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Abstract

Given a simple graph G, the irregularity strength of G, denoted by s(G), is the least
positive integer k such that there is a weight assignment on edges f : E(G) —
{1,2, ..., k} attributing distinct weighted degrees: f(v) = Zu:{u’v}eE(G) f{u, v}
to all vertices v € V(G). It is straightforward that s(G) > n/d for every d-regular
graph G on n vertices with d > 1. In 1987, Faudree and Lehel conjectured in turn
that there is an absolute constant ¢ such that s(G) < n/d + c for all such graphs.
Even though the conjecture has remained open in almost all relevant cases, it is more
generally believed that there exists a universal constant ¢ such that s(G) < n/§ +
¢ for every graph G on n vertices with minimum degree § > 1 which does not
contain an isolated edge; In this paper we confirm that the generalized Faudree—Lehel
Conjecture holds for graphs with § > nf where g is any fixed constant larger than 0.8;
Furthermore, we confirm that the conjecture holds in general asymptotically. That is,
we prove that for any ¢ € (0, 0.25) there exist absolute constants ¢y, ¢> such that for
all graphs G on n vertices with minimum degree § > 1 and without isolated edges,
s(G) < %(1 + g—;) + ¢3; We thereby extend in various aspects and strengthen a recent

result of Przybylo, who showed that s(G) < %(1 + %9”) = 2(1 + o(1)) for d-

In
regular graphs with d € [In'*¢ n, n/ In n]. We also improve the earlier general upper

bound: s(G) < 6% + 6 of Kalkowski, Karonski and Pfender.
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1 Introduction

Let G be a simple graph. Consider an edge-weighting function f : E(G) —
{1,2,...,k}, where k is any positive integer. We call it a k-irregular assignment
for G if the weighted degrees, denoted by f(v) = ZueN(v) f({v, u}), are pairwise
distinct for all v € V(G). The irregularity strength of G, denoted s(G), is the least
positive integer k, if it exists, such that there is a k-irregular assignment for G; we set
5(G) = oo for the remaining graphs. It is easy to see that s(G) < oo if and only if G
has no isolated edges and has at most one isolated vertex.

The irregularity strength was first introduced by Chartrand, Jacobson, Lehel, Oeller-
mann, Ruiz, and Saba [1], in particular in reference to research on irregular graphs
[2-4]. Note that for any simple graph G, s(G) may naturally be alternatively set down
as the least k such that one may produce an irregular multigraph by blowing each
edge e of G to at most k copies of e, where by an irregular multigraph we mean a
multigraph with pairwise distinct degrees. In general it is known that s(G) < n — 1
for any graph G of order n which is not a triangle and has finite irregularity strength.
This was proved by Aigner and Triesch [5] and Nierhoff [6]. Though the family of
stars witnesses the tightness of this upper bound, it can be greatly improved for graphs
with larger minimum degree. In particular, already Faudree and Lehel [7] showed that
s(G) < [n/2] 49 for every d-regular graph with n, d > 2. This was however still far
from the expected optimal upper bound. By a simple counting argument, it is easy to
see that

s(G) > ’7%—‘

d

This lower bound motivated Faudree and Lehel [7] to conjecture in 1987 that the
value n/d is close to optimal. In fact, this conjecture was first posed by Jacobson, as
mentioned in [8].

Conjecture 1 (Faudree—Lehel Conjecture [7]) There is a constant ¢ > 0 such that for
all d-regular graphs G with n vertices and d > 2,

s(G) <2 4e.
d

It is moreover believed that the following natural extension of the conjecture holds
in general.

Conjecture 2 (Generalized Faudree—Lehel Conjecture [7]) There is a constant ¢ > 0
such that for all graphs G on n vertices with minimum degree § > 1 and without
isolated edges,

ﬂ®§g+a
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It is this conjecture that “energized the study of the irregularity strength”, as stated
in [9]. It also settled foundations for entire discipline, providing inspiration for many
related papers, concepts and intriguing questions, see e.g. [5, 8-38]. The conjecture
remains open after more than three decades since it was formulated. A significant step
forward regarding it was achieved in 2002 by Frieze, Gould, Karoniski, and Pfender
[23], who used the probabilistic method. They proved the first linear in n/d bound
s(G) < 48(n/d)+1ford < \/n,and asuperlinear bound s(G) < 240(logn)(n/d)+1
whend > | /n|. Similar bounds for general graphs, with d replaced by the minimum
degree §, were also proved in the same paper. These in particular imply that s(G) =
O (n/8) if G has maximum degree A < n'/2. The linear bounds in n/d and n/8 were
further extended to the cases when d > 10%/352/3 log]/3 nand § > 10n3/4 l()gl/4 n,
respectively, by Cuckler and Lazebnik [9]. The first linear bounds in both n/d and n/§
for all ranges of n, d and & were settled by Przybylo. He used a different idea to improve
a key combinatorial lemma in [23], thus proving in [33, 34] that s(G) < 16(n/d) + 6
and, resp., s(G) < 112(n/§) + 28. Since then, considerable efforts were devoted to
improve the multiplicative constant in front of n/d and n/§. In course of work over
this and several related concepts a list of inventive and highly useful algorithms were
developed in particular in [13, 25, 26, 28, 39]. These assured important breakthroughs
concerning s(G) and other widely studied graph invariants. The best result among
these is due to Kalkowski, Karoriski and Pfender [25], who proved that in general
s(G) < 6[n/8] (what was later improved to s (G) < (440(1))(n/8)+4 for anarrower
range of § > /nlog n in [28]). It was only until recently when Przybyto [30] proposed
an algorithm which significantly improved the previous upper bounds for d-regular
graphs. His result implies in particular that Conjecture 1 holds asymptotically (in terms
of d and n) for d not in extreme values.

Theorem 3 (Przybyto [30]) Given any fixed ¢ > 0, for every d-regular graph G with
n vertices and d € [In'*¢ n, n/In® n), if n is sufficiently large,

o <"(1y 1
s( )_2 +ln€/19n .

In [30] Przybyto mentioned that “a poly-logarithmic in » lower bound on d is
unfortunately unavoidable” within his approach. In this paper, we extend the range of
d to bypass the poly-logarithmic in n lower bound (and the upper bound too). We also
provide at the same time a stronger upper bound on s(G) forall 1 <d <n — 1.

In the case of general graphs with minimum degree §, instead of regular graphs
with degree d, obtaining a good bound on s(G) is considerably harder. The existing
methods, applicable in the case of regular graphs, stop working for general graphs, or
would result in a much worse bound. Prior to our result, no asymptotically sharp bound
on s(G) has been shown for general graphs with minimum degree §. One exception
is the family of random graphs G (n, p), where p is any fixed constant in (0, 1), for
which the first author showed that s(G) < [r/§7] + 2 almost surely [40]. In this paper,
we are able to show that the generalized Faudree-Lehel Conjecture (Conjecture 2) also
holds asymptotically.
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Theorem 4 For every ¢ € (0, 0.25), there are absolute constants cy, ca such that for
each graph G with n vertices and minimum degree § > 0 which does not contain
isolated edges,

C1

n
50 = 5 (145

) + .

Note that Theorem 4 in particular implies (for ¢ = 0.2) that s(G) <
(n/8)(1 + (c1/8%2)) + ¢» for some absolute constants cj,c>. For any
fixed ¢ > 0 (in Theorem 3) and 8§ € [In'*®n,n/Inn], we how-
ever have: (n/8)(1/In/¥n) > ®/8)(c;/In®* 02 n) > (n/8)(c1/8°%) and
(n/8)(1/1n¥/Pn) > (In®n)(1/1n*/1° n) > ¢,. Thus our bound is in particular a
direct improvement over the bound in Theorem 3 (which additionally regards only the
case of regular graphs).

Moreover, as the second contribution of the paper, which seems even more or
equally vital as the one above, we also confirm that the Faudree-Lehel Conjectures
(Conjectures 1 and 2) hold, not only asymptotically, for all graphs with § > nf where
B is any fixed constant greater than 0.8.

Theorem 5 For every ¢ € (0, 0.25), there is an absolute constant ¢ such that for each
graph G with n vertices and minimum degree § > n'/(1+8),

n
s(G) < 3 +c.

2 Tools and Notation

We will use the following tools.

Lemma 6 (Chernoff Bound, c.f., e.g., [41], Appendix A) Let X1, ..., X, bei.i.d. ran-

n
ZXi —np

dom variables such that Pr(X; = 1) = p and Pr(X; = 0) = 1 — p. Then for any
t >0,
Pr <
i=1
Pr <

Corollary 7 (Chernoff Bound, c.f.,e.g., [41], Appendix A) Let X1, ..., X, bei.i.d. ran-
dom variables such that Pr(X; = 1) = p and Pr(X; = 0) = 1 — p. Then for any

t >0,
Pr(

> t) <27 7/6W) k0 <t < np,

n
ZXi —np

i=1

> t) <273, ift > np.

n
ZXi—np

i=1

- t) < 26—t2/3max(np,t)_
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Definition 8 (Negative Association [42]) A set of random variables X1, ..., X, are
negatively associated if for any two disjoint index sets I, J C [n] and two monotone
increasing functions f, g : R — R, E[f(X;,i € Dg(X;,j € J)] < E[f(X;,i €
DIE[g(X;, j € D]

Lemma 9 (Zero—one Principle [42]) Let X1, ..., X,, be zero—one random variables
such that always Zi X; < 1. Then X1, ..., X, are negatively associated.
Lemma 10 (Closure Property [42]) Let X1, ..., X, be negatively associated and let

Y1,..., Y, benegatively associated. If {X;}; are independent from {Y;};, then {X;}; U
{Yi}i are negatively associated.

Lemma 11 (Chernoff Bound [42]) Let X1, ..., X, be negatively associated random
variables such that Pr(X; = 1) = p and Pr(X; = 0) = 1 — p. Then the two Chernoff
Bounds in Lemma 6 hold.

Lemma 12 (Simple Concentration Bound [43]) Let S be a random variable determined
by n independent trials X1, . . ., X,, and satisfying: changing the outcome of any one
trial can affect S by at most ¢ > 0. Then for any t > 0,

Pr(|S — E(S)| > 1) < 2¢~1/@™m),

Givenagraph G,asetU C V(G)andavertexv € V(G), we use degy, (v) to denote
the number of neighbors of v in U. We use G[U] to denote the subgraph induced by
U in G, and E (U) to be the set of edges of G[U].

Throughout the paper we assume that the graph G has n vertices and minimum
degree 8. A weighted degree of a vertex v will usually be abbreviated as a weight of v.

3 General Proof Idea, Links and Obstacles

The basic intuition behind our construction is to partition V(G) into a big set B and a
small set S, where |S| = (1n/8) - 0(5). We first adjust the edge weights so that almost
all vertices in B have distinct weights. Then we locally adjust weights of the rest of
the vertices to distinguish the weights of all vertices in G.

Our argument can be divided into three main steps. Step A relies on a specific
random construction, which assures relatively sparse distribution of weights of the
vertices in B, i.e. without too many vertex weights in any of the predefined intervals
partitioning positive integers. Step B consists of modifications of the weights of edges
across B and S, aiming at generating relatively small shifts of the vertex weights in
B. As aresult, pairwise distinct weights will be attributed to all but a small set of bad
vertices in B. (We note here that S must be large enough to provide sufficiently many
edges across B and S for our purposes.) In step C we modify weights of the edges in S
and a small portion of the edges outside S in order to weight distinguish the vertices in
S mostly. For this aim we attribute these vertices special weights deliberately unused
in step B (with residues at most 5 modulo a carefully chosen and large enough integer
k). To distinguish weights in S we in particular benefit from the fact that this set is
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small compared to B, and thus vertices in S have on average large fraction of all their
incident edges in E (S, B) (usually much larger than the fraction of their incident edges
in §). This enables taking on vital preparatory measures prior to step C (within step
A), ensuring sparse vertex weight distribution in S and facilitating the mentioned final
cleanup in this set. Throughout the construction we moreover single out several types
of “bad vertices”, which do not fulfill one of a number of specified conditions, and
cannot be weight distinguished according to major procedures. The set of all of these
is however small enough to be handled with in a special manner in step C.

Our approach is motivated by the random construction idea from [30], which
amounts to show that under certain conditions there are no “bad vertices”at all (in
case of regular graphs). Then an explicit weight assignment could be provided in the
face of absence of such problematic vertices. Typically, if the minimum degree & is
Q2 (logn), then a union bound could be used to prove that with positive probability
there are no “bad vertices resulting from the random construction. To bypass the log n
factor, careful quantization and the Lovasz Local Lemma turned out to be very helpful
tools in the case of regular graphs. In fact in [44] we provide a significantly more
simple approach, yielding similar results as the ones in this paper, but for the setting
restricted to regular graphs exclusively. To prove the asymptotic bound for all § in
the case of general graphs, one of the real challenges is that the maximum degree
and minimum degree could differ by any factor. This in particular forefends a direct
application of the Lovasz Local Lemma. In this paper we bypass all these difficulties.
One of our main ideas is that although we cannot guarantee that there are no “bad
vertices”at all resulting from the random construction, yet the number of such bad
vertices cannot be too large (in fact it is usually exponentially small). We therefore
can accumulate these bad vertices and treat them at the end of the proof via careful
and technical analysis.

4 Proof of Main Results
4.1 Set-Up
We will focus on proving Theorem 4. Only at the very end of the paper do we comment

on how it directly implies Theorem 5. Let us thus fix €, corresponding to Theorem 4,
followed by an auxiliary small constant « such that

e € (0,0.25), ae€(0,e) and 2e+a<0.5, (@€))]

and a graph G. Let X, ~ U[0, 1], for v € V(G) be i.i.d. uniform random variables.
These are used to separate the vertices into § bins. For 1 <i < § — 1, let the i-th bin
be defined as

Bi={v:(@ -1/ <X, <i/s},
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and set the last bin as Bs = {v : (6 — 1)/§ < X, < 1}. In expectation, every B;
includes n /8 vertices. For each vertex v, we define:

the random variable Z(v) € [1, §] to be the bin number i such that v € B;.

Let the small set S be the union of bins B; with i > § — s* where

oF = ’751/2+8+a—‘.

Thus the expected number of vertices in S is ns*/§ «s n. Denote B := V(G)\S to
be the big set.

In order to take on certain preparatory measures prior to Step C (within which we
will finally distinguish weights of the vertices in S), we will further partition S into k’
similar sized subsets where

¢ = min ([4011051 &&)OD

Each such subset will consist of [s*/k"] or |_s* /k’J bins. More specifically, fori =1,
let S be the union of the first Ls*/k/J binsin S,ie., S = {{JB; : 6 —s* < j <
5—s* + Ls*/k/J }. Next, sequentially define S5, ..., Sy so that S; is the union of the
first | s*/k" | or [s*/k'] (depending on s* mod k') consecutive yet ungrouped bins in
S. Furthermore, set

k= [k’/lOOO—‘ and da = mn/(ak).

These two parameters will be used in Step A.

We will show that when § or n/§ is smaller than a constant ¢, then Theorem 4
holds. Thus, throughout the computations in the paper, unless otherwise stated, we
will assume there is an absolute constant ¢ such that § > ¢, n/§ > c and c is large
enough so that all explicit inequalities in the computations hold.

4.2 StepA

Definition 13 We define a weighting assignment f] : E(G) — Zin Step A as follows.

1. For every bin number 1 <i < § — s*, for each vertex v € B; C B and each of its
neighborsuin{(JB;,8 —s* —i +1 < j <8 —s*} C B, let fi({u, v}) be equal
to [n/8] +d'.

2. For every integer 1 < j < k/, for each vertex v € B and its neighbor u € S;, let
Ji({u, v}) be equal to [[n/87/3k"1(j + k).

3. Let f1 equal 1 on the rest of the edges in B, and let f equal O on the edges in S.

Let f] : V(G) — Z evaluate the weights of vertices under fi.
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Definition 14 Let o (v, i) be the random vertex weight fl(v) given v € B;. Let [y =
(0, ([n/8] +a’ — 1)), whereas for each integer 1 < h < 2n, we define the interval

Iy = [h([n/(;‘ +ad =1, (h+ 1)(['1/5—‘ +d —1).

Foreach 1 <i < § — s* and each vertex v, denote the expected weight of v if v € B;
as

o, (v, i) :]E[fl(v) lve B,»]

and set o, (v,i) = 0for§ —s* <i < dandv € V(G). For0 < h < 2n, let uy
be the expected number of vertices in G such that o, (v, Z(v)) € I, (note all these
vertices must belong to B). Given integers 0 < k| < hy, let

ho—1

Mlhy,hy) = Z M“h-

h=h

Note that since 0 ¢ Io, then o, (v, i) ¢ I forallh > 0if i > § — s*.
By Definition 13,

v

I filloo < maxdeg(v)(’rn/é—‘+a/) < (n—l)([n/(S—‘ +d) < 2n([n/8—‘+a’—1), 2)

and thus o 2,y = E(|B]).

Claim 15 Let v be a fixed vertex and i an integer in [1, § — s*]. Given v € B;, with
probability at most 2¢ /2, |0 (v, i) — 0, (v, i)| > deg(®)/*** ([%] +a' —1). In
addition, for each vertex v and a fixed integer & € [0, 2n), there is at most one bin i
such that o, (v, i) € I. This implies u, < n/é.

Proof Fix any i € [1,8 — s*]. Given v € B;, the expected value of o (v, i) equals
0y, (v, i) andis determined by the values of deg(v) independent variables X, v € N (v).
As by definition of f7, changing the outcome of any one of these variables can affect
o(v,i) by at most ({%] +a — l), the Simple Concentration Bound (Lemma 12)
implies that the probability that |o'(v,i) — 0y, (v, )| > deg(v)!/?** ([4]1+a' — 1)
is at most

2

2
—deg(v)”z"’(’Vg—‘-Q—a’—l) /(2(’73—‘%’—1) deg(v))
2e < 26—52"/2’

as desired.
To prove our second claim, we need to approximate o, (v, i). This is equal to
wg(v, i, B) + wg(v, i, S) where wg(v, i, B) and wg(v, i, S) denote the expected
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weights of v coming from its neighbors in B and S, respectively, given that v € B;.
Let us denote for simplicity: B = {UB;,§—s*—i+1 < j < 8 —s*}. The probability
that a fixed neighbor of v lies in B’ equals exactly (i — 1) /8. Thus, the expected number
of neighbors of v lying in B’ equals deg(v)ﬂ Similarly, the expected number of

s —l-‘rl

neighbors of v lying in B \ B’ equals deg(v) ===+l  Therefore,

wr(v, i, B) = ([n/81 + a")Eldegi (v)] + 1 - Eldeg, gi (v)]

—1/[n , §—s*—i+1
(2] ) 1 st =2
:dei(”) (( _1)@ —‘—I-a —1)+5—s*). 3)

On the other hand, by condition 2 in the definition of f, the expected value wg(v, i, S)
does not depend on i. Thus, it is equal to some number wg (v, ), whose precise value
is irrelevant within our proof. Combining this fact with (3), we obtain that

0, (v, i) = wg(v. i, B) +wg(v,i,S) = deg(v) <( —1)([ —‘+a - 1) —|—8—s*>

+ wg (v, S).

— deg(v)’

Therefore, o, (v, i) € I, implies that

(o= o ]
5 5
Fwp®. S) < (h+1) ([ﬂ td — 1) .

Rearranging the inequalities, we have:

Sh 8—s*+@w]g(v, S) . S(th+1) 8—s*+@wE(v,5)

deg(v) =70 Tdegv)
cet [%—‘+a’—l cel ’7%—‘+a’—1

Thus, in order to make o, (v, i) € Iy, i has to lie in an interval (with one end open) of
length §/ deg(v) < 1. Therefore, given i and v, there is at most one integeri < § —s*
such that o, (v, i) € Ij,. The probability that v lies in the corresponding bin (if exists)
equals 1/8. Thus, up < 3, cy(g)(1/8) = n/s. o

Definition 16 Given an integer 0 < h < 2n, let V}, be the set of vertices such that
0u(v, Z()) € I and |0 (v, Z(v)) — 0, (v, Z(v))| < deg()V/>™ ([2] +a’ —1).

Let Zf be the set of bad vertices such that o,(v,Z(v)) € I, and
lo(v, Z(v)) — 0, (v, Z(v)| > deg(v)/?T ([4] +d’ - 1).
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Given two integers 0 < h| < hy < 2n, let

B B
Viniho) = U Vi and  Zp, gy = U Zj -
h1<h<h; hi1<h<h;

The sets Z ,? consist of the firstkind of bad vertices in the proof. Clearly V,UZ ,lf isthe
set of all vertices v such that o, (v, Z(v)) € I, and thus, by (2), V[o,2,) U Z[%,zn) = B.

Lemma 17 Given two integers 0 < hy < hy =< 2n such that ([, ny) > 1, the

following inequalities hold simultaneously with probability at least 1 — e84

MRy 7o) |
\Vinihoy | < Hing i) + T}ﬂf and )

|28, 1| < 26t hrxp (=52 /). )

1/ .
Zexp -3 5]+2a .

In addition, if § > \/n, with probability at least 1 — 1/n,
Z[%’zn) = @- (6)

Proof For each vertex v and integers i € [1,8 —s*], & € [0, 2n), let a random variable
Yy,i.5 be the indicator function that v € B; and 0, (v, ) € ;. Define Z,, ; j, to be equal
to lifv € B;, 0,(v,i) € I and |0 (v, i) — 0, (v, i)| > deg(v) /> ([4] +a’ — 1).
Otherwise, set Z, ; , = 0. Thus,

Vil = > Mein—Zuin) < Yo Yuim @)
veV(G),1<i<§—s* veV(G),1<i<é—s*
127 | = S Zuin ®)

veV(G),1<i<§—s*

ElL Y Y > Yeal= D> Y. > PrweBiouv.i)ely)

h1<h<hy veV(G) 1<i<§—s* h1<h<hy veV(G) 1<i<§—s*

= Ulhy,h)- 9)

By Claim 15,

n

Pr(Zyin=1 =Pr <|o(v, i) —ou(v, i)| > deg(v)l/2+“ ([8—‘ +ad — 1) ‘ v E Bi) .
Pr(v € Bij,o,(v,i) € Ij)

<272 Pr(v € By, 0, (v, i) € I). (10)
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Thus, together with (8), (10) and (9),

E(Zh D= Y. Y. > E(Zuin

h1<h<hy veV(G) 1<i<§—s*

Yo D PrZyaw=1

hi<h<hy veV(G) 1<i<8—s*

<272 3 SN Pr(ve Biou.i) € I)

h1<h<hy veV(G) 1<i<§—s*

_2a
=272 piny oy
Therefore, by Markov’s Inequality,

B 7520{ 2
E(|Z[h1,h2)|) < 2e / ARy o) _ 6762‘1/4

20
Pf(|ZlZ pyl = 2¢7° /4M[h1,hz>) < - = ”
1) 2e= Mgy gy~ 267 gy

(11)

For the sake of (5) we will now bound the probability that

D hi<h<hy 2v 21<i<s—s* Yv.in is far from its expectation in (9). Note that for a fixed
v, although there is no bin B; that vertex v must lie in, given any random experiment
(evaluating X, ) there is exactly one bin B; that v belongs to, while deg(v) together with
the bin B; determine the unique at most one value of & for which o, (v, i) € I;. Thus,
the indicator random variables satisfy ) i Yy.in < 1, and hence, by Lemma 9, the
random variables {Y, ; »}i 5 are negatively associated. Furthermore, since the variables
in {Yy.; n}i.n are independent from such variables corresponding to other vertices, by
Lemma 10, the random variables in {Yy ; n}v,h;<h<hs,1<i<5—s* are negatively associ-
ated. Thus, leaving out the random variables Y, ; , which are constantly zero, the rest
are identically distributed and negatively associated. Hence, we may use the Chernoff
Bound (Lemma 11) and the shorthand ¥ = 3, _; _;, >~ D 1 <i<s—s+ Yv.i,n, Where

by (9), E[Y] = iny hy):

N[y h Ry ) /812
Pr(’Y_Mlhl,h2)|>\/%)§2exp _ [h1,h2)
3 max ( iRy o) /8172, u[h],;m)
N
<2exp <— min ( n“[huf;z)/ n ))

P 3512
317201
< 2exp (——V”/3> . (12)
Inequalities (11) and (12) thus imply (4) and (5) (cf. (7)). Moreover, by (10),
_S2a
Pr(v e Z ,,) = > Pr(Zyip=1) <27 3" %"
1<i<8—s*,hel0,2n) 1<i<8—s* he[0,2n)
Pr(v e B;,0,(v,i) € I) (13)
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<2e72 3" Prve By <2702, (14)

1<i<§—s*

Thus, by a union bound over v, when § > ﬁ Pr (Z[Ifmn) = (ZJ) >1-— nze—aza/z -
1—1/n. O
Since the degree distribution can vary in G, it will be useful to group w,’s of

smaller sizes. As by Claim 15, u, < n/$ for each integer #, we may define the
following benchmarks to that end.

Definition 18 We can sequentially define the benchmarks h, b3, ... suchthath] =0
and
n/28) < sz, ) < 20/8. (15)

Claim 19 The number of benchmarks is at most 2§.
Proof Since Z()gh<2n wn<n, the claim holds by (15) [and (2)]. O

By (15) and Claim 19 we may apply Lemma 17 to at most (28)%> = 487 distinct

benchmark pairs (A7, h’]’f) in order to conclude that the following union bound holds.

Corollary 20 With probability at least 1 — 4825 /4 _ g2 exp (—% / 61+2a),f0r any

two benchmarks h;"<hj the following two inequalities hold simultaneously:

R} h%)
‘V[h;*,hjf) SM[h;*,h;H— W; and (16)
‘Zﬁﬁ,h;) < Qg iy exp(—877/4). a7

In addition, if § > /n, with probability at least 1 — 1/n, Z[% my = @.

4.3 StepB
4.3.1 Preparations

Prior to performing Step B, we will expose that with high probability, all except a
small fraction of vertices have relatively large degrees to S. We thus define below new
types of bad vertices.

Definition 21 Let Zg be the set of vertices v € V(G) with less than s* deg(v)/(26)
neighborsin S. Let Z; C B be an arbitrary set of vertices such that each vertex v € Zg
has at least s*/2 neighbors in Z§ and | Z§| < [s*/21|Zs|.

To see that such set Zg exists, note that if a vertex has at most s* deg(v)/(23)
neighbors in S, then it has at least deg(v) — s* deg(v)/(28) > s*/2 neighbors in B.
For each v € Zg, we may thus choose arbitrary [s*/2] neighbors of v in B and add
these to Z%. Consequently, |Z| < [s*/2]|Zs|. Note there might be vertices of Zg
that are in S.
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Lemma 22 With probability at least 1 — exp(—s*/24) — 2exp (—n/(48°3)), the
following statements hold:

[IS] = s*n/8| < n/8®>, (18)

|Zs|<2ne™S" 1?4, and thus |Z%|<2ns*e™"/?, (19)

In addition, if § > /n, with probability at least 1 — 1/n, Zg = #, and thus Z¢ = .

Proof For each vertex v, let Z, = 1 if v has less than s* deg(v)/(25) neighbors in the
random set S, and Z, = 0 otherwise. Thus |Zg| = ZU Zy.

Fix v € V(G); each of its deg(v) neighbors has independently probability s*/8
to be in . The expected number of neighbors of v in S is thus deg(v)s*/§. By the
Chernoff Bound (Lemma 6),

Pr(Z, =1) =Pr (degs(v)<0.5E[degS(v)])
<Pr (|degg(v) — E[degg(v)]| >0.5E[degg(v)])
<2exp (—E[degg(v)]/12)
=2exp (— deg(v)s*/(128)) < 2exp (—s*/12). (20)

Since |Zs| = )", Zy, by (20) we have:

E[|Zs]] = Y Pr(Z, = 1) < 2nexp(—s*/12).

Therefore, by Markov’s Inequality,

Pr (|ZS| > 2nexp (—s*/24)) <E[Zs]]/ (2n exp (—s*/24)) < exp(—s*/24).
2D
We are left to bound the probability that ||S| — s*n/8| < n/8%37¢. Each vertex inde-
pendently has probability s*/8 to be in S, and hence E[|S|] = s*n/8 > n/8%5~¢. The
Chernoff Bound thus implies that by (1),

Pr (’|S| - s*n/S} > n/SO.S—S) < 2exp (_(H/SO.S—E)Q/(?)S*n/a))
<2exp (-n/(430.575+a))

< 2exp (—n /(450-5)) . (22)
Thus, by (21) and (22), with probability at least 1 —2 exp (—n/(480‘5)) —exp(—s*/24)
the two desired statements (18) and (19) hold.

In addition, when 8§ > 4/n, applying a union bound to (20) yields: Pr(Zs = @) >
1 —n-2exp(—s*/12) > 1 — 1/n. O
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4.3.2 Weighting Step B

In this step we define a weight assignment f> : E(G) — Z, with || f2]lco = 0(n/9),
that is only supported on edges across B and modifies initial weights appointed by
f1. The goal is that at the end of Step B, the weights ( f] + fz)(v) are distinct for
vertices v in B (at least for these which are not bad), and the vertex weights in B are
not equal to 0, 1, 2, 3, 4, 5 modulo k. Recall k = [k’/1000]. We may assume k > 50
(for sufficiently large 6 and n/§).

Step 1. We first bound modifications necessary to set most vertex weights in B at
values expected after Step A. We admit a small error though, as the expected values
do not have to be integers.

Claim23 We may construct f, : E(G) — 7 supported on edges across
B\ (Z[% om Y ZS> and S so that

2l <2 qﬂ +a’) sVHe s 411 and  |(fi + f)(0) —0u(v, Z)| < 1
(23)
foreach v € B\ (Z[%,Zn) U ZS).

Proof For each vertex v € B \ Z[t(;),zn)’ by the definition of Z? (and (2)),

n

lo (v, ZW)) — 0, (v, Z())| < deg(v)/*H* ([J +a — 1) , (24)

i.e. the weight of v needs to be modified by at most deg(v)!/?>+* (I'%'I +ad — 1). If at
the same time v ¢ Zg, then it has at least deg(v)s*/(28) neighbors in S. Therefore,
by (24), in order to satisfy the second condition in (23), it is sufficient to modify each

edge between v € B \ (Z[l(;),zn) U Z5> and its neighbors in S by at most

lrdeg(v)l/z""" (['ﬂ td — 1> /degs(v)—‘

< deg(v) /7 (%W + a’> /(deg(v)s*/(28)) + 1

— (m + a’) 5/(s deg()'>¢) +1 <2 (M + a’) 5124 s 1. (25)

[m}

Step 2 Now we wish to modify f; so that all the vertices in B \(Z[% oy Y Zs) have

distinct vertex weights under fl + fz, while these weights are notequal to 0, 1, ..., 5
modulo k.

Recall v € Vj, means 0,(v,Z(v)) € I C [h([5] +a" — 1), (h + D([§]
+a —1)).
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Step 2-1 We first modify f> so that for 0 < h < 2n, all the vertices in every given
Vi \ (Z,f U Zg) have distinct weights not equal to 0, 1, ..., 5 modulo k, fitting as
many as possible of these weights in I;,. (Note we will admit weights from different
Vi’s to overlap for now.)

Let Z' C Z be the set of integers which are not equal to 0 to 5 modulo k. Assume
elements in Z’ inherit their natural ordering from Z. Two integers are said to be
consecutive in Z' if they are consecutive in their ordering in Z'. Intervals in Z' are
thus consecutive integers in Z’ with respect to the ordering in Z’. For each interval I
of consecutive |/| integers in Z, it is easy to see that:

[INZ'| = (1| - 6)k —6)/k. (26)

By (26), the size of an interval I C Z does not change much after restricting it to Z/,
ie.,

|| <|INZk/(k —6)+6. Q7

Claim 24 For each integer 0 < h < 2n, it is sufficient to modify the weight of every
v e Vp\ (Zf UZs) by at most max (| V|, [I5])k/(k—6)+12 in order to attribute distinct
weights to all vertices in Vj, \ (Z f U Zg) and guarantee that these form consecutive
integers in Z' with the smallest vertex weight equal to min(f; N Z’), that is at most
h([n/81 +a — 1) +6.

Proof For any given h, we analyze vertices in Vh\(Z,? U Zg) one after another.
By Claim 23, each such vertex v has the current weight at most one away from
0, (v, Z(v)) € I. Changing it by at most 7 we may thus shift this weight inwards
Iy N 7Z/. Next, in order to reach the least yet unoccupied position in Z’ which is
not smaller than min(f, N Z’), this weight needs to be further shifted by at most
max(|Vy|, | I])—1 consecutive integers in Z'. Thus, by (27), the vertex weight of v after
Step 1 needs to be changed in total by at most 7 + ((max(|Vy |, |I|)k/(k—6)+6) — 1).

O

Step 2-2 In this step we discuss further modifications of f>, resulting in pairwise
distinct weights from Z' associated to all vertices in Vjo 2n) \ (Z[t(?),zn) U Zg). We will
need the following combinatorial lemma, concerning shifts of intervals sufficient to
make them pairwise disjoint.

Lemma 25 Let p be a positive integer. For any p intervals I; = [a;, b;) C Z (i.e.,
aj,bi € Z),1 <i < pwherea) < a < --- < ay, there exist p disjoint intervals
I! C Zwith I] = [a], b)) such that b, — a] = b; —a; for 1 <i < p,a; =a} <a} <

<4
_apand

15}

max |af —aj| < max | b —a) — (@ —a) | (28)
i=l

Proof As for any i, |I/| = b, —a] = b; — a; = |I;|, an interval I/ may be regarded

as the translation of ; by a; — a;. We will prove the lemma by induction on p. For
p = 1 the claim trivially holds.
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Suppose p > 1. First consider the case when a» > by, or equivalently [ is
disjoint from I>. By the inductive hypothesis applied to the intervals I, ..., I, we
could shift them to disjoint intervals I}, ..., I, where I, is the same as /. With I
having no need to shift, each of the remaining intervals has thus been shifted by at most
maxy</; </, <p—1 (Zl -’ bi —a;) — (@i+1 — a,)) The shifted intervals I, . . ., I;, are
moreover still disjoint from /7, since fori > 2, ai > a2 = ap > by. Hence, the lemma
holds.

We may thus assume that ap < by, i.e. I} and I, overlap. Since 11’ needs to
remain the same as /i, the interval I, must shift to the right by (at least) b1 — a; =
(b1—a1)—(az—a1),and become I, = [aj, by) = [b1, bi+| L) = [b1, b1+(b2—a2)).
If I, is to the left of /3 and I; is disjoint from I3 (i.e., a3 > b}), by the inductive hypoth-
esis applied to I3, ..., I, we obtain a desired {Ii/ }1<i<p with the maximum shift at

most max (bl —ay — (a2 — ay), Maxz</, <, <p—1 (Z, =, (bi —ai) — (@41 — az)))
which is bounded above by the right-hand side in (28).

If on the other hand 7; overlaps with I3 or I is to the right of I3 (i.e., a3 < b)),
then I3 has to be shifted, e.g. to I; = [a3, by) = [b), b5 + (b3 — a3)). We analogously
continue this process, obtaining I]f = [a b/ ) sequentially for j = 3,...,/ where
3 < [ < p is the last index such that g < b1—1' That is, for each j < I, we set
= b; |» which is in fact the best we could do, and b;. = a;. +11;| = a;. +(bj—aj),
thus a] =a;+ (b —a) + b2 —az) +---+ (bj—1 — aj—1). Therefore, the shift
of Ijisa; —aj = a1+ (b1 —a) + (ba —az) + -+ + (bj_1 —aj-1) —a; =
Z’ 1 (bi —a;)—(ai+1 — a;). Applying now the inductive hypothesis to /41, ..., I,
we obtain p intervals / { R 4 [/, satisfying the conditions in the lemma, and with:

max |a; — a;| < max

1<i<p
ma bi —a;)—(aj4+1 — ma b; —
1<,<l( 12( —ai)= (@it = ai), 1+1<11<1§<p 1 Zz:( @1 = ap)
=t
thus the lemma is proved. Furthermore, the upper bound is sharp when !/ = p. O

Lemma 26 Assume (16) holds for all benchmarks hf<hj Then, it is sufficient to
further change the weight of each vertex in V[O,Zn)\(Z[%,Zn) U Zg) by at most % in

order to shift them to pairwise distinct values in 7/ (provided § and n/§ are sufficiently
large).

Proof For each integer 0 < h < 2n, due to Claim 24, the weights of vertices in
Vi \ (2B 0.21) Y Zs) form an interval of length |V}, \ (ZB 0.21) Y Zs)| in Z' with the
least element a;, = min(f;, N Z'). We now apply Lemma 25 to these intervals, taking
into account only integers in Z/, i.e., (b; — a;) is evaluated as |V; \(Z 0.21) U Zs)|
and a; 4+ — a; is substituted by |I; N Z'| in the lemma. Consequently, all the weights
of vertices in V| 24 \ (Z[lf)’2 ) U Zg) may remain in Z' and get pairwise distinct via
shifting each of the vertex weights by at most the following number of consecutive
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integers in Z:

1%}
ma Vi\(ZE 5 UZ)| — ENTZ
0oy T ;} i\ (Zfo o U Zs) =~ 11N L]
1=l
I

< _max | Vil =107
0<li<lh<2n-2

i=I

I
< max Vil—(;| —6)(k—6)/k | < max
= 0<li<ly<2n—2 ;l il = (il = 6)( )/ = 0<lj<l,<2n—2
i=l
1%}

> (w - ([n/(ﬂ +a' =Tk - 6>/k) , (29)

i=ly

where the second inequality follows by (26) and the last inequality uses |[;| = [n/5]+
a —1.

In order to upper-bound the quantity in (29), suppose the maximization is achieved
when /1 = hy and I, = h», and suppose /] is between benchmarks hil and h;", i.e.,
h:{l §h1<h;k. Similarly, suppose hj <h) < h§+l for some j > i — 1. Thus, the last
quantity in (29) equals

> <|Vh| - (’11/8—‘ +a — Tk - 6)/k>
]

helhy,hy

< > (|Vh| - ([n/al +a =Tk - 6>/k>

helh? h%)

+ > (|Vh| - ([n/fﬂ +d =Tk - 6)/k)

he[hj,h2+l)

+ Y (|Vh|—(’7n/8—‘+a’—7)(k—6)/k>

helhy k)

< > <|vh|—([n/aha’—mk—é)/k)

helh} 1)

+ > l+ ) Al

he[h;‘.,h2+1) helhy,h})

< Y (|vh|—([n/aba/—mk—é)/k)

helh},h%)

+ D al+ Y (30)
helh®.h%, ) helh}_.h¥)
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By (16) and (15) (implying that Iimg bt ) = 2n/é for every given t),

Yo Wil DT Vil S ke + Bmaty

hells,h%, ) helh¥_|,h¥)
PRy B R RTRG ) 1—a

~|—\/ e —i—\/ RET <3n/8 % 3D
Analogously, by (16) and the facts that IAihz %) <nand u, < n/d for each h (due to

Claim 15),

nupt sy nChy —hy) n
> Wil = Hy s =ty ()
helh} %)

By (31) and (32), the last quantity in (30) is thus bounded above by

n(h* — h¥) n k—6 3n

J L /
5 +51/2_°‘ —(hj_h;k)(lrn/(s—“}‘a _7)T+81__°‘
n(h’ — hy) n nk—6 k—6  3n

e I R i =
n(h’ — hy) n n no6

_ M T

= 3 +81/2—0‘ —(h’;—h;k)g-i-(hj—hl*)gz

k=6 3
— (W =)@ = 7)==+ 5

§l—a
n noé , k—6 3n
:W‘l‘(hj—h;k)(g%—(a _7)T>+81__a

n 3n 2n
= 512 + si—a = 32—

The second to last inequality above holds because by the definitions of k and a’,

no6 , k—6
"2 _w-ni=2 <o
sk @ DT =

for § and n/é (thus also k) large enough. We have thus proved that each vertex
needs to shift its weight by at most (SI%T”_(I consecutive integers in Z'. Hence, by (27),

each vertex needs to shift its weight by at most ((8,/2+a+1) ﬁ + 6) -1 < 61/3%&
(in Z).

4.3.3 Summary of Step B

Corollary 27 Assume (16) holds for all benchmarks h} < hj‘ Then, the following can
be achieved (for § and n/§ large enough). '
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Vertices v in B\( 0.2n) Y ZS> can be provided distinct weights in 7! due to

appropriately chosen f> supported on edges across B\ ( 0.2 Y ZS> and S, with
I falloo < 3% +2.

Consequently, each edge e in E(B) satisfies (f1 + f2)(e) = 1 or [n/8] +ad’, while
each edge e between B and Sy, for 1 < q < k', satisfies

11n
(f1+fz)(e)€[”%hk/—‘( +q) - (31+8+2)
n 11n
H kkﬂ( n )+<51+€+2>]. (33)

Proof Claim 23 within Step 1 shows we may first modify weights of edges across B
and S by at most 2 ((%1 +a ) 1/2"""/s + 1 so that for each v € B\ (Z[o ) U ZS>,
(fl + fz)(v) is at most one away from o, (v, Z(v)).

In Step 2-1, Claim 24 exposes that the weight of each vertex v € V;\(Z f UZs) C
V[h?,h?“) (for any given &, i) needs to further change by at most max(| V|, |1, )k/(k —
6) + 12 to be shifted to Z' and get distinguished from the remaining ones in Vj\(Z f U

Zs).By (16)and (15), wehave V| < e ey +y —mcabll < 2n/5+4+/2n /81~ <
1.5n/8'=%. We also have |I,| = [n/8]1+a’ — 1 < 1.5n/8'~%. Thus the weight of v
needs to shift by at most (1.51/8'7%) - k/(k — 6) + 12 < 2n/8'~% within this step.

Finally, within Step 2-2, by Lemma 26, the vertices in V|g,2,) \ (Z [If) 2n) U Zs) need
to change their weights by at most 311/8'/>~% to make them pairwise distinct and keep
them in Z/.

Steps 2-1 and 2-2 together require changing vertex weights by at most 2n/8' =% +
3n/81/77% < 3.5n/81/>7* Since v ¢ Zg, it has at least s* /2 neighbors in S. There-
fore, we only need to modify the weight of each edge between v and S by at most
[(3.5n/827%)/(s*/2)] < Tn/8'F¢ + 1 in Step 2.

In Steps 1 and 2 combined, the weight of each edge across B\ (Z[% oy Y ZS) and
S is thus changed by at most

1 1
n , 8§+"‘ 1 Tn L<a(® sate ! Tn 1< 11n 5
2 3 +a + +81+€+ < (5) + +81+€+ _F-f- .

The lemma is thus proved, as its last statement follows by the definition of f] in
Step A. O

4.4 Preparations to Step C

We define the last set of bad vertices.

Definition 28 For each integer | < g < k', let Zg, be the set of vertices v in S, such
that |deg 3 (v) — deg(v)(8 — s*)/8| > deg(v)'/2+¢.
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Lemma 29 With probability at least 1 — k’e_528/6, foralll <q <k,

4ns 2
| Zs,|<— eXP( 8°°/6). (34)

Sk’
In addition, when § > \/n, with probability at least 1 — 1/n, UlSqSk’ Zs, = 0.
Proof Consider any fixed integer g € [1, k]. For each vertex v, let Z,, be the indicator

random variable that v € S, but |degB(v) — deg(v)(§ — s*)/5| > deg(v)!/?¢. Thus,
|Zs,| = ), Zy. For each vertex v,

Pr(Z,=1)=Pr(ves,)Pr (|degB(v) — deg(v)(8 — s%)/8| > deg(v)!/***

veSq>.

Each neighbor of v is placed in B independently with probability (§ — s*)/§, and
thus E[deg g (v)] = deg(v)(§ —s*)/8, which is greater than deg(v)1/2+8. Thus, by the
Chernoff Bound,

o

Therefore,

1/2+¢

degy(v) — deg(v) """ | > deg(v)

E[|Zs,|] = [Zz } = ZPr(ZU =1)< ZPr(v € S,) - 2exp(—8%/3)

< ns” 2exp(—8%/3). (36)
3k’
By Markov’s Inequality and (36),

*

2ns 2ns*
Pr\|Zs,| > —— 5K

- 2exp(— 828/6>> < Enzsqu/( T

< exp(—8%/6),

- 2exp(—8%¢ /6))

and therefore, (34) holds by a union bound for 1 < ¢ < k'.
In addition, when § > \/n, by a union bound over v and ¢ on (35), with probability

atleast 1 — nk'2e™/3 > 1 —1/n, Zs, = Pforall | <q <K O

So far we have obtained the following sets of bad vertices, which require different
treatments in Step C:

1. the set Z[% oy C B, whose weights in Step A are not close to the expected values,
2. the set Zg, whose degrees to S are less than s*deg(v)/(26),
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3. aset Zg C B, which are neighbors of vertices in Zg such that each vertex in Zg
has at least s*/2 neighbors in Z%, and lastly,

4. the sets qu C 8,1 =<gqg= k' of vertices whose degrees to B are far from
expected.

Definition 30 Denote by Uy the union of all these four types of bad vertices. The
complement of Uy, in S will in turn be referred to as the set of good vertices and
denoted U, Uy = S\Up C S.

Claim 31 With probability at least 1 — 2e=/#*") _ (852)¢ 3w — 582782 /4,

|Up| < 3ne=5/4

(provided § and n/$ are sufficiently large). Furthermore, if § > /i, then with
probability at least 1 — 3/n, Uy = 0.

Proof By Corollary 20, Lemmas 22 and 29,

k/
Ubl<1Z8 5| +1Zs1 + 1251+ [ D 1Zs,|
g=1
820 /4 §* /24 —s*)24 ,4ns* 782‘5/6 —522 /4
<2ne” + 2ne” + 2ns*e + k' — < 3ne

Sk’

with probability at least 1 — 452¢~5°/4 — (832)e ST _ st 24 _ ppmn/ (80 _

Ko 16 5 1 — g n/G0%) _ (g52), I _ 5520
In addition, when § > ./n, again by Corollary 20, Lemmas 22 and 29, with
probability at least 1 — 3/n, Uy = 0. O

We will further refer to two vertices in § as being “close” (Definition 32) if their
vertex weights could potentially be very close in terms of values after Step C. We will
make sure vertices which are “close”do not have the same vertex weight after Step C.
Informally, u € L(v) if u, v are “close”, whereas for u ¢ L(v) we will prove later that
the weights of u, v cannot be the same after Step C.

Definition 32 For any two vertices v, u € S, we say u € L(v) and v € L(u) if there
are integers 1 < p,q < k" such that v € S, u € S, and both of the following two
conditions hold:

<Hq ——‘(k +q)+ (—13” +4>>deg(v)
S | 3k’ sl+e
n 13n
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n / 13n
<HV —‘3/(/—‘(1‘ +4q) — <W +4>> deg(v)
n / 13n

Lemma 33 With probability at least 1 — 2n exp (—%6—) (if n/§ and § are large
enough), for every v € S,
w25 ]
v — |=.
- K|S

Proof Suppose (37) holds. Note [[n/87/Bk)1(K' +q) < [[n/81/BkK)1(K + k) <
(((n/8) + D/ (BK") + 1)2k' = 2n/(38) +2/3 + 2k’ < 0.99n /4. Therefore, the left
hand side of (37) equals at most (n/§) deg(v). Analogously, the right hand side
of (37) equals at least (n/(38) —n/(65)) deg(u) = deg(u)n/(65). Therefore, (37)
implies: (n/§)deg(v) > deg(u)n/(66), i.e., 6deg(v) > deg(u). Similarly, (38)
implies 6 deg(u) > deg(v). Therefore, if u € L(v), then

1/6 < deg(v)/deg(u) < 6. (39)
Given v € S, for some fixed 1 < g < k’, we compute the probability that |L(v)| is
large. To this end we first show that for a given vertex u € V(G) \ {v}, if it satisfies

both (37) and (38), then there is only one S, with 1 < p < k' that u can be placed in.
Rearranging inequality (37), we obtain

(Hn/ﬂ /(3kﬂ K +q)+ (f + 4)) O (e +4)

e
Similarly, by (38),

([[rs o]+ 0= (-+4)) - (s +9)
’7’711/5—‘/(3/(’)—‘

These two inequalities mean that if u € L(v), then by (39), X’ + p must belong to an
interval in R of length at most

13 13n
2 (((Sl—fs +4> 6+ (51+s +4>> /’Tn/é‘—‘/@k/)—‘

3n 546k’ 168k’5
< 14<51+s )/( /(38K')) < +

K+p<

K+p>

< 1.
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Therefore, there indeed may be at most one p so thatu € S, implies u € L(v). Thus,

s*71
Pr (u € L(v) | v E Sq) < IVP—‘E

Hence, the expected number of vertices u such that u € L(v) given v € S, equals
atmost [s*/k"1(n — 1)/8 < [s*/k"In/$. Since for fixed v and g such that v € S, the
events u € L(v) are independent for all u# v, by the Chernoff Bound we thus obtain

that:
s*1n s*n 1 s*¥n
p(ioi-[ 5[5 =[5 [5ves)=2en (-5 (|5 ]5))
n

Therefore, by the law of total probability, for any given v e V(G),

Pr <|L(v)| > 2{%]% vE S) <2exp (—% (%’)) . Hence,

Pr <(v €S = <|L(v)| < 2[iw f)) —1—Pr <(v € S)A (|L(v)| > 2{iwf))
K |3 ¥ |3
>1—Pr <|L(v)| - Z[SF ’ Ve S) >1—2exp <—l <S*">>
= K |3 = 3\ ))

By a union bound over all vertices v we thus obtain the thesis. O

Corollary 34 With positive probability, all the following inequalities hold (for 8 and
n/8 sufficiently large):

|Up| < 3nexp(—87*/4),

|S| € [S*}’l/8 — n/sO.S—S’ S*I’l/6 + Vl/(SO'S_E]’
*k

s
m

IL(v)| < Z[k

nM[hf’hj) * *
= Kingn) + Wfor any two benchmarks h; <hj.

In addition, when 8 > /n, then Uy, = §.

—‘gforallv es.

(V[hr,hf;)

Proof This corollary is an immediate consequence of Corollary 20, Lemma 22, Claim

31 and Lemma 33, as 1—482¢—/4 _gs2 exp (—% 51+2a) —e=5t /24 _pp—n/(45%?) _

0p—1/48%%) _ gs2 exp (-% /ﬁ) _ 58254 oy exp (—%3%) — % > 0 when
é is sufficiently large. O
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4.5 Step C
Throughout Step C, we assume the statements in Corollary 34 hold.
4.5.1 Goal

Definition 35 Let G’ be the graph on the vertex set Uy U S whose edges consist of all
the edges in G[S], all the edges between Uy and S in G and all the edges between Zg
and Z; C BinG.

Note that by the definitions of G’, Zg and Z?%, for every v € V(G’),
S*
degs (v) > 5 (40)

In this step we will only change the weights of edges in G’. Our goal is to obtain
pairwise distinct weights in Z \ Z’ (i.e., equal to 0, 1, ..., 5 modulo k) for all vertices
in V(G’) = Uy U § after Step C. Within it we will not change the weights of edges
incident to vertices in B \ Uy. Therefore, the weights of vertices in B \ Uy will remain
distinct and in Z' by Steps A and B (Corollary 27).

4.5.2 Step C-1

Initialization We initialize Step C by assigning to all edges in G'[S] = G[S] and
G'[B] the new weight: [[%57/2]. We do not modify the weights of edges across B and
S in G’ yet, though.

Suppose C1, ..., Cr are the non-trivial connected components in G’[S] (i.e., of
order larger than one), ordered arbitrarily. Let W be the set of isolated vertices in
G'[S]. Clearly, W C Zs C Uy, by the definitions of Zg and Uy. Set

U = V(G)\ (S\W).

Claim 36 We may modify every edge weight in G’ by at most 2 so that each vertex
weight in U’ equals 0 or 1 modulo k, each vertex weight in Ug \ U’ equals 2 or 3
modulo k and each vertex weight in Uy, \ U’ equals 4 or 5 modulo k.

Proof We will apply an algorithm analogous to the ones used in [25, 30], whose origins
date back to [39].

Given an arbitrary ordering v, v2, ..., Vjsuy,| of vertices in G’, each edge {v;, vj}
with i < j is called a forward edge of v; and a backward edge of v;. For each v € U’,
define aset A, = {0, 1}. For each v € Uy \ U’, define A, = {2, 3}. Finally, for each
veU\U,set A, ={4,5}.Fori = 1,2, ..., we consider each consecutive v; after
another and modify weights of edges incident with v; in G’ so that the weight of v;
lands in A, modulo k. We also guarantee that this weight does not leave .4, (modulo
k) throughout the further part of the algorithm.

By (40), the first vertex v; has at least s*/2 neighbors, i.e., at least s*/2 forward
edges in G’. We modify each forward edge of v by adding O or 1 to its weight. Thereby,
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we may obtain at least s* /241> k + 6 distinct weights which are consecutive integers
for vy. Thus, there is a way of choosing these modifications so that the weight of v
belongs to .4, modulo k.

We then proceed consecutively with v;, i = 2, 3, .. .. For a given i, we again admit
adding O or 1 to the weights of the forward edges of v;. There are two admissible
modifications for the weights of backward edges of v; as well. These belong to the set
{—1,0, 1}. Specifically, say {v;, u} is a backward edge of v;. If the vertex weight of u
modulo & is currently the smaller value in .4, then we admit modifying the weight of
{vi, u} by adding O or 1. Note that this in particular guarantees that the updated vertex
weight of u will remain in .4, modulo k. By the same reason, we admit adding O or
—1 to the weight of {v;, u} if the vertex weight of ¥ modulo k is currently the larger
value in A,.

Consequently, analogously as for v{, we may thereby obtain at least degq/ (v)+1 >
s*/241 > k+ 6 weights which are consecutive integers for v;. Thus, there is a way of
choosing these modifications so that the weight of v; belongs to .4, modulo k, which
is our goal.

Since each edge in G’ can be modified at most twice: once as a forward edge and
once as a backward edge, each edge in G’ changes its weight by at most 2 in Step
C-1. O

4.5.3 Step C-2

Step C-2 is more technical. We in particular handle all bad vertices within it. Given
an ordering v1, . .., vjsuy,| of vertices in G’ (specified later), again each edge {v;, v;}
with i < j is called a forward edge of v; and a backward edge of v;. We will again
use an algorithm inspired by [25, 30, 39].

If v; € Uy, we say all its forward and backward edges are active. If v; € Uy, then
only its forward and backward edges in E(S) are called active. (Note that a good
vertex v in S could be adjacent to some vertex # in Uy, \ S. Such an edge would still
be active for u € Uy, but would not be active for v € U,.) We call a vertex terminal
if it has no active forward edge in the ordering.

Recall that by the definitions in Step C-1, the non-trivial components in G'[S]:
Cq, ..., Cr together with the set W of isolated vertices in S partition S. Furthermore,
as W C Zg C Uy, by Corollary 34, |W| < |Up| < |S|. Thus, there is at least one
nontrivial connected component in G’[S]. Recall

V(GY=SUUy, U =V(G)\(CiU---UCr).

The following properties of G’ are immediate from the definitions of different types
of bad vertices and G’.

Claim 37 Each vertex in G’ has at least s*/2 active edges in G’,
U C Uy, UgCS\U/, V(G)=U"US. 41

Thus, in particular, if v € V(G') is a good vertex, then its neighbors in G’ which are
not in § are bad vertices.
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Fig. 1 Illustration of ordering of vertices in V (G’). Black vertices are good vertices in S; gray vertices are
bad vertices in S, and white vertices are bad vertices in U’ \ S.

Ordering of Vertices We now specify the ordering of the vertices in G’. Let f;, i =
1,2, ... denote the terminal vertices in the ordering. For each i, let r; be the vertex
immediately preceding #; in the ordering. We show there is an ordering satisfying the
following claim.

Claim 38 There is an ordering of the vertices in G’ such that all vertices in U’ come
before vertices not in U’. Furthermore, the ordering satisfies the following conditions.

1. For each i, {r;,1;} is always an edge in G’ and moreover, this edge is an active
forward edge for r;.

2. The vertex sets {r;, t;}; are pairwise disjoint.

3. For each i, the pair {r;, t;} satisfies one of the following: either both ¢;, r; are in
U’ C Up,orbotht;,r;arein S\ U'.

Proof Let Cy, ..., Cf, be the non-trivial connected components in G’[U’]. Suppose
W’ is the set of isolated vertices in G'[U’].

We order the vertices in G’ as follows: we start from the vertices in W', ordered
arbitrarily. Coming next will be the vertices in C/, ..., C7,, sequentially. Last in the
ordering will in turn be vertices in C1, ..., Cr, sequentially. Note that we have not
specified the ordering within each C; or C! yet. Nevertheless, it is already clear that
vertices in U’ will all come before vertices not in U’ in the ordering. (See Fig. 1).

We finally specify the ordering within non-trivial connected components C;, C;. To
this end we simply use reversed BFS to order the vertices in each of these, one after
another. Consequently, if r, ¢ are the last two vertices in the ordering in a given such
component, then ¢ is the root of the corresponding BFS tree, and hence {r, t} € E(G’).

Consider a given C;, 1 < i < T’. Since all the vertices in C; are bad, in particular
the last two vertices r, ¢ in le are bad vertices in U’, hence, {r, t} is an active forward
edge for r. Analogously, for a given C;, 1 < i < T, all vertices in C; are in § \ U’
and, in particular, so are the last two vertices r, ¢ in C;. Moreover, since all edges in
C; C S are active, the edge {r, ¢} is an active forward edge for r. Additionally, by the
definition of BFS, only the last vertex (i.e., the root ¢) can be a terminal vertex in any
given C; or C;.

We are left to show that there is no terminal vertex in W’'. Since the minimum degree
of G’ is at least s* /2 and W’ itself is an independent set in G’, each vertex in W’ has at
least s* /2 incident edges joining it with vertices in V(G") \ W', which come after W’
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in the ordering. Since W' C Uy, these forward edges are active. Therefore vertices in
W’ cannot be terminal. ]

Anchor sets Let ° = |’48ne_82a/4/5*-|, 18 = ngéT’?tlﬂfb~ In particular, (2°) |
18,

Each vertex in G’ is either in U’, and thus is a bad vertex, or is in S \ U’, and thus
could either be good or bad.

Each bad vertex v € U’ will be assigned in step C-2 an anchor set AP, of two
elements of the following form: {I + (2A)t°k +ak, [ + (2 4+ 1)tPk 4+ ak}, where 1. > 0
anda € [0, 1°—1] are integers to be determined in Step C-2, and/ = 0 or 1 is the weight
of v modulo k at the end of Step C-1, and thus is pre-determined. All the elements in
AP, are regarded modulo t2k. For a fixed [ = 0 or 1, by varying A and a, these sets
partition the set of integers {/ + k - Z} modulo 78k. Different values of a correspond
to different congruence classes modulo °k, denoted by C,(I) = {I + ak + 1%k - Z
mod 78k}. Note these are well defined, as ¢ is divisible by 7°.

Similarly, each vertex v € V(G’) \ U’ will be assigned in step C-2 a set AP, of the
form {{ + 2A)t8k + ak,l + 21 + 1)tk + ak} C Zso, where A, a are integers with
A >0,a € [0, 18 — 1] to be determined in Step C-2, and [ = 2, 3, 4, or 5 is the vertex
weight of v modulo k at the end of Step C-1. For a fixed /, these sets partition the set
of non-negative integers {/ + k - Zx¢}. Different values of a correspond to different
congruence classes, denoted by C, (1) = {l + ak + t8k - Z}.

Goal Fori =1, 2, ..., the algorithm sequentially analyzes each v;, greedily mod-
ifying weights of active edges incident to v; in G’ in order to prescribe the vertex
weight of v; to an appropriately chosen set ﬁvi (if v;i € U') or APy, (if v; ¢ U'),
described above. Furthermore:

(i) Inthe process of analyzing a given v, foranyi < j,the set AP, or ﬁv; remains
unchanged. That is, the vertex weight of v; stays in AP,, if v; ¢ U’, and stays in
ﬁv; modulo 78k if v; € U’ throughout this and all later stages of the algorithm.

(ii) The bad vertices in U’ = Uy N U’ have distinct AP,’s (modulo 72k) assigned,
with vertex weights being 0 or 1 modulo %.

(iii) The bad vertices in Up \ U’ have distinct AP,’s assigned, with vertex weights
being 4 or 5 modulo k.

(iv) Each good vertex v € Ug \ U’ = Ug has assigned a set AP, different from the
ones of vertices in L(v), with vertex weights being 2 or 3 modulo k.

Rules Rules of modifying edge weights are as follows. Suppose we are analyzing
v; and {u, v;} is an edge incident to v; in G'.

1. For vy, let APy, (if vy ¢ U’) or ﬁvl (if v1 € U’) be the set of the desired form
that contains the current vertex weight of vy (modulo 78k, if vy € U’). Note the
current weight of vy uniquely determines the set AP, or ﬁvl , respectively. We
next move to vp.

2. Only the active backward and forward edges of v; can get weights changed.

3. To modify an active forward edge {v;, u} of v;, we admit adding to its weight an
integer in {0, k, 2k, . .. tbk} ifv; € U,NU’ = U’, and respectively, an integer in
{0, k, 2k, ... 18k} if v; ¢ U’. The forward edges of v; will together account for
the congruence class C, (1), if v; € U’, or Cu (1), if v; ¢ U’, the weight of v; will
ultimately belong to.
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4. There are two options to modify each active backward edge {v;, u} of v; if both
vi,u € S\ U’. We admit to modify the weight of {v;, u} by adding O or 8k if
the current weight of u is the smaller value in AP, and adding 0 or —¢8k if the
current weight of u is the larger value in AP,,.

5. There are two options to modify each active backward edge {v;, u} of v; if both
vi,u € U'. We admit to modify the weight of {v;, u} by adding 0 or Pk if the
current weight of u is congruent to the element / + (21)t%k+ak in AP, and adding
0 or —¢Pk if the current weight of u is congruent to the element [ + (21 + 1)tPk +ak
in AP, modulo #2k.

6. Ifv; € U' butu ¢ U’, since all vertices in U’ come before vertices not in U’ (by
Claim 38), {v;, u} cannot be a backward edge of v;. Follow Rule 3 to modify this
edge as an active forward edge of v;.

7. Ifv; ¢ U' butu € U’, there are two options to modify each active backward edge
{vi, u}. We admit to modify the weight of {v;, u} by adding 0 or ¢8k. Note however
thatif v; € Ug and u € U'\S, then {v;, u} is not an active backward edge of v;,
by the definition of active edges for good vertices.

Claim 39 The Rules above guarantee Goal (i) holds throughout the algorithm.

Proof 1Tt is easy to see from Rules 4-6 that the updated weight of u remains in AP, or
AP, respectively, even after changing the weight of an active backward edge {v;, u}
of v;. Since AP,’s are regarded modulo 72k, Rule 7 also guarantees that the updated
weight of u stays in AP,. O

Claim 40 Assume (16) holds for all benchmarks 27 < hj

After Step C-2, each edge of G[S]has weightin [[[n/8]/2]1—2t8k—2, [[n/8]/2]+
28k 4 2] and each edge of G’[B] has weight in [[[n/87/2] — 2t°%k — 2, [[n/81/2] +
2t + 2]. During Step C, each edge across U’\ S and U, changes its weight by at
most 7°k + 2 and each edge across U’\S and S\U; changes its weight by at most
18k 4 t°k 4 2. Edges not in G’ do not get weights changed.

However, if U, = @, then G’ = G[S] and U’ = @. After Step C-2, each edge
of G[B] has then weight 1 or [n/8] + a’ and each edge in G[S] has weight in
[[Tn/81/2] —2t8k — 2, [[n/8]/2] + 2t&k + 2]. Moreover, during Step C, no weights
are changed for edges across B and S.

Proof Each edge can be modified at most twice in Step C-2: once as an active forward
edge and once as an active backward edge. By the Rules above, each time its weight
is modified, it can be changed by at most #8k. Thus each edge weight can be changed
in total by at most 2¢2k in Step C-2. Step C-1 changes in turn an edge weight by at
most 2 by Claim 36. Since at the beginning of Step C-1, each edge weight in E(S)
was initialized as [[n/87/2], the result for edges in E (S) follows.

For each edge in E(G") N E(B), both its ends are bad vertices, and thus Step C-1
changes its weight by at most 2 and Step C-2 changes its weight by at most 2¢°k, by
Rules 3 and 5. The result follows, since the edge weight was initialized as [[n/§7]/2]
at the beginning of Step C-1.

For each edge between v € Uy and u € U’\S, again Step C-1 changes its weight
by at most 2. Vertex u must be a bad vertex and it comes before v in the ordering. In
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Step C-2, while analyzing u, the weight of {v, u} is changed by at most Pk, by Rule
3. In the process of analyzing v in turn, since v € Uy but u ¢ S, the edge {v, u} is not
active for v, by the definition of active edges for good vertices, and thus could not be
changed. The result follows.

For each edge between v € S\U, and u € U’\S, vis eitherin U’ or not. If v € U,
then since u € U’, Step C-2 changes the weight of {1, v} by at most 2¢°k, by Rules
3and 5. If v ¢ U’, then v comes after u in the ordering. In Step C-2, the weight of
{u, v}, being an active forward edge of u, is thus changed by at most °k, and, as an
active backward edge of v, changed by at most 8k, due to Rules 3 and 7. The result
follows analogously as above, as 1& > 7.

The case when Uy, = @ follows from Corollary 27, by noting that V(G’) = § and
U’ C Uy = @, by Claim 37, and thus Step C does not change weights of edges in
E(B) or edges across B and S. m]

Lemma 41 Suppose all the inequalities in Corollary 34 hold. There is a way to modify
the edge weights abiding the Rules of the algorithm so that Goals (i)—(iv) are fulfilled.

Proof Goal (i) is fulfilled by Claim 39. By the Rules, all edge weights in G are
changed in Step C-2 by multiples of k. Thus, the modulo k conditions in Goals (ii)
to (iv) automatically hold by the preparatory measures from Step C-1 (Claim 36). It
remains to show that we can process the vertices v; fori = 1, 2, ..., complying with
the Rules, so that the rest of the conditions in Goals (ii) to (iv) hold.

Suppose we are analyzing a given v; which is not a terminal vertex nor a vertex
immediately preceding a terminal vertex. Suppose at the end of Step C-1 the weight
of v; equals /; modulo k.

Case 1. Suppose v; € U’. We first choose any of its active forward edges, say e. Due
to adding to its weight admissible values in the set {0, k, 2k, ..., tbk} (Rule 3), the
weight of v; runs through all the congruence classes Ca ;) with0 < a < * — 1. The
sets AP, fixed already for u € U’ prior to v; occupy at most |U’| < |Up| congruence
classes C, (I;), with possible duplicates. By an an averaging argument, there must be an
a* such that at most |Up|/t® of these sets AP, are in the same congruence class
Cq+(l}). Fix such a congruence class C+(l;) and assure the weight of v; belongs in it
via adjusting the weight of e. We then modify the rest of the active forward edges of
v; by adding 0 or 1Pk to their weights, and modify the weights of its active backward
edges by 0 or £¢°k, according to Rules 5 and 6. Since v; is incident to at least s* /2
active edges in G’ (by Claim 37), the vertex weight of v; can thus be attributed at least
min(¢¢/¢®, s* /2) consecutive terms in the set {li + +a*k+1°k-7Z mod 18k} = Cy+(I;).
Since each of the at most |Uy|/¢° existing sets AP, in Cy+(I;) blocks two consecutive
terms in C,+(I;), we can find an achievable APU C Cg+(l;) that is disjoint from all
the prior AP, (modulo r&k) with u € U’ if

min(r8/1°,5*/2) >2|Uy|/1°.

Since we assumed inequalities in Corollary 34 hold, |Uy| < 3n exp(—82°‘ /4), and
thus:

min(t8/1°,s*/2) > 4|Up|/1° + 2. (42)
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Therefore we are done with v;.

Case 2. Suppose v; ¢ U’. The analysis is almost the same as in Case 1. Suppose
v; is a good vertex. By an averaging argument, there must be an a* such that the
congruence class Cy+(l;) hosts at most | L (v;)|/t® prior sets AP, withu € L(v;). We
insert the weight of v; in this congruence class via modifying one of its active forward
edges, by adding to its weight one of the admissible integers in {0, k, 2k, ..., t8k}. We
then modify the weights of the rest of the active edges of v; by an integer in {0, +-¢2k}
abiding the Rules. Since v; is incident to at least s*/2 active edges in G’ (by Claim
37), the vertex weight of v; can thereby be attributed at least s*/2 consecutive terms in
Cax(l;) = {l; + a*k + 8k - Z}. Since each of the at most | L (v;)|/t2 existing sets AP,
in Cy+(l;) and with u € L(v;) blocks two consecutive terms in Cy+(I;), we can find an
achievable AP,, C C,=(l;) that is disjoint from all the prior AP, withu € L(v;) if

s*/2>2|L(v)|/t8.

Thus we are done with v; by the bound |L(v)| < 2[s*/k'](n/8) in Corollary 34, which
holds for every v € S, and implies in particular that:

s*/2>4|L(v)|/t% + 2. (43)

The case when v; ¢ U’ and v; € Uy follows by the same argument, with L(v;)
replaced by Uy, \ U’. Thus we are done with v; if only

s*/2>2|Up|/18>2|Uy \ U'| /18

The first inequality above follows however by (42), as t& > ¢, while the second one
trivially holds.

We are left to show how to manage r;, t;, where ¢; is a terminal vertex and r; is the
vertex preceding #; in the ordering. We apply a similar approach as above, analyzing
the both vertices simultaneously. By Claim 38, {r;, #;} is an edge in G’, which is an
active forward edge for r;.

Case 1’. Suppose both r;, 1; are in U’. Thus the both vertices are bad vertices. By an
averaging argument, when we reach r;, we can modify its forward edge {r;, ;} so that
the two new congruence classes of r;, ; each hosts at most 2|U’|/t® < 2|Uy|/t® prior
sets AP, with u € U’, ignoring temporarily r; from the point of view of #;. Fix such
two new congruence classes for r;, f; by choosing an admissible modification for the
edge {r;, ;}. By the same argument as before, since min(¢8/1°,s*/2) > 4|Up|/t° + 2
(where “+2” might be necessary to adjust the weight of #; in the case when it belongs
to the same congruence class as r;), which holds by (42), via changing the weights
of active backward edges of r; and all its other active forward edges except {r;, ¢;}
by values in {0, £¢Pk} complying with the Rules, there is an achievable choice of
ﬁri that is disjoint from all the sets AP, for u € U’ prior to r;. Next, via changing
the weights of the active backward edges of #; except {r;, #;} by values in {0, £k}
complying with the Rules, and by (42) again, we can find an achievable ﬁn that is
disjoint from all the prior sets AP, with u € U’ including AP,,.
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Case 2’. Suppose neither r; nor ¢; are in U, i.e., r;, 1; € S\U’. If both r;, 1; are bad
vertices, we carry out the same reasoning as in Case 1’ with ¢ replaced by 7. The
inequality we need to guarantee in such a case is s*/2> 4|Uy|/t® + 2, which holds
by (42). If both r; and #; are good vertices, again we use the same reasoning as in Case
1’, with |Up| replaced by max(|L(r;)|, |L(;)]) and b replaced by 72. The inequality
we need to guarantee this time is:

s%/2> dmax(|L(ri)|, L)) /12 +2,

which holds by (43). If finally one of r;, #; is good and the other one is bad, say among
{ri, t;}, u is the bad vertex and v is the good one, by modifying the active forward
edge {r;, t;}, we may assure each of the weights of #; and r; to be in a congruence
class containing at most (|L(v)| + |Up \ U'|) /& < (IL(v)|+ |Up|)/ & prior sets AP,
with v/ € L(v) (in the case of v) and AP, with u’ € Up\U’ (in the case of u). Fix
such a congruence class by choosing an appropriate admissible weight for {r;, ;}.
By changing the weights of the remaining active edges of v by values in {0, ¢k}
complying with the Rules, we can find an achievable AP, that is disjoint from all
AP, with v' € L(v) prior to v if

5%/2 > 2(IL()| + [Us /15

The inequality holds by (42) and (43), and thus v can be successfully processed. To
adjust the weight of the bad vertex u, we analogously as above change the weights of
active edges of u except the edge {u, v} = {r;, t;} by values in {0, £¢8k} complying
with the Rules. By the same argument as for v, we can find an achievable set AP,
that is disjoint from the ones of the other prior bad vertices not in U’ if s*/2 >
2(|L(v)| + |Uyp|)/t®, which again holds by (42) and (43). This finishes the proof by
the third condition in Claim 38. O

4.6 Proof of Theorems 4 and 5
Lemma 42 Assume all statements in Corollary 34 hold. Then, for any two good
vertices u, v with u ¢ L(v), the weights of v and u are distinct after Step C provided

that § and n/§ are sufficiently large.

Proof Suppose v € S,;NU, for some 1 < g < k’. By Corollary 27, prior to Step C,
the weight of any edge e between v and its neighbor in B is in the interval

nl 1 , 11n nl 1 , 11n
[liileso (0. [T (23]

Letx = 1if Uy # ¥ and x = 0 if Up = @¥. By Claim 40, since v € Ug, the weight of
an edge e between v and B is changed by at most x (t°k 4 2) during Step C. Thus the
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final weight of e is in the interval

n 11n b nll ,
|5 |50 | +o- (1+s+xtk+2x+z), [3]5 |« +o

Ln Sk +2x +2
+ F—i—xt 4+ 2x +

Since 1® = |'48ne_‘3 /4751, if 8§ < /n and § is sufficiently large, then n/8' ¢ > k.
If § > /n in turn, then by the last statement in Corollary 34, U, = @, and hence
x = 0. Thus, the weight of e is in any case in the interval

5 lae v (5 +0)- [ lap o o+ (5 +4)]

Therefore, the weight of v coming from its neighbors in B equals at least

n 12n
(HS—‘%/—‘( +a) - <51+5+4))deg3(v). (44)

Similarly, the weight of v coming from its neighbors in B equals at most

n / 12n
(H 13/«/—‘(" to+ <51+g +4)> degp (v). (45)

Note that by definition, for large enough & and n/8, k < k’/960 < 10~>n/8, and thus

1n 96ne‘52a/4k 1n
+2k < ——. (46)

o< 20 o < 0y 20 K
Sk’ 306 §1/24eta 206

Therefore, by (46) and Claim 40, weights of edges in E(S) are contained in the

interval
[qu % 2 qu +2tgk+21| C [1,n/8) 47)
52 s 2 S

Since v is a good vertex, by the definition of Zg,,
| deg (v) — deg(v)(8 — 5¥)/8|< deg(v)/*T¢, (48)

and thus,
| degg(v) — deg(v)s*/8|< deg(v)'/>T%. (49)
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By (44), (47), and (48), we conclude that for 6 and n/§ large enough, the weight of
v equals at least

(

il 17 12n
oo (2 oo
12 d 8§ —s*
(Tl () (22 s
s nll 12n
(15— ([[5[p o+0 - (57 +9))
2s 12
- (1) (|5 | o+ - (5 +4))
n , 12n 2s* n
(15 30 e o~ (5 +4) - 575)
13n
>deg(v)<’7’7n—‘3k/—‘(k/+) (81+8+4)> (50)

where the last inequality follows by (1). Similarly, by (45), (47) and (49), when é and
n/§ are sufficiently large, the weight of v equals at most

{

IA IA

A

TN N N &S
1
1
SIS >[I >[I >3 X
]
w
%

<

12n
W—W(k/ +q)+ (81% +4>> degp(v) +degs(v)g

*
— K +q) + (;12—4_”8 + 4>) deg(v) + (deg(v)% + deg(v)1/2+£> %
k" +q)+ (12_;1 + 4>> deg(v) + deg(v) (i + ;> 2
§l+e ) §1/2—¢ ] &
— | +q)+ < L +4> + E—) deg(v)
3k slte )

! K + )+<ﬂ+4>>d (v) (51)
3k/ q §l+e cglv),

i

where the last inequality again follows by (1). Therefore, (50) and (51) provide the
lower and upper bounds on the weight of v € S, N U, after Step C. Analogous bounds
hold also by the same reasoning for any u € S, N Uy, where 1 < p,q < k’. Thus, if
the weights of v and u are equal after Step C, both of the following two inequalities
must hold:

(]
(I

! kK 13 4] )d
101w o (22 +4) o
1 , 13n
—‘ﬁ—‘(k + p) — (F —I—4>> deg(u);

| S > S
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3k/ 81 €
3k/ 81 &

These two conditions are equivalent to u € L(v) and v € L(u), cf. Definition 32.
Therefore, if u ¢ L(v), then the weights of # and v cannot be the same after Step C. O

n
5
n
5

We are finally ready to argument that Theorem 4 indeed holds.

If § or n/é are small, say § < c or n/§ < c for some absolute constant ¢, we make
use of the result in [25]. This implies that s(G) < (rn/8)(1 + 5) + 6, and therefore
s(G) < 5 + 5c + 6 in the case when /8 < ¢, and s(G) < § (1 + 5(%;) + 6 in the
case when § < c.

From now on we can assume that § and n/§ are sufficiently large. Thus, with positive
probability, all the inequalities in Corollary 34 hold. In particular, Uy = @ if § > /.
We first show that all the vertex weights are distinct after Step C. Most vertices in B
receive distinct weights in Z’ within Step B, cf. Corollary 27. The remaining ones are
distinguished in Step C by means of weights outside Z'. By Lemma 41, Goals (i) to
(iv) can be achieved in Step C. By the Goals, it is clear that all the vertex weights are
distinct, with the only possible exception between vertices v € Uy and good vertices
not in L(v). However, Lemma 42 shows that if u ¢ L(v), then the weights of u, v
cannot be identical. Thus we have shown that all vertices in G indeed have distinct
weights.

We next bound the values of the final edge weights after Step C. By Claim 40, the
fact that 12>¢®, and (47), weights of edges in G[S] and G’[ B] are contained in [1, n/8).
Other edges in B but notin G’ do not get weights changed during Step C (by Claim 40).
Thus, by Corollary 27, these edges in B have weights either 1 or [1n/8] +a’. As for the
edges across B and S, prior to Step C, by (33) in Corollary 27, their weights were in
the interval [H%l%lk’ — (511% + 2) , [(%1%121(’ + (;llfg + 2)] C[%. ?T:sl] after
Step B. During Step C, by Claim 40 again, their weights are changed by at most
18k + 1% + 2< 15> by (46). Thus, after Step C, the weights between B and S lie
in the interval [1, n/§). Consequently, we have shown that all final edge weights are
positive, with the maximum weight at most

By our choice of k, Theorem 4 holds, i.e. there are absolute constants c1, ¢ (for any
fixed & € (0,0.25)) such that s(G) < % + S + ¢,. To see why Theorem 5 holds,

S slte

note that when 8'+t¢>n, then sire is upper bounded by cj.
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5 Conclusion

In this paper, we proved a uniform upper bound s(G) < 5(1 + ¢1/8%) + c2, where
c1, cp are absolute constants for any ¢ € (0, 0.25). This confirms the Faudree-Lehel
Conjecture for § > n'/(1+¢) ‘We did not strive to optimize all the constants in our result.
We believe that with a slightly modified construction one should be in particular able
to magnify the 0.25 upper bound on e. Our bound matches the bound in Conjecture
2 asymptotically when § is large. It would also be interesting to prove a bound of the
form s(G) < %(1 + 0,(1)) 4+ ¢ for some absolute constant c.

Funding Research supported by NSF Award DMS-1953958.
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