: 1) inter-subject;
2) intrasubject; and 3) intergroup relations. In particular,
intrasubject relations indicate a strong correlation among
observations of the same subject. However, to our knowledge,
these concepts have not been thoroughly explored in previous
research.

We combine modal integration and cross-subject informa-
tion within a single framework. The motivation behind this
dual approach is rooted in our aim to develop a comprehensive
strategy that not only enhances the integration of multimodal
neuroimaging data but also addresses the inherent variabil-
ity and distributional differences across subjects—a common
challenge in neuroscientific studies. By incorporating these
two aspects into a unified framework, we strive to high-
light the synergistic benefits of handling modality fusion and
cross-subject variability concurrently. This integration allows
for a more holistic improvement in classification and repre-
sentation learning performance, leveraging the complementary

information from multiple modalities while accounting for the
unique characteristics of individual subjects’ data.

To that end, this article introduces topology-aware graph-
based multimodal-fusion (TaGMF), a learnable GNN model
for feature extraction, achieved by leveraging the union
of three dedicated subgraphs. Compared to existing works,
TaGMF explores subject relations over networks beyond the
scope of single-subject neural dynamics modeling to pursue
better representations, along with the network optimization is
the single and multimodal fusion strategy at different levels
to account for multimodal data from subjects. In particular,
we investigate two fusion strategies, namely early and late
fusion, and compare them with the single modality data in
classification tasks. To demonstrate our TaGMF approach,
we extensively evaluate the collected EEG and fNIRS data
from healthy controls (HCs) and subjects with amyotrophic
lateral sclerosis (ALS).

Our contribution can be summarized as follows.

1) A novel TaGMF framework has been developed to
model subject groups and intra- and intersubject rela-
tions of different observations to learn discriminant node
representations for downstream tasks.

2) Explorations of fusion approaches with multimodal mea-
sures provide a basis for understanding complementary
features and improving the performance of learning
tasks.

3) Extensive evaluations on a collected multimodal
EEG-fNIRS dataset demonstrate that our proposed
TaGMF outperforms conventional machine learning
models.

[I. RELATED WORK
Machine learning algorithms have achieved remarkable
improvements in neuroimaging and signal processing. This
section reviews the methods closely related to our work,
narrowing it down to: 1) graph-based learning approaches in
neuroimaging studies and 2) multimodal EEG-fNIRS fusion.

A. Graph Neural Networks

In clinical studies, graphs are explored broadly under
two scenarios: 1) cross-subject graphs and 2) single-subject
graphs. Cross-subject graphs usually model patient networks
in computer-aided diagnosis (CADx) applications. In contrast,
single-subject graphs aim to present inherent brain neural
connections as nodes and edges for a single subject [29].

1) Cross-Subject Graph: The success of GNNs in social
networks and recommendation systems has motivated
graph-based algorithms in patient networks [30] where sub-
jects are treated as nodes and their interaction as edges [24].
Parisot et al. [31] was the first to employ GNN in the medical
domain for brain analysis in a semi-supervised fashion. Later,
they enhanced the population graph in disease diagnosis
by using meta-features [20]. Nonetheless, the graph quality
largely affects the performance of GNN. To that end, [32],
[33], [34], [35] recommended using multigraph fusions to
enhance the learning process by incorporating latent attributes
in the population graph, and an optimal graph, based on rel-
evancy to medical features selected by statistical tests. While
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Fig. 1. Overview of the proposed TaGMF framework. The left side represents the collection of EEG and fNIRS brain signals and subsequent feature
extraction. The center part provides a visual description of graph structures with three types of edges: 1) intrasubject edges connect observations
within the same subject; 2) intersubject edges between different subjects provide insights into shared patterns across individuals; and 3) intergroup
edges connect subjects across healthy and patient groups highlighting group-level similarities.

this ensemble strategy improved the performance, it intro-
duced additional computation in latent attribute discovery and
efforts in fusion layer design. To alleviate these challenges,
Wang et al. [36] conducted feature selection for clinical and
genomic data to build two different matrices. Zhan et al. [37]
proposed to use multiple graphs for heterogeneous features
with an optimization module to adaptively optimize the graph
weights. Cosmo et al. [30] demonstrated the existence of a sin-
gle optimal graph by incorporating multiple features embedded
in Euclidean space. Zhong et al. [38] proposed EEG-based
emotion recognition using regularized GNN (RGNN) to han-
dle cross-subject EEG variations and noisy labels.

2) Single-Subject Graph: GNN with single-subject graphs
mostly concentrated on capturing richer features from brain
signals and eliminating noise to achieve more refined results.
Research in [5] proposed an EEG-based hierarchy graph con-
volution network to extract the information between adjacent
electrodes for emotion recognition. Yin et al. [39] used GNN
to extract graph domain features for emotion valence and
arousal recognition and classification. Multiview graph con-
volutional network (GCN) [40] proposed a graph embedding
of brain networks to capture brain topological information and
eliminate noisy and spurious connections for autism spectrum
disorder classification. Faskowitz et al. [41] introduced an
edge-centric perspective on brain networks, highlighting the
significance of connections in understanding the architecture
of cerebral cortex interactions. Furthermore, the work by
Ismail and Karwowski [42] explored innovative approaches
to modeling functional brain networks using graph theory
and covariance matrices, offering insights into the complex
interplay of neural connections. Similarly, the comprehensive
review by Dragomir and Omurtag [43] on graph theoretical
approaches in neuroimaging consolidates the current under-
standing and applications of these methods in elucidating the
brain’s functional architecture. While extensive research has
leveraged single modalities independently, studies exploring
the integration of multimodal signals, particularly EEG and
fNIRS, through covariance matrices for single-subject con-
nectivity analysis remain an emerging area. Unlike existing
works, this article also proposes a general graph-based multi-
modal fusion framework for groups of subjects. In particular,
we focus on developing new graph construction methods
to incorporate various relations among subjects for neural
dynamics representation learning.

B. Multimodal Brain EEG-fNIRS Fusion

Multimodal fusion [1] has been employed in many tasks,
including mental analysis, emotion measurement, motor
control, clinical evaluation, rehabilitation, and perception
assessment [44]. Fused brain signals demonstrated superiority
through shallow learning models, such as support vector
machines (SVMs), random forest [44], [45], [46], linear dis-
criminant analysis (LDA) [47], and deep models, including
deep neural networks (DNNs) [7], [48], [49], [50], recurrent
neural network (RNN) with long short-term memory (LSTM)
[51], [52], [53], convolutional neural network (CNN) [22],
[54], [55] and GNN [20], [23]. Nonetheless, fusing high
dimensional EEG-fNIRS neuroimaging data is still a chal-
lenge [2]. Common issues include weak generalization and
overfitting given limited data in clinical research [56]. In this
regard, Lin et al. [8] conducted the correlation analysis to
select the most correlated signal channels, and Yin et al. [57]
adopted joint mutual information for feature optimization.
Al-Shargie et al. [17] developed a fusion technique to incor-
porate temporal properties of EEG and spatial features from
fNIRS, and later used canonical correlation analysis (CCA)
as a linear mixing model that maximizes the covariance
between EEG and fNIRS [15]. Khan and Hasan [13] applied
multiresolution singular value decomposition (MSVD) to per-
form the feature-based fusion. First, statistical features are
extracted from the fNIRS data and discrete wavelet transform
(DWT) features from the EEG data are normalized, which
are then decomposed into sub-bands using MSVD. Recently,
Deligani et al. [2] proposed an approach to optimizing the
complementary features of EEG-fNIRS using label informa-
tion at the feature level through a cross-validation process.
Qiu et al. [58] combined the time- and frequency-domain
features of EEG and fNIRS data and used the ASO algorithm
for feature selection to remove the information redundancy
caused by multidomain features.

In this work, we explore EEG-fNIRS feature extraction
and fusion through a novel TaGMF framework. In particular,
we compare early and late fusion strategies to understand
the roles of TaGMF in neuroimaging data representation
learning.

[1l. METHODOLOGY

Fig. 1 illustrates a visual overview of the TaGMF method,
integrating EEG and fNIRS data within a multimodal graph
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Fig. 2. Visualization of ALS versus control signals.

representation. The left side represents the collection of EEG
and fNIRS brain signals and subsequent feature extraction. The
center part provides a visual description of graph structures
with three types of edges: 1) intrasubject edges connect obser-
vation within the same subject; 2) intersubject edges between
different subjects to provide insights into shared patterns
across individuals; and 3) intergroup edges connect subjects
across healthy and patient groups highlighting group-level
similarities. TaAGMF leverages the graph structure to extract
meaningful features which are used to learn discriminating
patterns essential for the downstream classification task.

A. Data Analysis

1) Participants: Data were collected by recruiting a total
of eighteen subjects (nine subjects with ALS and nine HCs).
Seven out of nine ALS subjects were males with an average
age of 56.8 years. Participants with ALS had ALS revised
functional rating scale (ALSFRS-R) scores of 0, 4, 4, 23, 22,
39, 41, 33, and 26 with a mean score of 21.3 &+ 15.5 on
a 48-point scale. Four out of nine age-matched HCs were
males with an average age of 60.7 years. Age-matched control
participants reported no known history of visual, mental,
or substance-related disorders which could possibly influence
the results or their performance during data collection. Data
collection was performed at the University of Rhode Island
(URI) with Institutional Review Board (IRB) approval and
written consent was obtained from all the subjects or their
caregivers [2].

2) Acquisition: EEG and fNIRS signals were recorded
simultaneously using a single cap mounted with both EEG
electrodes and fNIRS optodes. A g.USBamp amplifier (g.tec
Medical Tech., Schiedlberg, Austria) was used to record the
EEG data at a sampling rate of 256 Hz. A NIRScout system
(NIRx Inc.) with two NIR lights (760 and 850 nm wave-
lengths) was used to record fNIRS data at a sampling rate of
7.81 Hz. This setup allowed us to capture the complementary
electro-hemodynamic characteristics of neural responses with
minimal interference. Data was recorded using 16 EEG and
16 fNIRS channels. EEG channels were placed at AF3*,
AF4*, F1*, Fz*, F2*, T7, Cz, TS, P7, P3, Pz, P4, P8, PO7,
POS, and Oz which covers all prefrontal, frontal, central, pari-
etal, temporal and occipital areas. fNIRS channels consisted of
eight emitters and seven detectors where emitters were placed
at Fpz, AF3, AF4, F3, Fz, F4, CP5, and CP6, and the detectors
were located at Fpl, Fp2, AFz, F1, F2, P5, and P6 covering
the prefrontal and frontal areas. More details can be found
in [2]. Fig. 2 shows ALS versus control signals, averaged

over all subjects using the F1-Fz channel of fNIRS and Oz
channel of EEG as the most representative channels.

3) Preprocessing and Raw Feature Extraction: For EEG
data, each group, that is, HC and ALS, has nine participants.
Each participant has two runs and each run has 14 trials.
Therefore, in total, we recorded 9 x 2 x 14 = 252 number
of observations/samples for each group. EEG signals were
bandpass filtered 0.3-35 Hz to remove baseline drift and out-
of-band artifacts and further, it was visually inspected for
any outliers. Segmentation for task/event-related analysis was
conducted by isolating specific windows poststimulus presen-
tation to ensure that the extracted features pertain directly to
the tasks/events. The EEG spectral features were obtained by
decomposing the data into spectrograms and averaged into
four different frequency bands, namely delta (1-3 Hz), theta
(4-7 Hz), alpha (8-12 Hz), and beta (13-30 Hz) to obtain
four different features. Thus, in total, we obtained 16 x 4 =
64 spectral features where 16 is the number of channels,
and 4 is the number of frequency bands. EEG temporal
features were acquired using five event-related potential (ERP)
features corresponding to three maximum and two minimum
peaks respectively. Therefore, we obtained 16 x 4 = 64 EEG
temporal features where 16 is the number of channels, and 4 is
the number of ERP components. In this study, we consider
EEG spectral as EEG Power and EEG temporal as EEG ERP.

For fNIRS data, the segmentation approach mirrors that of
the EEG, with an equivalent number of observations/samples
per group. Bandpass filter was applied to fNIRS data at
0.01-0.2 Hz to remove physiological noises produced by
respiratory and cardiac activities [59]. Subsequently, using the
modified Beer-Lambert Law [60] on the raw optical inten-
sity data, we extracted oxy-hemoglobin (HbO2) concentration
changes. This process specifically pinpointed hemodynamic
responses to the tasks/events by analyzing 0—6 s poststimulus
windows for each channel, ensuring the extracted features
accurately reflected task/event-induced hemodynamic activity.
In total, fNIRS data contain 16 x 2 = 32 features where 16 is
the number of channels and 2 is the number of feature types.

4) Experimental Protocol: Subjects participated in a
visuo-mental test based on the commonly used visual oddball
paradigm with a mathematical task during data collection.
This paradigm is fully described in [61]. These tasks provoke
both electrical and hemodynamic responses relevant to visual
oddball simulations and mental arithmetic operations.

5) Training/Validation Split: Raw EEG and fNIRS features
are normalized using the unit norm and split into training
and test sets. Data are split into five folds where training and
test sets do not contain observations from the same subject.
We have 504 observations of 18 subjects (9 HC and 9 ALS).
Out of nine HC subject observations, seven subjects and their
7 x 28 = 196 observations are used for training, and the
remaining two subjects and their 2 x 28 = 56 observations
are for testing. The same data split strategy is applied to the
ALS group.

B. TaG-Based Multimodal Fusion

In this section, we will elaborate on our TaGMF framework
for classifying disease states using the collected data, as
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Fig. 3. Pipeline of our TaGMF framework. Early fusion entails the concatenation of raw features and their TaG construction before feeding them
to the GNN model. Late fusion performs TaG construction and feature extraction through the GNN models first, followed by the concatenation of

features. Classification is then conducted for both approaches.
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Fig. 4. Visualizations of (a) training graph, (b) test graph, (c) identity graph, and (d) unified graph on EEG Power data.

illustrated in Fig. 3. TaGMF is based on classic GNN models
but tailored to accommodate multimodal data for groups of
subjects. First, we propose a topology-aware graph (TaG) to
present pairwise relations among observations precisely. Sec-
ond, two fusion strategies, that is, early and late, are explored
to account for common and unique topological information of
each modality.

1) TaG Construction: GCN [62] entails graphs in
training and inference; however, built-in graphs are not
always available. To that end, we develop a general
graph construction criteria suitable for neural dynamics
modeling of subject groups, termed “TaG.” TaG is
essentially a  nonparametric and  knowledge-driven
graph motivated by the following. First, we apply the
k-nearest-neighbor (KNN) method to explore observations
and their neighbors to build a nondirectional KNN graph
where only neighbors (measured by similarities) are
connected. Second, knowledge about each subject and their
observations can contribute additional connections to the KNN
graph, especially for test data without label information. For
example, observations of the same subject can be connected.
Third, most GNNs are trained in a transductive fashion,
meaning the graph incorporates all the observations, including
training (with labels) and test data (without labels), that are
intertwined during the model training. Our TaG includes three
sub-graphs to accommodate different facets of data and craft
different ways of building connections, as explained below.

a) Training graph G;: The training graph is built for both
HC and ALS training data using: 1) label information and

2) connections learned by the KNN graph. First, data of the
same label are connected, yielding two fully connected graphs
for HC and ALS observations, respectively. Second, we further
apply KNN criteria to the fully connected graphs to produce
the training graph. This is equivalent to the intersection of
the fully connected HC/ALS graph and their individual KNN
graphs. An example EEG Power training graph is shown in
Fig. 4(a). The graph is sparse in general due to the intersection
with the sparse KNN graph.

b) Test graph G,: Test data without labels can only apply
the KNN criterion to create connections for observations. Note
that these connections may yield test-test data connections
or test-train data connections that may propagate labels from
training to test data through the graph. Unlike the training
graph, the test graph may also introduce unwanted connections
between HC and ALS observations, primarily due to their high
similarities. An example test graph is shown in Fig. 4(b).

¢) Identity graph G3: Observations of the same subject
share the label and thus should connect to each other. This
is particularly useful for test graphs with limited discriminant
information and leads to fully connected sub-blocks, as shown
in Fig. 4(c). The formulated “clique” benefits discriminant
representation learning and classification as observations of
the same subject will be treated as a group at the test. This is
essentially similar to the majority voting criterion determined
by predictions of a group test data, thus providing potentially
better performance.

d) Unified graph G: The union of three sub-graphs: G =
G U G, U Gj enables the integration of nonparametric KNN
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graph and knowledge of subject groups. An example unified
graph for the same EEG Power data is shown in Fig. 4(d).

2) TaGMF Learning: Let X € R¥*? be the BCI features,
including both training and test data, where N is the total
number of observations, d is the dimension of raw features,
and G € RM*V is the built TaG graph. TaGMF aims to learn
the GNN parameters W; at layer [ in training. The forward pass
proceeds layer by layer through the function: ¥; = g(¥;—1, G)
where Y; is the feature at layer /, and g is a ReLU activation
function. In particular, each layer aggregates the node fea-
tures via graph convolutions and passes to the next layer as
follows:

Y =g(D72GD7V2Y  Wiy) (1)

where G = G + Iy is the modified adjacency matrix with
self-loops through adding the identity matrix Iy € R¥*V, and
Dii = ; Gij is a diagonal matrix indicating the degree of
each node. The component D~/ 26D is also recognized
as the normalized graph Laplacian in spectral methods such
as spectral clustering to maintain a good balance among
different clusters. Here Yy = X uses the raw features as the
input, and the final output Z is produced through a softmax
function

Z = softmax(D~'2GD~ 1y, W) 2)

where Z is the normalized probabilistic output for classifica-
tion purposes.

3) TaGMF-Based Feature Extraction: As opposed to the con-
ventional usage of GNN as a classifier, we treat TaAGMF as a
representation learning model to extract discriminant features.
This allows us to explore different classifiers with the learned
TaGMF features and usually achieves better performance when
the number of training samples is limited. To extract TaGMF
features, we first train TaGMF as before, then pass the data
through the learned GNN model and extract the features from
the second to last layer. The learned features for training and
test data will be used to train various classifiers.

4) Fusion Strategies: In TaGMF, we propose two fusion
mechanisms: early fusion and late fusion. In early fusion,
raw features from multimodal data are concatenated to form
new vectors based on which a common TaG can be learned.
Then TaG and raw features are passed to GNN for training
and feature extraction. In late fusion, however, separate GNN
models are learned for each modality to extract features.
The GNN features of each modality are then concate-
nated. The early and late fusion approaches are illustrated
in Fig. 3.

C. Comparisons With Classical Methods

We elaborate on baselines by considering different features
and classifiers used by classical approaches. First, TaGMF
features are compared with raw features and feature selection
approaches such as lasso regularization capable of selecting
the most significant and nonredundant sparse features [63],
[64]. Second, various classifiers are explored, including the
Softmax classifier, SVM, nearest neighbor (NN), and decision
tree (DT). In parallel, both unimodal and multimodal features

are compared in classification tasks. This provides a compre-
hensive comparison between TaGMF and many other classical
approaches.

IV. EXPERIMENTAL RESULTS
A. Raw Features Versus TaGMF Features

Fig. 5(a)-(d) compares the raw features extracted directly
from the original signals and proposed TaGMF features. It can
be observed that TaAGMF features yield higher accuracy than
raw features in all three classifiers, and our proposed approach
improves the performance by approximately 22%, 15%, and
19% with classifiers SVM, NN, and DT, respectively as shown
in Fig. 5(d). It is noteworthy that SVM outperformed NN and
DT in terms of classification accuracy.

B. Single Versus Multimodality

Fig. 5 evaluates TaGMF features under unimodal and
multimodal setups, applying late fusion. As hypothesized,
classification using multimodal features extracted by TaGMF
demonstrated improved performance [Fig. 5(d)] compared to
each unimodal signal [Fig. 5(a)—(c)], achieving 15.9%, 19.7%,
and 22.6% improvement with the three classifiers: SVM, NN,
and DT, respectively. SVM consistently exhibited enhanced
performance in all modalities. The results also indicated that
TaGMF features work better with SVM than the default
classifier Softmax applied in conventional GNNs.

C. Early and Late Fusion Strategies

Fig. 6 compares early and late fusion for multi-
modal TaGMF features followed by conventional classifiers.
As shown in the figure, the late fusion approach outperforms
early fusion by 9.29%, 14.9%, and 11.7% in SVM, NN, and
DT. While both approaches aim to harness the complemen-
tary strengths of EEG and fNIRS modalities, our analysis
reveals a distinct advantage in favor of late fusion. This
strategy’s superiority is attributed to its capacity to preserve
and optimally leverage modality-specific features up to the
decision-making stage. Late fusion allows for independent and
tailored optimization of each modality’s data representations.
Theoretically, late fusion can require additional computation
due to separate processing streams that are merged at a later
stage, in the context of our study, the quantitative increase in
processing time is approximately 1.5-fold compared to early
fusion and 1.2 times higher than memory consumption in
early fusion. This insight into the comparative effectiveness
of fusion strategies underscores the value of late fusion in
achieving a more nuanced and effective representation of
neuroimaging data.

1) Roles of Early and Late Fusion in Representation Learn-
ing: Early Fusion integrates raw data or features from EEG
and fNIRS modalities at an initial stage. This approach
tests the hypothesis that combined feature space, when pro-
cessed holistically, could reveal new insights into the neural
mechanisms under study. However, it may also obscure
modality-specific patterns. Late Fusion maintains the distinc-
tion between modalities until the decision level, allowing for
independent optimization of representation learning for each
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Fig. 6. Performance comparison of multimodal data in early and late
fusion strategies using three classifiers: SVM, NN, and DT.

modality. This strategy acknowledges the unique contributions
of EEG and fNIRS to understanding neural activity, ensuring
that the richness of modality-specific information is preserved
and effectively utilized.

D. Why KNN Algorithm For Graph Construction

In selecting the KNN method for our study, we aimed to
establish connections between different nodes in the absence
of ground truth or explicit physical knowledge. There are
two popular options for constructing graphs for vectorized
data, including: 1) 8-neighborhood graph and 2) KNN graph,
and the latter one shows empirically better performance in
graph clustering and representation learning [65]. Compared
to other graph construction approaches, the KNN graph is
a nonparametric modeling that does not explicitly rely on
the data distribution. This is particularly critical and helpful
when the size of the dataset is small or data is not dis-
tributed in Gaussian. While there is no built-in graph for
our patient/subject based on EEG-fNIRS data, KNN allows
us to consider multidimensional data in a more natural and
data-driven manner suitable for GNN in the next step. The
neighborhood information, especially the nonparametric local
connections, can be propagated in GNN layer by layer. The use
of KNN in this context aligns well with our goal to leverage
GNNs for our analysis.

To demonstrate the efficacy of the KNN graph in our
problem, we compare the KNN graph with the §-neighborhood
graph in Fig. 7. We adopt cosine similarity as the metric for
0-neighborhood graph construction, and any other similarity
metric should work. #-neighborhood graph will connect two
nodes if their pairwise similarity is larger than 6, and dis-
connect them otherwise. All other setups are identical in this

and (c) DT. (d) TaGMF features of multimodal data using four classifiers, including Softmax, SVM, NN, and DT.

experiment. We have used different numbers of neighbors (k)
and similarity thresholds () to connect the nodes to make
a fair comparison. In Fig. 7, we explore k = [3, 8, 16] and
6 = [0.9,0.7,0.5] and found that a smaller k£ or larger 6
empirically performs better. It demonstrated that a sparse graph
is preferred by GNN in our problem. Overall, the KNN graphs
perform better than 6-neighborhood graphs, especially with
smaller k.

E. Comparison With Feature Extraction Methods

In this section, we compare TaGMF with established feature
extraction approaches, including: 1) 1D-CNN; 2) common
spatial pattern (CSP); and 3) filter bank CSP (FBCSP) [66].
CSP is widely applied for feature extraction for EEG signal
analysis in motor imagery and BCI applications [67], [68].
FBCSP, a notable extension of CSP, effectively enhances
feature extraction by utilizing filter banks to capture a broader
range of signal characteristics [69]. As shown in Fig. 8, the
proposed TaGMF outperforms all three methods. Notably,
fused features boost the performance in all methods except for
FBCSP. TaGMF excels in feature extraction from fNIRS data,
likely due to its graph-based methodology that leverages the
spatial details present in fNIRS data. This allows TaGMF to
outperform other methods, effectively harnessing the spatially
rich information of cortical hemodynamics to enhance feature
extraction.

F. Parameters Analysis

A few hyperparameters are explored to verify their impacts
on the proposed model, including: 1) the number of neighbors
k in building the KNN graph; 2) the number of selected
features in lasso regularization; and 3) the dimensionality of
extracted TaGMF features.

1) Number of Neighbors for KNN Graph: Table I shows the
impacts of different values of k on the KNN graph. Note
the same value of k is applied to the three sub-graphs when
building the unified graph. We conduct experiments by setting
k = 3,8,16,32,64. As the value of k increases, the number
of connections increases, too, along with the density and
complexity of the graph structure. We can identify a decrease
in performance with larger k in all cases.

2) Lasso Regularization for Feature Selection: Fig. 9 visu-
alizes the performance by lasso feature selection, which is
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Fig. 7. Comparisons between KNN graph and 6-neighborhood graphs. Best seen in color.

TABLE |
CLASSIFICATION ACCURACY (%) ACHIEVED WITH DIFFERENT k USED IN KNN GRAPH CONSTRUCTION. THE TAGMF FEATURES AND SVM, DT,
AND NN CLASSIFIERS ARE APPLIED FOR UNIMODAL AND MULTIMODAL DATA. (a) EEG POWER. (b) EEG ERP. (c) FNIRS. (d) MULTIMODALITY

(a) (b) © (d)
[k[SVM[DT[KNN[[k[SVM[DT[KNN[[k[SVM[DT[KNNHk[SVM[DT[KNN]
3 87.31 | 71.06 | 78.20 3 | 9464 | 91.60 | 95.35 3 | 9338 | 83.56 | 80.35 3 | 98.74 | 89.46 | 89.46
8 | 78.03 | 75.71 | 73.03 8 | 86.06 | 73.03 | 77.31 8 | 85.88 | 75.71 | 77.14 8 | 91.78 | 87.85 | 86.96
16 | 75.51 | 67.67 | 70.17 16 | 75.17 | 63.03 | 62.31 16 | 81.60 | 74.64 | 70.71 16 | 89.82 | 84.46 | 81.06
32 | 65.88 | 64.81 | 65.71 32 | 61.06 | 63.21 | 57.13 32 | 72.67 | 69.63 | 67.85 32 | 7231 | 72.67 | 65.89
64 | 58.56 | 60.89 | 59.28 64 | 46.96 | 54.99 | 52.85 64 | 67.49 | 65.71 | 66.60 64 | 65.70 | 62.31 | 61.78

C i f Feat Extract
100 omparison o eature extractors TABLE Il
M Legend IMPACTS OF DIFFERENT DIMENSIONS OF TAGMF FEATURES ON
oy [7] & EEGERP UNIMODAL AND MULTIMODAL CLASSIFICATION ACCURACY (%)
. =4 Fnirs
X [ Fused Data H
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3 Dimension Power ERP fNIRS modality
g 1 8 85.53 90.17 88.56 98.40
20 16 84.99 95.00 91.06 98.60
32 87.31 95.00 93.38 98.70
‘ ‘ ‘ ’ 64 91.96 94.64 96.96 93.75
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Fig. 8. Comparisons with 1D-CNN, CSP, and FBCSP. All methods follow
the same experimental protocol. Note 1D-CNN is trained end-to-end,
and multimodal features are fused before being fed into the 1D-CNN
model. For TaGMF, CSP, and FBCSP, SVM classifiers are applied with
optimized kernels and parameters.

calculated with features selected using lasso regularization
with a fixed step size across different classifiers. When it
comes to EEG Power, adding more contributing features has
a negative impact on the accuracy of SVM and DT. However,
it does improve the performance of all classifiers in EEG ERP.
For fNIRS data, NN and DT experience performance declines
beyond 80% of selected features, while SVM’s performance
remains relatively stable with a maximum decline of 1.25%.
The use of multimodal signals demonstrates a notable increase
in performance as more features are added, reaching a peak of
43% and declining afterward. On average, the SVM method
surpasses both NN and DT by 2.5% and 6.3%, respectively.
Furthermore, compared to the best unimodal performance
(EEG ERP), SVM and NN improve the classification accuracy
by 3.5% and 0.9%, respectively, while DT experiences a slight
drop of 0.4%.

3) Dimensionality of TaGMF Features: Table II explores the
impacts of dimensionality of TaGMF features on classification.
The dimensionality is changed by setting different numbers

of hidden nodes in TaGMF. The experiment starts with a
default value of 16 and further increases it to 32 and 64.
It can be observed that dimensionality 32 provides higher
accuracy than others in unimodal and multimodal experiments.
However, the margin becomes less significant in multimodal
experiments.

G. Multilevel Graph Construction

Table III explores the efficacy of each sub-graph considered
in TaG, including G(a): KNN graph for all observations
without using any labels; G(b): graph with connections among
observations of the same label in training data; G(c): graph
with connections among observations of the same subject in
the test data. At each level of graph construction, we add
topological information from the previous graph. In general,
adding more sub-graphs leads to improved performance for
both unimodal and multimodal data. Comparing the KNN
graph incorporating label information only (i.e., row a,b),
we observe notable improvements in classification accu-
racy for SVM, NN, and DT classifiers. The most striking
improvement occurs in multimodal data, when identity con-
nections (c) are added, resulting in remarkable accuracy
improvement of 30.1% for SVM, 18.9% for DT, and 18.4%
for NN.
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Fig. 9. Impacts of raw features selected using lasso regularization for unimodality and multimodality classification.

TABLE IlI
CLASSIFICATION ACCURACY (%) THROUGH DIFFERENT GRAPHS AND THEIR COMBINATIONS. G(a): KNN GRAPH FOR ALL OBSERVATIONS
WITHOUT USING ANY LABELS; G(b): GRAPH WITH CONNECTIONS AMONG OBSERVATIONS OF THE SAME LABEL IN TRAINING DATA.
G(c): GRAPH WITH CONNECTIONS AMONG OBSERVATIONS OF THE SAME SUBJECT IN THE TEST DATA.
(a) EEG PowER. (b) EEG ERP. (c) FNIRS. (d) MULTIMODALITY

(2) (b) (©) (d)

G [SVM ]| DT [KNN|[ G [SVM ] DT [KNN]|[ G [SVYM ] DT [KNN|[ G [SVM | DT [ KNN |
a | 5856 | 59.99 [ 6285 |[ a | 69.10 | 68.03 | 62.85 || a | 68.03 | 58.56 | 58.92 |[ a | 69.81 | 66.60 | 68.74
ab | 64.63 | 6124 | 6535 || ab | 68.03 | 70.16 | 71.06 || ab | 63.74 | 64.46 | 6321 || ab | 68.56 | 70.53 | 71.06
abe | 87.30 | 71.10 | 78.20 || abe | 93.40 | 91.60 | 95.35 || abc | 94.60 | 83.60 | 80.35 || abe | 98.70 | 89.50 | 89.50

V. DISCUSSION

This study makes a significant contribution to the field of
BCIs and neuropathological diagnosis, achieved through the
innovative fusion of EEG and fNIRS brain signals using graph-
based modeling. TaGMF’s integration of inter-subject, intra-
subject, and inter-group relations offers a deeper insight into
brain response networks. The key practical implications of our
research are as follows.

A. Feature Extraction of Multimodal Data

Firstly, the TaGMF framework captures spatio-temporal
features from EEG-fNIRS data, offering a more compre-
hensive understanding of brain activity, as shown by the
substantial improvement in classification accuracy. These find-
ings aligned with [19], [20], [70] highlighted GNN'’s ability
to capture inter-dependencies in multimodal data. Secondly,
this work showcases improved diagnosis of neuropathological
conditions. By effectively capturing the complex interplay of
different brain activities, this approach could aid in the early
detection of conditions such as autism spectrum disorders.
Third, the flexibility of our graph-based modeling approach
allows for customization to specific BCI applications.

B. Early and Late Fusion Strategies

The late fusion approach indicated significant performance
enhancements in SVM, NN, and DT classifiers (Fig. 6). Inte-
grating multimodal information at a later stage, the classifier
benefits from discriminant unimodal features and the syner-
gistic effects of their combined representation. The synergic
properties of EEG-fNIRS have also been experimented with in
many works, including [71], [72] leading to higher diagnosis
accuracy. Differently, early fusion, as shown in [73], excels
when data modalities exhibit lower heterogeneity, effectively

merging in the temporal domain. In our problem, late fusion
allows GNN’s to maintain independent topology information of
each modality and keep each in representation to enable better
fusion in the next stage. Late fusion proved more suitable
in our experiments, allowing each modality’s strengths to
be independently optimized through GNN before integration.
Late fusion’s superior performance can be attributed to its
approach to learning the representations (features). Late fusion
enables a more comprehensive and interpretable model of neu-
ral dynamics. This aligns with our observation that maintaining
modality-specific representations until the final decision stage
allows for a more targeted and effective use of neuroimaging
data for classification tasks.

C. Number of k for KNN Graph

Our analysis of the k value in KNN graphs Fig. 1 showed
an inverse relationship with classification performance. The
experiments revealed an inverse correlation between the value
of k and classification performance. Larger values of k allow
for broader connections, forming redundant, possibly incorrect
links among subjects of HC and ALS groups, which negatively
impacted information propagation. Smaller values of k exclude
such redundant connections, and we found that k = 3 cap-
tures the optimal associations with neighboring nodes. Similar
experiments in [20] revealed k = 3 and k = 4 yielded the
highest accuracy for phenotypic and complete graphs.

D. Lasso Regularization for Feature Selection

The number of selected features in lasso regularization
influences the discriminative power of the extracted features.
Fig. 9 illustrates that the optimal point varied among different
modalities and classifiers. SVM classifier exhibited the high-
est accuracy in multimodal classification, followed by NN,
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highlighting the complementary properties between EEG and
fNIRS features achieved from data fusion. The DT classifier
did not exhibit the highest performance on fused features;
instead, it achieved enhanced results on EEG ERP data. This
outcome could be attributed to the possibility of a suboptimal
selection of feature sets by this classifier. Generally, classifica-
tion performance improves as the number of selected features
increases until a certain threshold is reached. After that point,
performance begins to deteriorate due to overfitting, as aligned
with the results in [74] and [75] experiments.

E. Dimensionality of GNN

The dimensionality of TaGMF features impacts both expres-
siveness and generalizability. A high-dimensional feature
space captures fine-grained details but may introduce noise
and additional computations. In contrast, a low-dimensional
feature space may lead to information loss and limited
representational capacity. Our analysis revealed that feature
dimension significantly affects classification performance [70],
[76], [77]. In unimodality, larger feature dimensions enhance
performance, but in multimodal settings, feature dimensions
differences are less pronounced (Table II). This is attributed
to multimodal fusion effectively condensing discriminative
information in a compact space, unlike unimodal setups. Thus,
with fewer features, the multimodal data still exhibit strong
performance.

F. Multilevel Graph Construction

The multilevel graph analysis provides valuable insights
into the significance of graph construction in improving
classification performance. Each level of graph construction,
incorporating KNN, label information, and identity connec-
tions, contributed to enhanced classification performance.
Notably, incorporating identity connections led to remarkable
improvements. Moreover, the consistent improvement across
modalities highlights the generalizability and robustness of the
approach, making it a promising method for multimodal data
analysis.

G. Comparison With Feature Extraction Methods

The performance of TaGMF in feature extraction from
fNIRS data as compared to other methods, depicted in Fig. 7,
suggests that graph-based methods are particularly more
adept at capturing spatial properties. This inherent strength
could explain why TaGMF outperforms other feature extrac-
tion methods, especially given that fNIRS data is spatially
informative, reflecting cortical hemodynamic responses. The
graph-based approach of TaGMF facilitates more effective
utilization of these spatial characteristics, leading to improved
feature extraction and, consequently, classification perfor-
mance.

The implications of our findings are significant, partic-
ularly in the context of ALS classification. The accuracy
improvement of approximately 22.63% achieved by our pro-
posed fusion strategy over raw feature showcases the potential
clinical utility of the TaGMF framework. More accurate
classification of ALS patients and healthy individuals can

aid in early detection, monitoring disease progression, and
optimizing treatment strategies. Despite the promising results,
our study has some limitations. Firstly our experiments were
conducted using specific datasets, and the generalizability of
the TaGMF framework to other datasets warrants further inves-
tigation. Additionally, the sample size of our study may impact
the generalizability of the findings. In the future, we plan to
augment our current dataset and evaluate the proposed model
on other multisubject datasets.

VI. CONCLUSION

In conclusion, our study introduced a novel deep
graph-based framework for hybrid EEG-fNIRS signal anal-
ysis and subject group classification. By building a graph
to represent multimodal brain signals and leveraging intra-
subject, inter-subject, and inter-group relations, our proposed
model learned discriminant feature representations, result-
ing in enhanced classification performance over unimodal
signals. Through extensive experiments, we demonstrated
the superiority of our graph-based feature fusion approach,
achieving significant performance enhancements of 22.6%
over unimodal data. Our findings emphasized the potential of
graph-based methods in capturing complex relationships and
improving classification accuracy in visuo-mental multimodal
brain signal analysis.
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