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Abstract

Given a simple graph G, the irregularity strength of G, denoted s(G), is the
least positive integer k such that there is a weight assignment on edges f : E(G) —
{1,2,...,k} for which each vertex weight f" (v) := > uw{upyer) S ({u, v}) is unique
amongst all v € V(G). In 1987, Faudree and Lehel conjectured that there is a
constant ¢ such that s(G) < n/d + c for all d-regular graphs G on n vertices with
d > 1, whereas it is trivial that s(G) > n/d. In this short note we prove that the
Faudree-Lehel Conjecture holds when d > n%8%¢ for any fixed € > 0, with a small
additive constant ¢ = 28 for n large enough. Furthermore, we confirm the conjecture
asymptotically by proving that for any fixed g € (0,1/4) there is a constant C such
that for all d-regular graphs G, s(G) < 5(1 + d%) + 28, extending and improving a
recent result of Przybylo that s(G) < 5(1 + m) whenever d € [In'™¢n, n/In®n]
and n is large enough.

Mathematics Subject Classifications: 05C15, 05C78

1 Introduction

Let G be a simple graph with n vertices. For a positive integer k, an edge-weighting
function f : E(G) — {1,2,...,k} is called k-irregular if the weighted degrees, denoted
by fV(v) = > uen() / ({v, u}) are distinct for v € V(G); we will call f({u,v}) and fV(v)
simply the weights of {u,v} and v. The irreqularity strength of G, denoted s(G), is the
least k, if exists, for which there is such a k-irregular edge-weighting function f; we set
s(G) = oo otherwise. It is easy to see that s(G) < oo if and only if G has no isolated
edges and at most one isolated vertex [7].

The irregularity strength was first introduced by Chartrand, Jacobson, Lehel, Oeller-
mann, Ruiz, and Saba [3]. Later an optimal general bound s(G) < n — 1 was proved
in [1, 12] for all graphs with finite irregularity strength except for Kj3. It turned out
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that this bound was far from optimum for graphs with larger minimum degree. Special
concern was in this context devoted to d-regular graphs. In [6] Faudree and Lehel showed
s(G) < [n/2] + 9 for these. By a simple counting argument, it is easy to see that on the
other hand,

s(G) = [(n+d+1)/d].
This lower bound motivated Faudree and Lehel to conjecture that n/d is close to optimal,
as proposed in [6] in 1987. In fact this conjecture was first posed by Jacobson, as mentioned
in [10].
Conjecture 1 ([6]). There is a constant C' > 0 such that for all d-regular graphs G on n
vertices and with d > 1, s(G) < 5 + C.

It is this conjecture that “energized the study of the irregularity strength”, as stated
in [4], and many related subjects throughout the following decades. It remains open
after more than thirty years since its formulation. A significant step forward towards
solving it was achieved in 2002 by Frieze, Gould, Karonski, and Pfender, who used the
probabilistic method to prove the first linear bound s(G) < 48(n/d) + 1 for d < +/n,
and a super-linear one s(G) < 240(logn)(n/d) + 1 in the remaining cases. The linear
bound in n/d was further extended to the case when d > 10%3n?/31og"®n by Cuckler
and Lazebnik [4]. The first general and unified linear bound in n/d for the full spectrum
of (n,d) was delivered by Przybylo [13, 14], who used a constructive rather than random
approach to prove the bound s(G) < 16(n/d) + 6. Since then several works based on
inventive new algorithms have been conducted to improve the multiplicative constant in
front of n/d, see e.g. [8, 9, 11]. The best result among these for any value of d is due
to Kalkowski, Karonski, and Pfender [9], who showed that in general s(G) < 6[n/d] for
graphs with minimum degree § > 1 and without isolated edges. Only just recently it was
proved by Przybylo [15] that the Faudree-Lehel Conjecture holds asymptotically almost
surely for random graphs G(n,p) (which are typically “close to” regular graphs), for any
constant p, and holds asymptotically (in terms of d and n) for d not in extreme values.

Theorem 2 (Przybylo [15]). Given any e > 0, for every d-reqular graph G with n vertices
and d € [In'"“n,n/In"n), if n is sufficiently large,

n 1
s(GY <=1+ ——+—|.
(@) d( lne/lgn)

In [15], Przybyto moreover mentioned that “a poly-logarithmic in n lower bound on d
is unfortunately unavoidable” within his approach. In this paper we present an argument
which is firstly quite short, secondly bypasses the mentioned poly-logarithmic in n lower
bound and extends the asymptotic bound to all possible cases 1 < d < n — 1 and thirdly,
the upper bound we present is stronger than the one in Theorem 2 (where in particular
lne/lgn < ln(1+6)/19n < dl/lg).

Theorem 3. Given any 0 < 8 < 1/4, for every d-regular graph G with n vertices, if d is
sufficiently large in terms of [3,

n 14
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Corollary 4. Given any 0 < § < 1/4, there is a constant C such that for every d-reqular

graph G with n vertices, s(G) < 2 (14 &) + 28.

The second contribution of this paper is a confirmation that the Faudree-Lehel Con-
jecture, i.e. Conjecture 1, holds literally (not only asymptotically) for “dense” graphs,
i.e., whenever d > n8+¢ for any fixed € > 0.

Theorem 5. Given any 0 < < 1/4, for every d-reqular graph G on n vertices with
d'"B > n, if d is sufficiently large in terms of B3, then

s(G) < n/d+ 28.

Corollary 6. Given any 0 < 8 < 1/4, there is a constant C' such that for every d-regular
graph G on n vertices with d**% > n, s(G) <n/d+ C.

We remark that similar conclusions as the ones above can also be derived from [16],
which describes in more than 30 pages a very long, multistage and technically complex
random construction yielding general results for all graphs (not only regular graphs).
Taking into account that Conjecture 1 remains a central open question of the related field,
cf. [16] for more comprehensive exposition of the history and relevance of this problem, we
decided to present separately this very concise argument concerning the conjecture itself,
which is also dramatically easier to follow. Moreover, the present proof is a local lemma
based argument, and thus is different from the one in [16], which might also be beneficial
for further research. Lastly, unlike in [16], we also provide a specific additive constant in
the obtained bounds for regular graphs, in particular in Theorem 5, which is relatively
small.

2 Proof of main results

2.1 Preliminaries

For a set U C V(G) and a vertex v € V(G), we use deg; (v) to denote the number of
neighbors of v in U. For a positive constant z, let {x} stand for = — |z]. We will use the
following tools.

Lemma 7 (Chernoff Bound). Let Xi,..., X, be i.i.d. random variables such that Pr(X; =
1) =p and Pr(X; =0) =1 —p for each i. Then for anyt >0,

Pr ( Xn:Xi—np
i=1
zn:X,-—np

Pr (
i=1

Lemma 8 (Lovéasz Local Lemma). [5, 2/ Let &, ..., &, ben events in any given probability
space. Let H be a simple graph with vertex set [n] such that for each i € [n|, the event &;

> t> < Qe’tz/(?’”p), for 0 <t < np,

> t) <2e7M3 fort > np.
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18 mutually independent from the remaining events corresponding to non-neighbors of the
vertex i, t.e., {& : j #i,{i,j} ¢ E(H)}. Suppose there exist values xy,...,x, € (0,1)
such that for each i € [n],

Pr(&) <z [ (1—ay).

{i,5}€E(H)

Then the probability that none of the events & happens is positive, i.e., Pr((,_, &) > 0.

2.2 Random vertex partition through local lemma

Some part of our construction builds on ideas from [15]. In order to bypass the logn
barrier for d and be able to analyze the algorithm for all 1 < d < n, we however need
to phrase our construction differently, using quantization and the Lovasz Local Lemma
(Lemma 8).

The idea is to partition V(G) into a big set B = {vi,..., v} and a small set S,
where |S| = (n/d) - o(d). At the end, we will assure that fV(v;11) = fV(v;) + 1 in B, and
that vertices in S have larger weights than those in B. Our argument divides into three
steps. Step 1 includes a random construction positioning weights in B close to expected
values, which are relatively sparsely distributed. In Step 2 we modify the weights of edges
between B and S to make vertices in B have the desired weights. This is also the main
purpose of singling out the set S. One benefit of S being small compared to B is that if
we assign heavy weights between S and B, then weights of vertices in S are expected to
increase more significantly than those in B. Step 3 is to modify weights in .S in order to
make them all pairwise distinct.

Fix parameters €,y such that € € (0,1/4) and 0 < 2y < e. Let G be an n-vertex
d-regular graph. Set

s* = 13[d"/?**</13],
note that s* € [d'/?+¢, d'/?*¢ 4+ 13) and 13|s*. Unless specified, we always assume d is
sufficiently large in terms of ~.

We first describe the main random ingredient of the construction. Let X, for v € V(G)
be i.i.d. uniform random variables, X, ~ U[0,1]. We use the values of X,’s to separate
the vertices into d bins B; where

Bi={veV(G):(i—1)/d< X, <i/d}

for 1 <i<dand B; = {veV(G) :1-1/d < X, < 1}; note that in expectation,
each B; includes n/d vertices. Let the big set, consisting of most of the bins be defined
as B = J,<;cq_,+ Bi- The remaining bins form a small set S, which we partition into 13
subsets S; = {UB; : d — (14 —1)s*/13 < j < d — (13 —4)s*/13} for 1 < i < 13, hence
S=V(G)\B= U1<z‘<13 Si-

Finally, we label some edges as “corrected” to satisfy a subtle technical issue (and
guarantee later that the average weight of edges weighted |n/d] + 1 and |n/d] + 2 is
exactly (n/d)+1). More precisely, we randomly label an edge with both end vertices in B
“corrected” independently with probability max({n/d},1 —{n/d}) (where {n/d} denotes
the fractional part of n/d), which is at least 1/2.
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Figure 1: Key random vertex partition. Grey edges in B are corrected.

Lemma 9. With positive probability, the following statements hold simultaneously if d is
large enough.

(1) (Cys,) For eachv € V(G) and 1 < i < 13, degg (v) € [s*/13—d'/*7, 5% /134d"/*7].

(1) (Cys) For each v € V(G), degg(v) € [s* — 13d"/**7, 5% +-13d"/*™], or equivalently,
degB(U) € [d — 5" = 13dl/2+77 d— s* + 13d1/2+'y]'

(III) (C,p) For eachv € V(G), if v € B;NB for some i, then the number of edges between
v and {{JBj,d—s* —i+1<j<d— s} is in the interval [(i — 1) — d*/**7, (i —
1)+ d2 ).

(IV) (Clg) For each v € V(G), if v € B; N B for some i, then the number of edges
between v and {|J B;,d —s* —i+1 < j < d— s*} that are labeled “corrected” is in
the interval [(i —1)a—ad"/?>™7, (i—1)a+ad"/*™] where « = max({n/d},1—{n/d}).

(V) (C;) For each 1 <i < d, |, Byl € [in/d — nd" /v/d, in/d + nd /\/d).
(VI) (Cs,) For each 1 < i< 13, |S;| € [s*n/(13d) — Qnd'y/\/a, s*n/(13d) + 2nd7/\/3].

Proof. Let &,g, be the bad event that C,s, does not hold for given v € V(G), 1 < i < 13.
We analogously denote by £,s, Eu5,E. 5, &, Es, the remaining bad events. We first bound
the probability of each of these, and then use Lovasz Local Lemma to show that with
positive probability none of these bad events happen.

Fix v € V(G) and let us consider &, for any given 1 < ¢ < 13. Since each of d
neighbors of v is independently included in S; with probability exactly s*/(13d), where
d'/**7 < s*/13 < d for d large enough, by the Chernoff Bound,

Pr(E,s,) < 260 /6D < 9=d/6,

As the events C,s, imply C,s, we proceed to compute the conditional probabilities
Pr(&plv € B;) and Pr(& zlv € B;). These are trivially 0 for ¢ = 1. Thus we next
assume 2 < i < d — s*. As each of d neighbors u of v has probability (i — 1)/d to

ot
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be in Ud_s*_i+1<j<d_s* B; and probability a(i — 1)/d to be in Ud_s*_iﬂqu_s* B; and
simultaneously form a corrected edge uv, by the two Chernoff Bounds, since a@ > 1/2,

d1+27 ) < 2€_d1+27/(3d) < 2€_d2"//6

3max (i — 1,dY/?*7)

a2d+2
3max (a(i — 1), ad/?+7)
Since by definition Pr(&,zlv € S) = 0 and Pr(£/4lv € S) = 0, thus by the law of total
probability, Pr(&,5) < 2¢~%"/6 and Pr(£!5) < 2e~4"/6,

To finally estimate Pr(&;), we note that for any i each of n vertices is independently
included in (J,; B; with probability i/d. Thus by the Chernoff Bound,

Pr(&plv € B;) <2exp (—

Pr(& zlv € B;) <2exp (— ) < 9e-ad (D) ¢ 9u—d®f6.

n2d*/d p2a2r1

PI"((C/’Z) <2 exp | — < ¢~ "En — 2€—n/(3d1*27)‘
3 max (m/d7 ndV/\/E)

Since conditions (I) and (V) of the lemma imply conditions (II) and (VI), respectively,
we just need to show that with positive probability none of &,s,, &5, L 5, & holds. We
will apply the Lovasz Local Lemma (Lemma 8). There are 13n events of type &g, (for
each v € V(G) and 1 < i < 13), n events of type &,5, n events of type £ 5 and d events
of type &;. Note that for any given v and i, each of the events &,g,,&,5, . 5 is mutually
independent of all other events &,s,,Eup, &, 5 With u at distance at least 3 from v in G,
i.e. all but most 13(d* + 1) + (d* + 1) + (d* + 1) < 16d* such events (while each & may
depend on any other event). We assign value z = d~2/1600 to each &,s,,&,5,E) 5, and
assign value y = d~'/100 to all £;. Therefore, in order to apply Lemma 8 we just need to
check that

9e—d*7/6 <a(l— x)16d2<1 _ y>d
267n/(3d1_2”/) < y(]. _ y)d(]_ _ x)lEm

Note that 1 —a > e 19 for 0 < a < 0.5. Thus it is sufficient to show that:

{2e—d27/6 < eln(d—2/1600)6—160d2~(d_2/1600)8—10d~d_1/100
~

—n/(3d1 27 In(d—1/100) ,—10-d-d—1 /100 ,—150n-d—2 /1600
26 n/( ) g en( / )e / e n / ,

which is equivalent to:

d*/6 > In2 + In(1600d%) + 1/10 + 1/10
n/(3d'=?) > In2 + In(100d) + 1/10 + 15n/(160d2)

As n > d+ 1, these two inequalities above hold when d is sufficiently large in terms of .
The conclusion thus follows by Lemma 8. [

2.3 Assigning weights

Suppose all statements in Lemma 9 hold. We will assign and modify edge weights in GG
in three steps. Whenever needed we assume d is large enough in terms of ~.
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Step 1. The purpose of this step is to construct an initial weighting function f; :
E(G) — N so that all v € B; have weights very close to (n/d)i for each i. Let us set

w = max([n/d" 7], 2).
We define fi({u,v}) for all {u,v} € E(G) as follows:

([ |n/d]+1, if veBNB, ueB;,NB, d—s*"—i+1<j<d—s"
and (({n/d} > 1/2 and {u,v} is not a corrected edge)
or ({n/d} < 1/2 and {u,v} is a corrected edge)),

‘ In/d|+2, if veB,NB,ue BjNB,d—s*"—i+1<j<d—s"
Ail{u,v}) = and (({n/d} < 1/2 and {u,v} is not a corrected edge)
or ({n/d} > 1/2 and {u,v} is a corrected edge)),

iw+ [n/d], if veB, ues;, for1<i<13,
1, otherwise.

\

Consider any v € B; N B. We assume {n/d} > 1/2, as the analysis and result in the

opposite case is essentially the same. By the definition of f; and Lemma 9, since 1 < n/d
and w < [n/d] < 2n/d,

Mwy= >  [(fued)+ > fi{u,v})

u{u,v}eE(G),ues u{u,v}eE(G),ueB
13
= (Z(J'w + [n/d])(s"/13 = dlm”))
j=1

+ ([n/d]((i = 1) = d'#7) + {n/d}((i = 1) = d'*77) + (d = s = 13d"*T))
> ((Tw + [n/d]) s* — d/**(91w + 13[n/d]))

+ ((n/d)(i — 1) +d — s* — 16n/d"/?7)
> ((n/d)(i—1)+d+ (Tw+ [n/d] — 1) s*) — 224n/d"/*7

By almost the same reasoning we may obtain an analogous upper bound for f)(v), im-
plying that

[ (0) = ((n/d) (i = 1) + d + (Tw + [n/d] = 1) s7)

Moreover, the following claim holds.

< 224n/d'/*7. (1)

Claim 10. For any edge e € E(B), fi(e) € [1,|n/d]| +2]. For any edge e between B and
S, fi(e) € [[n/d], [n/d] + 13w]. For any edge e € E(S), fi(e) = 1.

Step 2. Consider a linear ordering vy, vs, . .. of the vertices in B such that X, > X,, if
J =i (where X,’s refer to values of the random variables used within the proof of Lemma 9
for which all conditions of the lemma hold; we may assume these are all distinct, as this is
true with probability 1). To adjust edge and vertex weights we will provide f, : F(G) — N
supported on edges between B and S (i.e. equal to 0 for the remaining edges) so that as
a result, for fio := f1 + fo, the following conditions hold:
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e cach v, € B has weight k +d + (7w + [n/d] — 1) s* + [250n/d/?>77;
e for any u € S,v € B, fl5(u) — fl5(v) > 0; and finally:

o for u € S;yq,v € S; with 1 <4 <12, fl5(u) — fl5(v) is large enough to provide a
buffer for weight adjustments in Step 3.

Suppose v, € B; N B. Then

U Bil<k<IUBil

Jj<i—1 J<i
and thus, by Lemma 9 (V), (i — 1)n/d — n/d"?>=7 < k <in/d + n/d*/*>=7. Therefore,
|k — (i — Dn/d| < 2n/d"?. (2)
By (1), (2) and the triangle inequality,
| (o) — (k+d+ (Tw+ [n/d] —1)s*) | <226n/d"/*77. (3)

Claim 11. There exists fy : E(G) — N supported on edges between B and S such that
1 f2lloe < [103n/d" 7] and for each v, € B, flo(vy) = k+d+ (Tw+ [n/d] —1)s* +
[250n/d"/>77], provided d is sufficiently large in terms of €, .

Proof. Note that by (3), the weight of every v, € B is smaller than the target value
k4-d+4-(Tw + [n/d] — 1) s*+[250n/d"/>~7], while we need to add no more than 500n /d"/>="
to achieve it. This discrepancy can be leveled up by adding appropriate quantities to
weights of edges between v, and S, thereby defining fo. As by Lemma 9 (1), dg(vg) >
§* —13d"/**7 > s*/2, it is sufficient to add to every edge weight between vj, and S at most
[(500n/d"/>=7)/(s*/2)] < [103n/d"+]. O

Claim 12. For every u € S and v € B, fl5(u) > fl3(v). For each 2 <i < 13 and every
u € S;, u €81, we have fl5(u) — fly(u') = 0.4wd.

Proof. Consider u € S; for any fixed 1 < ¢ < 13. By the definition of fi5, we have
fi2(e) = fi(e) for every edge e. Hence, as due to Lemma 9 (II), degp(u) > d — s* —
13dY/?*7 > d — 2s*, by the definition of f; and the fact that w < [n/d],

() = (iw + [n/d]) (d — 25*) > iwd + [n/d]d — 2s*(i + 1) [n/d]. (4)
By Claim 11, for every v € B,
@) < fla(vp) = |Bl +d+ (Tw + [n/d] — 1) s* + [250n/d"*] < n+d+9[n/d]s".
Thus for v € S; and v € B, as 1 <4 < 13 and d < 0.5wd, together with (4),

o) — fio(v) Ziwd — 25*(i + 1)[n/d] —d — 9[n/d]s* = 0.5wd — 37[n/d]s* > 0,
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where the last inequality holds, as wd > (n/d)s* when d — co. The first claim is thus
proved.

Consider now any v’ € S;_; for a given 2 < ¢ < 13. By Claim 11 and the definition of
f1, fiz(e) < (i — Dw + [n/d] +103n/d* ™7 4 1 for every edge e incident with «/. Thus

fla() < ((i = Dw + [n/d] + 10°n/d"T7 + 1) d = iwd + [n/d]d + d — wd + 10°n/d.
(5)

Thus combining (4) and (5), for v’ € S;_; and u € S;, as wd > ns*/d,wd > n/d*7 when
d — 00,

o) — fh@) > wd —d —10°n/d — 25*(i + 1)[n/d]
> 0.5wd — 10°n/d“" — 28[n/d]s* > 0.4wd. O

By Claims 10 and 11, as a summary, the following holds after Step 2.

Claim 13. For any edge e € E(B), fi2(e) € [1, |[n/d] +2]. For any edge e between B and
S, fiz(e) € [[n/d], [n/d] + 13w + [103n/d' T 7]]. For any edge e € E(S), fia(e) = 1.

Step 3. In this step, we introduce f3 : E(G) — N that is only supported on E(S) such
that all vertices in S have distinct weights with respect to f = fi + fo + f3. We will
moreover show that Claim 12 implies that f attributes distinct weights to all vertices in
G. For this aim we will adapt the algorithm from [15], which was modeled on the idea of
Kalkowski, Karonski, and Pfender [9].

Let AP be the family of sets of the following form AP = {(2A)[n/(3d)] + a, (2X +
1)[n/(3d)]+a} where A, a are integers with A > 0, a € [0, [n/(3d)]—1]. Note the sets in AP
with all possible values of A\, a partition the non-negative integers, where different values of
a correspond to [n/(3d)] different congruence classes, denoted by C, = {a+k[n/(3d)],k €
N}. Our primary goal is to attribute the weight of every vertex v € S to appropriately
chosen AP, € AP so that for each 1 < ¢ < 13, vertices in S, have associated pairwise
distinct AP,’s, which are thus disjoint.

We initialize f3 by setting f3(e) = [n/(3d)] for all e € E(S). Given an ordering
vy, ...,vg of vertices in S (specified later), each edge {v;,v;} with i < j is called a
forward edge of v; and a backward edge of v;. The algorithm will sequentially process v;’s
modifying f3 on edges in S incident to currently analyzed v;. For v; no modifications
are needed — we simply let AP,, be the set in AP that contains the current value of
fY(v1) and move on (to v;). Then for every consecutive i > 2, we will choose a special
set AP,, € AP and guarantee that fV(v;) belongs in AP,, from the end of step i until
the end of the algorithm. We admit two options to modify f; on backward edges of the
given v;: either by adding 0 or one of the values in {£[n/(3d)]}. Specifically, say {v;, u}
is a backward edge of v;. If the current value of f¥(u) is the smaller value in AP, we
admit adding 0 or [n/(3d)] to fs({vi,u}); if f¥(u) is the larger value in AP, we in turn
admit subtracting 0 or [n/(3d)] from f3({v;,u}). Thereby the updated f" (u) will always
remain in AP, as desired. We finally admit adding any value in {0,1,...,[n/(3d)]} to
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the weights f3(e) of all forward edges of v;, which will in particular allow us to determine
the congruence class f(v;) will eventually land in.

We now specify the ordering vy, vs,... of the vertices in S. At the beginning we
arrange the vertices in (J;;<,, Si according to the values of X,,, from the smallest to the
largest, and thus consistently with the order of Sy, ..., S12. The last in the ordering are
vertices from Si3, which are ordered differently due to some technical subtlety concerning
vertices without forward edges. Suppose Cf,...,Ck are the connected components in
S13, ordered arbitrarily. Each component has at least two vertices by Lemma 9(I). For
each C;, we use reversed BFS to order its vertices and denote r;,t; the last two vertices
in C;. (Thus t; is the root of the tree in BFS; {r;,#;} € E(S).) Let R = {ry,...,rx} and
T ={t1,...,tx}. We finally define the ordering in Si3 by concatenating the orderings of
C4,...,Ck. Note that by Lemma 9(I), the set of terminal vertices, i.e., vertices with no
forward edges in the obtained ordering in S, is T

We now show specific procedures which will allows us to achieve the desired goal.
Suppose we are in step ¢, i.e. we are analyzing v; € S;, where 1 < t < 13, and that
v; ¢ RUT, hence v; has at least one forward edge, say e;. The existing sets AP, for u
prior to v; in S; correspond to at most |S;| congruence classes with possible duplicates.
Therefore, there must be a congruence class C, that includes at most |S;|/[n/(3d)| prior
sets AP, with u € S;. Thus we may include the weight of f¥(v;) in C, by adding one of
admissible values in {0,1,...,[n/(3d)]} to the weight f3(e;). We then modify the rest of
the forward edges of v; by adding 0 or [n/(3d)| and change the weights of some backward
edges of v; by [n/(3d)] according to the specified rules, if necessary. Note that this way
we may obtain degg(v;) consecutive terms in C, as potential weights of v; (in entire G).
Since each prior set AP, blocks at most two consecutive terms in C,, we can find this
way an attainable fV(v;) € C, which is not blocked if degg(v;) > 2|S;|/[n/(3d)]. This is
however implied by an even stronger inequality, which holds by Lemma 9 (VI)(II):

S,/ T/ (Ba)] +2 <A(s*n/(13d) + 20/ 20 () (3d)) + 2 = 125" 13 + 24a"2¥7 4 2
<s* — 13dY*7 < degg(v;). (6)

We finally set AP,, as the only set in AP containing the attained weight of v;.

We are left to show how to handle r;,¢; € RUT, where {r;,¢;} is the only for-
ward edge of r;. We analyze both vertices simultaneously in a similar manner as above.
Recall r;,t; € Si3. First, by an averaging argument, we can choose an admissible addi-
tion from {0,1,...,[n/(3d)]} to f3({r;,t;}) such that the two new congruence classes of
fY(ry), f¥(t;) each includes at most 2|S13|/[n/(3d)] prior sets AP, with u € Si3, dis-
regarding temporarily AP, from the point of view of ¢;. Next, analogously as above,
by (6), we can change the weights of backward edges of r; by £[n/(3d)] so that the
resulting fV(r;) belongs to AP,, € AP disjoint from those of the prior vertices in Sis.
Finally, we analogously adjust the weights of all backward edges of t; except {r;,t;} so
that the resulting fV(¢;) belongs to AP, € AP disjoint from those of the prior vertices in
S13 including AP, , which is again feasible by (6) (where “+2” was incorporated in this
inequality to facilitate distinguishing AP, from AP, ).
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Claim 14. For every edge e of G, 1 < f(e) < [n/d] + 13w + [103n/d*T<=7].

Proof. By Claim 13 all edge weights were in the interval [1, [n/d] + 13w + [10%n/d' T 7]]
prior to Step 3, while edges in E(.S) were assigned 1. Within Step 3 we first added [n/(3d)]
to the weights of the edges in £(S) and only these edges could have been further modified,
each at most twice (once as a forward edge, when its weight could be increased by a non-
negative integer not exceeding [n/(3d)], and once as a backward edge, whose weight
could be modified by at most [n/(3d)]). Thus f3(e) € [0,3[n/(3d)]], and hence the result
follows. O

2.4 Proof of Theorems 3 and 5

Note that by the algorithm applied above, f(v)’s are pairwise distinct for vertices in the
same S; for 1 < i < 13. We first show that if u € S; and v/ € S;_;, where 2 < 7 < 13, then
fY(u) > fY(). By Claim 12, f5(u) — fi5(v') = 0.4wd. Moreover, by the algorithm in
Step 3, fla(u”) < fY(u") < fi5(w”) +3[n/(3d)] degg(u”) for every u” € S, as 0 < f3(e) <
3[n/(3d)] for each e € E(S). Hence, by Lemma 9 (II), since wd > ns*/d as d — oo,

Y (u) — fY(u') 20.4wd — 3[n/(3d)] degg(v') > 0.4wd — 4(n/d)2s* > 0.

Thus all vertices in S have pairwise distinct weights. For any vertices u € S and v € B,
since fy (v) =0 and f) (u) > 0, by Claim 12, f¥(u) — f¥(v) > 0. Finally, as by Claim 11,
the weights of the vertices in B formed a | B|-element segment of integers after Step 2 and
have not changed ever since, all vertices in G have distinct weights.

Suppose d'T27 > n. Then w = 2 and [10°n/d' 7] = 1 for d large enough. Thus
by Claim 14, there is dy such that || f||ec < [n/d]|+27 < n/d+28 for d > dy. As there are
only finitely many graphs with d < dy and d**=*" > n (while e.g. by [9], s(G) < 6[n/d]),
Theorem 5 and Corollary 6 follow due to taking § = € — 2y, as € € (0,1/4) while v can
be chosen arbitrarily small.

On the other hand, by Claim 14, regardless of the proportion of n to d, f is upper
bounded by

[n/d] + 13w + [10°n/d" ] < (n/d+ 1)+ 13(n/d" "% +2) + (n/d" T 4+ 1)
= n/d(1+14/d*) + 28 (7)
when d is sufficiently large, say d > dy (where dj is a constant dependent on ¢, ). Hence
Theorem 3 follows by taking 5 = € — 2y analogously as above. For d < dy, we may finally
again use the result in [9] implying that s(G) < (n/d)(1 + 5) + 6, where 5 < C/d” for
large enough (in terms of dy) constant C'. Thus Corollary 4 is proved as well due to (7).

3 Conclusion and remarks

In this note, we proved a uniform upper bound s(G) < 2(1 4 C/d?) + 28, which confirms
the Faudree-Lehel Conjecture for d > n® for any fixed o > 0.8. Our primary goal was
to present a relatively short proof, hence we did not strive to optimize all constants and
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auxiliary functions within our argument. In particular, using a slightly more detailed
analysis concerning 7;,t; in the algorithm in Step 3 (applied already e.g. in [9, 11]) and a
few other minor alterations, one may easily reduce the constant 28 to 16 in all our main
results (and the constant 14 to 8).
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