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Graphical models have received an increasing amount of attention in network psychometrics as a
promising probabilistic approach to study the conditional relations among variables using graph theory.
Despite recent advances, existing methods on graphical models usually assume a homogeneous population
and focus on binary or continuous variables. However, ordinal variables are very popular in many areas of
psychological science, and the population often consists of several different groups based on the hetero-
geneity in ordinal data. Driven by these needs, we introduce the finite mixture of ordinal graphical models
to effectively study the heterogeneous conditional dependence relationships of ordinal data. We develop a
penalized likelihood approach for model estimation, and design a generalized expectation-maximization
(EM) algorithm to solve the significant computational challenges. We examine the performance of the
proposed method and algorithm in simulation studies. Moreover, we demonstrate the potential usefulness
of the proposed method in psychological science through a real application concerning the interests and
attitudes related to fan avidity for students in a large public university in the United States.

Key words: Gaussian mixture model, Gaussian graphical model, ordinal data, latent variables, network
psychometrics, EM algorithm.

1. Introduction

Graphical models provide a probabilistic approach for modelling the conditional dependence
structure of complex systems using graph theory (Lauritzen 1996). Inmany psychological studies,
it is of interest to study the relations among psychological constructs (e.g., attitudes, cognitions,
emotions, intelligence), psychopathological symptoms, behaviors, or other psychometric indi-
cators (Borsboom & Molenaar 2015). Recently, graphical models have been introduced to the
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discipline of psychometrics as a promising alternative to classic approaches using latent vari-
ables (e.g., Borsboom 2008; Cramer et al. 2010; Schmittmann et al. 2013; Borsboom & Cramer
2013; Epskamp et al. 2017, 2018; Marsman et al 2018). Network psychometrics has received an
increasing amount of attention in clinical psychology, psychiatry, social psychology, and other
domains (e.g., Fried et al. 2015; Isvoranu et al. 2016; Dalege et al. 2016). Compared to traditional
psychometric models, graphical models use an alternative graph-based representation to study the
conditional relations among the variables of interest. More specifically, the undirected graphical
models represent random variables as nodes and use edges to express conditional dependence
relationships. In other words, the nonexistence of an edge between two nodes corresponds to the
conditional independence of these two variables giving all other variables. There exists a certain
level of equivalence between a particular class of graphical models called Ising models and tradi-
tional models typically employed in psychometrics such as logistic regression models, log-linear
models, and multi-dimensional item response theory models (Marsman et al. 2018; Epskamp et
al. 2018). However, graphical models hypothesize that the network is formed by mutually rein-
forcing variables, thus providing a new conceptualization of why variables cluster (Epskamp et
al. 2018).

In the past two decades, substantial progress has been made in developing new methods,
algorithms, and applications of graphical models. The main focus of the current literature in
statistics and machine learning is on the graphical modeling of the complex conditional depen-
dence structure among binary variables via Ising models, or among continuous variables via
Gaussian graphical models. The estimation of sparse graphical models is increasingly important
to model complex interactions in a large-scale system. Ising models were initially introduced by
Ising (1925) in statistical physics for studyingmagnetic interactions. The joint distribution of Ising
models is also known as the quadratic exponential binary distribution (Cox & Wermuth 1994)
in the statistics literature. Gaussian graphical models were first studied by Dempster (1972) as
the covariance selection problem, and the covariance structure of Gaussian graphical models can
be simplified by estimating sparse off-diagonal elements of the inverse of the covariance matrix
(also known as the precision matrix). Penalized likelihood estimation (Tibshirani 1996; Fan & Li
2001; Fan et al. 2014) has become a standard procedure to achieve the sparse estimation of such
graphical models and provide interpretable results. Penalized estimation of sparse Ising models
was developed by Höing & Tibshirani (2009), Ravikumar et al. (2010) and Xue et al. (2012)
among others, and the sparse estimation of Gaussian graphical models and their variants were
studied by Meinshausen & Bühlmann (2006), Yuan & Lin (2007), Friedman et al. (2008), Liu
et al. (2009), Cai et al. (2011), Xue & Zou (2012), Ma et al. (2021), and many others. Recently,
graphical models for mixed continuous and discrete variables were also considered by Chen et
al. (2015), Lee & Hastie (2015), Haslbeck & Waldorp (2016), Fan et al. (2017) and Cheng et al.
(2017), among others.

Graphical models for ordinal data has received much less attention. The multivariate probit
model has been used to model the joint distribution of ordinal data through a latent multivariate
Gaussian distribution. Motivated by the success of multivariate probit analysis (Amemiya 1974;
Albert & Chib 1993; Bock & Gibbons 1996; Chib & Greenberg 1998) and polychotomous Rasch
model (von Davier & Carstensen 2007), Guo et al. (2015) introduced probit graphical models to
study the conditional dependence structure of ordinal variables. The sparse estimation of probit
graphical models for ordinal data is very challenging in the presence of latent variables in the
resulting log-likelihood function. Guo et al. (2015) designed an approximate EM-like algorithm
to estimate the parameters, Suggala et al. (2017) introduced a two-stage procedure based on
the bivariate marginal log likelihood function, and Feng & Ning (2019) proposed a rank-based
ensemble estimation approach.

Despite these advances, existing ordinal graphical models usually assume a homogeneous
population. However, the population is often heterogeneous and is comprised of several sub-
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Figure 1.
The illustration of mixtures of graphical models with two mixture components (A) and (B).

groups. For example, in psychopathological research, the data randomly sampled from several
sub-populations may have different symptomatic structures. As pointed out by Brusco et al.
(2019), ignoring the heterogeneity of the data leads to an estimation of network that may not
represent any of the underlying population. In the current literature, a number of papers account
for heterogeneity in Gaussian graphical models and Ising models. On the one hand, Ruan et al.
(2011) and Lee & Xue (2018) studied the finite mixtures of Gaussian graphical models to deal
with heterogeneity. On the other hand, Brusco et al. (2019) introduced a two-step procedure, using
the clustering for the first step and fitting a graphical model to each cluster, to address the hetero-
geneity problem in Ising models, and Marsman (2019) recently pointed out the bridge between
idiographic and cross-sectional approaches in Ising models.

However, none of these existing papers consider the simultaneous estimation of the hetero-
geneous conditional relations for ordinal data in the context of graphical models. In the statistics
and psychometrics literature, mixture models provide a powerful approach to make use of latent
variables and account for the heterogeneous sub-population of individuals. Mixture models incor-
porate latent group memberships into generalized linear models and probit analysis for ordinal
data to model different parameters for heterogeneous sub-populations, including Lwin & Martin
(1989), Wedel & DeSarbo (1995), Greene & Hensher (2003), Grün & Leisch (2008), Breen &
Luijkx (2010), and many others. We would like to extend the finite mixture method into ordinal
graphical modeling to account for heterogeneity.

In this paper, we aim to develop finite mixtures of ordinal graphical models to describe
the heterogeneous conditional dependence relationships in ordinal data. Our proposed method
simultaneously estimates latent groups of the studied population and creates ordinal graphical
models for the identified groups. We use a toy example to illustrate the graphical modeling of
heterogeneous conditional dependencies. As shown in Fig. 1, two mixture components (A) and
(B) specify two different conditional relations among ordinal variables X1, X2, and X3, and the
proposed model is a mixture of (A) and (B) weighted by their corresponding mixing proportions.
Themixtures of ordinal graphical models divide the studied population into different groups based
on conditional dependencies.

The proposed model shares the similar philosophy with the mixture of probits that generalize
probit analysis (Lwin&Martin 1989).More specifically, we introduce the finitemixture of ordinal
graphical models as the discretization of a latentmultivariate Gaussianmixture distribution, which
combines the strengths of multivariate probit models, mixture models, and Gaussian graphical
models. The heterogeneous relationships between ordinal variables are characterized by the latent
mixture of Gaussian graphical models, and inferred by the corresponding precision matrix.

We propose the penalized likelihood approach for the sparse estimation of the mixtures of
ordinal graphical models. Specifically, we solve the maximum penalized likelihood estimation
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of both mixing proportions and heterogeneous precision matrices for ordinal data. It is worth
noting that the model estimation of the proposed model is non-trivial and needs to overcome
more significant computational challenges than traditional approaches for estimating mixtures of
ordinal data such asGreene&Hensher (2003), Grün&Leisch (2008), and Breen&Luijkx (2010).
On the one hand, the likelihood function consists of two different sets of latent variables: one set
of latent variables in probit models to generate the ordinal data, and the other set of latent variables
in Gaussian mixture models to represent the underlying group memberships. On the other hand,
unlike traditional approaches, the sparse estimation imposes the non-smooth penalty function to
regularize the likelihood function, which leads to solving a challenging non-convex and non-
smooth optimization problem. Traditionally, mixture models employ expectation-maximization
(EM) algorithms (Dempster et al. 1977) to handle these latent variables by iteratively solving the
Expectation step (E step) and the Maximization step (M step). Unfortunately, with our proposed
model, the M step would require the realizations of latent truncated Gaussian mixture random
variables that can not be estimated or approximated when there are multiple latent groups. Hence,
we need new insights to solve this significant computational challenge. To this end, we develop a
generalized EM algorithm to effectively estimate the probits of latent Gaussianmixturemodels. In
particular, without requiring the generation of random samples from the latent Gaussian mixture
distribution, we use a rank-based estimationmethod in theM step to estimate the latent correlation
matrix for each mixture.

To the best of our knowledge, we introduce the first method for estimating finite mixtures
of ordinal graphical models and bridge the gap between network modeling and practice for the
analysis of ordinal data in network psychometrics. We examine the performance of our proposed
method in extensive simulation studies and compare its performance with that of the existing
models. Moreover, we demonstrate the performance of the proposed method in a real-world
sports marketing application for a large public university in the nation. In this study, 307 students
responded to a survey concerning the university’s Division 1 NCAA football program. Of interest
to psychometricians, participants assessed 33 statements concerning their interests and attitudes
related to fan avidity using a 7-point Likert scale. Participants also answered several demograph-
ics questions (e.g., age, gender, fraternity, GPA). A better understanding of the heterogeneous
relations among avid fans’ interests and attitudes provides the insights for practitioners to devise
marketing strategy and increase revenue. However, there has been little research that explores the
heterogeneous associations among respondents’ interests and attitudes based on their responses to
Likert scale survey questions. The proposed method addresses this important research question.

We organize the rest of the paper as follows. We introduce the proposed model and present
the model estimation and computational details in Sect. 2. We demonstrate the performance of
the proposed method and algorithm via simulation studies in Sect. 3, and provide an empirical
application in Sect. 4. In Sect. 5, we conclude with a discussion of our contributions, limitations,
and directions for future research. The additional technical details and numerical results are
presented in Appendices I–VII of the supplementary material.

2. The Proposed Methodology

This section presents the model specification for finite mixtures of ordinal graphical models
in Sect. 2.1, a penalized likelihood approach for model estimation in Sect. 2.2, and a generalized
EM algorithm in Sect. 2.3.

2.1. Model Specification

Suppose there are p survey items/questions based on psychological constructs, behaviors, or
symptoms that are assessed on an ordinal scale. Let X = (X1, . . . , X p)

′ be the ordinal categorical
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variables associated with these p survey items/questions. For any j = 1, . . . , p, the number of
ordered categories of X j is denoted by L j . For ease of presentation, the ordered categories of X j

are coded as 1, . . . , L j respectively, or equivalently, X j ∈ {1, . . . , L j }.
We assume there are N respondents independently answering these survey questions. We

define their responses as the ordinal data x1, . . . , xN . Suppose there are K unknownheterogeneous
groups among x1, . . . , xN . The conditional dependence relationship is invariant within the same
group, but different across groups. In what follows, we introduce the finite mixture of ordinal
graphical models to account for the heterogeneous conditional dependence relationships. The
proposed model employs the discretization of a latent multivariate Gaussian mixture distribution
and shares the similar philosophy with the mixture of probits (Lwin & Martin 1989).

To begin with, we assume that each X j is discretized from the latent continuous counterpart

Y j for j = 1, . . . , p. Given the ordered thresholds −∞ = θ0j < θ1j < . . . < θ
L j
j = ∞, we have:

X j =
L j−1∑

l=0

1(Y j ≥ θ lj ), for j = 1, . . . , p, (1)

where 1(·) is the indicator function. The ordinal categories are represented by the corresponding
intervals between the ordered thresholds. In other words, X j = l if and only if Y j falls in the
interval [θ l−1

j , θ lj ) for j = 1, . . . , p.
The conditional dependence relationship of the observable ordinal random vector X is char-

acterized by the joint distribution of the latent continuous random vector Y = (Y1, . . . ,Yp)
′. We

assume that Y comes from the following Gaussian mixture distribution:

π1Np(μ1,�1) + · · · + πK Np(μK ,�K ), (2)

where K is the number of mixtures, π = (π1, . . . , πK )′ consists of the non-negative mixing
proportions such that

∑K
k=1 πk = 1with 0 ≤ πk ≤ 1, and Np(μk,�k) denotes the p-dimensional

Gaussian distributionwithmean vectorμk and covariancematrix�k for k = 1, . . . , K . The probit
graphical model for ordinal data (Guo et al. 2015; Suggala et al. 2017; Feng & Ning 2019) is
a special example of the proposed model with K = 1. To ensure the identifiability of number
of mixtures, we assume K be the smallest integer such that πk > 0 for 1 ≤ k ≤ K , and
(μm,�m) �= (μn,�n) for 1 ≤ m �= n ≤ K (Huang et al. 2017). Regarding the identifiability
of model parameters, Allman et al. (2009) studied the generic identifiability of parameters in
latent structure models where the set of all uniquely identifiable parameters has a complement
of Lebesgue measure zero in the full parameter space, and in general, the generic identifiability
of model parameters is sufficient for data analysis purpose. As will be shown in Sect. 3, our
proposedmethod achieved promising estimation performance in simulation studies.Wewill study
the generic identifiability of model parameters estimated by our proposed methods in the future.
Without loss of generality, we also assume that Y j ’s have unit variances, namely, the diagonal
elements of �k are 1’s for k = 1, . . . , K . The mixing proportions πk’s can be modeled by the
function of concomitant variables (such as demographics and psychographics) to provide a more
informative characterization of mixtures (Dayton & Macready 1988, Wedel 2002; DeSarbo et al.
2017).

Let � = {�−1
1 , . . . ,�−1

K } be the set of precision matrices (namely, the inverse of covariance
matrices) for the latent Gaussian mixture distribution (2). In fact, � can be directly translated
into a finite mixture of Gaussian graphical models for latent variables Y , which was studied by
Ruan et al. (2011) and Lee & Xue (2018). The sparsity pattern of � encodes the heterogeneous
conditional dependence relationships among latent variables Y . Further, given the fact that ordinal
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variables X are generated from the discretization of Y , the sparsity pattern of � also implies the
heterogeneous conditional relations among ordinal variables X . Therefore, we refer to (1)—(2)
as the mixture of ordinal graphical models.

2.2. Model Estimation

We propose the penalized estimation procedure for estimating the finite mixtures of sparse
ordinal graphical models. Recall that π = (π1, . . . , πK )′ and � = {�−1

1 , . . . ,�−1
K }. Here, we

define � = {μ1, . . . ,μK } and � = {θ lj : j = 1, . . . , p; l = 1, . . . , L j − 1} as the set of ordered
thresholds for the discretization of Y to generate the ordinal variables X . Namely, we propose the
penalized estimation procedure to estimate the model parameters (π ,�,�,�).

We first consider the joint probability density function of the observed ordinal variables X
and latent variables Y , denoted by f (x, y;π ,�,�,�). After deriving f (x, y;π ,�,�,�), we
obtain the marginal probability density function for the observed ordinal variables X as:

f (x;π ,�,�,�) =
∫

y∈Rp
f (x, y;π ,�,�,�)d y.

The log-likelihood function for the observed ordinal data x1, . . . , xN can be written as follows:

�(x1, . . . , xN ;π ,�,�,�) =
N∑

i=1

log f (xi ;π ,�,�,�). (3)

We use penalized likelihood estimation (Tibshirani 1996; Fan & Li 2001; Fan et al. 2014) for
estimating the mixture of sparse ordinal graphical models as follows:

max
(π ,�,�,�)

N∑

i=1

log f (xi ;π ,�,�,�) − λ

K∑

k=1

‖�−1
k ‖1,off , (4)

where λ
∑K

k=1 ‖�−1
k ‖1,off is the penalty function that is defined as sum of absolute values of

the off-diagonal entries of �−1
k . Here, the entry-wise �1 norm ‖�−1

k ‖1,off encourages the sparse
estimation of precision matrices, and the penalization parameter λ controls the level of sparsity in
the precision matrices. We choose λ using the cross validation based on the conditional likelihood
given the estimates of latent variables.

The penalized estimation procedure posts a significant computational challenge to solve the
non-convex and non-smooth problem (4) effectively and efficiently. In Sect. 2.3, we will propose
a new generalized EM algorithm to address the computational challenge of (4).

What remains is the explicit derivation of the joint probability density function. Note that

f (x, y;π ,�,�,�) = f ( y;π ,�,�) f (x| y;�) = f ( y;π ,�,�)

p∏

j=1

f (x j |y j ;�), (5)

wherewe have used the fact that each coordinate of y is discretized independently. Inwhat follows,
we derive the explicit forms of f ( y;π ,�,�) and f (x| y;�) respectively.
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Let φ( y|μk,�k) be the probability density function of the p-dimensional Gaussian distri-
bution with mean vector μk , covariance matrix �k , and precision matrix �−1

k for k = 1, . . . , K .
Note that y follows the multivariate Gaussian mixture distribution, namely,

f ( y;π ,�,�) =
K∑

k=1

πkφ( y|μk,�k). (6)

Next, we will study the conditional distribution function f (x| y;�). For j = 1, . . . , p, since

x j = ∑L j−1
l=0 1(y j ≥ θ lj ), we know that:

f (x j |y j ;�) = 1(y j ∈ [θ x j−1
j , θ

x j
j )). (7)

Combining (5) and (7), we immediately obtain that:

f (x| y;�) =
p∏

j=1

1(y j ∈ [θ x j−1
j , θ

x j
j )) = 1( y ∈ C(x,�)), (8)

where C(x,�) is defined as the hyper-cube [θ x1−1
1 , θ

x1
1 ) × . . . × [θ xp−1

p , θ
xp
p ) associated with x.

Given (5), (6) and (8), the joint probability density function can be written as follows:

f (x, y;π ,�,�,�) =
K∑

k=1

πkφ( y|μk,�k) · 1( y ∈ C(x,�)). (9)

Therefore, we maximize the following explicit penalized likelihood function to obtain model
parameters (π ,�,�,�):

max
(π ,�,�,�)

N∑

i=1

log
∫

yi∈Rp

[
K∑

k=1

πkφ( yi |μk,�k) · 1( yi ∈ C(xi ,�))

]
d yi − λ

K∑

k=1

‖�−1
k ‖1,off .

(10)

In the next subsection, we will present the computational details to efficiently maximize (10).

2.3. Computation

We introduce the latent random variables zi = (zi1, . . . , ziK ), i = 1, . . . , N , satisfying that

zik =
{
1 if yi belongs to the k-th group,

0 otherwise.
(11)

Here, the latent variables zi identify the respondent i’s unobserved group membership.
The EM algorithm (Dempster et al. 1977) provides a powerful tool to deal with latent vari-

ables inmixturemodels. The EMalgorithm not only provides the parameter estimates for different
groups but also estimates posterior probabilities which can be used to find the membership of
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each observation. The EM algorithm can leverage a parallel implementation to decrease the com-
puting time it takes to estimate parameters and potentially handle the larger problems. Moreover,
Dwivedi et al. (2018) recently provided theoretical guarantees for EM algorithms when applied
to misspecified Gaussian mixture models (e.g. with an under-specified number of components).

Following the spirit of the EM algorithm, we view the collected ordinal data xi , i = 1, . . . , N
to be incomplete, and treat the latent variables as “missing data”. Different from the traditional
mixture models, our penalized estimation problem (10) includes two different sets of latent vari-
ables: one set of latent variables yi in probit models to generate the ordinal data, and the other set
of latent variables zi in the latent Gaussian mixture models to specify the corresponding group
memberships. It is possible to generate random samples from the truncated multivariate normal
distribution in the M step, but, as pointed out in Guo et al. (2015), the computational cost of
the Gibbs sampler is extremely high even when p is of moderate size. Under the mixture model
setting, the M step depends on the estimated conditional expectations in the E step. We need to
run the Gibbs sampler at every iteration, and the total computational costs would be significantly
higher. Thus, it is not practical to use the MCMC approach to construct the empirical condi-
tional second moment in our case. Moreover, unlike traditional approaches, the sparse estimation
imposes the non-smooth penalty function to regularize the likelihood function, which leads to
solving a challenging non-convex and non-smooth optimization problem.

To address the computational challenges for solving (10), we propose the generalized EM
algorithm. Note that (10) depends on the parameters (π ,�,�,�) and two sets of latent variables.
Among them,� has a closed-form estimator �̂ = {θ̂ lj : j = 1, . . . , p; l = 1, . . . , L j −1}, which
can be explicitly derived as follows:

θ̂ lj =

⎧
⎪⎨

⎪⎩

−∞ if l = 0,

�−1( 1
N

∑N
i=1 1(xi j < l + 1)) if l = 1, 2, . . . , L j − 1,

+∞ if l = L j ,

(12)

for j = 1, . . . , p, where �(·) is the cumulative distribution function of the standard normal
distribution and �−1(·) is the inverse of �(·). Given the closed-form estimate of �, we will
iteratively solve the E step and the M step to obtain the estimates of the remaining parameters
(π ,�,�). For iteration t = 0, 1, . . ., given the current estimates of parameters (π (t),�(t),�(t)),
the E step gives an approximate estimate of the conditional expectations of zik , and the M step
obtains all the updated estimates of parameters (π (t+1),�(t+1),�(t+1)).

In what follows, we present the details about the E step and the M step of the proposed
generalizedEMalgorithm.Given the “complete” data {(xi , yi , zi ), i = 1, . . . , N }, the “complete”
log-likelihood function is written as:

�cmp =
N∑

i=1

[
K∑

k=1

zik(logπk + logφ( yi |μk,�k)

]
1( yi ∈ C(xi , �̂)), (13)

and the “complete” �1-penalized log-likelihood function becomes:

Lcmp = �cmp − λ

K∑

k=1

‖�−1
k ‖1,off . (14)

E step: Let π(t)
k , μ(t)

k , and�−1
k

(t)
be the estimate of πk , μk , and�−1

k for k at the t th iteration.
In the E step of the (t+1)th iteration, we compute the conditional expectation of zik given current
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estimates π
(t)
k , μ(t)

k , and �−1
k

(t)
for k = 1, . . . , K . From Bayes’ rule, the conditional expectation

of zik is of the following form:

γ
(t+1)
ik = π

(t)
k φ( yi |μ(t)

k ,�
(t)
k )

∑K
k′=1 π

(t)
k′ φ( yi |μ(t)

k′ ,�
(t)
k′ )

. (15)

Although γ
(t+1)
ik cannot be directly estimated, we use xi to construct the surrogate as suggested

by Guo et al. (2015), and provide an approximate estimate γ̃
(t+1)
ik . The approximate estimate of

the conditional expectation of zik works well in numerical studies. For ease of notation, we define
�(t+1) = {γ̃ (t+1)

ik : i = 1, . . . , N ; k = 1, . . . , K }. These estimates are also called themembership
probabilities as the output of the E step.

M step: In the M step of the (t + 1)th iteration, we estimate the parameters (π ,�,�) that

maximize the conditional expectation of Lcmp = �cmp − λ
∑K

k=1 ‖�−1
k ‖1,off , with respect to the

current conditional distribution of y1, . . . , yN given the updated membership probabilities �(t+1)

and current estimates (π (t),�(t),�(t)), namely:

Q(π ,�,�) = E y1,..., yN | �(t+1),(π (t),�(t),�(t))

{
�cmp − λ

K∑

k=1

‖�−1
k ‖1,off

}
, (16)

subject to the constraints that 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1. The conditional expectation ofLcmp

is also known as the Q function in the EM algorithm. More specifically, the above Q function
corresponds to setting up the conditional expectation of:

K∑

k=1

[
N∑

i=1

γ̃
(t+1)
ik

(
logπk + logφ( yi |μk,�k)

)
1( yi ∈ C(xi , �̂)) − λ‖�−1

k ‖1,off
]

. (17)

Note that the closed-form solutions of π (t+1) and �(t+1) can be solved from the maximization of
the above Q function (16), but�(t+1) is more challenging to solve.When K = 1, Guo et al. (2015)
proposed a MCMC approach to construct the empirical conditional second moment to estimate
�(t+1). However, as pointed out by Guo et al. (2015), the computational costs of the MCMC
approach are extremely high even when p is of moderate size. Moreover, different from Guo et al.
(2015), under themixture model setting, theM step of our EM algorithm depends on the estimated
conditional expectations in the E step. We need to run the Gibbs sampler at every iteration of our
EM algorithm, and the total computational costs would be significantly higher. Thus, it is not
practical to use theMCMC approach to construct the empirical conditional second moment in our
case. Instead, we use a rank-based ensemble method (Feng & Ning 2019) to estimate the latent
correlation matrix for each mixture, without requiring the generation of random samples from
the latent Gaussian mixture distribution. The main idea of rank-based ensemble method is first
binarize the ordinal variable at each level and construct a set of preliminary rank-based estimators
and then combine the preliminary estimators into a single estimator. Theoretical property and
empirical advantage over a single preliminary estimator is shown in Feng & Ning (2019). We
describe the technical details about this M step in Appendix I.

We alternate between the E step and the M step until the estimates of parameters converge.
The proposed algorithm is summarized in Algorithm 1 below. The theoretical guarantees such
as the local convergence for the EM algorithm with high-dimensional data were recently studied
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in the literature, for instance, Städler et al. (2010), Balakrishnan et al. (2017) and Lee & Xue
(2018) among others. Although the objective function is non-concave and non-differentiable, the
proposed EM algorithm is expected to achieve the local convergence that every cluster point in
the sequence {(π (t),�(t),�(t)) : t = 0, 1, 2, . . .} is a stationary point of the objective function.
Please see Section 4.1 and Definition 4.1 of Lee & Xue (2018) for more details about the local
convergence and definition of cluster point.

Algorithm 1
The proposed generalized EM algorithm

1. Initialize (�(0), π (0),�(0), �(0)).
2. Repeat the following for iteration t = 0, 1, 2, . . .
3. E step: update membership probabilities �(t+1) given current estimates (π (t), �(t), �(t)).
4. M step: solve (π (t+1), �(t+1), �(t+1)) from:

max
(π,�,�)

Q(π ,�, �) = max
(π ,�,�)

E y1,..., yN | �(t+1),(π (t),�(t),�(t))

⎧
⎨

⎩�cmp − λ

K∑

k=1

‖�−1
k ‖1,off

⎫
⎬

⎭

subject to the constraint that
∑K

k=1 πk = 1.
5. Until convergence.

We randomly sample the initial values of γ
(0)
ik from the uniform distribution on [0, 1], and

each vector γ
(0)
i is normalized to achieve the sum-to-one constraint that

∑K
k=1 γ

(0)
ik = 1 for any

i . Then, we use the M step to obtain the initial values π (0), �(0), and �(0).
After obtaining the parameter estimates, we assign the respondent i to the derived group

according to corresponding estimated posterior probabilities. In practice, we need to choose the
number of groups (i.e., K ). The traditional Bayesian information criterion does not work well for
the selection of K , and we discuss the details in Sect. 5. We will explore a data-driven approach
to properly choose K in the future.

3. Simulation Studies

In this section, we present simulation studies to examine the numerical performance for
estimating mixtures of ordinal graphical models with respect to differing factors across various
settings. We consider four different factors: the number of respondents (N = 100, 200), the
number of items/questions (p = 30, 50), the mixing proportions

(
π = ( 1

2 ,
1
2

)
,
( 1
3 ,

2
3

))
, and

the graph structures (Neighbor Chain Graph/Random Graph, Neighbor Chain Graph/Stochastic
Block Graph). We choose these factors with two levels to show the numerical performance of
our proposed method in different simulation settings and to represent potential various real-world
applications. Here, we focus on the case when the number of latent clusters is 2, i.e., K = 2. We
present the case when the number of latent clusters is 3, i.e. K = 3 in the Appendix II. In addition,
we concentrate on the scenario where the number of ordinal levels for survey items/questions is
5, i.e., L = 5 in the main article, but we also examined the performance of the proposed method
when the number of ordinal levels for survey items/questions is 7, i.e. L = 7 and it is presented
in the Appendix III.

To investigate the performance of the proposed mixture of ordinal graphical models, we
compare our proposed method with (i) the naive finite mixture of Gaussian graphical model
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(Ruan et al. 2011) and (ii) the oracle method as in Guo et al. (2015). The naive finite mixture of
Gaussian graphical model represents the case when we naively apply Gaussian graphical models
to ordinal synthetic data sets. The oracle method uses the oracle information about the true group
assignment and the latent continuous data, and it directly applies the graphical Lasso algorithm
to the latent continuous data in each group. Although the oracle method never happens with real
data, it serves as an ideal benchmark for comparison purposes in simulation studies. We would
expect that our proposed model outperforms the naive finite mixture of Gaussian graphical model
and shows comparable performance with the oracle method. It is expected that the oracle method
would perform the best since it uses true group assignment and latent continuous data. But with
good clustering results, we expect our model shows comparable performance with the oracle
method. In addition, we have also compared our method with the probit graphical model (PGM)
(Guo et al. 2015; Feng & Ning 2019) and the results are presented in the Appendix IV. The probit
graphical model represents the case when we ignore the underlying mixture in synthetic data sets.
We expect that our method shows better performance than the probit graphical model because the
probit graphical model is not designed to handle the heterogeneity in the population.

To evaluate the parameter estimation and recovery of graphical structures, we define

• The average Frobenius norm loss (AFL) for the estimation of precision matrices:

AFL = 1

K

K∑

k=1

‖�̂−1
k − �−1

k ‖F

= 1

K

K∑

k=1

√√√√
∑

i, j

(
�̂

−1
k (i, j) − �−1

k (i, j)
)2

,

• The root average squared error (RASE) for the estimation of mixing proportions:

RASEπ =
√√√√ 1

K

K∑

k=1

(
π̂k − πk

)2
,

• The average true positive rate (ATPR):

ATPR = 1

K

K∑

k=1

TPRk = 1

K

K∑

k=1

TPk
TPk + FNk

,

• The average false positive rate (AFPR):

AFPR = 1

K

K∑

k=1

FPRk = 1

K

K∑

k=1

FPk
TNk + FPk

,

where �̂
−1
k ’s and π̂k’s denote the estimators of �−1

k ’s and πk’s respectively. Here, TPk is the
number of true positives which counts true non-zero edges that are estimated as non-zero, TNk

is the number of true negatives which counts true zero edges that are estimated as zero, FPk is
the number of false positives which counts true zero edges that are estimated as non-zero, and
FNk is the number of false negatives which counts true non-zero edges that are estimated as
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zero. The TPRk and FPRk ranges from 0 to 1 and TPRk a value of 1 indicates perfect recovery
of the non-zero edges and FPRk a value of 0 indicates a perfect recovery of the zero edges.
Note that the Frobenius norm loss (AFL) measures the overall element wise error in the estimated
precisionmatrix compared to the true precisionmatrix, and the root average squared error (RASE)
measures the error in the estimated mixing proportions compared to the true mixing proportion
used to simulate data set. Hence, the smaller values of AFL or RASE indicate the more accurate
estimation of precision matrices or mixing proportions. We follow the idea of the distance-based
labelling method (Yao 2015) to avoid a potential label-switching issue when we calculate the
values of AFL or RASE in simulation studies.

To assess the clustering performance, we calculate the average value of the Rand Index (RI)
(Rand 1971). The measure RI(z, ẑ) calculates the proportion of pairs whose estimated labels
correspond to the true labels in terms of being assigned to the same or different groups:

RI(z, ẑ) =
(
N

2

)−1 N∑

i< j

(I {zi = z j }I {ẑi = ẑ j } + I {zi �= z j }I {ẑi �= ẑ j }).

The Rand Index measure ranges from 0 to 1 and it basically measures the similarity between
two clustering results. In our simulation study, the Rand Index will be equal to 1 when estimated
labels are identical to the true labels. The Adjusted Rand Index also gives similar results in our
simulation studies since we have fixed number of clusters.

Regarding the data generation procedure, we first generate the latent continuous data in the
following way:
1. Draw z ∼ Multinomial(1;π1, π2)

2. If z = 1 draw Y ∼ N (0,�1) else draw Y ∼ N (0,�2)

Regarding the mixing proportion, we first consider when both π1 = π2 = 1
2 and next we consider

π1 = 1
3 and π2 = 2

3 . Regarding the graph structure, �−1, the neighbor chain graph structure
is constructed with 1’s on the main diagonal, 0.5’s on the sub-diagonal and super-diagonal, and
0 at all other entries. The random graph structure is constructed with 1’s on the main diagonal
and 0.25 on the off-diagonal entries with probability of 0.05. Both the neighbor chain graph and
random graph are constructed similarly as in Lafit et al. (2019). For the stochastic block graph
structure, the edge set is generated with the block matrix,

(
0.150 0.005
0.005 0.075

)
and the number of vertices

in two groups are set equally. For the edge values for block graph, 0.35 is assigned when p = 30
and 0.25 is assigned when p = 50. After the graph structures are obtained, we take the inverse
and re-scale them to create the covariance matrices, where the diagonal entries are 1’s.

Next we obtain observed ordinal data following the similar procedure in Feng&Ning (2019).

We simulate X = (X1, . . . , X p)
′, where X j = ∑L j−1

l=1 1(Y j ≥ θ lj ) for j = 1, . . . , p. Here, the

sequence of thresholds θ lj are drawn uniformly on [�−1((l − 0.5) 1
L j

),�−1((l + 0.5) 1
L j

)] for
l = 1, . . . , L j − 1. This procedure guarantees the randomness of the simulated thresholds and
ensures that the difference of the number of samples at each level is not too large.

We first check the overall performance of our proposed mixture of ordinal graphical models
where we obtain the average values over all 24 different simulation settings. We generate 50
different synthetic data sets for each simulation setting and compute the average of metrics. The
results are summarized in Table 1. Our proposed method achieves much higher ATPR and lower
AFPR than the naive finite mixture of Gaussian graphical models. Moreover, by comparing our
method with the oracle method, we can see that the graph structure recovery performance of our
method is reasonably good. Regarding the graph estimation performance, our method achieves
smaller AFL compared to the naive finite mixture of Gaussian graphical models. This result tells
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Table 1.
Overall summary of ATPR, AFPR, and AFL.

Gaussian Oracle Proposed

ATPR
0.68 (0.05) 0.84 (0.04) 0.82 (0.06)
AFPR
0.27 (0.03) 0.09 (0.03) 0.20 (0.03)
AFL
10.9 (1.90) 3.52 (0.50) 6.63 (1.21)

The Gaussian method applies the finite mixture of the Gaussian graphical model to the ordinal data. The
oracle method applies the graphical Lasso algorithm to the latent continuous data in each group. The oracle
method is an ideal benchmark but not feasible in practice. The results are averaged over different scenarios
of fixed level for each factor and the corresponding standard deviations are written in the parentheses.

us that our proposed method estimates the strength of conditional dependencies better than the
naive finite mixture of Gaussian graphical models.

To illustrate the graph estimation performancemore clearly, we choose one simulation setting
and pick the case which shows the median performance among 50 repeats. We use the heatmap
to provide a graphical representation of the precision matrix. Specifically, the heatmap is used to
visualize the sparsity pattern of the precision matrix, where the white color denotes no conditional
dependence between two ordinal variables, and the grayscale represents different strength of
conditional dependence between two ordinal variables. We use the ggplot2 package in R to
plot the heatmaps of both estimated precision matrices and true precision matrices in Fig. 2. As
shown in Fig. 2, we appropriately recover the random sparse graph structure in Group 1 and the
neighbor chain graph structure in Group 2.

We check the performance of our proposedmethod in different simulation settings thoroughly
and summarize the results by factor in Tables 2 and 3. In all simulation settings, our proposed
method shows better performance than the naive finite mixture of Gaussian graphical models and
shows satisfying results compared to the oracle method. More specifically, in the settings with
larger numbers of respondents (N ) and smaller numbers of items/questions (p), the proposed
method shows better performance than the naive finite mixture of Gaussian graphical models and
similar performance with that of the oracle model, as expected. In contrast, alternative conditions
with smaller numbers of respondents (N ) and larger numbers of items/questions (p) are more
challenging, but our proposed method still shows better results than the naive finite mixture of
Gaussian graphical models. In addition, our proposed model shows convincing performance in
two differentmixing proportion settings and in two different graph structure settings. These results
show that our proposed method performs well in different mixing proportions settings and can
recover different types of graph structures.

Next, we examine the estimation performance of mixing proportions and the clustering per-
formance of our method in various simulation settings using RASEπ and RI respectively. The
results reported in Table 4 tell us that overall ourmethod shows convincing clustering performance
and particularly performs well when the number of respondents (N ) is large.

We also examine the performance of our proposed method when we assume the number
of latent clusters is 3, i.e. K = 3. Similar to before we create diverse simulation settings and
summarize both overall result and the results by factor. More details about simulation settings can
be found in Appendix II. Here, our method achieves better performance of both graph structure
recovery and graph estimation than the naive finite mixture of graphical models and comparable
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Figure 2.
Heatmaps of the estimated graph (left) and the heatmaps of the true simulated graph (right) when p = 30. The white
color denotes no conditional dependence between two ordinal variables, and the grayscale represents different strength
of conditional dependence between two ordinal variables.

performance to the oracle method. In addition, we obtain the reasonable clustering performance.
The tables that summarize the results can be found in Appendix II.

Next, we examine the performance of the proposed method when we increase the number of
ordinal levels for survey items/questions from 5 to 7. Here, we focus on one simulation setting
and consider two different ordinal levels for survey items/questions: L = 5 and L = 7. Our
proposed method performs well in both graph structure recovery and graph estimation even when
the ordinal levels are increased to L = 7. Results are summarized in the tables in Appendix III.

Lastly, we also compare the numerical performance or our method with the probit graphical
model and the results are presented in the Appendix IV. Here, we again focus on one simulation
setting and compared numerical performance among the probit graphical model, oracle method,
and the proposedmethod. Aswe expected ourmethod shows better performance in graph structure
recovery and graph estimation than the probit graphical model as the probit graphical model is
not designed to handle the heterogeneity in the population. Results can be found in the Appendix
IV.
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Table 2.
The average true positive rate (ATPR) and the average false positive rate (AFPR) by the Gaussian method, oracle method,
and the proposed method.

Gaussian Oracle Proposed
ATPR

Number of respondents (N ) 100 0.67 (0.02) 0.81 (0.03) 0.79 (0.05)
200 0.7 (0.06) 0.87 (0.02) 0.84 (0.07)

Number of items/questions (p) 30 0.7 (0.05) 0.84 (0.04) 0.86 (0.06)
50 0.66 (0.03) 0.84 (0.04) 0.78 (0.03)

Mixing proportions (π)
(
1
2 , 1

2

)
0.71 (0.05) 0.85 (0.03) 0.81 (0.06)(

1
3 , 2

3

)
0.66 (0.03) 0.83 (0.04) 0.82 (0.07)

Graph structures Neighbor chain/Random 0.68 (0.05) 0.82 (0.04) 0.8 (0.05)
Neighbor chain/Block 0.68 (0.05) 0.85 (0.03) 0.83 (0.07)

AFPR
Number of respondents (N ) 100 0.28 (0.02) 0.11 (0.02) 0.23 (0.03)

200 0.27 (0.04) 0.07 (0.01) 0.18 (0.02)
Number of items/questions (p) 30 0.29 (0.03) 0.09 (0.03) 0.22 (0.03)

50 0.26 (0.03) 0.09 (0.02) 0.18 (0.02)

Mixing proportions (π)
(
1
2 , 1

2

)
0.28 (0.04) 0.1 (0.03) 0.21 (0.04)(

1
3 , 2

3

)
0.27 (0.03) 0.08 (0.02) 0.19 (0.03)

Graph structures Neighbor chain/Random 0.28 (0.03) 0.09 (0.03) 0.2 (0.04)
Neighbor chain/Block 0.27 (0.03) 0.09 (0.03) 0.2 (0.03)

Table 3.
The average Frobenius norm loss (AFL) by the Gaussian method, oracle method, and the proposed method.

Gaussian Oracle Proposed

Number of respondents (N ) 100 11.1 (0.93) 3.55 (0.53) 6.51 (1.25)
200 10.7 (2.57) 3.48 (0.51) 6.75 (1.24)

Number of items/questions (p) 30 9.81 (1.60) 3.03 (0.04) 5.55 (0.39)
50 11.9 (1.54) 4.01 (0.07) 7.71 (0.53)

Mixing proportions (π)
(
1
2 , 1

2

)
10.3 (2.00) 3.54 (0.52) 7.02 (1.27)(

1
3 , 2

3

)
11.4 (1.69) 3.50 (0.52) 6.24 (1.08)

Graph structures Neighbor chain/Random 10.7 (1.86) 3.53 (0.54) 6.56 (1.34)
Neighbor chain/Block 11.1 (2.00) 3.5 (0.50) 6.7 (1.15)

4. An Empirical Study

In this section, we apply the proposed model to a real-world sports marketing data set. The
data set was collected and analyzed by DeSarbo (2010) and DeSarbo et al. (2017), where 307
university students responded to an online questionnaire about the university’s Division 1 NCAA
football program. To be consistent with DeSarbo (2010) and DeSarbo et al. (2017), we refer to the
university as University X or simply X. The questionnaire contains 33 questions concerning the
respondents’ interests and attitudes about the football program, college and professional football,
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Table 4.
The Rand Index (RI) and root average squared error (RASE) of mixing proportions by the Gaussian method and the
proposed method.

Gaussian Proposed
RI

Number of respondents (N ) 100 0.53 (0.02) 0.69 (0.05)
200 0.57 (0.02) 0.9 (0.02)

Number of items/questions (p) 30 0.55 (0.04) 0.81 (0.11)
50 0.54 (0.02) 0.79 (0.12)

Mixing proportions (π)
(
1
2 , 1

2

)
0.55 (0.05) 0.81 (0.09)(

1
3 , 2

3

)
0.55 (0.01) 0.78 (0.14)

Graph structures Neighbor chain/Random 0.55 (0.03) 0.79 (0.12)
Neighbor chain/Block 0.55 (0.03) 0.8 (0.12)

Overall 0.55 (0.03) 0.8 (0.11)
RASEπ

Number of respondents (N ) 100 0.44 (0.05) 0.11 (0.05)
200 0.44 (0.07) 0.04 (0.01)

Number of items/questions (p) 30 0.44 (0.07) 0.07 (0.04)
50 0.44 (0.05) 0.08 (0.06)

Mixing proportions (π)
(
1
2 , 1

2

)
0.41 (0.04) 0.05 (0.01)(

1
3 , 2

3

)
0.47 (0.06) 0.09 (0.06)

Graph structures Neighbor chain/Random 0.45 (0.07) 0.08 (0.05)
Neighbor chain/Block 0.43 (0.05) 0.07 (0.05)

Overall 0.44 (0.06) 0.07 (0.05)

and other sports as well as their demographics (e.g., age, gender, fraternity, GPA). Respondents
were asked to report how much they agree or disagree with each statement using a 7-point Likert
scale. A higher score suggests a higher level of agreement with the statement. The selection of
these statements was based on an extensive literature review, in-depth interviews, and pretesting.
See Appendix V for the details about these 33 statements.

It isworth pointingout that the 33Likert scale surveyquestions includes the selfmeasurements
of fan avidity, which refers to the level of interest, involvement, passion, enthusiasm, and loyalty
a fan exhibits to an entity (e.g., a sport team) (DeSarbo 2010). In psychometrics and marketing
research, it is important to understand the heterogeneity of respondents’ interests and attitudes
related to fan avidity. Recognizing such heterogeneity is a fruitful area of research with potential
major implications on marketing strategy, operations, and revenue.

However, there are very few research that explores the heterogeneous associations among
respondents’ interests and attitudes based on their responses to Likert scale survey questions. The
proposed method addresses this research question. Let xi be the i-th respondent’s responses to the
33 Likert scale survey questions for i = 1, . . . , 307. DeSarbo et al. (2017) has analyzed this data,
which proposed a constrained segmentationmethodology to examine the relationship between fan
avidity and its various behavioral manifestations. They identified two distinct subgroups, thus,
we expect there are two distinct subgroups and use K = 2. This choice is also supported by
computing the measures of fit (e.g., mean absolute error, squared Spearman’s correlation, etc.)
between the observed ordinal data and the predicted values, where K = 2 obtains the best fit
measures.
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Table 5.
Summary of network statistics and demographics for two estimated groups.

Group ID 1 2

N 96 211
Maximum degree 18 14
Total degree 108 82
Degree centrality 6.55 4.97
Betweenness centrality 8.48 8.91
Fan avidity of X football 5.97 5.36
Female (%) 40.62% 35.07%
Fraternity (%) 27.08% 21.33%
GPA 3.52 3.49
Age 20.23 20.31

With the observed ordinal data (x1, . . . , x307), the proposed method identifies two hetero-
geneous groups with 96 and 211 respondents respectively, denoted by Group 1 and Group 2. The
mixing proportions (i.e., the sizes of the derived groups, πk) are 0.31 for Group 1 and 0.69 for
Group 2. We summarize the descriptive network statistics and demographics for two estimated
groups in Table 5. The proposed method constructs a graphical model for each group, which
delineates the estimated group-level conditional dependencies among the 33 ordinal variables.
We use the stability selection (Meinshausen & Bühlmann 2010; Xue et al. 2012) based on the
resampling technique to select the stable edges that appear 70% out of 100 graphs estimated from
the resampled data. The estimated stable edges of both graphical models are shown in Fig. 3,
where the node size is proportional to its degree (i.e., the number of edges connected to a node).

In what follows, we first compare the characteristics of Group 1 and Group 2 in terms of
their estimated graph structures, psychographic profiles, and demographics, and then focus on the
heterogeneous conditional relations between the 4th survey question on the fan avidity about X
football and other interests/attitudes. Overall, we find two heterogeneous conditional dependence
structures in Group 1 and Group 2.

As shown in Fig. 3 and Table 5, two estimated graphs have different network structures. The
total degree (i.e., the total number of edges) of Group 1’s network is 108, the maximum degree
(i.e., the maximum number of edges of a node) is 18, the average degree centrality is 6.55, and
the average betweenness centrality is 8.48; for Group 2’s network, the total degree is 82 and the
maximum degree is 14, and the average degree centrality is 4.97, and the average betweenness
centrality is 8.91. In addition, two estimated graphs have different hub nodes whose number of
edges greatly exceeds the average. For Group 1, the hub nodes are related to professional and
college football as well as sports in general, such as “avid fan of collegiate football” (Node 28),
“knowledgeable football fan” (Node 5), “watch NFL games on TV” (Node 31), “watch College
Football Game Day on ESPN” (Node 29), “play intramural sports” (Node 17), “avid NFL fan”
(Node 21), “avid fan of big ten football” (Node 20), “play varsity sports in high school” (Node
1), “I would love a career in the sports industry” (Node 27), and “watch college football games of
different teams on TV” (Node 24). For Group 2, in addition to the common hub nodes related to
college and big ten football (i.e., Node 28, Node 29, Node 20, Node 24) shared with Group 1, the
other hub nodes are specifically related to X football program, such as “avid X football sports fan”
(Node 4), “visit websites related to X football” (Node 16), and “lose touch with what’s happening
around me when viewing X football game” (Node 12). Figure 4 also confirms the difference in
the network structure between Group 1 and 2. Figure 4 plots the degrees of nodes in Group 1
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Figure 3.
The estimated ordinal graphical models of 33 Likert scale survey questions. Nodes are scaled to degree.
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Figure 4.
The scatter plot of node degrees of Group 1 vs Group 2.

on the x axis and that of the same nodes in Group 2 on the y axis. The majority of dots fall far
from the diagonal indicate the network structure are quite different between these two groups. We
also present the centrality plots for these two groups in Fig. 5, which provide another evidence of
the non-negligible difference in the network structure between the two groups. In these centrality
plots, the y axis represents the node index, and the x axis represents the centrality measures (i.e.,
degree centrality, betweenness centrality).

The assessments of these statements are also different between Group 1 and Group 2, as
summarized inAppendixVI. Out of the 33 statements, there are statistically significant differences
in the average scores of 8 statements. Specifically, the members of Group 1 seem to be more avid
about X football, get very frustrated and angry when the X football team does not win, lose touch
withwhat is happening aroundwhen viewingX football game, be experts onX football, be socially
active, have most friends interested in X football, imagine to be the football players on the field,
and admire football players. There are no statistically significant differences in demographics
(e.g., age, gender, or GPA) due to the somewhat homogeneous student population.

Next, we focus on the different conditional relations between fans’ avidity about X football
(i.e., Node 4, one of the 33 ordinal variables) and other interests and attitudes. The estimated
conditional relations in Group 1 is shown in Fig. 6a, and the estimated conditional relations in
Group 2 is shown in Fig. 6b. Because Fig. 6 only presents the conditional dependencies involving
fan avidity, the relations presented in Fig. 6 is a subset of those presented in Fig. 3. For both groups,
emotional identification is related to fan avidity: being an avid fan of X football is conditionally
associated with getting frustrated and angry when X does not win (Node 6). Except for emotional
identification, we do find more different conditional relations between the two groups. For Group
1, being an avid fan of X football is conditionally associated with being a fan of professional
football (i.e., “avid NFL fan”—Node 21, “watch NFL games on TV”—Node 31) and enjoying
sports more broadly (i.e., “play varsity sports in high school”—Node 1, “enjoy sports-related
movies”—Node 32). For Group 2, being an avid fan of X football is conditionally associated
with being an avid fan of college football (i.e., “avid fan of collegiate football”—Node 28, “avid
fan of big ten football”—Node 20, “watch college football games of different teams on TV”—
Node 24, “watch college football game day on ESPN”—Node 29), showing strong interests
and attachment in X football and other X sports (i.e., “part of the reason of attending X was
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Figure 5.
The centrality plots of the two groups identified by the proposed model.

because of their football team”—Node 33, “lose touch with what’s happening around me when
viewing X football game”—Node 12, “visit websites related to X football”—Node 16,“avid fan
of other X sports”—Node 30), acquiring football knowledge and admiring professionals (i.e.,
“knowledgeable football fan”—Node 5, “admire football players”—Node 13) and social aspect
(i.e., “enjoy talking about sports with friends”—Node 9).
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Figure 6.
The estimated conditional relations between X football fan avidity and others.

For comparison purpose, we have also applied the probit graphical model (PGM) (Guo et al.
2015; Feng & Ning 2019) to this dataset. We have presented the resulting graph in Appendix VII.
Because the probit graphical model ignores underlying heterogeneity, the generated graph fails
to capture the differences between latent groups.
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5. Conclusion and Future Work

Although ordinal variables are commonly used in many areas of psychological science, the
estimation of heterogeneous associations among ordinal variables has not been explored in net-
work psychometrics. The proposed method and algorithm in this paper aim to fill this important
gap in the current literature.Methodologically, we introduce the finitemixture of ordinal graphical
models and propose a penalized likelihood approach to effectively estimate the heterogeneous
conditional dependence relationships within ordinal data. Computationally, the proposed general-
ized EM algorithm effectively estimates the parameters despite the intractable likelihood function.
After solving these modeling and computational challenges, we examine the performance of our
proposed method and algorithm in extensive simulation studies, and demonstrate the potential
usefulness in psychological science through a real application to study the interests and attitudes
related to sport fan avidity. To the best of our knowledge, the proposed methodology is the first
network psychometric framework to explore the heterogeneity in ordinal data.

In what follows, we discuss several limitations and research topics to extend the methodology
and applicability of the proposed model. Firstly, we have assumed that the number of mixtures
is known in this paper. Like most latent class modeling approaches, it is important to assess
the number of mixtures for estimating the mixtures of ordinal graphical models. However, the
likelihood-based model selection procedures such as the BIC can not be directly used since
the likelihood function cannot be explicitly computed. We should point out that, although the
parameters can be estimated by using the proposed generalized EM algorithm, the log-likelihood
function (3) still requires solving the intractable high-dimensional integral over the latent variables.
We will explore an effective data-driven approach to choose the appropriate number of mixtures
in the future.

Secondly, as suggested in Marsman et al. (2019), it is a fundamental research topic to study
a formal test of homogeneity against heterogeneity in network psychometrics. Similar to Brusco
et al. (2019), we do not perform such a test when estimating the heterogeneous conditional
dependence relationships of ordinal data. Under the proposed framework, it is possible to explore
the hypothesis testing problem that H0 : K = 1 versus H1 : K > 1, which points out another
important future work.

Thirdly, it is interesting to study the joint estimation of multiple ordinal graphical models. In
the current literature, when observations belong to different known classes, Guo et al. (2011) and
Danaher et al. (2014) studied the joint estimation of Gaussian graphical models that share certain
characteristics. However, the Gaussian assumption is essential for the joint estimation procedure
Guo et al. (2011), Danaher et al. (2014), which can not be used for estimating multiple ordinal
graphical models. Future work may consider studying the joint estimation procedure without the
presence of this Gaussian assumption.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.
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