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Dynamics of PM2.5 and network activity
during extreme pollution events
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In an era where air pollution poses a significant threat to both the environment and public health, we
present a network-based approach to unravel the dynamics of extreme pollution events. Leveraging
data from741monitoring stations in the contiguousUnitedStates,wehave createddynamicnetworks
using time-lagged correlations of hourly particulate matter (PM2.5) data. The established spatial
correlation networks reveal significant PM2.5 anomalies during the 2020 and 2021 wildfire seasons,
demonstrating the approach’s sensitivity to detecting regional pollution phenomena. The
methodology also provides insights into smoke transport and network response, highlighting the
persistence of air quality issues beyond visible smoke periods. Additionally, we explored
meteorological variables’ impacts on network connectivity. This study enhances understanding of
spatiotemporal pollution patterns, positioning spatial correlation networks as valuable tools for
environmental monitoring and public health surveillance.

Air pollution remains a critical global health risk1,2. In theUnited States, over
30% of the population resides in areas with hazardous air pollution levels
and this figure is expected to rise significantly due to the growing impacts of
extremepollution events onyearly trends (Fig. 1a). This, in turn, contributes
to an estimated annual death toll of 85,000–200,0003,4.

Particulate matter with an aerodynamic diameter of 2.5 μm or less
(PM2.5) severely compromises respiratory health5–7, costs trillions of US
dollars in healthcare8–10, and exacerbates social inequalities11–15. The need to
understand the spatial distribution and scales of PM2.5 becomes even more
urgent during extreme air pollution events, when atmospheric factors can
significantly extend the reach of these pollutants, exposing distant com-
munities to hazardous concentrations. Current air quality assessments tend
tounderestimate these particles’ varied toxicity anddisparate health impacts
across different regions7,16,17. Therefore, a deeper comprehension of the
spatial distribution of PM2.5 at both local and regional levels is essential.
Such knowledge is not only critical for accurately evaluating the health risks
associated with air pollution but also for establishing effective risk com-
munication mechanisms to mitigate these health burdens18,19.

Despite its importance and urgency, the accurate estimation of PM2.5

distribution and scale in the U.S. remains a challenge. The research-grade
monitoring stations, maintained according to the federal equivalent
methods (FEM) and federal reference methods (FRM), are sparse and
unevenly distributed due to high costs (Fig. 1b, c). In fact, only 21% of the
3100 U.S. counties are equipped with FRM/FEM PM2.5 monitors. Many
counties also only have a singlemonitor, insufficient to accurately represent
PM2.5 levels across wider areas20–22. Alternative data sets, from low-cost

sensors or air quality models using satellite remote sensing and meteor-
ological data, frequently yield lower-quality data and inaccurate
estimates23–30. During extreme pollution events, relying solely on sparsely
distributed sensors or employing error-pronemodels formonitoring system
changes can result in inaccurate assessments of the scale and impact31.

Our study employs the complex network approach to analyze air
quality data as an alternative solution under the pollution events when
toxicity assessment is out of the limits for conventional particulate matter
measurementmethods. Using PM2.5 time series correlations between FRM/
FEM monitors across the contiguous United States for 2019–2021, we
construct spatial correlation networks and updated the network structure
daily32.We thenexamine thedynamic changes in thenetwork structurewith
the progress of extreme air pollution events to discern system-wide and local
impacts. In previous studies, network-based approaches have proven
effective in capturing critical transitions in environmental events33,34 and
diffusion of pollution particles35–38. Here we undertake a comprehensive
nationwide examination of the multiple extreme pollution scenarios, sig-
nificantly expanding beyond traditional point-based analyses. Thenetwork-
based approach improves our understanding of regional air pollution
impacts. It also can provide amore integrative risk communication strategy
aimed at mitigating the adverse effects of air pollution on public health.

Results
Network conceptualization
We conceptualize air quality monitors as individual nodes in a network
and construct undirected, unweighted networks using hourly PM2.5 data
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gathered from FRM/FEMmonitors across the contiguous United States for
the years 2019, 2020, and 2021. In line with the methodology developed in
ref. 32, links between two nodes are established if hourly time-lagged cross-
correlation between them exceeds a critical threshold cij, as shown in
Fig. 1d–g. A detailed definition and mathematical exposition of the meth-
odology are presented in the “Methods” section. This conceptual network is
termed a spatial correlation network of PM2.5.

Figure 1d and f illustrate a scenario with no large-scale pollution
events, where air quality monitors (A–E)measure local air quality trends.
In such conditions, air quality readings tend to differ more across loca-
tions, leading to a loosely connected network—evidenced by the fewer
inter-monitor links in the network diagram. This is due to the low cor-
relations between individual monitor measurements, suggesting inde-
pendent local air quality trends rather than a synchronized regional
phenomenon. The resulting low total degree (2L = 4) signifies the moni-
tors’ operational independence, with each responding to potentially
unique, localized events.

In contrast to the air quality variations captured under normal con-
ditions, Fig. 1e presents a starkly different situation characterized by large-
scale pollution stemming from wildfires adjacent to an urban area. This
emergency is mirrored in the network behavior of air quality monitors A
throughE,which now exhibit a densewebof connections indicative ofmore
andhigher correlation between the readings of themonitors. This high-level
connectivity, quantified as a total degree 2L = 20, represents a substantial
increase in the sum of all connections compared to the previous scenario.
Such extensive connectivity suggests a homogenized distribution of pollu-
tants across the region, with the monitors collectively detecting a uniform
environmental disturbance over local differences.

US-Wide impact analysis
In our investigation of nationwide PM2.5 levels and network dynamics
(Fig. 2a), we first established a baseline for understanding seasonal pat-
terns and the structural response of the monitoring network during
extreme pollution events. The baseline for daily median PM2.5 levels was
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Fig. 1 | Network conceptualization. aNumber ofmonitoring stations exceeding the
EPA's yearly PM2.5 standard (12 μg/m

3) by the U.S. climate regions. bDistances (in
km) between adjacent monitoring stations within each climate region. c Spatial
distribution of FRM/FEM sensors (blue circles) across the climate regions53. d–g
Conceptualization of spatial correlation networks responses to extreme pollution

events. d Illustration of an urban area in normal conditions. e Urban area during a
wildfire, displaying deteriorated air quality. Under typical conditions, the network
shows localized correlations (f), while during extreme pollution, regional correla-
tions emerge (g), with the network’s complexity measured by the total degree (2L).
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set using data from years identified with the lowest impact fromwildfires,
namely 2013, 2014, and 2016.

The year 2019 served as a control period for comparison purposes
because PM2.5 levels were predominantly aligned with expected sea-
sonal fluctuations and remained close to the baseline. Summer months
typically exhibit natural PM2.5 peaks due to the photochemical gen-
eration of secondary PM2.5 particles from the reactions between
volatile organic compounds (VOCs) and nitrogen oxides (NOx)

39.
However, in 2019, despite the usual summer increases, PM2.5 mea-
surements and network connectivity indicated no significant regional
pollution events. Exceptions occurred in June 2019, when smoke from
Alberta’s wildfires reached the Mid-West and South USA, prompting
several cities to issue air quality alerts.

Compared to the control period, the years 2020 and 2021 exhibited
pronounced anomalies due to increased extreme pollution events. PM2.5

concentrations during these summer seasons surged, with increases of 23%
and35%, respectively, when compared to the baseline.These events resulted
in an increased uniformity of pollutant distribution, as depicted by the
heightened correlation patterns among the air quality monitors. Compared
to the same periods in 2019, we observed a substantial rise in the summer
total degree averages up to 34% in 2020 and 38% in 2021, as illustrated in the
inset of Fig. 2a. This drastic change underscores the extensive reach ofmajor

pollution events, affecting air quality across vast distances well beyond their
immediate hotspots.

The observations from the yearly analysis are validated and signified by
the case studies in 2019, 2020, and 2021. Figure 2b illustrates a snapshot of
the spatial correlation network for PM2.5 under normal conditions on
September 25, 2019, across the contiguous United States. The connections
between nodes are sparse, and the total degree of the network (2L) is low at
112 (average degree of μ = 0.23). In comparison, the total degree of the
networks more than doubled during the pollution event caused by Saharan
dust originating in Africa Fig. 2c (2L = 508, μ = 1.02) and wildfire events
originating from the northwestern USA Fig. 2d, (2L = 404, μ = 0.81), indi-
cating the scale of national impacts.

Climate regions and spatial correlation networks of PM2.5

We next delve deep into the spatial correlation networks broken down in
different climate regions to uncover the detailedways inwhichournetwork-
based approach could help understand the spatial dispersion of air pollu-
tants. The network-based approach allows us to investigate the inter-
regional influences and the potential for widespread air quality impacts due
to transboundary pollution transport40.

Regional climatic conditions profoundly influence air quality, and
thus PM2.5 distribution shows distinct regional patterns across the country
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Fig. 2 | US-Wide and climate region impact analysis. aTime series of daily median
PM2.5 values in the US (black line), network total degree (purple line), and baseline
levels of PM2.5 (dashed line). The inset shows percentage changes in the yearly
average total degree. b–dDaily networks on representative days illustrating different
pollution scenarios: September 25, 2019 (b) under normal conditions with local

correlations, June 27, 2020 (c), and August 15, 2021 (d) during extreme pollution
events with regional correlations. eMonthly average network degree by US climate
region over 3 years. f–hRescaledU.S. climate regions for September 2019, June 2020,
and August 2021 according to the average network degrees. National mean (μ) and
standard deviation (σ) are provided.
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(Fig. 2e). We compare the average degree values over various periods and
scenarios to discern these patterns. In September 2019, a period char-
acterized by the absence of significant pollution events, all regions displayed
similar average degree values, with the highest at 0.47 in the Northeast and
the lowest at 0.28 in the Southwest (Fig. 2f).

Contrastingly, in June 2020, PM2.5 concentrations surpassed the EPA’s
air quality standards at nearly 40% of the monitoring stations in the
southern US due to the massive dust plume traversed the Caribbean
Basin41,42. This event led to the Southern US demonstrating the highest
average degree in the network, peaking at 0.78, while other regions were less
affected, maintaining an average degree of μ = 0.39 (Fig. 2g) close to
the national average of μ = 0.38 in 2019. InAugust 2021, the highest average
degree was observed over the Northern Rockies, directly linked to the
wildfires originating from California. During this time, an increase in the
average degree was noted across the entire nation (Fig. 2h) (μ = 0.67),
highlighting the extensive reach of pollutants beyond their initial hotspots.
This pattern of increased connectivity is primarily attributed to the long-
range transport of pollutants fromwildfire events inCanada andCalifornia.
The synchronization of monthly peaks in network connectivity with the
occurrence of extreme pollution events emphasizes the widespread envir-
onmental impact of such events. Furthermore, a comparative analysis of
different regions shows that while somemaintained a relatively stable trend,
others experienced significant fluctuations between different years, corre-
sponding to the localized impacts they encountered.

Smoke coverage and pollutant homogeneity
Building on the established framework, we then test the efficacy of our
connectivity index in explaining smoke-covered days. This specificmeasure
is chosen because of its substantial health implications documented by prior
research16,43. Smoke exposure is not only amarker of air quality degradation
but is also associated with various adverse health outcomes, making it cri-
tical for public health surveillance and response.

To assess the explanatory power of our index, we analyze its perfor-
mance over the 4months characterized by wildfire impact in the year 2021.
Figure 3a shows the spatial patterns of PM2.5, andFig. 3b presents the spatial
distribution of smoke-covered days across the United States during this
time. The spatial patterns of impacted regions and severities misalign in
these two panels, suggesting that while smoke from wildfires can create

visually dense pollution areas, it does not always correspond to the ground
PM2.5 measurements across regions. On the contrary, Fig. 3c, which illus-
trates the total degree over 120 days, shows a spatial distribution that has a
greater alignmentwith smoke-covered days (Fig. 3b) than themedianPM2.5

concentrations (Fig. 3a). The similarity suggests that the network con-
nectivity, derived from our spatial correlation network, is a better proxy for
the spread and impact of wildfire smoke over large geographical scales.

Statistical analysis reveals the same insight. Figure 3d presents a scatter
plot showing the relationship between median PM2.5 concentrations from
June to September 2021 and the number of days covered by smoke for
different climate regions across the United States. The plot reveals a low
coefficient (R2 = 0.04), suggesting a weak relationship between the median
PM2.5 levels and the number of smoke-covered days across the regions. This
implies that thepresence of smoke in the atmosphere, indicative of pollution
from wildfires, does not necessarily correlate strongly with higher ground-
level PM2.5 concentrations. The lowR2 value indicates that other factorsmay
influencePM2.5 levels.On the contrary,we observe amuchmore substantial
positive correlation (R2 = 0.74), suggesting a strong relationship between the
network’s total degree and the incidence of smoke-covered days across the
regions Fig. 3e. The consistency between these two analyses emphasizes that
our network approach better captures the true spatial footprint of smoke
coverage. It thus canpotentially be amore effective tool in understanding air
quality andhealth risk assessments associatedwithwildfire smoke exposure.

Daily network dynamics and feature importance
Beyond capturing the national and regional impacts of air pollution events,
we test our network-based approach’s ability to capture the dynamics of air
pollution events with high temporal resolution. We thus delve further into
the 2020 fire season and examine the spatial correlation network on a day-
to-day basis. The dynamics of our daily networks reveal a time lag between
network connectivity and the transport of smoke. Figure 4a–c presents a
series of maps displaying the spatial correlation network over the United
States on three different days in late August 2020. On August 21, 2020,
Fig. 4a, the network is highly interconnected in the western regions, again
corresponding to areas directly affected bywildfire smoke.Asweprogress to
August 25 (Fig. 4b), the network shows increasing connectivity across the
entire United States caused by the spreading of the smoke to receptor
regions. By August 27 (Fig. 4c), there is a notable reduction in visible smoke
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coverage; however, the network remains densely connected. The observed
phenomenon is due to the limitation of satellite imagery44,45: although
providing a comprehensive view of its columnar extent, it falls short in
capturing the smoke during cloudy days and pinpointing the smoke’s ver-
tical distribution—whether hovering near the ground or being suspended at
higher altitudes. Even when visual indications of smoke diminish, the
persistent connectivity suggests that ground-level PM2.5 impact remained
high, signaling that the air quality issues are not solely confined to the
periods of visible smoke but may persist as the particulate matter settles
closer to the earth’s surface. Our network-based index adeptly captures
the impact of pollution even when conventional data may be incomplete
or absent.

Given the usefulness of the connectivity from our spatial correlation
model, our last effort is to gain deeper insights into the factors influencing
network connectivity by employing LightGBM (light gradient-boosting
machine) for modeling daily average degrees with meteorological variables
in different regions46. In source regions, our observations highlight that
smoke coverage holds the highest relative importance for average degree
changes (Fig. 4d, e), while other meteorological variables exhibited inde-
terminate trends. In receptor regions, smoke coverage showed the least
relative importance, aligningwith the time lagbehavior (SupplementaryFig.
3). Despite the absence of a clear trend in receptor regions, wind appears to
be themost influential variable (Fig. 4f, g). This suggests that when receptor
regions experience high wind speeds during the transportation of aerosols
from extreme pollution events, ground homogeneity increases, resulting in
elevated network connectivity. This analysis indicates that network con-
nectivity can be influenced by multiple factors, including meteorological
conditions (Supplementary Fig. 2), long-range transport of aerosols, and

their resultant effects on ground concentrations. Therefore, a careful
examination of these causative factors is essential to comprehensively
understand the underlying mechanisms driving these observed patterns in
network connectivity.

Discussion
Our network model for air pollution analysis faces limitations, notably in
data dependency. The network’s effectiveness relies on the high quality and
consistent availability of PM2.5 measurements from FRM/FEM stations,
which may have uneven distribution, potentially causing data blind spots29.
While low-cost air sensors present an opportunity to augment data density,
their accuracy requires thorough validation. Furthermore, the non-real-
time nature of the validated FRM/FEM data limits the model’s ability for
immediate analysis. Our methodology elucidates the spatial and temporal
dynamics of PM2.5 through network analysis, though it does not differ-
entiate types of emissions, which limits our ability to identify variations in
particulate size and composition, such as primary versus secondary parti-
culate formations. Our approach does not model the detailed chemical
transformations of PM2.5, yet recognizing the influence of atmospheric
chemistry onnetwork correlations is crucial. Future studies should integrate
chemical transportmodels and low-cost sensors to refineourunderstanding
ofPM2.5 dynamics and improve real-timedata accuracy (see Supplementary
Figs. 4 and 5).

The large-scale spatial correlation network developed in this study
represents a significant theoretical advancement in our understanding of air
quality dynamics. Instead of relying on computationally expensive atmo-
spheric models or error-prone estimation models, this study explained
pollutant homogeneity and associated risk factors by delving into the
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correlation mechanisms inherent in physical systems. By conceptualizing
air quality monitors as a network of interconnected nodes, we provide a
framework that captures both the independence and interdependence of
local and regional air quality events. This network transcends the traditional
point-based analysis, offering a holistic view that reflects the complexity of
air pollution as a multifaceted phenomenon. The theoretical implications
extend beyond mere data aggregation; they redefine our understanding of
air quality patterns as emergent properties of a complex system, where
localized events can have ripple effects across vast geographical scales. This
shift encourages a re-evaluation of how air pollution is modeled, moving
towards more integrative and system-oriented approaches.

Our approach excels in capturing and characterizing large-scale pol-
lution events. By analyzing daily variations in network connectivity, wehave
successfully identified significant anomalies in PM2.5 concentrations on
both national and regional levels, as was evident during the wildfire and
Saharan dust events. These findings underscore the approach’s sensitivity to
detecting synchronized phenomena and its ability to differentiate between
typical environmental conditions and periods of heightened pollution. On
the scale of climate regions, the networkmodel effectively identifies areas of
pollutant homogeneity, allowing for a nuanced understanding of the spatial
extent of extreme pollution events. The model’s capacity to trace the evo-
lution of such events over time further highlights its potential as a critical
tool for environmental monitoring.

The practical applications of our spatial correlation network are
particularly compelling in the context of public health. The ability to
define smoke-covered days, a critical marker of air quality degradation, is
invaluable for public health surveillance and response16,40,44. Our network’s
high temporal resolution canpotentially provide earlywarnings for smoke
dispersion, enabling health authorities to issue timely advisories and
take preemptive action to protect vulnerable populations. From a policy-
making perspective, the insights gleaned from our network analysis could
inform the development of air quality standards and pollution control
measures. By elucidating the transboundary nature of air pollutants, our
methodology can drive the creation of more collaborative and effective
environmental policies that reflect the interconnectedness of ecosystems
and transcend political boundaries. This network-based approach,
therefore, has the potential to transform air quality management and
public health policy by providing a more responsive and accurate
assessment of pollution-related risks.

Methods
Data
In this study, we analyze PM2.5 FRM/FEM measurements obtained from
741 monitoring stations located across the United States. To maintain
consistency in our observations over the years, we excluded monitoring
stations that underwent equipment upgrades between 2019 and 2021. After
removing these monitors and focusing our study on the contiguous United
States, we had 496 monitoring stations as our network nodes. Data covers
the time period from January 1, 2019 to December 31, 2021 and local PM2.5

conditions are reportedhourly inmicrogramsper cubicmeter (μg/m3). This
multi-year data allows us to compare network dynamics across various time
periods characterized by different extreme pollution event scenarios. The
year 2020 was particularly notable as the year with the most devastating
wildfires in California’s history, leading to nearly 10,000 wildfires con-
suming over 4.2 million acres47. The air quality during this time was further
worsened by the largest recorded Saharan dust event impacting the
Southern USA. The following year, 2021, became the second most severe
wildfire season, with over 2.5 million acres affected42,48.

In addition, we utilized smoke data sourced from The National
Oceanic and Atmospheric Administration, focusing only on smoke plumes
categorized as ’heavy’ and ’medium’ in our calculations. Themeteorological
variables used to analyze feature importance, as discussed in the section
“Daily network dynamics and feature importance”, are obtained from the
EPA’s pre-generateddatafiles,whichare available alongwith theFRM/FEM
measurements. Wind speed (knots), temperature (F∘), humidity (%), and

pressure (millibars) are selected as the independent variables as they are
considered pivotal for the vertical and horizontal dispersion of aerosols49,50.

Network definition
We conceptualize air quality monitors as network nodes and construct
undirected, unweighted networks using hourly PM2.5 data. Links are
established based on time-lagged cross-correlation calculations32,35. These
networks are spatially constrained, where each node can only form con-
nections with its neighboring nodes. We employ the Voronoi diagram to
ensure system-wide connectivity, defining two nodes as neighbors if they
share aborder51.Overa periodof threeyears, eachday’s networkbeginswith
N disconnected nodes. Links are then formed if the cross-correlation
between two neighboring nodes i and j exceeds a critical bonding thresh-
old cij.

Cross-correlation is calculated by Eq. (1):

Ĉ
ðτÞ
ij ¼

gXiðtÞ:gXjðt þ τÞÞ
D E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½gXiðtÞ�2
� �q

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½gXjðt þ τÞ�2

D Er ð1Þ

where τ is the time-lag defined in the interval of−τmax < τ < τmax, Xi

represents PM2.5 readings of the monitor i at time t, and fluctuation series
is given as gXiðtÞ ¼ XiðtÞ � Xi

� �
with respect to its mean value over

T periods Xi

� � ¼ 1
T

PT
t¼1 XiðtÞ.

Selecting an optimal time lag has been challenging due to the variety of
sources impacting the physical and chemical processes involved in the
formation, transport, and transformation of PM2.5. Considering that
PM2.5’s atmospheric residence time is 3–5 days, previous studies have
applied time lags of up to 5 days35. However, factors like deposition, sus-
pension, and secondary aerosol formation progression can also influence
the time lag selection. To ensure robust correlation calculations based on a
sufficient data set, we adopted amaximum time lag of 9 h, guaranteeing the
inclusion of at least 15 hourlymeasurements in our analysis. Selecting a time
lag shorter than 12 h allows us to capture correlations resulting from
external impacts rather than routine physical changes such as periodic
boundary layer depth changes and anthropogenic emissions. Additionally,
given an average distance of 137 km between neighboring monitors, a
shorter time lag would inadequately capture vertical pollutant transporta-
tion under moderate to low wind speeds.

Previous studies have employed various methods to identify the
threshold for the cross-correlations, including shuffling the data and com-
puting the average of the absolute values of correlations37, calculating the
summation of the mean and standard deviation of a rolling window cor-
relation matrix38, and setting a global threshold36. However, as illustrated in
Supplementary Fig. 1, the sensitivity to a global threshold can vary
depending on the locations of the monitors. Due to similar local dynamics,
the threshold values between two neighboring urban monitoring sites are
higher than those between neighboring urban and rural sites. Furthermore,
distance plays a crucial role, with monitoring sites in closer proximity
exhibiting higher thresholds. Consequently, a universally applied threshold
may inaccurately suggest that these nearbymonitors are consistently under
significant pollutant impact. Therefore, we propose the need for assigning
pair-specific thresholds. We set 2912 individual bonding thresholds cij for
each possible interaction by the summation of the mean and standard
deviation of their three-year connectivity calculations. This threshold assists
in distinguishing between normative conditions and extreme events in our
analysis. Assigning unique i, j pairs also enables the detection of regional
impacts, even in areas with differing geographical characteristics or shared
background concentration.

We measured the overall impact of extreme pollution events on the
system by calculating the total degree of our network (2L). This is deter-
mined by summing all edges formed between monitoring stations, which
result from correlated time series. To compare this impact across different
climate regions, we employed the average degree, considering that each
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climate region has a distinct number of monitoring stations. The average
degree (μ) is determined by dividing the total degree by the number of
monitoring stations within a climate region.

LightGBM calculations and feature Importance
We employed the LightGBM (light gradient-boosting machine) machine
learning algorithm along with Shapley additive explanation (SHAP) feature
importance assessment to analyze the impact of various meteorological
variables on network connectivity. LightGBM uses gradient boosting deci-
sion tree (GBDT) techniques incorporating gradient-based one-side sam-
pling (GOSS) and exclusive feature bundling (EFB). In the process, decision
trees are trained sequentially, and LightGBM significantly accelerates the
training process while achieving nearly the same accuracy in a shorter time
span46. We utilized region-specific smoke coverage, temperature, humidity,
wind speed, andpressure as explanatory variables and trained amodel for an
average degree in both receptor and source monitors. Source and receptor
regions aredivided according to thepresence ofwildfires during our analysis
period (July to October 2020), and smoke coverage is calculated as the
percentage of monitors under the smoke captured by the satellite. The
trained models with high R2 values were then employed for feature
importance analysis. SHAP interaction values, a game-theoretic approach
for interpretability of tree-based models, were used to explain the output of
the machine-learning model52. In the analysis, the conjunction of a high
feature value (in red) and a positive SHAP value implies a significant and
positive impact (Fig. 4d–g). The mixture of red and blue dots signifies an
indeterminate impact of meteorological variables on average degree. Sub-
sequently, wemeasured the relative importance of each factor by calculating
the ratio between the means of their absolute SHAP values and the average
degree for each region.

Data availability
PM2.5 FRM/FEM measurements along with meteorological variables are
available at https://aqs.epa.gov/aqsweb/airdata/download_files.html and
smoke data sourced from The National Oceanic and Atmospheric
Administration is available at https://www.ospo.noaa.gov/Products/land/
hms.html.

Code availability
Code to reproduce all results in the paper is available at https://github.com/
nnbashan/pm2.5_network_dynamics/tree/main.
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