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A graph H is k-common if the number of monochromatic copies of H in a k-edge-coloring
of Kn is asymptotically minimized by a random coloring. For every k, we construct a con-
nected non-bipartite k-common graph. This resolves a problem raised by Jagger, Šťov́ıček
and Thomason [20]. We also show that a graph H is k-common for every k if and only
if H is Sidorenko and that H is locally k-common for every k if and only if H is locally
Sidorenko.

1. Introduction

Ramsey’s Theorem states that for every graph H and integer k � 2, there
exists a natural number Rk(H) such that if N�Rk(H), then every k-edge-
coloring of the complete graph KN with N vertices contains a monochro-
matic copy of H. We study the natural quantitative extension of this
question, which was first considered by Goodman [17]: What is the mini-
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mum number of monochromatic copies of H in a k-edge-coloring of KN for
large N?

A prevailing theme in Ramsey Theory, dating back to an idea of Erdős [8]
from the 1940s, is that one of the best ways to avoid monochromatic sub-
structures is by coloring randomly. Therefore, it would be natural to expect
the answer to the above question to be the number of monochromatic copies
of H in a uniformly random k-edge-coloring of KN . Following [20], we say
that a graph H is k-common if the uniformly random k-edge-coloring of
KN asymptotically minimizes the number of monochromatic copies of H. In
other words, the number of monochromatic (labeled) copies of H in every
k-edge-coloring of KN is at least

(1� o(1))
N |H|

kkHk�1
,

where |H| and kHk denote the number of vertices and edges of H, respec-
tively. The most well-studied case is that of 2-common graphs, which are
often referred to as common graphs; however, we will always say 2-common
to avoid any ambiguity.

Only a handful of graphs are known to be 2-common and even fewer are
known to be k-common for k � 3. The well-known Goodman Bound [17]
implies that K3 is 2-common; another proof was given by Lorden [22]. This
result led Erdős [9] to conjecture that every complete graph is 2-common
and Burr and Rosta [1] to extend the conjecture to all graphs. We now
know that 2-common graphs are far more scarce than Erdős, Burr and Rosta
had anticipated, in particular, every non-bipartite graph is a subgraph of a
(connected) graph that is not 2-common [11]. Sidorenko [30] disproved the
Burr–Rosta Conjecture by showing that a triangle with a pendant edge is
not 2-common. Around the same time, Thomason [34] showed that Kp is
not 2-common for any p� 4, thereby disproving the original conjecture of
Erdős [9]. Additional constructions showing that Kp is not 2-common for
p� 4 have since been found [13,14,35]. Determining the asymptotics of the
minimum number of monochromatic copies ofK4 in 2-edge-colorings of large
complete graphs continues to attract a good amount of attention [16,26,32]
and remains one of the most mysterious problems in extremal graph theory
(with no conjectured answer).

Jagger, Šťov́ıček and Thomason [20, Theorem 12] extended the result
from [34] by showing that no graph containing a copy of K4 is 2-common.
On the positive side, Sidorenko [30] showed that all odd cycles are 2-common
and Jagger, Šťov́ıček and Thomason [20, Theorem 8] that all even wheels
are 2-common. Additional examples of 2-common graphs can be obtained by
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Figure 1. Examples of graphs from the statement of Theorem 1 for n=1,2,3. The three
graphs are denoted by K2,2,C5 , K4,4,C5 and K6,6,C5 in Section 3

certain gluing operations [20,29]. However, these operations do not increase
the chromatic number and, for a long time, no examples of 2-common graphs
with chromatic number greater than three were known. Only in 2012, the
5-wheel, which has chromatic number four, was shown to be 2-common [19]
using Razborov’s flag algebra method [27]; this result settled a problem
of [20].

Much less is known about k-common graphs for k � 3. Cummings and
Young [7] proved that every 3-common graph is triangle-free, which implies
that the same is true for k-common graphs for any k�3 (see Section 2 for
details). The only known examples of k-common graphs for k�3 are bipar-
tite graphs that were known to be Sidorenko. Jagger, Sťov́ıček and Thoma-
son [20, Section 5] asked about the existence of non-bipartite k-common
graphs; no examples of such graphs are known, even for k= 3. We resolve
this by showing the following.

Theorem 1. For every k � 2, there exists nk such that, for every n� nk,
the graph obtained from K2n,2n by pasting a copy of C5 on every second
vertex in one of the two parts of K2n,2n is k-common.

Examples of graphs described in the statement of Theorem 1 can be
found in Figure 1. We remark that one of the key ingredients in the proof
of Theorem 1 is establishing that such graphs are k-common in a certain
“local” sense (see Lemma 12), which is proved using spectral arguments.

As we have already mentioned, there is a close connection between k-
common graphs and Sidorenko graphs. We say that a graph H is Sidorenko
if the number of copies of H in a graph with edge density d is asymptotically
minimized by the random graph with edge density d. Sidorenko’s Conjec-
ture [28,31] famously asserts that every bipartite graph H is Sidorenko; an
equivalent conjecture was made earlier by Erdős and Simonovits [10]. It is
easy to show that every Sidorenko graph is bipartite and k-common for ev-
ery k� 2. There are now many families of bipartite graphs that are known
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to be Sidorenko, see, e.g., [2,3,4,5,18,21,33]; prior to our work, these graphs
were the only known examples of k-common graphs for any fixed k�3.

The following simple construction of [20, Theorem 14] shows that, for
every non-bipartite graphH, there exists k�2 such thatH is not k-common.
Split the vertices of KN into 2k�1 sets of roughly equal size, indexed by
0, . . . ,2k�1 � 1. Color the edges between the i-th and j-th sets with the
color corresponding to the first bit on which i and j di↵er in their binary
representations and color the edges inside each set with the color k. Since
H is non-bipartite, the only monochromatic copies of H are inside the sets
and thus their number is (1+o(1))N |H|2�(k�1)(|H|�c), where c is the number
of components of H. Thus, if Sidorenko’s Conjecture is true, then Sidorenko
graphs are precisely the graphs that are k-common for every k�2. We prove
this without the assumption that Sidorenko’s Conjecture holds.

Theorem 2. A graph H is k-common for all k � 2 if and only if it is
Sidorenko.

We also establish the variant of Theorem 2 in the local setting, i.e.,
when the edge-coloring is “close” to the random edge-coloring. The notion
of locally k-common graphs is formally defined in Section 2. Recall that the
girth of a graph is the length of its shortest cycle.

Theorem 3. The following holds for every k � 3: if a graph H has odd
girth, then H is not locally k-common.

Since a theorem of Fox and the last author [12] asserts that all forests and
graphs of even girth are locally Sidorenko, Theorem 3 implies for every k�3
that a graph H is locally k-common if and only if H is locally Sidorenko. We
remark that Theorem 3 strengthens the result of Cummings and Young [7]
that no graph containing a triangle is 3-common by showing that such graphs
are not even locally 3-common.

2. Preliminaries

In this section, we fix the notation used throughout the paper and present
basic properties of k-common graphs. We also introduce some of the ter-
minology of the theory of graph limits. While all our arguments can be
presented for finite graphs, the language of graph limits allows us not to dis-
cuss “small order” asymptotic terms. Our notation and terminology mainly
follows that of the monograph of Lovász [24], and we refer the reader to [24]
for a more thorough introduction.
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We write N for the set of all positive integers and [k] for the set of the first
k positive integers, i.e., [k] = {1, . . . ,k}. We work with the Borel measures
on Rd throughout the paper and if A ✓ [0,1]d is a measurable subset of
Rd, we write |A| for its measure. Graphs that we consider in this paper are
finite and simple. If G is a graph, then its vertex set is denoted by V (G)
and its edge set by E(G); the cardinalities of V (G) and E(G) are denoted
by |G| and kGk, respectively. A homomorphism from a graph H to a graph
G is a function f : V (H) ! V (G) such that f(u)f(v) 2 E(G) whenever
uv 2E(H). The homomorphism density of H in G is the probability that
a random function from V (H) to V (G) is a homomorphism, i.e., it is the
number of homomorphisms from H to G divided by |G||H|. We denote the
homomorphism density of H in G by t(H,G).

A graphon is a measurable function W : [0,1]2! [0,1] that is symmetric,
i.e., W (x,y) =W (y,x) for all (x,y) 2 [0,1]2. Intuitively, a graphon can be
thought of as a continuous variant of the adjacency matrix of a graph. The
graphon that is equal to p2 [0,1] everywhere is called the p-constant graphon;
when there will be no confusion, we will just use p to denote such a graphon.
A graphon W is a step graphon if there exist a partition of [0,1] into non-
null subsets A1, . . . ,Am such that W is constant on each of the sets Ai⇥Aj ,
i, j 2 [m]. The sets Ai, i2 [m], are called parts of the step graphon W ; the
sets Ai⇥Aj , i, j2 [m], are tiles and those with i=j are diagonal tiles.

The notion of homomorphism density extends to graphons by setting

(1) t(H,W ) :=

Z

[0,1]V (H)

Y

uv2E(H)

W (xu, xv) dxV (H)

for a graph H and graphon W . We define the density of a graphon W to
be t(K2,W ). The quantity t(H,W ) has a natural interpretation in terms
of sampling a random graph according to W : for an integer n, choose n
independent uniform random points x1, . . . ,xn from the interval [0,1] and
create a graph with the vertex set [n] by joining the vertices i and j with
probability W (xi,xj). The graph constructed in this way is called a W -
random graph and denoted by Gn,W . If H = [n], then t(H,W ) is precisely
the probability that Gn,W is H. It can be shown that the following holds for
every graph H with probability one:

lim
n!1

t(H,Gn,W ) = t(H,W ).

A sequence (Gi)i2N of graphs is convergent if the sequence (t(H,Gi))i2N
converges for every graph H. A simple diagonalization argument implies
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that every sequence of graphs has a convergent subsequence. We say that a
graphon W is a limit of a convergent sequence (Gi)i2N of graphs if

lim
i!1

t(H,Gi) = t(H,W )

for every graph H. One of the crucial results in graph limits, due to Lovász
and Szegedy [25], is that every convergent sequence of graphs has a limit.
Hence, a graph H is Sidorenko if and only if t(H,W ) � t(K2,W )kHk for
every graphon W . Similarly, the property of being k-common translates to
the language of graph limits as follows. A graph H is k-common if

t(H,W1) + · · ·+ t(H,Wk) �
1

kkHk�1

for any graphons W1, . . . ,Wk such that W1+ · · ·+Wk=1.
We pause the exposition of graph limit theory to demonstrate how the

just introduced notions are convenient for establishing some basic proper-
ties of k-common graphs. Jagger, Šťov́ıček and Thomason [20, Theorem 13]
observed that if H is not k-common, then H is not `-common for any `�k.
We now present their argument in the language of graph limits. Suppose
that H is not k-common, i.e., there exists graphons W1, . . . ,Wk such that
W1+· · ·+Wk=1 and t(H,W1)+· · ·+t(H,Wk)<k�kHk+1. Consider an integer
`>k. We set W 0

i
= k

`
Wi for i2 [k] and W 0

i
=1/` for i2 [`]\ [k]. Observe that

t(H,W 0
1) + · · ·+ t(H,W 0

`
) =

✓
k

`

◆kHk �
t(H,W1) + · · ·+ t(H,Wk)

�
+

`� k

`kHk

<
k

`kHk +
`� k

`kHk = `�kHk+1,

which implies that H is not `-common. Hence, we can define (H) to be the
smallest integer k such that H is not k-common; if no such integer exists,
we set (H) =1. That is, H is k-common if and only if 2 k < (H). In
particular, Theorem 2 asserts that H is Sidorenko if and only if (H)=1.

In Section 1, for any non-bipartite connected graph H, we exhibited
a k-edge-coloring of KN from [20] which has (1 + o(1))N |H|2�(k�1)(|H|�1)

monochromatic copies of H. It follows that a non-bipartite connected graph
H is not k-common for any k that satisfies 2�(k�1)(|H|�1) < k�kHk+1. This
implies that (H)  d2d log2 de for any non-bipartite connected graph H
with average degree d. We remark that for graphs H with chromatic num-
ber larger than three, a better upper bound on (H) can be obtained
by considering the edge-coloring obtained by splitting vertices of KN to
(�(H)�1)k�1 roughly equal parts and defining the edge-coloring based on
the base (�(H)�1) representations of the indices of the parts.
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Let us return to our brief introduction to notions from the theory of
graph limits that we use in this paper. A graphon W can be thought of as
an operator on L2[0,1] where the image of a function f 2L2[0,1] is given by

Z 1

0
W (x, y)f(y) dy.

Every such operator is compact and so its spectrum �(W ) is either finite
or countably infinite, the only accumulation point of �(W ) can be zero and
every non-zero element of �(W ) is an eigenvalue of W [24, Section 7.5]. In
addition, all elements of �(W ) are real and the largest is at least the density
of W . We define b�(W ) to be the multiset containing all non-zero elements �
of �(W ), with multiplicity equal to the dimension of the kernel of (W ��),
which is finite. In the graph case, the trace of the n-th power of the adjacency
matrix of a graph G, which is equal to the sum of the n-th powers of the
eigenvalues of the matrix, is the number of homomorphisms from Cn to
G, i.e., it is equal to t(Cn,G)|G|n [24, Equation (5.31)]. We will need the
analogous statement for graphons, which we now state as a proposition.

Proposition 4 (Lovász [24, Equation (7.22)]). Let W be a graphon. It
holds for every n�3:

t(Cn,W ) =
X

�2b�(W )

�n.

There are several useful metrics on graphons. One of the most important
from the perspective of graph limit theory is the metric induced by the cut
norm. A kernel is a bounded symmetric measurable function from [0,1]2 to
R; a kernel can be thought of as a continuous variant of the adjacency matrix
of an edge-weighted graph. We define the cut norm of a kernel U to be

kUk⇤ := sup
S,T✓[0,1]

����
Z

S⇥T

U(x, y) dx dy

���� ,

where the supremum is over all measurable subsets S and T of [0,1]. The cut
distance of graphonsW andW 0, denoted by �⇤(W,W 0), is the infimum of the
cut norm kW'�W 0k⇤ taken over all measure preserving maps ' : [0,1]! [0,1]
where W'(x,y) =W ('(x),'(y)). If two graphons have small cut distance,
then their homomorphism densities do not di↵er substantially, as the next
lemma shows.

Lemma 5 (Lovász [24, Lemma 10.23]). Let W and W 0 be two graphons
and H a graph. It holds that |t(H,W )� t(H,W 0)|kHk ·�⇤(W,W 0).



94 D. KRÁL’, J. A. NOEL, S. NORIN, J. VOLEC, F. WEI

Lemma 5 asserts that two graphons which are close in the cut distance
have similar homomorphism densities. The next lemma allows us to find a
step graphon of bounded complexity that is close in cut distance to any
graphon.

Lemma 6 (Frieze and Kannan [15]; see also [24, Lemma 9.3]). For
every "> 0, there exists an integer M 2N such that for every graphon W ,
there exists a step graphon W 0 with at most M parts, all of equal sizes, such
that the densities of W and W 0 are the same and �⇤(W,W 0)".

The homomorphism density function extends naturally to kernels U by
setting t(H,U) to be the integral in (1) with W replaced by U . A graphon
W that is close to the p-constant graphon can be expressed as p+ "U for
some kernel U and small ">0. The following proposition provides a useful
expansion of t(H,p+ "U), which implicitly appeared in [23,30]; we use the
formulation from [24, proof of Proposition 16.27].

Proposition 7. Let U be a kernel, H a graph and p2 [0,1]. It holds that

t(H, p+ "U) =
X

F✓E(H)

t(H[F ], U)pkHk�|F |"|F |,

where H[F ] is the spanning subgraph of H with the edge set F .

A local variant Sidorenko’s Conjecture was considered in [23] and in [24,
Chapter 16]. Here, we consider a stronger notion discussed in [12]: a graph
H is locally Sidorenko if there exists "0 > 0 such that for every graphon
W with density p such that kW � pk⇤  "0p and kW � pk1  p, it holds
that t(H,W )�pkHk. The following theorem characterized locally Sidorenko
graphs.

Theorem 8 (Fox and Wei [12]). A graph H is locally Sidorenko if and
only if H is forest or its girth is even.

Similarly, we say that a graph H is locally k-common if for every k�2,
there exists "0>0 such that

t(H,W1) + · · ·+ t(H,Wk) � k�kHk+1

for all graphons W1, . . . ,Wk such that W1+ · · ·+Wk=1, kWi�1/kk⇤"0/k
and kWi�1/kk11/k for all i2 [k].
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Fix a graphon W and a real � > 0 and consider the set A(W,�) of all
measurable functions h : [0,1]! [0,1] such that

Z

[0,1]2
h(x)W (x, y)h(y) dx dy  �khk21.

Intuitively, for khk1>0, one can think of h as a weight function on [0,1] with
the property that, if x and y are chosen independently at random according
to the probability measure induced by h/khk1, then the expected value of
W (x,y) is at most �. We define the �-independence ratio of W to be

↵�(W ) := sup
h2A(W,�)

khk1.

We next define a notion of a subgraphon that is more involved than re-
stricting a graphon to a measurable subset of [0,1] and rescaling. This notion
will be used in the proof of Theorem 1 to apply induction to a “sparse” part
of one of the graphons W1,W2, . . . ,Wk. Let h : [0,1]! [0,1] be a measurable
function such that khk1 > 0 and let f : [0,khk1]! [0,1] be the measurable
function defined by

f(z) := inf

(
t 2 [0, 1] such that

Z

[0,t]
h(x) dx � z

)
.

Observe that Z

A

h(x) dx = |f�1(A)|

for every measurable subset A of [0,1]. The subgraphon of W induced by h,
which is denoted by W [h], is the graphon defined by

W [h](x, y) := W (f(x · khk1), f(y · khk1))

for every (x,y)2 [0,1]2. The graphon W [h] is associated with the following
sequence of random graphs. Choose n points independently at random based
on the probability with density h/khk1 and form a graph Gn with vertex set
[n] by joining vertices i and j with probability W (xi,xj). Then W [h] is a
limit of the sequence (Gn)n2N with probability one. The definition of W [h]
implies that

(2) t(H,W [h]) =
1

khk|H|
1

Z

[0,1]V (H)

Y

u2V (H)

h(u)
Y

uv2E(H)

W (xu, xv) dxV (H)

for every graph H. In particular, t(H,W ) is at least khk|H|
1 · t(H,W [h]).
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We conclude this section by relating certain “reflection operations” to
homomorphism densities. The arguments of this kind are standard in the
area; however, we have decided to provide a self-contained exposition for
completeness. Let H be a graph and let U ✓ V (H) be an independent set
of vertices of H. For a graphon W , we define a function tH

W
: [0,1]U !R as

follows:

tHW (xU ) =

Z

[0,1]V (H)\U

Y

vv02E(H)

W (xv, xv0) dxV (H)\U ;

note that the function tH
W

depends on the choice of the set U . Since the
choice of the set U will always be clear from the context, we have decided
not to include the set U in the notation explicitly to keep the used nota-
tion simple. Informally speaking, the function tH

W
(xU ) counts the number of

homomorphic copies of H rooted at xU . Observe that

t(H,W ) =

Z

[0,1]U
tHW (xU ) dxU .

We now state a proposition, which gives a lower bound on the homomor-
phism density of a graph obtained by reflecting H along the set U .

Proposition 9. Let H be a graph, n a positive integer and U ✓V (H) an
independent set of vertices of H. Further, let Hn be the graph obtained by
taking n copies of H and identifying the corresponding vertices of the set
U , i.e., the graph Hn has n|H|�(n�1)|U | vertices. The following holds for
every graphon W :

t(Hn,W ) � t(H,W )n.

Proof. Fix a graphon W . We consider both graphs H and Hn with the set
U and note that tH

n

W
(xU )= tH

W
(xU )n for every xU 2 [0,1]U . Hence, it follows

that

t(Hn,W ) =

Z

[0,1]U
tH

n

W (xU ) dxU �
 Z

[0,1]U
tHW (xU ) dxU

!
n

= t(H,W )n

by Jensen’s Inequality.

The same argument translates to the rooted setting, which we formulate
here for future reference but omit the proof as it is completely analogous to
the proof of Proposition 9.
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Proposition 10. Let H be a graph, n a positive integer, U ✓ V (H) an
independent set of vertices of H, and U 0 ✓ V (H) an independent set that
is a superset of U . Further, let Hn be the graph obtained from H taking
n copies of H and identifying the corresponding vertices of the set U 0. The
following holds for every graphon W and every xU 2 [0,1]U :

tH
n

W (xU ) � tHW (xU )
n.

The following proposition is obtained by two applications of Proposi-
tion 9, first to the graph K2,2 and U being one of the two parts of K2,2, and
second to the graph K2,2n and U being the 2n-vertex part of K2,2n.

Proposition 11. The following holds for every graphonW and every n2N:

t(K2n,2n,W ) � t(K2,2,W )n
2
.

3. Non-bipartite k-common graphs

This section is devoted to the proof of Theorem 1. For a,b � 1, we let
K2a,2b,C5 be the graph obtained from K2a,2b by adding b disjoint copies of
C5 and identifying one vertex of each of these copies with one vertex in the
2b-vertex part of K2a,2b (each copy involves a di↵erent vertex of the part).
In particular, K2n,2n,C5 is the graph from the statement of Theorem 1. We
start with proving that K2n,2,C5 is locally Sidorenko in a certain strong
sense; note that the assumption on W is weaker than that in the local
Sidorenko property discussed in Section 2 since we do not require any bound
on kW �pk1.

Lemma 12. For every p02(0,1), there exist "02(0,1) such that the follow-
ing holds. IfW is a graphon with density p�p0 such that t(K2,2,W )p4+"0,
then t(K2n,2,C5 ,W )�p4n+5 for all n2N.

Proof. We show that the statement of the lemma holds for "0 = p70/16.
Throughout the proof, fix a graphon W with density p � p0 such that
t(K2,2,W )� p4 = "  "0. If the set b�(W ) is finite, then set I = [|b�(W )|]
and set I = N otherwise. Let �i, i 2 I, be the elements of b�(W ) listed in
the decreasing order of their absolute value. Further, let gi : [0,1] ! R be
an eigenfunction corresponding to �i. Without loss of generality, we assume
that kgik2=1 for all i2I and that the eigenfunctions are orthogonal to one
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another, i.e.,
Z

[0,1]
gi(x)gi0(x) dx = 0

for any two distinct i and i0 from I. In particular, the functions Gi, i 2 I,
are orthonormal. Since it holds that

�1 = max
f2L2[0,1]
kfk2=1

Z

[0,1]2
f(x)W (x, y)f(y) dx dy,

it follows �1�p. In particular, �1�p0.
For every x2 [0,1], we define a measurable function fx : [0,1]! [0,1] by

setting fx(y)=W (x,y) for all y2 [0,1], i.e., fx describes the “neighborhood”
of x in the graphon W . We next define functions �i such that �i(x) would
be the coordinate of fx with respect to gi, i 2 I, for an orthonormal basis
extending gi, i2I, i.e.,

�i(x) =

Z

[0,1]
gi(y)fx(y) dy.

Since the L2-norm of fx is at most one and the functions gi, i 2 I, are
orthonormal, we obtain that

(3)
X

i2I
�i(x)

2  1

for every x2 [0,1]. Since it holds that

W (x, y) =
X

i2I
�igi(x)gi(y)

for almost every (x,y)2 [0,1]2, it follows that �i(x)=�igi(x) for almost every
x2 [0,1]. In particular, it holds that

(4)

Z

[0,1]
�i(x)

2 dx = �2
i .

Next consider a cycle Ck and let U consist of any single vertex of Ck. As
the functions gi, i2I, are orthonormal and are eigenfunctions of W , we get
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that

(5)

tCk

W
(x) =

Z

[0,1]k�1
fx(y1)W (y1, y2)W (y2, y3)

· · ·W (yk�2, yk�1)fx(yk�1) dy1 · · · yk�1

=
X

i2I
�k�2
i

�i(x)
2

holds for every k�3 and x2 [0,1]. It follows that

(6) t(Ck,W ) =

Z

[0,1]
tCk

W
(x) dx =

X

i2I
�k�2
i

Z

[0,1]
�i(x)

2 dx.

On the other hand, Proposition 4 tells us that

(7) t(Ck,W ) =
X

i2I
�k

i .

In particular, we obtain for k=4 that

" = t(K2,2,W )� p4 =
X

i2I
�4
i � p4 �

X

i2I\{1}

�4
i ,

which implies that |�i|  "1/4 for every i 2 I \ {1}. In particular, �1 has
multiplicity one.

Our aim is to estimate t
K2n,2,C5
W

(x) where U is the set consisting of the
vertex shared by K2n,2 and C5. Observe that

(8) t
K2n,2,C5
W

(x) = t
K2n,2

W
(x) · tC5

W
(x).

We start by rewriting the identity (5) for k=4 and k=5:

tC4
W
(x) = �2

1�
2
1(x) +

X

i2I\{1}

�2
i �

2
i (x)(9)

tC5
W
(x) = �3

1�
2
1(x) +

X

i2I\{1}

�3
i �

2
i (x).(10)

Note that all of the terms on the right sides of these two expressions are non-
negative, except for possibly the summation in (10). Using Proposition 10
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and the equation (9), we obtain that

(11)

t
K2n,2

W
(x) � tC4

W
(x)n

=

0

@�2
1�

2
1(x) +

X

i2I\{1}

�2
i �

2
i (x)

1

A
n

� �2n
1 �2n

1 (x) + �2n�2
1 �2n�2

1 (x)
X

i2I\{1}

�2
i �

2
i (x).

Our next goal is to show that, unless fx is almost completely orthogonal to
g1, the homomorphism density of K2n,2,C5 rooted at x is at least its expected
average value. Specifically, we will set ⇡0=p20/2 and show that if �2

1(x)�⇡0,
then

(12) t
K2n,2,C5
W

(x) � �2n+3
1 �2n+2

1 (x).

To this end, we substitute (10) and (11) into (8) to obtain

t
K2n,2,C5
W

(x) �

0

@�2n
1 �2n

1 (x) + �2n�2
1 �2n�2

1 (x)
X

i2I\{1}

�2
i �

2
i (x)

1

A

⇥

0

@�3
1�

2
1(x) +

X

i2I\{1}

�3
i �

2
i (x)

1

A .

Multiplying out, we obtain four terms. One of them is the right side of (12)
and the remaining three terms are as follows:

�2n+1
1 �2n

1 (x)

0

@
X

i2I\{1}

�2
i �

2
i (x)

1

A ,

�2n
1 �2n

1 (x)

0

@
X

i2I\{1}

�3
i �

2
i (x)

1

A and

�2n�2
1 �2n�2

1 (x)

0

@
X

i2I\{1}

�2
i �

2
i (x)

1

A

0

@
X

i2I\{1}

�3
i �

2
i (x)

1

A .

So, to establish (12), we need to show that the sum of these three terms
is non-negative. We first consider the sum of half of the first term and the
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whole of the second term. Since p0�1 and �i"1/4 for all i2I\{1}, we get

1

2
�2n+1
1 �2n

1 (x)

0

@
X

i2I\{1}

�2
i �

2
i (x)

1

A+ �2n
1 �2n

1 (x)

0

@
X

i2I\{1}

�3
i �

2
i (x)

1

A

�
⇣p0
2

� "1/4
⌘ �

�2n
1 �2n

1 (x)
�
0

@
X

i2I\{1}

�2
i �

2
i (x)

1

A � 0.

Next, we estimate the sum of half of the first term and the third term as
follows:

1

2
�2n+1
1 �2n

1 (x)

0

@
X

i2I\{1}

�2
i �

2
i (x)

1

A

+ �2n�2
1 �2n�2

1 (x)

0

@
X

i2I\{1}

�2
i �

2
i (x)

1

A

0

@
X

i2I\{1}

�3
i �

2
i (x)

1

A

�

0

@1

2
�3
1�

2
1(x)�

X

i2I\{1}

|�i|3�2
i (x)

1

A�2n�2
1 �2n�2

1 (x)

0

@
X

i2I\{1}

�2
i �

2
i (x)

1

A

�

0

@p3⇡0
2

� "3/4
X

i2I\{1}

�2
i (x)

1

A�2n�2
1 �2n�2

1 (x)

0

@
X

i2I\{1}

�2
i �

2
i (x)

1

A

�
✓
p50
4

� "3/4
◆
�2n�2
1 �2n�2

1 (x)

0

@
X

i2I\{1}

�2
i �

2
i (x)

1

A .

The last inequality follows from (3). The final expression is non-negative
(with room to spare) by the choice of "0.

The statement would follow from (4) and (12) by a convexity argument
if �2

1(x)� ⇡0 held for almost all x2 [0,1]. As this need not be the case for
almost all x2 [0,1], a finer argument is needed. Let X1 be the set of x2 [0,1]
such that �2

1(x)�⇡0 and let �=1� |X1|. By (4) for i=1, we have

Z

X1

�2
1(x) dx =

Z

[0,1]
�2
1(x) dx�

Z

[0,1]\X1

�2
1(x) dx � �2

1 � �⇡0.

The equation (4) for i=1 also implies that �<1; otherwise, the integral of
�2
1(x), which is equal to �2

1�p20, would be at most ⇡0=p20/2. Using Jensen’s
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Inequality, we have

Z

X1

�2n+2
1 (x) dx � (�2

1 � �⇡0)n+1

(1� �)n

=

✓
�2
1 � �⇡0
1� �

◆n�1

· �
4
1 � 2�⇡0�2

1 + �2⇡2
0

1� �

� �2n�2
1 · �

4
1 � 2�⇡0�2

1 + �2⇡2
0

1� �

= �2n�2
1 ·

✓
�4
1 +

��4
1 � 2�⇡0�2

1 + �2⇡2
0

1� �

◆

� �2n+2
1 + �2n�2

1 · ��
2
1(�

2
1 � 2⇡0)

1� �
� �2n+2

1 .

In the step between the second and third lines and in the last line, we used
the fact that 2⇡0 = p20  p2  �2

1. Since the estimate (12) holds for every
x2X1, we obtain that

t(K2n,2,C5 ,W ) �
Z

X1

t
K2n,2,C5
W

(x) dx �
Z

X1

�2n+3
1 �2n+2

1 (x) dx

� �4n+5
1 � p4n+5.

This concludes the proof of the lemma.

The next lemma follows from Lemma 12 by applying Proposition 10 for
the graph H = K2n,2,C5 and the set U being the part of K2n,2 with 2n
vertices.

Lemma 13. For every p0 2 (0,1), there exists "0 2 (0,1) such that the
following holds. If W is a graphon with density p�p0 such that t(K2,2,W )
p4+"0, then t(K2n,2n,C5 ,W )�p4n

2+5n for all n2N.

The second ingredient for the proof of Theorem 1 is the next lemma,
which covers the case when t(K2,2,W ) is substantially larger than t(K2,W )4

unless the graphon W contains a large sparse part.

Lemma 14. For every p02(0,1) and every "02(0,1), there exist n02N and
�0 2 (0,1) such that the following holds for every graphon W with density
p�p0 such that t(K2,2,W )�p4+"0:

• t(K2n,2n,C5 ,W )�p4n
2+5n for every n�n0, or

• ↵p0(W )��0.
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Proof. Set �0 :=p0"0/16 and set d0 :=�0. The reason that we let �0 and d0
to represent the same quantity is that they play di↵erent roles in the proof;
�0 is the lower bound on the p0-independence ratio in the statement of the
theorem whereas d0 is the threshold for considering a point x2 [0,1] to have
“small degree” in a graphon W . Choose n0 to be large enough so that

(1 + "0/2)
n0 d40p

3
0 � 1.

Fix a graphon W with density p�p0 such that t(K2,2,W )�p4+"0. We
iteratively define sets Ai, i2N, such that Ai is the set of all x2 [0,1] with
“small degree” when disregarding neighbors in Ai�1. Formally, we let A0=;
and let Ai, i2N, be the set of all x2 [0,1] such that

Z

[0,1]\Ai�1

W (x, y) dy  d0.

Note that Ai�1✓Ai for every i2N. Let A be the union of all sets Ai, i2N,
and observe that, for every x2 [0,1]\A,

Z

[0,1]\A
W (x, y) dy = lim

i!1

Z

[0,1]\Ai�1

W (x, y) dy.

In particular, it holds that
Z

[0,1]\A
W (x, y) dy � d0

for every x2 [0,1]\A.
We next distinguish two cases depending on the measure of A, and we

first analyze the case that |A|� "0/8. We start with estimating the density
of W on the set A:
Z

A2
W (x, y) dx dy =

X

i2N

Z

(Ai\Ai�1)2

W (x, y) dx dy + 2

Z

(Ai\Ai�1)⇥(A\Ai)

W (x, y) dx dy


X

i2N

Z

(Ai\Ai�1)2

W (x, y) dx dy + 2

Z

(Ai\Ai�1)⇥([0,1]\Ai)

W (x, y) dx dy

 2
X

i2N

Z

(Ai\Ai�1)⇥([0,1]\Ai�1)

W (x, y) dx dy

 2
X

i2N
|Ai \Ai�1| d0  2|A|d0.
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It follows that

R
A2 W (x, y) dx dy

|A|2  2d0
|A| =

p0"0
8|A|  p0.

Thus, the characteristic function of A certifies that ↵p0(W )�"0/8��0.
In the rest of the proof, we assume that |A| "0/8. We show that the

homomorphism density of K2n,2n,C5 is large enough even if we disregard the
points contained in A. To do this, we set W 0 to be the graphon defined by

W 0(x, y) =

(
0 if x 2 A or y 2 A,

W (x, y) otherwise.

We next estimate the homomorphism density K2n,2n in W 0 using Proposi-
tion 11 as follows:

t(K2n,2n,W
0) � t(K2,2,W

0)n
2

� (t(K2,2,W )� 4|A|)n
2

�
�
p4 + "0 � "0/2

�n2

=
�
p4 + "0/2

�n2

.

We next combine these copies of K2n,2n with copies of C5 rooted at x 2
[0,1] \A unless W contains a sparse part. Consider x 2 [0,1] \A and let
h(y)=W 0(x,y). Note that

Z

[0,1]
h(y) dy =

Z

[0,1]
W 0(x, y) dy =

Z

[0,1]\A
W (x, y) � d0 = �0.

Since h(y)=0 for y2A, we obtain that

(13)

Z

[0,1]2
h(y)W 0(y, z)h(z) dy dz =

Z

[0,1]2
h(y)W (y, z)h(z) dy dz.

If the integral in (13) is less than p0khk21, then ↵p0(W )� �0, which is the
second conclusion of the lemma.

Hence, we can assume that the integral in (13) is at least p0khk21 for
every x 2 [0,1] \A. Since the 3-edge path P4 is Sidorenko, we conclude by
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considering the graphon W [h] that

tC5
W 0(x) � khk41 · t(P4,W [h]) � khk41p30 � d40p

3
0

for every x2 [0,1]\A. It follows that

t(K2n,2n,C5 ,W ) � t(K2n,2n,C5 ,W
0)

� t(K2n,2n,W
0) ·
�
d40p

3
0

�n

�
�
p4 + "0/2

�n2 �
d40p

3
0

�n

� p4n
2
(1 + "0/2)

n
2 �

d40p
3
0

�n

� p4n
2 �

(1 + "0/2)
n0 d40p

3
0

�n � p4n
2 � p4n

2+5n.

Hence, the first conclusion of the lemma holds.

We are now ready to prove the main theorem of this section, which im-
plies Theorem 1. Theorem 15 is a variant of Theorem 1 where a very small
proportion of the edges can be left uncolored. This additional flexibility is
needed for an inductive argument used in the proof of the theorem.

Theorem 15. For every k 2N, there exist nk 2N and �k 2 (0,1) with the
following property. IfW1, . . . ,Wk are graphons such that t(K2,W1+· · ·+Wk)�
1��k, then

X

i2[k]

t(K2n,2n,C5 ,Wi) �
t(K2,W1 + · · ·+Wk)4n

2+5n

k4n2+5n�1

for every n�nk.

Proof. We proceed by induction on k2N. Suppose first that k=1. We apply
Lemma 13 with p0=3/4 to get "02(0,1). We show that the statement of the
theorem is true for n1=1 and �1="0/4. Let W1 be a graphon with density
p�1��1�3/4. Observe that

t(K2,2,W )� p4  1� p4  1� (1� �1)
4  4�1 = "0.

Hence, Lemma 13 implies that

t(K2n,2n,C5 ,W1) � p4n
2+5n.

This completes the proof in the base case k=1.
Now, suppose that we have already established the existence of

n1, . . . ,nk�1 and �1, . . . ,�k�1. Choose p0 = �k�1/4k and apply Lemma 13 to
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get "0. We then apply Lemma 14 with p0 and "0 to obtain n0 and �0. Set

�k=
�k�1�

2
0

4k . Finally, choose nk such that nk�max{n0,nk�1} and

✓
1

k
+

1

2k(k � 1)

◆4nk+5

�80 � k

k � 1

✓
1

k

◆4nk+5

.

The choice of nk yields that the following holds for all n�nk:

(k � 1)

✓
1

k
+

1

2k(k � 1)

◆4n2+5n

�8n0 � k

✓
1

k

◆4n2+5n

.

Let graphons W1, . . . ,Wk satisfying the assumption of the theorem be
given and let n�nk. Further, let p= t(K2,W1+ · · ·+Wk) be the density of
the graphon W1+ · · ·+Wk; note that p�1��k.

We distinguish two cases. First suppose that there exists i2 [k] such that
↵p0(Wi) � �0, i.e., one of the graphons W1, . . . ,Wk contains a large sparse
part. Note that this case includes the case that the density of one of the
graphons is at most p0. By symmetry, we can assume that ↵p0(Wk)��0. Let
h : [0,1]! [0,1] be such that khk1��0 and

Z

[0,1]2
h(x)Wk(x, y)h(y) dx dy  p0khk21.

Since it holds that

X

i2[k]

Z

[0,1]2
h(x)Wi(x, y)h(y) dx dy � khk21 � �k,

we obtain that

X

i2[k�1]

Z

[0,1]2
h(x)Wi(x, y)h(y) dx dy � khk21 � p0khk21 � �k

� khk21
✓
1� �k�1

2k

◆

� khk21
✓
1� 1

2k

◆
.

Since it holds that

t(K2,W1[h] + · · ·+Wk�1[h]) � 1� �k�1

2k
� 1� �k�1,
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we can apply induction to W1[h], . . . ,Wk�1[h] and arrive at the following:
X

i2[k�1]

t(K2n,2n,C5 ,Wi) � khk8n1
X

i2[k�1]

t(K2n,2n,C5 ,Wi[h])

� khk8n1 (k � 1)

✓
1� 1/2k

k � 1

◆4n2+5n

� �8n0 (k � 1)

✓
1

k
+

1

2k(k � 1)

◆4n2+5n

� k

✓
1

k

◆4n2+5n

� p4n
2+5n

k4n2+5n�1
.

Hence, in the following, we assume that ↵p0(Wi) < �0 for every i 2 [k]. In
particular, we assume that t(K2,Wi) � p0 for every i 2 [k] and so we can
apply Lemmas 13 and 14 to each of W1, . . . ,Wk.

Based on whether it holds that t(K2,2,Wi)  t(K2,Wi)4 + "0 or not,
Lemma 13 or Lemma 14, respectively, implies

t(K2n,2n,C5 ,Wi) � t(K2,Wi)
4n2+5n

for every i2 [k]. Therefore, we obtain that
X

i2[k]

t(K2n,2n,C5 ,Wi) �
X

i2[k]

t(K2,Wi)
4n2+5n

which is at least k
�
p

k

�4n2+5n
by convexity. This concludes the proof of the

theorem.

4. Sidorenko and locally Sidorenko graphs

In this section, we prove that a graph is k-common for all k�2 if and only
if it is Sidorenko and that no graph of odd girth is locally k-common for any
k�3. We start with the former statement.

Proof of Theorem 2. We first show that if a graph H is Sidorenko, then
it is k-common for every k2N. Fix a Sidorenko graphH and an integer k�2.
Let W1, . . . ,Wk be graphons such that W1+· · ·+Wk=1 and let p1, . . . ,pk be
their respective densities. Note that p1+ · · ·+pk=1. Since H is Sidorenko,

t(H,W1) + · · ·+ t(H,Wk) � pkHk
1 + · · ·+ pkHk

k

� k

✓
p1 + · · ·+ pk

k

◆kHk
= k�kHk+1.

Therefore, H is k-common.



108 D. KRÁL’, J. A. NOEL, S. NORIN, J. VOLEC, F. WEI

To complete the proof, we need to show that if a graphH is not Sidorenko,
then there exists k�2 such that H is not k-common. Fix a graph H that is
not Sidorenko and let W be a graphon with density p such that t(H,W )<
pkHk. Set "=pkHk� t(H,W ). By Lemma 6, there exists a step graphon W 0

with density p such that the cut distance between W and W 0 is at most
"/(2kHk). Lemma 5 implies that

t(H,W 0)  t(H,W ) + "/2 = pkHk � "/2.

By splitting each of the parts of W 0 into the same number of equal size
smaller parts, we can assume that the number m of parts of W 0 satisfies

4kHk  m" and pkHk � "/4 < (p� 1/m)kHk.

Let A1, . . . ,Am be the parts of W 0 and let dij , i, j 2 [m] be the value of W 0

on the tile Ai⇥Aj . Further, let � be the average of dij taken over all pairs
i and j such that 1 i < j m and let W 00 be the step graphon with the
same m parts as W 0 obtained from W 0 by making each of the m diagonal
tiles to be equal to �. Note that the density of the whole graphon W 00 is
� and � � p�1/m. Since the cut distance between W 0 and W 00 is at most
m/m2=1/m, Lemma 5 implies that

t(H,W 00)  t(H,W 0) + kHk · �⇤(W,W 0)

 t(H,W 0) + "/4

 pkHk � "/4 < (p� 1/m)kHk  �kHk.

Next choose an integer `2N such that 1 �`m! and set k= `m!. We next
define k graphons that witness that H is not k-common; the k graphons
will be indexed by pairs consisting of a permutation � 2 Sm of order m
and an integer s 2 [`]. The graphon W�,s for � 2 Sm and s 2 [`] is the
step graphon with m parts A1, . . . ,Am such that the graphon W�,s on a tile

Ai⇥Aj , i, j 2 [m], is equal to 1/k if i = j and is equal to
d�(i)�(j)

k�
if i 6= j

(note that
d�(i)�(j)

k�
 1

k�
 1). Note that the density of each of the graphons

W�,s is 1
k
. Moreover, the average value of all the k graphons on any of the

tiles is 1
k
. Consequently, the k graphons W�,s, �2Sm and s2 [`], sum to the

1-constant graphon. Since the homomorphism density of H in each of the
graphons W�,s, � 2 Sm and s 2 [`], is equal to 1

(k�)kHk t(H,W 00)< k�kHk, it

follows that H is not k-common.

We next show that locally k-common graphs for any k� 3 are precisely
locally Sidorenko graphs (cf. Theorem 8).
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Figure 2. The kernel U used in the proof of Theorem 3 for `=5. The origin of the
coordinate system is in the top left corner

Proof of Theorem 3. Fix an integer k� 3 for the proof, and a graph H
with girth ` where ` is odd.

Let A1, . . . ,A2` be any partition of the interval [0,1] to 2` disjoint mea-
surable sets, each of measure (2`)�1. Consider a kernel U defined as follows
(also see Figure 2):

U(x, y) =

8
><

>:

+1 if x 2 Ai, y 2 Aj , di/`e = dj/`e and i = (j ± 1) mod `,

�1 if x 2 Ai, y 2 Aj , di/`e 6= dj/`e and i = (j ± 1) mod `,

0 otherwise.

Let G be a graph that has a vertex v of degree one and let v0 be the neighbor
of v. Note that

t(G,U) =

Z

[0,1]V (G)

Y

uu02E(G)

U(xu, xu0) dxV (G)

=

Z

[0,1]V (G)\{v}

Y

uu
02E(G)

uu
0 6=vv

0

U(xu, xu0) ·
 Z

[0,1]
U(xv0 , xv) dxv

!
dxV (G)\{v}

=

Z

[0,1]V (G)\{v}

Y

uu
02E(G)

uu
0 6=vv

0

U(xu, xu0) · 0 dxV (G)\{v} = 0

We conclude that t(G,U)=0 for every graph G with a vertex of degree one.
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We next compute t(C`,U). Observe that the product
Y

i2[`]

U(xi, x(i+1) mod `)

is non-zero for x1, . . . ,x` 2 [0,1] if and only if there exists j 2 [`]
such that either xi 2 A(i+j) mod ` [ A(i+j) mod `+` for every i 2 [`] or
xi2A(`�i+j) mod `[A(`�i+j) mod `+` for every i2 [`]; if the product is non-zero,
then it is equal to one. Hence, it follows that

t(C`, U) =

Z

[0,1]`

Y

i2[`]

U(xi, x(i+1) mod `) dx[`] = 2` ·
Y

i2[`]

|Ai [Ai+`| =
2

``�1
.

We next consider the following graphons: W1 = W2 = 1/k+ "U , W3 =
1/k� 2"U and W4 = · · ·=Wk = 1/k. We will estimate the homomorphism
density of H in W1, . . . ,Wk using Proposition 7. Note that if F is a subset
of edges of H such that 1 |F | `, then H[F ] contains a vertex of degree
one unless H[F ] is a union of a cycle of length ` and isolated vertices. In
particular, t(H[F ],U)=0 for a set F of ` edges unless F is the edge set of a
cycle of length `. Using Proposition 7, we obtain that

t(H,W1) + · · ·+ t(H,Wk)

= 2t(H, 1/k + "U) + t(H, 1/k � 2"U) + (k � 3)t(H, 1/k)

= k�kHk+1 + 2 · 2m`

``�1
k�kHk+`"` � 2`+1m`

``�1
k�kHk+`"` +O("`+1)

= k�kHk+1 � (2`+1 � 4)m`

``�1
k�kHk+`"` +O("`+1),

where m` is the number of cycles of length ` in H. Since 2`+1�4>0, there
exists "0>0 such that

t(H,W1) + · · ·+ t(H,Wk) < k�kHk+1

for every " 2 (0,"0). We conclude that H is not locally k-common, which
completes the proof of the theorem.

5. Open problems

We conclude with two open problems. Theorem 1 provides an example of a
non-bipartite k-common graph for every k � 2. A natural next question is
whether there exist k-common graphs of arbitrary large chromatic number.
Currently, the only known example of a 2-common graph of chromatic num-
ber greater than three is the 5-wheel [19] and so this question is interesting
even in the case k=2 and `�5.
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Problem 1. For every k� 2 and `� 4, construct a k-common `-chromatic
graph.

The second problem stems from Theorem 3 which characterizes locally
k-common graphs for k� 3. Interestingly, we do not have a similar charac-
terization of locally 2-common graphs and we even miss a natural conjecture
for such a characterization.

Problem 2. Characterize graphs that are locally 2-common.

Locally 2-common graphs include forests, all graphs with even girth,
the triangle and the 5-wheel in particular, since these graphs are locally
Sidorenko or 2-common. On the other hand, Csóka, Hubai and Lovász [6]
showed that for every graph H containing K4 and every "> 0, there exists
a kernel U such that kUk1" and

t(H, 1/2 + U) + t(H, 1/2� U) < 2�kHk.

In particular, no graph containing K4 is locally 2-common. We remark that
the notion of locally common graphs used in [6] is formally weaker than the
notion used in this paper, i.e., every graph locally 2-common in the sense
used in this paper is locally common in the sense used in [6], however, it
is not obvious whether the converse holds. For completeness, we present
a simple argument that K4 is not locally 2-common, which is based on a
construction of Franek and Rödl [14] of a kernel U such that

t(K4, 1/2+U)+ t(K4, 1/2�U)  0.987314⇥ 1

32
and

Z

[0,1]
U(x, y) dy = 0

for every x2 [0,1]. For z2(0,1], define a kernel Uz as

Uz(x, y) =

(
U(x/z, y/z) if (x, y) 2 [0, z]2,

0 otherwise.

Since the cut norm of Uz is at most z2 and t(K4,1/2+Uz)+t(K4,1/2�Uz)<
1/32 (here, we use that the kernel Uz is “0-regular”), it follows that K4 is
not locally 2-common.
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[20] C. Jagger, P. Šťov́ıček and A. Thomason: Multiplicities of subgraphs, Combi-

natorica 16 (1996), 123–141.
[21] J. L. Li and B. Szegedy: On the logarithimic calculus and Sidorenko’s conjecture

(2011), preprint arXiv:1107.1153, accepted to Combinatorica.
[22] G. Lorden: Blue-empty chromatic graphs, Amer. Math. Monthly 69 (1962), 114–

120.
[23] L. Lovász: Subgraph densities in signed graphons and the local Simonovits-Sidorenko

conjecture, Electron. J. Combin. 18 (2011), Paper 127, 21.



NON-BIPARTITE K-COMMON GRAPHS 113

[24] L. Lovász: Large networks and graph limits, AMS Colloquium Publications, vol-
ume 60, 2012.

[25] L. Lovász and B. Szegedy: Limits of dense graph sequences, J. Combin. Theory

Ser. B 96 (2006), 933–957.
[26] S. Nieß: Counting monochromatic copies of K4: a new lower bound for the ramsey

multiplicity problem (2012), preprint arXiv:1207.4714.
[27] A. A. Razborov: Flag algebras, J. Symbolic Logic 72 (2007), 1239–1282.
[28] A. Sidorenko: A correlation inequality for bipartite graphs, Graphs Combin. 9

(1993), 201–204.
[29] A. Sidorenko: Randomness friendly graphs, Random Structures Algorithms 8

(1996), 229–241.
[30] A. F. Sidorenko: Cycles in graphs and functional inequalities, Mat. Zametki 46

(1989), 72–79, 104.
[31] A. F. Sidorenko: Inequalities for functionals generated by bipartite graphs, Diskret.

Mat. 3 (1991), 50–65.
[32] K. Sperfeld: On the minimal monochromatic K4-density (2011), preprint

arXiv:1106.1030.
[33] B. Szegedy: An information theoretic approach to Sidorenko’s conjecture (2015),

preprint arXiv:1406.6738.
[34] A. Thomason: A disproof of a conjecture of Erdős in Ramsey theory, J. London
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