COMBINATORICA 42 (1) (2022) 87-114
COMBINATORKA DOI: 10.1007/s00493-020-4499-9
Bolyai Society — Springer-Verlag

NON-BIPARTITE K-COMMON GRAPHS*

DANIEL KRAL, JONATHAN A. NOEL, SERGEY NORIN,
JAN VOLEC, FAN WEI

Received June 30, 2020
Revised September 22, 2020

A graph H is k-common if the number of monochromatic copies of H in a k-edge-coloring
of K, is asymptotically minimized by a random coloring. For every k, we construct a con-
nected non-bipartite k-common graph. This resolves a problem raised by Jagger, Stovicek
and Thomason [20]. We also show that a graph H is k-common for every k if and only
if H is Sidorenko and that H is locally k-common for every k if and only if H is locally
Sidorenko.

1. Introduction

Ramsey’s Theorem states that for every graph H and integer k > 2, there
exists a natural number Ry (H) such that if N> Ry(H), then every k-edge-
coloring of the complete graph Ky with N vertices contains a monochro-
matic copy of H. We study the natural quantitative extension of this
question, which was first considered by Goodman [17]: What is the mini-
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mum number of monochromatic copies of H in a k-edge-coloring of Ky for
large N ?

A prevailing theme in Ramsey Theory, dating back to an idea of Erdds [§]
from the 1940s, is that one of the best ways to avoid monochromatic sub-
structures is by coloring randomly. Therefore, it would be natural to expect
the answer to the above question to be the number of monochromatic copies
of H in a uniformly random k-edge-coloring of K. Following [20], we say
that a graph H is k-common if the uniformly random k-edge-coloring of
Ky asymptotically minimizes the number of monochromatic copies of H. In
other words, the number of monochromatic (labeled) copies of H in every
k-edge-coloring of Ky is at least

NIH]|
(1 = o1)) Ly

where |H| and ||H|| denote the number of vertices and edges of H, respec-
tively. The most well-studied case is that of 2-common graphs, which are
often referred to as common graphs; however, we will always say 2-common
to avoid any ambiguity.

Only a handful of graphs are known to be 2-common and even fewer are
known to be k-common for k > 3. The well-known Goodman Bound [17]
implies that K3 is 2-common; another proof was given by Lorden [22]. This
result led Erdds [9] to conjecture that every complete graph is 2-common
and Burr and Rosta [1] to extend the conjecture to all graphs. We now
know that 2-common graphs are far more scarce than Erdds, Burr and Rosta
had anticipated, in particular, every non-bipartite graph is a subgraph of a
(connected) graph that is not 2-common [11]. Sidorenko [30] disproved the
Burr—Rosta Conjecture by showing that a triangle with a pendant edge is
not 2-common. Around the same time, Thomason [34] showed that K, is
not 2-common for any p > 4, thereby disproving the original conjecture of
Erdés [9]. Additional constructions showing that K, is not 2-common for
p >4 have since been found [13,14,35]. Determining the asymptotics of the
minimum number of monochromatic copies of Ky in 2-edge-colorings of large
complete graphs continues to attract a good amount of attention [16,26,32]
and remains one of the most mysterious problems in extremal graph theory
(with no conjectured answer).

Jagger, Stovicek and Thomason [20, Theorem 12] extended the result
from [34] by showing that no graph containing a copy of K4 is 2-common.
On the positive side, Sidorenko [30] showed that all odd cycles are 2-common
and Jagger, Stovicek and Thomason [20, Theorem 8] that all even wheels
are 2-common. Additional examples of 2-common graphs can be obtained by
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Figure 1. Examples of graphs from the statement of Theorem 1 for n=1,2,3. The three
graphs are denoted by K22 ¢y, Ka,4,c5 and Ke,6,c5 in Section 3

certain gluing operations [20,29]. However, these operations do not increase
the chromatic number and, for a long time, no examples of 2-common graphs
with chromatic number greater than three were known. Only in 2012, the
5-wheel, which has chromatic number four, was shown to be 2-common [19]
using Razborov’s flag algebra method [27]; this result settled a problem
of [20].

Much less is known about k-common graphs for k£ > 3. Cummings and
Young [7] proved that every 3-common graph is triangle-free, which implies
that the same is true for k-common graphs for any k>3 (see Section 2 for
details). The only known examples of k-common graphs for k>3 are bipar-
tite graphs that were known to be Sidorenko. Jagger, Stovicek and Thoma-
son [20, Section 5] asked about the existence of non-bipartite k-common
graphs; no examples of such graphs are known, even for k =3. We resolve
this by showing the following.

Theorem 1. For every k > 2, there exists ny such that, for every n > ny,
the graph obtained from Ko, 2, by pasting a copy of Cs on every second
vertex in one of the two parts of Koy, 2, is k-common.

Examples of graphs described in the statement of Theorem 1 can be
found in Figure 1. We remark that one of the key ingredients in the proof
of Theorem 1 is establishing that such graphs are k-common in a certain
“local” sense (see Lemma 12), which is proved using spectral arguments.

As we have already mentioned, there is a close connection between k-
common graphs and Sidorenko graphs. We say that a graph H is Sidorenko
if the number of copies of H in a graph with edge density d is asymptotically
minimized by the random graph with edge density d. Sidorenko’s Conjec-
ture [28,31] famously asserts that every bipartite graph H is Sidorenko; an
equivalent conjecture was made earlier by Erdés and Simonovits [10]. It is
easy to show that every Sidorenko graph is bipartite and k-common for ev-
ery k>2. There are now many families of bipartite graphs that are known
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to be Sidorenko, see, e.g., [2,3,4,5,18,21,33]; prior to our work, these graphs
were the only known examples of k-common graphs for any fixed k> 3.

The following simple construction of [20, Theorem 14] shows that, for
every non-bipartite graph H, there exists k > 2 such that H is not k-common.
Split the vertices of Ky into 2871 sets of roughly equal size, indexed by
0,...,25=1 — 1. Color the edges between the i-th and j-th sets with the
color corresponding to the first bit on which ¢ and j differ in their binary
representations and color the edges inside each set with the color k. Since
H is non-bipartite, the only monochromatic copies of H are inside the sets
and thus their number is (1+0(1))NH#12=*=D(HI=¢) \where ¢ is the number
of components of H. Thus, if Sidorenko’s Conjecture is true, then Sidorenko
graphs are precisely the graphs that are k-common for every k& >2. We prove
this without the assumption that Sidorenko’s Conjecture holds.

Theorem 2. A graph H is k-common for all k > 2 if and only if it is
Sidorenko.

We also establish the variant of Theorem 2 in the local setting, i.e.,
when the edge-coloring is “close” to the random edge-coloring. The notion
of locally k-common graphs is formally defined in Section 2. Recall that the
girth of a graph is the length of its shortest cycle.

Theorem 3. The following holds for every k > 3: if a graph H has odd
girth, then H is not locally k-common.

Since a theorem of Fox and the last author [12] asserts that all forests and
graphs of even girth are locally Sidorenko, Theorem 3 implies for every k>3
that a graph H is locally k-common if and only if H is locally Sidorenko. We
remark that Theorem 3 strengthens the result of Cummings and Young [7]
that no graph containing a triangle is 3-common by showing that such graphs
are not even locally 3-common.

2. Preliminaries

In this section, we fix the notation used throughout the paper and present
basic properties of k-common graphs. We also introduce some of the ter-
minology of the theory of graph limits. While all our arguments can be
presented for finite graphs, the language of graph limits allows us not to dis-
cuss “small order” asymptotic terms. Our notation and terminology mainly
follows that of the monograph of Lovész [24], and we refer the reader to [24]
for a more thorough introduction.
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We write N for the set of all positive integers and [k] for the set of the first
k positive integers, i.e., [k] ={1,...,k}. We work with the Borel measures
on RY throughout the paper and if A C [0,1]¢ is a measurable subset of
R?, we write |A| for its measure. Graphs that we consider in this paper are
finite and simple. If G is a graph, then its vertex set is denoted by V(G)
and its edge set by E(G); the cardinalities of V(G) and E(G) are denoted
by |G| and ||G||, respectively. A homomorphism from a graph H to a graph
G is a function f: V(H) — V(G) such that f(u)f(v) € E(G) whenever
uv € E(H). The homomorphism density of H in G is the probability that
a random function from V(H) to V(G) is a homomorphism, i.e., it is the
number of homomorphisms from H to G divided by |G|/#!. We denote the
homomorphism density of H in G by t(H,G).

A graphon is a measurable function W :[0,1]? —[0,1] that is symmetric,
ie., W(z,y)=W(y,x) for all (z,y) € [0,1]?. Intuitively, a graphon can be
thought of as a continuous variant of the adjacency matrix of a graph. The
graphon that is equal to p € [0, 1] everywhere is called the p-constant graphon;
when there will be no confusion, we will just use p to denote such a graphon.
A graphon W is a step graphon if there exist a partition of [0,1] into non-
null subsets A1,...,A,, such that W is constant on each of the sets A; x A;,
i,j € [m]. The sets A;, i € [m], are called parts of the step graphon W; the
sets A; x Aj, 1,5 €[m)], are tiles and those with i=j are diagonal tiles.

The notion of homomorphism density extends to graphons by setting

(1) wH W)= | I W) devan
[0,1]V(H) wEFE(H)

for a graph H and graphon W. We define the density of a graphon W to
be t(K2,W). The quantity ¢(H,W) has a natural interpretation in terms
of sampling a random graph according to W: for an integer n, choose n
independent uniform random points zi,...,x, from the interval [0,1] and
create a graph with the vertex set [n] by joining the vertices i and j with
probability W (z;,z;). The graph constructed in this way is called a W-
random graph and denoted by G, w. If H = [n], then t(H,W) is precisely
the probability that G, w is H. It can be shown that the following holds for
every graph H with probability one:

lim t(H,Gpnw) = t(H,W).

n—0o0

A sequence (G;)ien of graphs is convergent if the sequence (t(H,G;))ien
converges for every graph H. A simple diagonalization argument implies
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that every sequence of graphs has a convergent subsequence. We say that a
graphon W is a limit of a convergent sequence (G});en of graphs if

lim t(H,G;) = t(H, W)
1— 00

for every graph H. One of the crucial results in graph limits, due to Lovéasz
and Szegedy [25], is that every convergent sequence of graphs has a limit.
Hence, a graph H is Sidorenko if and only if t(H,W) > t(Ko, W)IZI for
every graphon W. Similarly, the property of being k-common translates to
the language of graph limits as follows. A graph H is k-common if

t(H, W) + -+ t(H, W) > AT
for any graphons W1,..., W} such that Wy +---+W,=1.

We pause the exposition of graph limit theory to demonstrate how the
just introduced notions are convenient for establishing some basic proper-
ties of k-common graphs. Jagger, Stovicek and Thomason [20, Theorem 13]
observed that if H is not k-common, then H is not /-common for any > k.
We now present their argument in the language of graph limits. Suppose
that H is not k-common, i.e., there exists graphons Wy,..., W} such that
Wit +Wi=1and t(H, W)+ -+t(H, W) <k~ 11+ Consider an integer
0>k. We set W/=%W; for i€ [k] and W/=1/¢ for i€ [(]\ [k]. Observe that

PN (—k
t(H,W{) + -+ t(H, Wé) = <€> (t(Hawl) +-- ‘f‘t(HaWk)) + JIH[
Ko —k
C—k _ )+
< g+ grar = ¢ ’

which implies that H is not /~-common. Hence, we can define x(H) to be the
smallest integer k such that H is not k-common; if no such integer exists,
we set k(H)=o0. That is, H is k-common if and only if 2 <k < x(H). In
particular, Theorem 2 asserts that H is Sidorenko if and only if k(H)=oc.

In Section 1, for any non-bipartite connected graph H, we exhibited
a k-edge-coloring of Ky from [20] which has (1 + o(1))NHI2=(k=D(H|-1)
monochromatic copies of H. It follows that a non-bipartite connected graph
H is not k-common for any k that satisfies 2~ (+=DUHI=1) < =IHI+1 Thig
implies that k(H) < [2dlog,d] for any non-bipartite connected graph H
with average degree d. We remark that for graphs H with chromatic num-
ber larger than three, a better upper bound on k(H) can be obtained
by considering the edge-coloring obtained by splitting vertices of Ky to
(x(H)—1)*=1 roughly equal parts and defining the edge-coloring based on
the base (x(H)—1) representations of the indices of the parts.
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Let us return to our brief introduction to notions from the theory of
graph limits that we use in this paper. A graphon W can be thought of as
an operator on Ls|[0,1] where the image of a function f € L3[0,1] is given by

1
/0 W (1) f () dy.

Every such operator is compact and so its spectrum o(W) is either finite
or countably infinite, the only accumulation point of o(WW') can be zero and
every non-zero element of (W) is an eigenvalue of W [24, Section 7.5]. In
addition, all elements of o(W) are real and the largest is at least the density
of W. We define (W) to be the multiset containing all non-zero elements A
of o(W), with multiplicity equal to the dimension of the kernel of (W — ),
which is finite. In the graph case, the trace of the n-th power of the adjacency
matrix of a graph (G, which is equal to the sum of the n-th powers of the
eigenvalues of the matrix, is the number of homomorphisms from C), to
G, i.e., it is equal to t(C,,G)|G|™ [24, Equation (5.31)]. We will need the
analogous statement for graphons, which we now state as a proposition.

Proposition 4 (Lovéasz [24, Equation (7.22)]). Let W be a graphon. It
holds for every n>3:
HCn, W)= DA™

Aea(W)

There are several useful metrics on graphons. One of the most important
from the perspective of graph limit theory is the metric induced by the cut
norm. A kernel is a bounded symmetric measurable function from [0,1]?
R; a kernel can be thought of as a continuous variant of the adjacency matrix
of an edge-weighted graph. We define the cut norm of a kernel U to be

lU|lo:= sup

/ Uz,y)dzdy|,
s,rcio] |/ sxT

where the supremum is over all measurable subsets S and T of [0,1]. The cut
distance of graphons W and W', denoted by oo (W, W), is the infimum of the
cut norm ||W¥—W'||g taken over all measure preserving maps ¢: [0, 1] — [0, 1]
where W¥(z,y) =W (p(z),p(y)). If two graphons have small cut distance,
then their homomorphism densities do not differ substantially, as the next
lemma shows.

Lemma 5 (Lovéasz [24, Lemma 10.23]). Let W and W’ be two graphons
and H a graph. It holds that [t(H,W)—t(H,W")|<||H||- oc(W,W’).
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Lemma 5 asserts that two graphons which are close in the cut distance
have similar homomorphism densities. The next lemma allows us to find a
step graphon of bounded complexity that is close in cut distance to any
graphon.

Lemma 6 (Frieze and Kannan [15]; see also [24, Lemma 9.3]). For
every € >0, there exists an integer M € N such that for every graphon W,
there exists a step graphon W' with at most M parts, all of equal sizes, such
that the densities of W and W' are the same and ogo(W,W') <e.

The homomorphism density function extends naturally to kernels U by
setting ¢(H,U) to be the integral in (1) with W replaced by U. A graphon
W that is close to the p-constant graphon can be expressed as p+¢eU for
some kernel U and small € >0. The following proposition provides a useful
expansion of t(H,p+¢eU), which implicitly appeared in [23,30]; we use the
formulation from [24, proof of Proposition 16.27].

Proposition 7. Let U be a kernel, H a graph and p€ [0,1]. It holds that

tH,p+eU)= Y tH[F],U)plHI-FIF]
FCE(H)

where H[F] is the spanning subgraph of H with the edge set F'.

A local variant Sidorenko’s Conjecture was considered in [23] and in [24,
Chapter 16]. Here, we consider a stronger notion discussed in [12]: a graph
H is locally Sidorenko if there exists g > 0 such that for every graphon
W with density p such that [|[IW —p|lg < eop and [|[W —p|| < p, it holds
that t(H, W) > pl#ll. The following theorem characterized locally Sidorenko
graphs.

Theorem 8 (Fox and Wei [12]). A graph H is locally Sidorenko if and
only if H is forest or its girth is even.

Similarly, we say that a graph H is locally k-common if for every k> 2,
there exists €9 >0 such that

tCH, W1) + - - + t(H, W) > k~IHI+1

for all graphons W1,..., Wy such that Wi +---+ Wy =1, [|[W; —1/k|o<eo/k
and [|W; —1/k|lcc <1/k for all i € [k].
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Fix a graphon W and a real § > 0 and consider the set A(W,¢) of all
measurable functions h:[0,1]— [0,1] such that

[ W ) ey < ol

Intuitively, for ||h||; >0, one can think of h as a weight function on [0, 1] with
the property that, if x and y are chosen independently at random according
to the probability measure induced by h/||h||1, then the expected value of
W (z,y) is at most 6. We define the d-independence ratio of W to be

asg(W):= sup |hl1.
he A(W,6)

We next define a notion of a subgraphon that is more involved than re-
stricting a graphon to a measurable subset of [0, 1] and rescaling. This notion
will be used in the proof of Theorem 1 to apply induction to a “sparse” part
of one of the graphons Wy, Ws,...,Wjy. Let h:[0,1] —[0,1] be a measurable
function such that ||h||; >0 and let f:[0,]|h]|1] = [0,1] be the measurable
function defined by

f(z) :==inf {t € [0,1] such that / h(z)dx > z} .
[0,1]

Observe that
[ #la)da =157 )

for every measurable subset A of [0,1]. The subgraphon of W induced by h,
which is denoted by W[h], is the graphon defined by

Wih](z,y) == W (f(z-[[kll), f(y - [1h]1))

for every (z,y) € [0,1]2. The graphon Wh] is associated with the following
sequence of random graphs. Choose n points independently at random based
on the probability with density h/||h||; and form a graph G,, with vertex set
[n] by joining vertices ¢ and j with probability W (x;,2;). Then W/h] is a
limit of the sequence (Gj)nen With probability one. The definition of Wh]
implies that

(2) t(H, Wh]) = —

g Jovan

H h(u) H W (xy, 2y) Aoy (g

ueV (H) uweE(H)

for every graph H. In particular, t(H, W) is at least Hh|||1HI -t(H,Wh]).
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We conclude this section by relating certain “reflection operations” to
homomorphism densities. The arguments of this kind are standard in the
area; however, we have decided to provide a self-contained exposition for
completeness. Let H be a graph and let U C V(H) be an independent set
of vertices of H. For a graphon W, we define a function t{;{, :10,1]Y =R as
follows:

tII/—IV(xU):/ e H W(zy, ) dzy (g)\v;
[0.1] v €E(H)

note that the function t{j{, depends on the choice of the set U. Since the
choice of the set U will always be clear from the context, we have decided
not to include the set U in the notation explicitly to keep the used nota-
tion simple. Informally speaking, the function £ (z;;) counts the number of
homomorphic copies of H rooted at xy. Observe that

HH, W) = / 1 (20) dao.
0,117

We now state a proposition, which gives a lower bound on the homomor-
phism density of a graph obtained by reflecting H along the set U.

Proposition 9. Let H be a graph, n a positive integer and U CV(H) an
independent set of vertices of H. Further, let H™ be the graph obtained by
taking n copies of H and identifying the corresponding vertices of the set
U, i.e., the graph H" has n|H|—(n—1)|U| vertices. The following holds for
every graphon W:

t(H", W) > t(H,W)".
Proof. Fix a graphon W. We consider both graphs H and H" with the set

U and note that tf" (z) =tl, (z)" for every zp €[0,1]V. Hence, it follows
that

t(Hn,W) = / tg/n(xU) dzy > (/ t{,{/(xy) d:CU> = t(H, W)n
[0,1]U [0,1]Y

by Jensen’s Inequality. ]

The same argument translates to the rooted setting, which we formulate
here for future reference but omit the proof as it is completely analogous to
the proof of Proposition 9.
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Proposition 10. Let H be a graph, n a positive integer, U C V(H) an
independent set of vertices of H, and U’ C V(H) an independent set that
is a superset of U. Further, let H" be the graph obtained from H taking
n copies of H and identifying the corresponding vertices of the set U’. The
following holds for every graphon W and every zy € [0,1]V:

ty (zv) =ty (zo)"

The following proposition is obtained by two applications of Proposi-
tion 9, first to the graph K32 and U being one of the two parts of K2, and
second to the graph K2, and U being the 2n-vertex part of K3 2.

Proposition 11. The following holds for every graphon W and every n € N:

2

t<K2n,2n7 W) > t(K2,27 W)n :

3. Non-bipartite k-common graphs

This section is devoted to the proof of Theorem 1. For a,b > 1, we let
Ko, 95,05 be the graph obtained from Kb, 9, by adding b disjoint copies of
Cs and identifying one vertex of each of these copies with one vertex in the
2b-vertex part of Ka, 95 (each copy involves a different vertex of the part).
In particular, Kay 2,,c5 is the graph from the statement of Theorem 1. We
start with proving that Ko, ¢, is locally Sidorenko in a certain strong
sense; note that the assumption on W is weaker than that in the local
Sidorenko property discussed in Section 2 since we do not require any bound
on || —pc.

Lemma 12. For every po € (0,1), there exist eg € (0,1) such that the follow-
ing holds. If W is a graphon with density p > po such that t(Ks,2, W) < p*+eo,
then t(Kop 2,05, W) >p*+5 for all neN.

Proof. We show that the statement of the lemma holds for g9 = p{/16.
Throughout the proof, fix a graphon W with density p > pg such that
t(Ka2,W) —p* = ¢ < go. If the set o(W) is finite, then set I = [|5(W)]]
and set I = N otherwise. Let \;, i € I, be the elements of o(WV) listed in
the decreasing order of their absolute value. Further, let g; : [0,1] — R be
an eigenfunction corresponding to A;. Without loss of generality, we assume
that ||g;||2=1 for all i€ and that the eigenfunctions are orthogonal to one
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another, i.e.,
/ gi(x)gir(x)dx =0
[0,1]

for any two distinct ¢ and ¢/ from I. In particular, the functions Gj;, i € I,
are orthonormal. Since it holds that

fELQ[O,l]

M= max / @)W (2, 9) f(y) de dy,
iy VO

it follows A1 >p. In particular, A\; > pg.

For every z € [0,1], we define a measurable function f; :[0,1] — [0,1] by
setting fz(y) =W (z,y) for all y€[0,1], i.e., f, describes the “neighborhood”
of  in the graphon W. We next define functions f; such that §;(z) would
be the coordinate of f, with respect to g;, i € I, for an orthonormal basis
extending g;, 1 €1, i.e.,

Bi(x) = /M 0:(w) = (y) d.

Since the Lo-norm of f, is at most one and the functions g;, i € I, are
orthonormal, we obtain that

(3) > Bix)? <1

el

for every x €[0,1]. Since it holds that

W(z,y) =Y Nigi(z)gi()

i€l

for almost every (z,y) € [0,1]2, it follows that 3;(x) = \;g;(z) for almost every
x €[0,1]. In particular, it holds that

(4) Bl($)2 do = )\12.
(0.1]

Next consider a cycle Cy, and let U consist of any single vertex of Cy. As
the functions g;, ¢ € I, are orthonormal and are eigenfunctions of W, we get
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that
t%(l’) :/ fx ()W (y1, y2)W (y2, y3)
[0’1}k—1
(5) W (Yk—2, Y1) fo(Yr—1) dy1 - - yr—1
=D N i)
il

holds for every k>3 and z€]0,1]. It follows that
(6) t(Cp, W) = / th(z) do = A 2/ Bi(z
[0,1] i€l

On the other hand, Proposition 4 tells us that

(7) t(Cr, W Z )\k

el
In particular, we obtain for k=4 that

= (Ko, W) —p* =Y N =p'> D A

icl iel\{1}

which implies that |\;| < e'/* for every i € I'\ {1}. In particular, A\; has
multiplicity one.
Our aim is to estimate Han.2, %5 () where U is the set consisting of the

vertex shared by Ko, 2 and 05 Observe that

(8) bt (2) = b () - 15 ().

We start by rewriting the identity (5) for k=4 and k=5:

(9) (@) = A\B) + Y MBE(x)
iel\{1}

(10) te () = Npi )+ Y Np(x).
iel\{1}

Note that all of the terms on the right sides of these two expressions are non-
negative, except for possibly the summation in (10). Using Proposition 10
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and the equation (9), we obtain that

" (@) = 153 (@)
(11) = )‘%5%(5”)4‘ Z )‘22512(@
iel\{1}
> AmBY () + AT () Y ABR(w).
iel\{1}

Our next goal is to show that, unless f, is almost completely orthogonal to
g1, the homomorphism density of K, 2 c; rooted at x is at least its expected
average value. Specifically, we will set mo=p3/2 and show that if 5% (x) >,
then

(12) " (@) 2 AT @),

To this end, we substitute (10) and (11) into (8) to obtain

Koy n n n— n—
ty (@) = | ABT () + ATTIB () > ATBR(x)
ie\{1}

< [ Mg+ > ABH(a)
iel\{1}

Multiplying out, we obtain four terms. One of them is the right side of (12)
and the remaining three terms are as follows:

AP ) [ AB() |
iel\{1}

APBM) [ > ABI(x) | and
iel\{1}

ATEE R @) | Y NBR) | | Do NB (@)
ieI\{1} ie\{1}

So, to establish (12), we need to show that the sum of these three terms
is non-negative. We first consider the sum of half of the first term and the
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whole of the second term. Since pg <A; and \; <e'/4 for all i € I\ {1}, we get

1 n n n n
SATTBY @) | Y ABR@) | + AT ) | Y ABR(e)
ie\{1} ie\{1}

> (B =) (st @) | Y M@ | =0
ie\{1}

Next, we estimate the sum of half of the first term and the third term as
follows:

@) (Y N )

iel\{1}
FATEE @) | Y AB@) | [ DD M)
iel\{1} i€I\{1}
1 n—2 g2n—
> | GBI (x) — Yo WP @) | AR () | Y MBS (=)
i€\{1} ie\{1}
p*mo 3/4 2 2n—2 p2n—2 212
=5 —¢ Z Biz) | M8 () Z AiBi (2)
iel\{1} iel\{1}
5
> (M) | X R
iel\{1}

The last inequality follows from (3). The final expression is non-negative
(with room to spare) by the choice of .

The statement would follow from (4) and (12) by a convexity argument
if 82(z) > mo held for almost all z € [0,1]. As this need not be the case for
almost all z€[0,1], a finer argument is needed. Let X7 be the set of x €0,1]
such that 3?(x)>mp and let §=1—|X;|. By (4) for i=1, we have

Faydo= [ Fayde- [ pHa)dez 2 - om.
X, [0,1] [0,1\ X1

The equation (4) for ¢=1 also implies that § < 1; otherwise, the integral of
B%(x), which is equal to A3 >p3, would be at most mo=pZ/2. Using Jensen’s
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Inequality, we have

(A} — o)

X, 1 ( ) (1 _5)71
(Al —dm el A = 26moA2 + 627l
S\ 1= 1—-6

M 25w\ + 6272
S \2n-2 M 0A1 0
= 1—46
SA} — 26moA2 + 5271'8>

1-9

n o OA2(A2 —27)
> \2n+2 4 y2n-2 O 11_5

2n+2
> AT

In the step between the second and third lines and in the last line, we used
the fact that 2wy = pZ < p? < A?. Since the estimate (12) holds for every
r € X1, we obtain that

Kan
H( Ko ca W) > / H225 (1) d > / N2 () dy
X1 X1

> )\élln+5 > p4n+5‘

This concludes the proof of the lemma. |

The next lemma follows from Lemma 12 by applying Proposition 10 for
the graph H = Ky, 2 ¢, and the set U being the part of Ks,2 with 2n
vertices.

Lemma 13. For every py € (0,1), there exists 9 € (0,1) such that the
following holds. If W is a graphon with density p>pg such that t(K3 2, W) <

p*+eo, then t(Kon2n,c5, W) 2p4”2+5" for all neN.

The second ingredient for the proof of Theorem 1 is the next lemma,
which covers the case when t(K3 2, W) is substantially larger than (K2, W)*
unless the graphon W contains a large sparse part.

Lemma 14. For every pg € (0,1) and every g € (0,1), there exist no €N and
do € (0,1) such that the following holds for every graphon W with density
p>po such that t(Kao, W) >pt+ep:

o t(Koponcs, W) > pin*+5n for every n>ny, or
® Qpg (W) > 0.
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Proof. Set dp:=poeo/16 and set dy:=0dp. The reason that we let dy and dy
to represent the same quantity is that they play different roles in the proof;
do is the lower bound on the pg-independence ratio in the statement of the
theorem whereas dp is the threshold for considering a point z € [0,1] to have
“small degree” in a graphon W. Choose ng to be large enough so that

(1+e0/2)" dopj > 1.

Fix a graphon W with density p>pg such that t(Ks 2, W)>pt+eo. We
iteratively define sets A;, ¢ € N, such that A; is the set of all x € [0,1] with
“small degree” when disregarding neighbors in A;_;. Formally, we let Ag =10
and let A;, i€N, be the set of all x€[0,1] such that

/ W(z,y)dy < do.
[0,1\A;—1

Note that A;_1 C A; for every i €N. Let A be the union of all sets A;, i€N,
and observe that, for every z€[0,1]\ A,

| Wy =t W(z.y) dy.
[0,1\A =00 J10,1]\ A;_1

In particular, it holds that
/ W(z,y)dy > do
[0,1\A

for every x €[0,1]\ A.

We next distinguish two cases depending on the measure of A, and we
first analyze the case that |A| >¢g¢/8. We start with estimating the density
of W on the set A:

W(z,y)dedy = Z / W(z,y)dedy + 2 / W(z,y)dzdy
A2

EN(4\4;_1)2 (A\Ai—1)x (A\4)
< Z / W(z,y)dzdy + 2 / W(x,y)dzdy
ENANA)? (Ai\A; 1) x([0,1]\4,)

< 22 / W(z,y)dxdy
z‘eN(Ai\Ai,l)x([0,1]\,42.71)

<237 4\ 41| do < 2|Aldo.
€N
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It follows that

Ja2 W (z,y) dedy < 2dy  poco
|AJ? Al 8[A] —

Thus, the characteristic function of A certifies that oy, (W) >e0/8> do.

In the rest of the proof, we assume that |A| <ep/8. We show that the
homomorphism density of Ka, 25, ¢ is large enough even if we disregard the
points contained in A. To do this, we set W’ to be the graphon defined by

0 ifxe Aorye A,
W(z,y) otherwise.

Wl(x7y) = {

We next estimate the homomorphism density Ko, 2, in W’ using Proposi-
tion 11 as follows:

2

t(Kgnygn,W) t(Kgg,W)"
> (t(Ka2, W) — 4|A|>”2
(p +60—60/2) (p4+60/2)n

We next combine these copies of Ka, 2, with copies of C5 rooted at x €
[0,1] \ A unless W contains a sparse part. Consider x € [0,1]\ A and let
h(y)=W'(x,y). Note that

/ Wy)dy= [ W(e.y)dy = / W(z,y) > do = 6.
[0,1] [0,1] [0,1\A

Since h(y)=0 for y € A, we obtain that

13) [ HW ke dydz = [ )W k() dyds.
[0,1]2 [0,1]2

If the integral in (13) is less than pol|h||?, then ay, (W) > &, which is the
second conclusion of the lemma.

Hence, we can assume that the integral in (13) is at least po||h||3 for
every x € [0,1]\ A. Since the 3-edge path P, is Sidorenko, we conclude by
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considering the graphon Wh| that

C

ty (@) > [|Al|L - t(Py, WR]) > [|R]|ipg > dopg
for every x€[0,1]\ A. It follows that

t(KQn,Qn,C57 W) > t(KQn,2n,C57 W/)
Z t(KZn,Zny W/) . (dépg)n

> (' +20/2)" (dipf)”
> p* (1+20/2)" (dipd)"
> p4n2 ((1 + E0/2)710 dopo) > p4n2 > p4n2+5n.

Hence, the first conclusion of the lemma holds. ]

We are now ready to prove the main theorem of this section, which im-
plies Theorem 1. Theorem 15 is a variant of Theorem 1 where a very small
proportion of the edges can be left uncolored. This additional flexibility is
needed for an inductive argument used in the proof of the theorem.

Theorem 15. For every k € N, there exist ni € N and 5 € (0,1) with the
following property. If W1, ..., W}, are graphons such that t( Ko, W1+ - +W},) >
1—06y, then

t(Ky, Wi + -+ - + Wy)4n*+5n
Z t(KQn,Qn,C’f,a VVZ) > k4n2+5n—1

1€[k]

for every n>ny.

Proof. We proceed by induction on k € N. Suppose first that k=1. We apply
Lemma 13 with pg=3/4 to get 9 € (0,1). We show that the statement of the
theorem is true for n; =1 and 6; =¢¢/4. Let W be a graphon with density
p>1—451>3/4. Observe that

WKz, W) =p' <1—p' <1—(1-6)" <461 = ep.
Hence, Lemma 13 implies that
t(Kon,an,c5, Wi) > pt o7,

This completes the proof in the base case k=1.
Now, suppose that we have already established the existence of
ni,...,ng—1 and 01,...,0x_1. Choose pg = di_1/4k and apply Lemma 13 to
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get 9. We then apply Lemma 14 with pg and €p to obtain ng and Jdg. Set

2
O = %. Finally, choose ny such that ng >max{ng,nx_1} and

1 1 dng+5 g k 1 dng+5
Lo L) gs ()
E T 2k(k—1) k=1 \k

The choice of n; yields that the following holds for all n>ny:

1 1 4n%+45n < 1 4n?+5n
k—1) -4+ ——— N>k = .
e0(iragoy) ()

Let graphons Wi,..., W} satisfying the assumption of the theorem be
given and let n >ny. Further, let p=1t¢(Ko, Wi +---+ Wj) be the density of
the graphon Wi +---+ Wj; note that p>1— dj.

We distinguish two cases. First suppose that there exists i € [k] such that
apy (W3) > 0, i.e., one of the graphons Wi,..., W, contains a large sparse
part. Note that this case includes the case that the density of one of the
graphons is at most pg. By symmetry, we can assume that o, (Wj)>do. Let
h:10,1]—10,1] be such that ||h|1>do and

MWt ) ddy < ol
Since it holds that

/ h(2) Wiz, y)h(y) dedy > [A]? - 6,
iclk] 7 (0112

we obtain that

/[olp h(@)Wi(a, y)h(y) dzdy > |1} = pollBII? — o

Op—
>l (1- %)

1
> Il (1- 5, )

Op—
H(F, Walh) 4+ Wi [A]) 2 1= =% 2 1= 6,

i€lk—1]

Since it holds that
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we can apply induction to Wilh],...,W_1[h] and arrive at the following:
Z t(KQn,Qn,C57Wi) > HhH?n Z t(KZn,Qn,C’57 Wz[h])
i€[k—1] i1€[k—1]

2
. 1 1/2]{7 4n°+5n
> [|A[lf"(k 1) (k—l)

< 1 1 4n2+45n
> 0"k — — _—
> o8 (k 1)<k+2k(k_1)>

4n?+5n An2+5n
1
A
- k — kAn*+5n—1

Hence, in the following, we assume that a,,(W;) < &y for every i € [k]. In
particular, we assume that ¢(Kq,W;) > pgy for every i € [k] and so we can
apply Lemmas 13 and 14 to each of Wy, ..., W.

Based on whether it holds that t(Kao,W;) < t(K2,W;)* 4+ & or not,
Lemma 13 or Lemma 14, respectively, implies

t(KQn,Qn,CS, WZ) > t(KQ, Wi)4n2+5”
for every i € [k]. Therefore, we obtain that

Z t(KQn,Qn,C5, m) > Z t(K27 I/I/i)4n2+5n
i€[k] iclk]

. . P An2+5n . .
which is at least k (E) by convexity. This concludes the proof of the

theorem. 1

4. Sidorenko and locally Sidorenko graphs

In this section, we prove that a graph is k-common for all £>2 if and only
if it is Sidorenko and that no graph of odd girth is locally k-common for any
k> 3. We start with the former statement.

Proof of Theorem 2. We first show that if a graph H is Sidorenko, then
it is k-common for every k € N. Fix a Sidorenko graph H and an integer k > 2.
Let W1,..., W} be graphons such that Wi +---+Wj; =1 and let p1,...,px be
their respective densities. Note that p; +---+pr=1. Since H is Sidorenko,

HH, W) A+ -+ t(H, W) = pl P4 pl P

]
>k (W) _ lHl1

Therefore, H is k-common.



108 D. KRAL, J. A. NOEL, S. NORIN, J. VOLEC, F. WEI

To complete the proof, we need to show that if a graph H is not Sidorenko,
then there exists k>2 such that H is not k-common. Fix a graph H that is
not Sidorenko and let W be a graphon with density p such that ¢t(H,W) <
plHl. Set e=plHll —t(H,W). By Lemma 6, there exists a step graphon W’
with density p such that the cut distance between W and W’ is at most
e/(2||H||). Lemma 5 implies that

t(H, W' < t(H, W) +¢e/2 =plHl —¢/2,

By splitting each of the parts of W’ into the same number of equal size
smaller parts, we can assume that the number m of parts of W’ satisfies

A|H||<me and  plHl—g/a < (p—1/m)IHN,

Let Ay,...,Apn be the parts of W’ and let d;j, i,j € [m] be the value of W’
on the tile A; x A;. Further, let 6 be the average of d;; taken over all pairs
i and j such that 1 <i<j<m and let W” be the step graphon with the
same m parts as W’ obtained from W’ by making each of the m diagonal
tiles to be equal to 4. Note that the density of the whole graphon W” is
d and 6 >p—1/m. Since the cut distance between W' and W” is at most
m/m?=1/m, Lemma 5 implies that

t(H,W") <t(H, W)+ |H| - op(W, W)
<t(H,W')+¢e/4
< Il — e /4 < (p— 1/m)IHI < §lIHIL

Next choose an integer £ € N such that 1 <d¢m! and set k =¢m!. We next
define k£ graphons that witness that H is not k-common; the k graphons
will be indexed by pairs consisting of a permutation o € S, of order m
and an integer s € [¢]. The graphon W, for o € S, and s € [{] is the
step graphon with m parts Ay,..., A, such that the graphon W, s on a tile
A; x Aj, 4,5 € [m], is equal to 1/k if i = j and is equal to % ifi£j
(note that % < &£ <1). Note that the density of each of the graphons
Wy s is % Moreover, the average value of all the k graphons on any of the
tiles is % Consequently, the k graphons W, 5, 0 € Sy, and s € [¢], sum to the
1-constant graphon. Since the homomorphism den51ty of H in each of the
graphons W, s, 0 € Sy, and s € [¢], is equal to (kd)“Hll tH, WY < kI i
follows that H is not k-common. ]

We next show that locally k-common graphs for any k>3 are precisely
locally Sidorenko graphs (cf. Theorem 8).
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0O +1/0|0|+1j0 =100 -1
+1/0|+1/0 /0 |=1/0|-1]0 |0
0O|+1 0|+1 0|0 |=1/0 —-1]/0
0 0 |+10|+1j0 |0 |=10|—-1
+1/0 |0 |+10|-1j0 0 |=10
0 —-1/0/|0|=1j0 |+1] 0|0 |+1
=110 /=10 |0 |+1/0 |+1] 0|0
0/=10|=1,0|0|+1]0|+1]0
0 0|-10|=1f0 |0 |+1 0 |+1
-10|0 =10 |+1/0 |0 |+1 0

Figure 2. The kernel U used in the proof of Theorem 3 for £=5. The origin of the
coordinate system is in the top left corner

Proof of Theorem 3. Fix an integer k£ > 3 for the proof, and a graph H
with girth ¢ where /¢ is odd.

Let Aj,...,Ags be any partition of the interval [0,1] to 2¢ disjoint mea-
surable sets, each of measure (2¢)~!. Consider a kernel U defined as follows
(also see Figure 2):

+1 ifzeAjyeAj,[ifl] =[j/¢] and i = (j £ 1) mod ¢,
Ulr,y) =4 -1 ifxe AjyeAj[ifl] #[j/0] and i = (j £ 1) mod ¢,

0 otherwise.

Let G be a graph that has a vertex v of degree one and let v’ be the neighbor
of v. Note that

HG,U) = / U, ) devy
[0,1]V(<) uu’g(G)

= U xu,zul . / U .’,U,U/"’L‘v d"L’U dx v
/[0’””0)“”}%%;[(@) ( ) ( [0,1] ( ) ) V(G)\{v}

uu’ £vv’

- U$U7xu’ Odﬂf v :0
/[0,1}V<G>\{v} w,g(G) ( ) V(G)\{v}
uu’ #vv’

We conclude that t(G,U)=0 for every graph G with a vertex of degree one.
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We next compute ¢(Cyp,U). Observe that the product
H U(Zi» T(i41) mod ¢)
€[]

is non-zero for zi,...,zy € [0,1] if and only if there exists j € [{]
such that either z; € A1) mod s Y A(itj) mod e4¢ for every i € [{] or
T3 € A(—itj) mod (IA (1—i+j) mod ¢+¢ for every i € [{]; if the product is non-zero,
then it is equal to one. Hence, it follows that

2
t(CpU) = /[0 1] H U(i, (i+1) mod ¢) Ay = 2¢ - H [A4i U A = o=

€[l i€le]
We next consider the following graphons: W, = Wy = 1/k+¢cU, W3 =
1/k—2eU and Wy =---=W), =1/k. We will estimate the homomorphism

density of H in Wy,..., W} using Proposition 7. Note that if F' is a subset
of edges of H such that 1 <|F|</{, then H[F] contains a vertex of degree
one unless H[F] is a union of a cycle of length ¢ and isolated vertices. In
particular, t(H[F],U)=0 for a set F' of ¢ edges unless F is the edge set of a
cycle of length ¢. Using Proposition 7, we obtain that

t(H, W) + -+ t(H, W)
=2t(H,1/k+eU)+t(H,1/k — 2eU) + (k — 3)t(H,1/k)

/+1
_ polE g %k—nmwg _ %k—nmwge + 0@

{41
_ g lH wk—wwgé + O,
where my is the number of cycles of length £ in H. Since 21 —4 >0, there
exists €9 >0 such that

HH, Wh) + -+ t(H, W) < B IHIH

for every € € (0,e09). We conclude that H is not locally k-common, which
completes the proof of the theorem. |

5. Open problems

We conclude with two open problems. Theorem 1 provides an example of a
non-bipartite k-common graph for every k> 2. A natural next question is
whether there exist k-common graphs of arbitrary large chromatic number.
Currently, the only known example of a 2-common graph of chromatic num-
ber greater than three is the 5-wheel [19] and so this question is interesting
even in the case k=2 and ¢£>5.
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Problem 1. For every k>2 and { > 4, construct a k-common {-chromatic
graph.

The second problem stems from Theorem 3 which characterizes locally
k-common graphs for k> 3. Interestingly, we do not have a similar charac-
terization of locally 2-common graphs and we even miss a natural conjecture
for such a characterization.

Problem 2. Characterize graphs that are locally 2-common.

Locally 2-common graphs include forests, all graphs with even girth,
the triangle and the 5-wheel in particular, since these graphs are locally
Sidorenko or 2-common. On the other hand, Cséka, Hubai and Lovész [6]
showed that for every graph H containing K4 and every € >0, there exists
a kernel U such that ||U||ec <e and

t(H,1/2+U) +t(H,1/2 - U) < 2”141l

In particular, no graph containing K4 is locally 2-common. We remark that
the notion of locally common graphs used in [6] is formally weaker than the
notion used in this paper, i.e., every graph locally 2-common in the sense
used in this paper is locally common in the sense used in [6], however, it
is not obvious whether the converse holds. For completeness, we present
a simple argument that K, is not locally 2-common, which is based on a
construction of Franek and Rodl [14] of a kernel U such that

1
t(K4,1/24+U)+t(K4,1/2-U) §0.987314><3—2 and / U(z,y)dy =0
[0,1]

for every x€0,1]. For z€(0,1], define a kernel U, as

Ulx/z,y/z) if (x,y) € [0, 2]?,
bty = (UG 0/2) i @) € 0.2

0 otherwise.
Since the cut norm of U, is at most 2% and t(Ky,1/2+U,)+t(K4,1/2-U,) <
1/32 (here, we use that the kernel U, is “O-regular”), it follows that Ky is
not locally 2-common.
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