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Abstract
Given a simple graph G, the irregularity strength of G, denoted by s(G), is the least
positive integer k such that there is a weight assignment on edges f : E(G) →
{1, 2, . . . , k} attributing distinct weighted degrees: f̃ (v) := ∑

u:{u,v}∈E(G) f ({u, v})
to all vertices v ∈ V (G). It is straightforward that s(G) ≥ n/d for every d-regular
graph G on n vertices with d > 1. In 1987, Faudree and Lehel conjectured in turn
that there is an absolute constant c such that s(G) ≤ n/d + c for all such graphs.
Even though the conjecture has remained open in almost all relevant cases, it is more
generally believed that there exists a universal constant c such that s(G) ≤ n/δ +
c for every graph G on n vertices with minimum degree δ ≥ 1 which does not
contain an isolated edge; In this paper we confirm that the generalized Faudree–Lehel
Conjecture holds for graphs with δ ≥ nβ where β is any fixed constant larger than 0.8;
Furthermore, we confirm that the conjecture holds in general asymptotically. That is,
we prove that for any ε ∈ (0, 0.25) there exist absolute constants c1, c2 such that for
all graphs G on n vertices with minimum degree δ ≥ 1 and without isolated edges,
s(G) ≤ n

δ
(1+ c1

δε ) + c2; We thereby extend in various aspects and strengthen a recent
result of Przybyło, who showed that s(G) ≤ n

d

(
1 + 1

lnε/19 n

) = n
d (1 + o(1)) for d-

regular graphs with d ∈ [ln1+ε n, n/ lnε n]. We also improve the earlier general upper
bound: s(G) < 6 n

δ
+ 6 of Kalkowski, Karoński and Pfender.

Keywords Faudree–Lehel conjecture · Irregularity strength of a graph · Irregular
edge labeling

B Fan Wei
fw97@math.duke.edu

Jakub Przybyło
jakubprz@agh.edu.pl

1 AGH University, Al. A. Mickiewicza 30, 30-059 Krakow, Poland

2 Department of Mathematics, Duke University, Durham, NC 27710, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00493-023-00036-5&domain=pdf


792 Combinatorica (2023) 43:791–826

Mathematics Subject Classification 05C78 · 05C15 · 05C07

1 Introduction

Let G be a simple graph. Consider an edge-weighting function f : E(G) →
{1, 2, . . . , k}, where k is any positive integer. We call it a k-irregular assignment
for G if the weighted degrees, denoted by f̃ (v) = ∑

u∈N (v) f ({v, u}), are pairwise
distinct for all v ∈ V (G). The irregularity strength of G, denoted s(G), is the least
positive integer k, if it exists, such that there is a k-irregular assignment for G; we set
s(G) = ∞ for the remaining graphs. It is easy to see that s(G) < ∞ if and only if G
has no isolated edges and has at most one isolated vertex.

The irregularity strengthwas first introduced byChartrand, Jacobson, Lehel, Oeller-
mann, Ruiz, and Saba [1], in particular in reference to research on irregular graphs
[2–4]. Note that for any simple graph G, s(G)may naturally be alternatively set down
as the least k such that one may produce an irregular multigraph by blowing each
edge e of G to at most k copies of e, where by an irregular multigraph we mean a
multigraph with pairwise distinct degrees. In general it is known that s(G) ≤ n − 1
for any graph G of order n which is not a triangle and has finite irregularity strength.
This was proved by Aigner and Triesch [5] and Nierhoff [6]. Though the family of
stars witnesses the tightness of this upper bound, it can be greatly improved for graphs
with larger minimum degree. In particular, already Faudree and Lehel [7] showed that
s(G) ≤ �n/2�+ 9 for every d-regular graph with n, d ≥ 2. This was however still far
from the expected optimal upper bound. By a simple counting argument, it is easy to
see that

s(G) ≥
⌈
n + d + 1

d

⌉

.

This lower bound motivated Faudree and Lehel [7] to conjecture in 1987 that the
value n/d is close to optimal. In fact, this conjecture was first posed by Jacobson, as
mentioned in [8].

Conjecture 1 (Faudree–Lehel Conjecture [7]) There is a constant c > 0 such that for
all d-regular graphs G with n vertices and d ≥ 2,

s(G) ≤ n

d
+ c.

It is moreover believed that the following natural extension of the conjecture holds
in general.

Conjecture 2 (Generalized Faudree–Lehel Conjecture [7]) There is a constant c > 0
such that for all graphs G on n vertices with minimum degree δ ≥ 1 and without
isolated edges,

s(G) ≤ n

δ
+ c.
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It is this conjecture that “energized the study of the irregularity strength”, as stated
in [9]. It also settled foundations for entire discipline, providing inspiration for many
related papers, concepts and intriguing questions, see e.g. [5, 8–38]. The conjecture
remains open after more than three decades since it was formulated. A significant step
forward regarding it was achieved in 2002 by Frieze, Gould, Karoński, and Pfender
[23], who used the probabilistic method. They proved the first linear in n/d bound
s(G) ≤ 48(n/d)+1 for d ≤ √

n, and a superlinear bound s(G) ≤ 240(log n)(n/d)+1
when d >

⌊√
n
⌋
. Similar bounds for general graphs, with d replaced by the minimum

degree δ, were also proved in the same paper. These in particular imply that s(G) =
O(n/δ) if G has maximum degree � ≤ n1/2. The linear bounds in n/d and n/δ were
further extended to the cases when d ≥ 104/3n2/3 log1/3 n and δ ≥ 10n3/4 log1/4 n,
respectively, by Cuckler and Lazebnik [9]. The first linear bounds in both n/d and n/δ

for all ranges of n, d and δwere settled by Przybyło. He used a different idea to improve
a key combinatorial lemma in [23], thus proving in [33, 34] that s(G) ≤ 16(n/d) + 6
and, resp., s(G) ≤ 112(n/δ) + 28. Since then, considerable efforts were devoted to
improve the multiplicative constant in front of n/d and n/δ. In course of work over
this and several related concepts a list of inventive and highly useful algorithms were
developed in particular in [13, 25, 26, 28, 39]. These assured important breakthroughs
concerning s(G) and other widely studied graph invariants. The best result among
these is due to Kalkowski, Karoński and Pfender [25], who proved that in general
s(G) ≤ 6�n/δ� (what was later improved to s(G) ≤ (4+o(1))(n/δ)+4 for a narrower
range of δ ≥ √

n log n in [28]). It was only until recently when Przybyło [30] proposed
an algorithm which significantly improved the previous upper bounds for d-regular
graphs. His result implies in particular that Conjecture 1 holds asymptotically (in terms
of d and n) for d not in extreme values.

Theorem 3 (Przybyło [30]) Given any fixed ε > 0, for every d-regular graph G with
n vertices and d ∈ [ln1+ε n, n/ lnε n], if n is sufficiently large,

s(G) ≤ n

d

(

1 + 1

lnε/19 n

)

.

In [30] Przybyło mentioned that “a poly-logarithmic in n lower bound on d is
unfortunately unavoidable” within his approach. In this paper, we extend the range of
d to bypass the poly-logarithmic in n lower bound (and the upper bound too). We also
provide at the same time a stronger upper bound on s(G) for all 1 ≤ d ≤ n − 1.

In the case of general graphs with minimum degree δ, instead of regular graphs
with degree d, obtaining a good bound on s(G) is considerably harder. The existing
methods, applicable in the case of regular graphs, stop working for general graphs, or
would result in amuchworse bound. Prior to our result, no asymptotically sharp bound
on s(G) has been shown for general graphs with minimum degree δ. One exception
is the family of random graphs G(n, p), where p is any fixed constant in (0, 1), for
which the first author showed that s(G) ≤ �n/δ�+2 almost surely [40]. In this paper,
we are able to show that the generalized Faudree-Lehel Conjecture (Conjecture 2) also
holds asymptotically.
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Theorem 4 For every ε ∈ (0, 0.25), there are absolute constants c1, c2 such that for
each graph G with n vertices and minimum degree δ > 0 which does not contain
isolated edges,

s(G) ≤ n

δ

(
1 + c1

δε

)
+ c2.

Note that Theorem 4 in particular implies (for ε = 0.2) that s(G) ≤
(n/δ)(1 + (c1/δ0.2)) + c2 for some absolute constants c1, c2. For any
fixed ε > 0 (in Theorem 3) and δ ∈ [ln1+ε n, n/ lnε n], we how-
ever have: (n/δ)(1/ lnε/19 n) 
 (n/δ)(c1/ ln0.2+0.2ε n) ≥ (n/δ)(c1/δ0.2) and
(n/δ)(1/ lnε/19 n) ≥ (lnε n)(1/ lnε/19 n) 
 c2. Thus our bound is in particular a
direct improvement over the bound in Theorem 3 (which additionally regards only the
case of regular graphs).

Moreover, as the second contribution of the paper, which seems even more or
equally vital as the one above, we also confirm that the Faudree-Lehel Conjectures
(Conjectures 1 and 2) hold, not only asymptotically, for all graphs with δ ≥ nβ where
β is any fixed constant greater than 0.8.

Theorem 5 For every ε ∈ (0, 0.25), there is an absolute constant c such that for each
graph G with n vertices and minimum degree δ ≥ n1/(1+ε),

s(G) ≤ n

δ
+ c.

2 Tools and Notation

We will use the following tools.

Lemma 6 (Chernoff Bound, c.f., e.g., [41], Appendix A) Let X1, . . . , Xn be i.i.d. ran-
dom variables such that Pr(Xi = 1) = p and Pr(Xi = 0) = 1 − p. Then for any
t ≥ 0,

Pr

(∣
∣
∣
∣
∣

n∑

i=1

Xi − np

∣
∣
∣
∣
∣
> t

)

≤ 2e−t2/(3np), if 0 ≤ t ≤ np,

Pr

(∣
∣
∣
∣
∣

n∑

i=1

Xi − np

∣
∣
∣
∣
∣
> t

)

≤ 2e−t/3, if t > np.

Corollary 7 (ChernoffBound, c.f., e.g., [41],AppendixA)Let X1, . . . , Xn be i.i.d. ran-
dom variables such that Pr(Xi = 1) = p and Pr(Xi = 0) = 1 − p. Then for any
t ≥ 0,

Pr

(∣
∣
∣
∣
∣

n∑

i=1

Xi − np

∣
∣
∣
∣
∣
> t

)

≤ 2e−t2/3max(np,t).
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Definition 8 (Negative Association [42]) A set of random variables X1, . . . , Xn are
negatively associated if for any two disjoint index sets I , J ⊂ [n] and two monotone
increasing functions f , g : R → R, E[ f (Xi , i ∈ I )g(X j , j ∈ J )] ≤ E[ f (Xi , i ∈
I )]E[g(X j , j ∈ J )].
Lemma 9 (Zero–one Principle [42]) Let X1, . . . , Xn be zero–one random variables
such that always

∑
i Xi ≤ 1. Then X1, . . . , Xn are negatively associated.

Lemma 10 (Closure Property [42]) Let X1, . . . , Xn be negatively associated and let
Y1, . . . ,Yn be negatively associated. If {Xi }i are independent from {Yi }i , then {Xi }i ∪
{Yi }i are negatively associated.
Lemma 11 (Chernoff Bound [42]) Let X1, . . . , Xn be negatively associated random
variables such that Pr(Xi = 1) = p and Pr(Xi = 0) = 1− p. Then the two Chernoff
Bounds in Lemma 6 hold.

Lemma 12 (SimpleConcentrationBound [43])Let S bea randomvariable determined
by n independent trials X1, . . . , Xn, and satisfying: changing the outcome of any one
trial can affect S by at most c > 0. Then for any t > 0,

Pr (|S − E(S)| > t) ≤ 2e−t2/(2c2n).

Given a graphG, a setU ⊂ V (G) and a vertex v ∈ V (G), we use degU (v) to denote
the number of neighbors of v in U . We use G[U ] to denote the subgraph induced by
U in G, and E(U ) to be the set of edges of G[U ].

Throughout the paper we assume that the graph G has n vertices and minimum
degree δ. A weighted degree of a vertex v will usually be abbreviated as a weight of v.

3 General Proof Idea, Links and Obstacles

The basic intuition behind our construction is to partition V (G) into a big set B and a
small set S, where |S| = (n/δ) · o(δ). We first adjust the edge weights so that almost
all vertices in B have distinct weights. Then we locally adjust weights of the rest of
the vertices to distinguish the weights of all vertices in G.

Our argument can be divided into three main steps. Step A relies on a specific
random construction, which assures relatively sparse distribution of weights of the
vertices in B, i.e. without too many vertex weights in any of the predefined intervals
partitioning positive integers. Step B consists of modifications of the weights of edges
across B and S, aiming at generating relatively small shifts of the vertex weights in
B. As a result, pairwise distinct weights will be attributed to all but a small set of bad
vertices in B. (We note here that S must be large enough to provide sufficiently many
edges across B and S for our purposes.) In step C we modify weights of the edges in S
and a small portion of the edges outside S in order to weight distinguish the vertices in
S mostly. For this aim we attribute these vertices special weights deliberately unused
in step B (with residues at most 5 modulo a carefully chosen and large enough integer
k). To distinguish weights in S we in particular benefit from the fact that this set is
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small compared to B, and thus vertices in S have on average large fraction of all their
incident edges in E(S, B) (usuallymuch larger than the fraction of their incident edges
in S). This enables taking on vital preparatory measures prior to step C (within step
A), ensuring sparse vertex weight distribution in S and facilitating the mentioned final
cleanup in this set. Throughout the construction we moreover single out several types
of “bad vertices”, which do not fulfill one of a number of specified conditions, and
cannot be weight distinguished according to major procedures. The set of all of these
is however small enough to be handled with in a special manner in step C.

Our approach is motivated by the random construction idea from [30], which
amounts to show that under certain conditions there are no “bad vertices”at all (in
case of regular graphs). Then an explicit weight assignment could be provided in the
face of absence of such problematic vertices. Typically, if the minimum degree δ is
�(log n), then a union bound could be used to prove that with positive probability
there are no “bad vertices”resulting from the random construction. To bypass the log n
factor, careful quantization and the Lovász Local Lemma turned out to be very helpful
tools in the case of regular graphs. In fact in [44] we provide a significantly more
simple approach, yielding similar results as the ones in this paper, but for the setting
restricted to regular graphs exclusively. To prove the asymptotic bound for all δ in
the case of general graphs, one of the real challenges is that the maximum degree
and minimum degree could differ by any factor. This in particular forefends a direct
application of the Lovász Local Lemma. In this paper we bypass all these difficulties.
One of our main ideas is that although we cannot guarantee that there are no “bad
vertices”at all resulting from the random construction, yet the number of such bad
vertices cannot be too large (in fact it is usually exponentially small). We therefore
can accumulate these bad vertices and treat them at the end of the proof via careful
and technical analysis.

4 Proof of Main Results

4.1 Set-Up

Wewill focus on proving Theorem 4. Only at the very end of the paper do we comment
on how it directly implies Theorem 5. Let us thus fix ε, corresponding to Theorem 4,
followed by an auxiliary small constant α such that

ε ∈ (0, 0.25), α ∈ (0, ε) and 2ε + α < 0.5, (1)

and a graph G. Let Xv ∼ U [0, 1], for v ∈ V (G) be i.i.d. uniform random variables.
These are used to separate the vertices into δ bins. For 1 ≤ i ≤ δ − 1, let the i-th bin
be defined as

Bi = {v : (i − 1)/δ ≤ Xv < i/δ},
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and set the last bin as Bδ = {v : (δ − 1)/δ ≤ Xv ≤ 1}. In expectation, every Bi
includes n/δ vertices. For each vertex v, we define:

the random variable Z(v) ∈ [1, δ] to be the bin number i such that v ∈ Bi .

Let the small set S be the union of bins Bi with i > δ − s∗ where

s∗ :=
⌈

δ1/2+ε+α

⌉

.

Thus the expected number of vertices in S is ns∗/δ �δ n. Denote B := V (G)\S to
be the big set.

In order to take on certain preparatory measures prior to Step C (within which we
will finally distinguish weights of the vertices in S), we will further partition S into k′
similar sized subsets where

k′ := min

(⌈
n

400δ

⌉⌈
δε

2000

⌉)

.

Each such subset will consist of �s∗/k′� or ⌊s∗/k′⌋ bins. More specifically, for i = 1,
let S1 be the union of the first

⌊
s∗/k′⌋ bins in S, i.e., S1 = {⋃ Bj : δ − s∗ < j ≤

δ−s∗ + ⌊
s∗/k′⌋}. Next, sequentially define S2, . . . , Sk′ so that S j is the union of the

first
⌊
s∗/k′⌋ or �s∗/k′� (depending on s∗ mod k′) consecutive yet ungrouped bins in

S. Furthermore, set

k :=
⌈

k′/1000
⌉

and a′ :=
⌈

7

⌉

n/(δk).

These two parameters will be used in Step A.
We will show that when δ or n/δ is smaller than a constant c, then Theorem 4

holds. Thus, throughout the computations in the paper, unless otherwise stated, we
will assume there is an absolute constant c such that δ ≥ c, n/δ ≥ c and c is large
enough so that all explicit inequalities in the computations hold.

4.2 Step A

Definition 13 Wedefine aweighting assignment f1 : E(G) → Z in StepA as follows.

1. For every bin number 1 ≤ i ≤ δ − s∗, for each vertex v ∈ Bi ⊂ B and each of its
neighbors u in {⋃ Bj , δ − s∗ − i + 1 < j ≤ δ − s∗} ⊂ B, let f1({u, v}) be equal
to �n/δ� + a′.

2. For every integer 1 ≤ j ≤ k′, for each vertex v ∈ B and its neighbor u ∈ S j , let
f1({u, v}) be equal to ��n/δ�/3k′�( j + k′).

3. Let f1 equal 1 on the rest of the edges in B, and let f1 equal 0 on the edges in S.

Let f̃1 : V (G) → Z evaluate the weights of vertices under f1.
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Definition 14 Let σ(v, i) be the random vertex weight f̃1(v) given v ∈ Bi . Let I0 =
(0, (�n/δ� + a′ − 1)), whereas for each integer 1 ≤ h < 2n, we define the interval

Ih = [h(

⌈

n/δ

⌉

+ a′ − 1), (h + 1)(

⌈

n/δ

⌉

+ a′ − 1)).

For each 1 ≤ i ≤ δ − s∗ and each vertex v, denote the expected weight of v if v ∈ Bi
as

σμ(v, i) = E

[
f̃1(v) | v ∈ Bi

]

and set σμ(v, i) = 0 for δ − s∗ < i ≤ δ and v ∈ V (G). For 0 ≤ h < 2n, let μh

be the expected number of vertices in G such that σμ(v, Z(v)) ∈ Ih (note all these
vertices must belong to B). Given integers 0 ≤ h1 ≤ h2, let

μ[h1,h2) =
h2−1∑

h=h1

μh .

Note that since 0 /∈ I0, then σμ(v, i) /∈ Ih for all h ≥ 0 if i > δ − s∗.
By Definition 13,

‖ f̃1‖∞ ≤ max
v

deg(v)(

⌈

n/δ

⌉

+a′) ≤ (n−1)(

⌈

n/δ

⌉

+a′) < 2n(

⌈

n/δ

⌉

+a′−1), (2)

and thus μ[0,2n) = E(|B|).
Claim 15 Let v be a fixed vertex and i an integer in [1, δ − s∗]. Given v ∈ Bi , with
probability at most 2e−δ2α/2,

∣
∣σ(v, i) − σμ(v, i)

∣
∣ > deg(v)1/2+α

(� n
δ
� + a′ − 1

)
. In

addition, for each vertex v and a fixed integer h ∈ [0, 2n), there is at most one bin i
such that σμ(v, i) ∈ Ih . This implies μh ≤ n/δ.

Proof Fix any i ∈ [1, δ − s∗]. Given v ∈ Bi , the expected value of σ(v, i) equals
σμ(v, i) and is determinedby thevalues of deg(v) independent variables Xv ,v ∈ N (v).
As by definition of f1, changing the outcome of any one of these variables can affect
σ(v, i) by at most

(� n
δ
� + a′ − 1

)
, the Simple Concentration Bound (Lemma 12)

implies that the probability that
∣
∣σ(v, i) − σμ(v, i)

∣
∣ > deg(v)1/2+α

(� n
δ
� + a′ − 1

)

is at most

2e
− deg(v)1+2α

⎛

⎝

⌈
n
δ

⌉

+a′−1

⎞

⎠

2

/(2

⎛

⎝

⌈
n
δ

⌉

+a′−1

⎞

⎠

2

deg(v))

≤ 2e−δ2α/2,

as desired.
To prove our second claim, we need to approximate σμ(v, i). This is equal to

wE(v, i, B) + wE(v, i, S) where wE(v, i, B) and wE(v, i, S) denote the expected
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weights of v coming from its neighbors in B and S, respectively, given that v ∈ Bi .
Let us denote for simplicity: Bi = {∪Bj , δ−s∗−i+1 < j ≤ δ−s∗}. The probability
that a fixed neighbor of v lies in Bi equals exactly (i−1)/δ. Thus, the expected number
of neighbors of v lying in Bi equals deg(v) i−1

δ
. Similarly, the expected number of

neighbors of v lying in B \ Bi equals deg(v) δ−s∗−i+1
δ

. Therefore,

wE(v, i, B) = (�n/δ� + a′)E[degBi (v)] + 1 · E[degB\Bi (v)]

= deg(v)
i − 1

δ

(⌈
n

δ

⌉

+ a′
)

+ 1 · deg(v)
δ − s∗ − i + 1

δ

= deg(v)

δ

(

(i − 1)

(⌈
n

δ

⌉

+ a′ − 1

)

+ δ − s∗
)

. (3)

On the other hand, by condition 2 in the definition of f1, the expected valuewE(v, i, S)

does not depend on i . Thus, it is equal to some number wE(v, S), whose precise value
is irrelevant within our proof. Combining this fact with (3), we obtain that

σμ(v, i) = wE(v, i, B) + wE(v, i, S) = deg(v)

δ

(

(i − 1)

(⌈
n

δ

⌉

+ a′ − 1

)

+ δ − s∗
)

+ wE(v, S).

Therefore, σμ(v, i) ∈ Ih implies that

h

(⌈
n

δ

⌉

+ a′ − 1

)

≤ deg(v)

δ

(

(i − 1)

(⌈
n

δ

⌉

+ a′ − 1

)

+ δ − s∗
)

+ wE(v, S) < (h + 1)

(⌈
n

δ

⌉

+ a′ − 1

)

.

Rearranging the inequalities, we have:

δh

deg(v)
−

δ − s∗ + δ
deg(v)

wE(v, S)
⌈
n
δ

⌉

+ a′ − 1

≤ i − 1 <
δ(h + 1)

deg(v)
−

δ − s∗ + δ
deg(v)

wE(v, S)
⌈
n
δ

⌉

+ a′ − 1

.

Thus, in order to make σμ(v, i) ∈ Ih , i has to lie in an interval (with one end open) of
length δ/ deg(v) ≤ 1. Therefore, given h and v, there is at most one integer i ≤ δ − s∗
such that σμ(v, i) ∈ Ih . The probability that v lies in the corresponding bin (if exists)
equals 1/δ. Thus, μh ≤ ∑

v∈V (G)(1/δ) = n/δ. ��
Definition 16 Given an integer 0 ≤ h < 2n, let Vh be the set of vertices such that
σμ(v, Z(v)) ∈ Ih and

∣
∣σ(v, Z(v)) − σμ(v, Z(v))

∣
∣ ≤ deg(v)1/2+α

(� n
δ
� + a′ − 1

)
.

Let Z B
h be the set of bad vertices such that σμ(v, Z(v)) ∈ Ih and∣

∣σ(v, Z(v)) − σμ(v, Z(v))
∣
∣ > deg(v)1/2+α

(� n
δ
� + a′ − 1

)
.
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Given two integers 0 ≤ h1 ≤ h2 ≤ 2n, let

V[h1,h2) =
⋃

h1≤h<h2

Vh and Z B
[h1,h2) =

⋃

h1≤h<h2

Z B
h .

The sets Z B
h consist of thefirst kindof badvertices in the proof.ClearlyVh∪Z B

h is the
set of all vertices v such that σμ(v, Z(v)) ∈ Ih , and thus, by (2), V[0,2n) ∪ Z B

[0,2n) = B.

Lemma 17 Given two integers 0 ≤ h1 < h2 ≤ 2n such that μ[h1,h2) > 1, the

following inequalities hold simultaneously with probability at least 1 − e−δ2α/4 −
2 exp

(
− 1

3

√
n

δ1−2α

)
:

∣
∣V[h1,h2)

∣
∣ ≤ μ[h1,h2) +

√
nμ[h1,h2)
δ1−2α ; and (4)

∣
∣
∣Z B

[h1,h2)
∣
∣
∣< 2μ[h1,h2)exp(−δ2α/4). (5)

In addition, if δ >
√
n, with probability at least 1 − 1/n,

Z B
[0,2n) = ∅. (6)

Proof For each vertex v and integers i ∈ [1, δ−s∗], h ∈ [0, 2n), let a random variable
Yv,i,h be the indicator function that v ∈ Bi and σμ(v, i) ∈ Ih . Define Zv,i,h to be equal
to 1 if v ∈ Bi , σμ(v, i) ∈ Ih and

∣
∣σ(v, i) − σμ(v, i)

∣
∣ > deg(v)1/2+α

(� n
δ
� + a′ − 1

)
.

Otherwise, set Zv,i,h = 0. Thus,

|Vh | =
∑

v∈V (G),1≤i≤δ−s∗
(Yv,i,h − Zv,i,h) ≤

∑

v∈V (G),1≤i≤δ−s∗
Yv,i,h, (7)

|Z B
h | =

∑

v∈V (G),1≤i≤δ−s∗
Zv,i,h, (8)

E[
∑

h1≤h<h2

∑

v∈V (G)

∑

1≤i≤δ−s∗
Yv,i,h] =

∑

h1≤h<h2

∑

v∈V (G)

∑

1≤i≤δ−s∗
Pr(v ∈ Bi , σμ(v, i) ∈ Ih)

= μ[h1,h2). (9)

By Claim 15,

Pr(Zv,i,h = 1) = Pr

(
∣
∣σ(v, i) − σμ(v, i)

∣
∣ > deg(v)1/2+α

(⌈
n

δ

⌉

+ a′ − 1

) ∣
∣
∣ v ∈ Bi

)

·
Pr(v ∈ Bi , σμ(v, i) ∈ Ih)

≤ 2e−δ2α/2 Pr(v ∈ Bi , σμ(v, i) ∈ Ih). (10)
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Thus, together with (8), (10) and (9),

E(|Z B
[h1,h2)|) =

∑

h1≤h<h2

∑

v∈V (G)

∑

1≤i≤δ−s∗
E(Zv,i,h)

=
∑

h1≤h<h2

∑

v∈V (G)

∑

1≤i≤δ−s∗
Pr(Zv,i,h = 1)

≤ 2e−δ2α/2
∑

h1≤h<h2

∑

v∈V (G)

∑

1≤i≤δ−s∗
Pr(v ∈ Bi , σμ(v, i) ∈ Ih)

= 2e−δ2α/2μ[h1,h2).

Therefore, by Markov’s Inequality,

Pr
(
|Z B

[h1,h2)| ≥ 2e−δ2α/4μ[h1,h2)
)

≤ E(|Z B
[h1,h2)|)

2e−δ2α/4μ[h1,h2)
≤ 2e−δ2α/2μ[h1,h2)

2e−δ2α/4μ[h1,h2)
= e−δ2α/4.

(11)
For the sake of (5) we will now bound the probability that∑
h1≤h<h2

∑
v

∑
1≤i≤δ−s∗ Yv,i,h is far from its expectation in (9). Note that for a fixed

v, although there is no bin Bi that vertex v must lie in, given any random experiment
(evaluating Xv) there is exactly one bin Bi that v belongs to, while deg(v) togetherwith
the bin Bi determine the unique at most one value of h for which σμ(v, i) ∈ Ih . Thus,
the indicator random variables satisfy

∑
i,h Yv,i,h ≤ 1, and hence, by Lemma 9, the

randomvariables {Yv,i,h}i,h are negatively associated. Furthermore, since the variables
in {Yv,i,h}i,h are independent from such variables corresponding to other vertices, by
Lemma 10, the random variables in {Yv,i,h}v,h1≤h<h2,1≤i≤δ−s∗ are negatively associ-
ated. Thus, leaving out the random variables Yv,i,h which are constantly zero, the rest
are identically distributed and negatively associated. Hence, we may use the Chernoff
Bound (Lemma 11) and the shorthand Y = ∑

h1≤h<h2

∑
v

∑
1≤i≤δ−s∗ Yv,i,h , where

by (9), E[Y ] = μ[h1,h2):

Pr

(
∣
∣Y − μ[h1,h2)

∣
∣ >

√
nμ[h1,h2)
δ1−2α

)

≤ 2 exp

⎛

⎝− nμ[h1,h2)/δ1−2α

3max
(√

nμ[h1,h2)/δ1−2α, μ[h1,h2)
)

⎞

⎠

≤ 2 exp

(

−min

(√
nμ[h1,h2)/δ1−2α

3
,

n

3δ1−2α

))

≤ 2 exp

(

−
√
n/δ1−2α

3

)

. (12)

Inequalities (11) and (12) thus imply (4) and (5) (cf. (7)). Moreover, by (10),

Pr(v ∈ Z B
[0,2n)) =

∑

1≤i≤δ−s∗,h∈[0,2n)

Pr(Zv,i,h = 1) ≤ 2e−δ2α/2
∑

1≤i≤δ−s∗

∑

h∈[0,2n)

Pr(v ∈ Bi , σμ(v, i) ∈ Ih) (13)
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≤ 2e−δ2α/2
∑

1≤i≤δ−s∗
Pr(v ∈ Bi ) < 2e−δ2α/2. (14)

Thus, by a union bound over v, when δ >
√
n, Pr

(
Z B

[0,2n) = ∅
)

≥ 1 − n2e−δ2α/2 >

1 − 1/n. ��
Since the degree distribution can vary in G, it will be useful to group μh’s of

smaller sizes. As by Claim 15, μh ≤ n/δ for each integer h, we may define the
following benchmarks to that end.

Definition 18 We can sequentially define the benchmarks h∗
1, h

∗
2, . . . such that h

∗
1 = 0

and
n/(2δ) < μ[h∗

i ,h
∗
i+1)

≤ 2n/δ. (15)

Claim 19 The number of benchmarks is at most 2δ.

Proof Since
∑

0≤h<2n μh≤n, the claim holds by (15) [and (2)]. ��
By (15) and Claim 19 we may apply Lemma 17 to at most (2δ)2 = 4δ2 distinct

benchmark pairs (h∗
i , h

∗
j ) in order to conclude that the following union bound holds.

Corollary 20 With probability at least 1−4δ2e−δ2α/4 −8δ2 exp
(
− 1

3

√
n

δ1−2α

)
, for any

two benchmarks h∗
i <h∗

j , the following two inequalities hold simultaneously:

∣
∣
∣V[h∗

i ,h
∗
j )

∣
∣
∣ ≤ μ[h∗

i ,h
∗
j )

+
√
nμ[h∗

i ,h
∗
j )

δ1−2α ; and (16)
∣
∣
∣Z B

[h∗
i ,h

∗
j )

∣
∣
∣< 2μ[h∗

i ,h
∗
j )
exp(−δ2α/4). (17)

In addition, if δ >
√
n, with probability at least 1 − 1/n, Z B

[0,2n) = ∅.

4.3 Step B

4.3.1 Preparations

Prior to performing Step B, we will expose that with high probability, all except a
small fraction of vertices have relatively large degrees to S. We thus define below new
types of bad vertices.

Definition 21 Let ZS be the set of vertices v ∈ V (G) with less than s∗ deg(v)/(2δ)
neighbors in S. Let Zn

S ⊂ B be an arbitrary set of vertices such that each vertex v ∈ ZS

has at least s∗/2 neighbors in Zn
S and |Zn

S| ≤ �s∗/2�|ZS|.
To see that such set Zn

S exists, note that if a vertex has at most s∗ deg(v)/(2δ)
neighbors in S, then it has at least deg(v) − s∗ deg(v)/(2δ) > s∗/2 neighbors in B.
For each v ∈ ZS , we may thus choose arbitrary �s∗/2� neighbors of v in B and add
these to Zn

S . Consequently, |Zn
S| ≤ �s∗/2�|ZS|. Note there might be vertices of ZS

that are in S.
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Lemma 22 With probability at least 1 − exp(−s∗/24) − 2 exp
(−n/(4δ0.5)

)
, the

following statements hold:

∣
∣|S| − s∗n/δ

∣
∣ ≤ n/δ0.5−ε, (18)

|ZS|<2ne−s∗/24, and thus |Zn
S|<2ns∗e−s∗/24. (19)

In addition, if δ >
√
n, with probability at least 1−1/n, ZS = ∅, and thus Zn

S = ∅.
Proof For each vertex v, let Zv = 1 if v has less than s∗ deg(v)/(2δ) neighbors in the
random set S, and Zv = 0 otherwise. Thus |ZS| = ∑

v Zv .
Fix v ∈ V (G); each of its deg(v) neighbors has independently probability s∗/δ

to be in S. The expected number of neighbors of v in S is thus deg(v)s∗/δ. By the
Chernoff Bound (Lemma 6),

Pr(Zv = 1) =Pr
(
degS(v)<0.5E[degS(v)])

≤Pr
(∣
∣degS(v) − E[degS(v)]∣∣>0.5E[degS(v)])

≤2 exp
(−E[degS(v)]/12)

=2 exp
(− deg(v)s∗/(12δ)

) ≤ 2 exp
(−s∗/12

)
. (20)

Since |ZS| = ∑
v Zv , by (20) we have:

E[|ZS|] =
∑

v

Pr(Zv = 1) ≤ 2n exp
(−s∗/12

)
.

Therefore, by Markov’s Inequality,

Pr
(|ZS| ≥ 2n exp

(−s∗/24
)) ≤ E [|ZS|] /

(
2n exp

(−s∗/24
)) ≤ exp(−s∗/24).

(21)
We are left to bound the probability that ||S| − s∗n/δ| ≤ n/δ0.5−ε. Each vertex inde-
pendently has probability s∗/δ to be in S, and hence E[|S|] = s∗n/δ ≥ n/δ0.5−ε. The
Chernoff Bound thus implies that by (1),

Pr
(∣
∣|S| − s∗n/δ

∣
∣ > n/δ0.5−ε

)
≤ 2 exp

(
−(n/δ0.5−ε)2/(3s∗n/δ)

)

≤ 2 exp
(
−n/(4δ0.5−ε+α)

)

≤ 2 exp
(
−n/(4δ0.5)

)
. (22)

Thus, by (21) and (22), with probability at least 1−2 exp
(−n/(4δ0.5)

)−exp(−s∗/24)
the two desired statements (18) and (19) hold.

In addition, when δ >
√
n, applying a union bound to (20) yields: Pr(ZS = ∅) ≥

1 − n · 2 exp(−s∗/12) > 1 − 1/n. ��
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4.3.2 Weighting Step B

In this step we define a weight assignment f2 : E(G) → Z, with ‖ f2‖∞ = o(n/δ),
that is only supported on edges across B and modifies initial weights appointed by
f1. The goal is that at the end of Step B, the weights ( f̃1 + f̃2)(v) are distinct for
vertices v in B (at least for these which are not bad), and the vertex weights in B are
not equal to 0, 1, 2, 3, 4, 5 modulo k. Recall k = �k′/1000�. We may assume k > 50
(for sufficiently large δ and n/δ).

Step 1. We first bound modifications necessary to set most vertex weights in B at
values expected after Step A. We admit a small error though, as the expected values
do not have to be integers.

Claim 23 We may construct f2 : E(G) → Z supported on edges across

B\
(
Z B

[0,2n) ∪ ZS

)
and S so that

‖ f2‖∞ ≤ 2

(⌈
n

δ

⌉

+ a′
)

δ1/2+α/s∗ + 1 and
∣
∣
∣( f̃1 + f̃2)(v) − σμ(v, Z(v))

∣
∣
∣ ≤ 1

(23)

for each v ∈ B \
(
Z B

[0,2n) ∪ ZS

)
.

Proof For each vertex v ∈ B \ Z B
[0,2n), by the definition of Z B

h (and (2)),

∣
∣σ(v, Z(v)) − σμ(v, Z(v))

∣
∣ ≤ deg(v)1/2+α

(⌈
n

δ

⌉

+ a′ − 1

)

, (24)

i.e. the weight of v needs to be modified by at most deg(v)1/2+α
(� n

δ
� + a′ − 1

)
. If at

the same time v /∈ ZS , then it has at least deg(v)s∗/(2δ) neighbors in S. Therefore,
by (24), in order to satisfy the second condition in (23), it is sufficient to modify each

edge between v ∈ B \
(
Z B

[0,2n) ∪ ZS

)
and its neighbors in S by at most

⌈

deg(v)1/2+α

(⌈
n

δ

⌉

+ a′ − 1

)

/ degS(v)

⌉

< deg(v)1/2+α

(⌈
n

δ

⌉

+ a′
)

/(deg(v)s∗/(2δ)) + 1

=2

(⌈
n

δ

⌉

+ a′
)

δ/(s∗ deg(v)1/2−α) + 1 ≤ 2

(⌈
n

δ

⌉

+ a′
)

δ1/2+α/s∗ + 1. (25)

��
Step 2 Now we wish to modify f2 so that all the vertices in B\(Z B

[0,2n) ∪ ZS) have

distinct vertex weights under f̃1 + f̃2, while these weights are not equal to 0, 1, . . . , 5
modulo k.

Recall v ∈ Vh means σμ(v, Z(v)) ∈ Ih ⊂ [h(� n
δ
� + a′ − 1), (h + 1)(� n

δ
�

+ a′ − 1)).
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Step 2-1 We first modify f2 so that for 0 ≤ h < 2n, all the vertices in every given
Vh \ (Z B

h ∪ ZS) have distinct weights not equal to 0, 1, . . . , 5 modulo k, fitting as
many as possible of these weights in Ih . (Note we will admit weights from different
Vh’s to overlap for now.)

Let Z′ ⊂ Z be the set of integers which are not equal to 0 to 5 modulo k. Assume
elements in Z

′ inherit their natural ordering from Z. Two integers are said to be
consecutive in Z

′ if they are consecutive in their ordering in Z
′. Intervals in Z

′ are
thus consecutive integers in Z

′ with respect to the ordering in Z
′. For each interval I

of consecutive |I | integers in Z, it is easy to see that:

|I ∩ Z
′| ≥ (|I | − 6)(k − 6)/k. (26)

By (26), the size of an interval I ⊂ Z does not change much after restricting it to Z
′,

i.e.,
|I | ≤ |I ∩ Z

′|k/(k − 6) + 6. (27)

Claim 24 For each integer 0 ≤ h < 2n, it is sufficient to modify the weight of every
v ∈ Vh\(Z B

h ∪ZS) by atmostmax(|Vh |, |Ih |)k/(k−6)+12 in order to attribute distinct
weights to all vertices in Vh \ (Z B

h ∪ ZS) and guarantee that these form consecutive
integers in Z

′ with the smallest vertex weight equal to min(Ih ∩ Z
′), that is at most

h(�n/δ� + a′ − 1) + 6.

Proof For any given h, we analyze vertices in Vh\(Z B
h ∪ ZS) one after another.

By Claim 23, each such vertex v has the current weight at most one away from
σμ(v, Z(v)) ∈ Ih . Changing it by at most 7 we may thus shift this weight inwards
Ih ∩ Z

′. Next, in order to reach the least yet unoccupied position in Z
′ which is

not smaller than min(Ih ∩ Z
′), this weight needs to be further shifted by at most

max(|Vh |, |Ih |)−1 consecutive integers inZ′. Thus, by (27), the vertexweight of v after
Step 1 needs to be changed in total by atmost 7 + ((max(|Vh |, |Ih |)k/(k−6)+6) − 1).

��
Step 2-2 In this step we discuss further modifications of f2, resulting in pairwise

distinct weights from Z
′ associated to all vertices in V[0,2n) \ (Z B

[0,2n) ∪ ZS). We will
need the following combinatorial lemma, concerning shifts of intervals sufficient to
make them pairwise disjoint.

Lemma 25 Let p be a positive integer. For any p intervals Ii = [ai , bi ) ⊂ Z (i.e.,
ai , bi ∈ Z), 1 ≤ i ≤ p where a1 ≤ a2 ≤ · · · ≤ ap, there exist p disjoint intervals
I ′
i ⊂ Z with I ′

i = [a′
i , b

′
i ) such that b

′
i − a′

i = bi − ai for 1 ≤ i ≤ p, a1 = a′
1 ≤ a′

2 ≤
· · · ≤ a′

p and

max
1≤i≤p

|a′
i − ai | ≤ max

1≤l1<l2≤p−1

⎛

⎝
l2∑

i=l1

(bi − ai ) − (ai+1 − ai )

⎞

⎠ . (28)

Proof As for any i , |I ′
i | = b′

i − a′
i = bi − ai = |Ii |, an interval I ′

i may be regarded
as the translation of Ii by a′

i − ai . We will prove the lemma by induction on p. For
p = 1 the claim trivially holds.
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Suppose p > 1. First consider the case when a2 ≥ b1, or equivalently I1 is
disjoint from I2. By the inductive hypothesis applied to the intervals I2, . . . , Ip, we
could shift them to disjoint intervals I ′

2, . . . , I
′
p where I2 is the same as I ′

2. With I1
having no need to shift, each of the remaining intervals has thus been shifted by at most

max2≤l1<l2≤p−1

(∑l2
i=l1

(bi − ai ) − (ai+1 − ai )
)
. The shifted intervals I ′

2, . . . , I
′
p are

moreover still disjoint from I1, since for i ≥ 2, a′
i ≥ a′

2 = a2 ≥ b1. Hence, the lemma
holds.

We may thus assume that a2 < b1, i.e. I1 and I2 overlap. Since I ′
1 needs to

remain the same as I1, the interval I2 must shift to the right by (at least) b1 − a2 =
(b1−a1)−(a2−a1), and become I ′

2 = [a′
2, b

′
2) = [b1, b1+|I2|) = [b1, b1+(b2−a2)).

If I ′
2 is to the left of I3 and I

′
2 is disjoint from I3 (i.e., a3 ≥ b′

2), by the inductive hypoth-
esis applied to I3, . . . , Ip, we obtain a desired {I ′

i }1≤i≤p with the maximum shift at

most max
(
b1 − a1 − (a2 − a1),max3≤l1<l2≤p−1

(∑l2
i=l1

(bi − ai ) − (ai+1 − ai )
))

,

which is bounded above by the right-hand side in (28).
If on the other hand I ′

2 overlaps with I3 or I ′
2 is to the right of I3 (i.e., a3 < b′

2),
then I3 has to be shifted, e.g. to I ′

3 = [a′
3, b

′
3) = [b′

2, b
′
2 + (b3 − a3)). We analogously

continue this process, obtaining I ′
j = [a′

j , b
′
j ) sequentially for j = 3, . . . , l where

3 ≤ l ≤ p is the last index such that al < b′
l−1. That is, for each j ≤ l, we set

a′
j = b′

j−1, which is in fact the best we could do, and b
′
j = a′

j +|I j | = a′
j + (b j −a j ),

thus a′
j = a1 + (b1 − a1) + (b2 − a2) + · · · + (b j−1 − a j−1). Therefore, the shift

of I j is a′
j − a j = a1 + (b1 − a1) + (b2 − a2) + · · · + (b j−1 − a j−1) − a j =

∑ j−1
i=1 (bi − ai )−(ai+1 − ai ). Applying now the inductive hypothesis to Il+1, . . . , Ip,

we obtain p intervals I ′
1, . . . , I

′
p satisfying the conditions in the lemma, and with:

max
1≤i≤p

|a′
i − ai | ≤ max

⎛

⎝ max
1≤ j≤l−1

j∑

i=1

(bi − ai )−(ai+1 − ai ), max
l+1≤l1<l2≤p−1

⎛

⎝
l2∑

i=l1

(bi − ai ) − (ai+1 − ai )

⎞

⎠

⎞

⎠ ,

thus the lemma is proved. Furthermore, the upper bound is sharp when l = p. ��
Lemma 26 Assume (16) holds for all benchmarks h∗

i <h∗
j . Then, it is sufficient to

further change the weight of each vertex in V[0,2n)\(Z B
[0,2n) ∪ ZS) by at most

3n
δ1/2−α in

order to shift them to pairwise distinct values inZ′ (provided δ and n/δ are sufficiently
large).

Proof For each integer 0 ≤ h < 2n, due to Claim 24, the weights of vertices in
Vh \ (Z B

[0,2n) ∪ ZS) form an interval of length |Vh \ (Z B
[0,2n) ∪ ZS)| in Z

′ with the
least element ah = min(Ih ∩ Z

′). We now apply Lemma 25 to these intervals, taking
into account only integers in Z

′, i.e., (bi − ai ) is evaluated as |Vi\(Z B
[0,2n) ∪ ZS)|

and ai+1 − ai is substituted by |Ii ∩ Z
′| in the lemma. Consequently, all the weights

of vertices in V[0,2n) \ (Z B
[0,2n) ∪ ZS) may remain in Z

′ and get pairwise distinct via
shifting each of the vertex weights by at most the following number of consecutive
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integers in Z′:

max
0≤l1<l2≤2n−2

⎛

⎝
l2∑

i=l1

|Vi \ (Z B
[0,2n) ∪ ZS)| − |Ii ∩ Z

′|
⎞

⎠

≤ max
0≤l1<l2≤2n−2

⎛

⎝
l2∑

i=l1

|Vi | − |Ii ∩ Z
′|
⎞

⎠

≤ max
0≤l1<l2≤2n−2

⎛

⎝
l2∑

i=l1

|Vi | − (|Ii | − 6)(k − 6)/k

⎞

⎠ ≤ max
0≤l1<l2≤2n−2

⎛

⎝
l2∑

i=l1

(

|Vi | − (

⌈

n/δ

⌉

+ a′ − 7)(k − 6)/k

)
⎞

⎠ , (29)

where the second inequality follows by (26) and the last inequality uses |Ii | = �n/δ�+
a′ − 1.

In order to upper-bound the quantity in (29), suppose the maximization is achieved
when l1 = h1 and l2 = h2, and suppose h1 is between benchmarks h∗

i−1 and h∗
i , i.e.,

h∗
i−1≤h1<h∗

i . Similarly, suppose h∗
j ≤ h2 < h∗

j+1 for some j ≥ i − 1. Thus, the last
quantity in (29) equals

∑

h∈[h1,h2]

(

|Vh | − (

⌈

n/δ

⌉

+ a′ − 7)(k − 6)/k

)

≤
∑

h∈[h∗
i ,h

∗
j )

(

|Vh | − (

⌈

n/δ

⌉

+ a′ − 7)(k − 6)/k

)

+
∑

h∈[h∗
j ,h2+1)

(

|Vh | − (

⌈

n/δ

⌉

+ a′ − 7)(k − 6)/k

)

+
∑

h∈[h1,h∗
i )

(

|Vh | − (

⌈

n/δ

⌉

+ a′ − 7)(k − 6)/k

)

≤
∑

h∈[h∗
i ,h

∗
j )

(

|Vh | − (

⌈

n/δ

⌉

+ a′ − 7)(k − 6)/k

)

+
∑

h∈[h∗
j ,h2+1)

|Vh | +
∑

h∈[h1,h∗
i )

|Vh |

≤
∑

h∈[h∗
i ,h

∗
j )

(

|Vh | − (

⌈

n/δ

⌉

+ a′ − 7)(k − 6)/k

)

+
∑

h∈[h∗
j ,h

∗
j+1)

|Vh | +
∑

h∈[h∗
i−1,h

∗
i )

|Vh |. (30)
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By (16) and (15) (implying that μ[h∗
t ,h

∗
t+1)

≤ 2n/δ for every given t),

∑

h∈[h∗
j ,h

∗
j+1)

|Vh | +
∑

h∈[h∗
i−1,h

∗
i )

|Vh | ≤ μ[h∗
i−1,h

∗
i )

+ μ[h∗
j ,h

∗
j+1)

+
√
nμ[h∗

i−1,h
∗
i )

δ1−2α +
√
nμ[h∗

j ,h
∗
j+1)

δ1−2α < 3n/δ1−α. (31)

Analogously, by (16) and the facts that μ[h∗
i ,h

∗
j )

≤ n and μh ≤ n/δ for each h (due to
Claim 15),

∑

h∈[h∗
i ,h

∗
j )

|Vh | ≤ μ[h∗
i ,h

∗
j )

+
√
nμ[h∗

i ,h
∗
j )

δ1−2α ≤ n(h∗
j − h∗

i )

δ
+ n

δ1/2−α
. (32)

By (31) and (32), the last quantity in (30) is thus bounded above by

n(h∗
j − h∗

i )

δ
+ n

δ1/2−α
− (h∗

j − h∗
i )(

⌈

n/δ

⌉

+ a′ − 7)
k − 6

k
+ 3n

δ1−α

≤ n(h∗
j − h∗

i )

δ
+ n

δ1/2−α
− (h∗

j − h∗
i )
n

δ

k − 6

k
− (h∗

j − h∗
i )(a

′ − 7)
k − 6

k
+ 3n

δ1−α

= n(h∗
j − h∗

i )

δ
+ n

δ1/2−α
− (h∗

j − h∗
i )
n

δ
+ (h∗

j − h∗
i )
n

δ

6

k

− (h∗
j − h∗

i )(a
′ − 7)

k − 6

k
+ 3n

δ1−α

= n

δ1/2−α
+ (h∗

j − h∗
i )

(
n

δ

6

k
− (a′ − 7)

k − 6

k

)

+ 3n

δ1−α

≤ n

δ1/2−α
+ 3n

δ1−α
<

2n

δ1/2−α
.

The second to last inequality above holds because by the definitions of k and a′,

n

δ

6

k
− (a′ − 7)

k − 6

k
≤ 0

for δ and n/δ (thus also k) large enough. We have thus proved that each vertex
needs to shift its weight by at most 2n

δ1/2−α consecutive integers in Z
′. Hence, by (27),

each vertex needs to shift its weight by at most
((

2n
δ1/2−α +1

)
k

k−6 + 6
)

−1 < 3n
δ1/2−α

(in Z). ��

4.3.3 Summary of Step B

Corollary 27 Assume (16) holds for all benchmarks h∗
i < h∗

j . Then, the following can
be achieved (for δ and n/δ large enough).
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Vertices v in B\
(
Z B

[0,2n) ∪ ZS

)
can be provided distinct weights in Z

′ due to

appropriately chosen f2 supported on edges across B\
(
Z B

[0,2n) ∪ ZS

)
and S, with

‖ f2‖∞ ≤ 11n
δ1+ε + 2.

Consequently, each edge e in E(B) satisfies ( f1 + f2)(e) = 1 or �n/δ�+ a′, while
each edge e between B and Sq , for 1 ≤ q ≤ k′, satisfies

( f1 + f2)(e) ∈
[⌈⌈

n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
11n

δ1+ε
+ 2

)

,

⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) +
(
11n

δ1+ε
+ 2

)]

. (33)

Proof Claim 23 within Step 1 shows we may first modify weights of edges across B

and S by at most 2
(� n

δ
� + a′) δ1/2+α/s∗ + 1 so that for each v ∈ B\

(
Z B

[0,2n) ∪ ZS

)
,

( f̃1 + f̃2)(v) is at most one away from σμ(v, Z(v)).
In Step 2-1, Claim 24 exposes that the weight of each vertex v ∈ Vh\(Z B

h ∪ ZS) ⊆
V[h∗

i ,h
∗
i+1)

(for any given h, i) needs to further change by at most max(|Vh |, |Ih |)k/(k−
6)+12 to be shifted to Z′ and get distinguished from the remaining ones in Vh\(Z B

h ∪
ZS). By (16) and (15),we have |Vh | ≤ μ[h∗

i ,h
∗
i+1)

+
√

nμ[h∗
i ,h∗

i+1)

δ1−2α ≤ 2n/δ+√
2n/δ1−α <

1.5n/δ1−α . We also have |Ih | = �n/δ� + a′ − 1 < 1.5n/δ1−α . Thus the weight of v

needs to shift by at most (1.5n/δ1−α) · k/(k − 6) + 12 < 2n/δ1−α within this step.
Finally, within Step 2-2, by Lemma 26, the vertices in V[0,2n) \ (Z B

[0,2n) ∪ ZS) need

to change their weights by at most 3n/δ1/2−α to make them pairwise distinct and keep
them in Z′.

Steps 2-1 and 2-2 together require changing vertex weights by at most 2n/δ1−α +
3n/δ1/2−α < 3.5n/δ1/2−α . Since v /∈ ZS , it has at least s∗/2 neighbors in S. There-
fore, we only need to modify the weight of each edge between v and S by at most
�(3.5n/δ1/2−α)/(s∗/2)� < 7n/δ1+ε + 1 in Step 2.

In Steps 1 and 2 combined, the weight of each edge across B\
(
Z B

[0,2n) ∪ ZS

)
and

S is thus changed by at most

2

(⌈
n

δ

⌉

+ a′
)

δ
1
2+α

s∗ + 1 + 7n

δ1+ε
+ 1 < 4

(n

δ

) δ
1
2+α

s∗ + 1 + 7n

δ1+ε
+ 1≤ 11n

δ1+ε
+ 2.

The lemma is thus proved, as its last statement follows by the definition of f1 in
Step A. ��

4.4 Preparations to Step C

We define the last set of bad vertices.

Definition 28 For each integer 1 ≤ q ≤ k′, let ZSq be the set of vertices v in Sq such
that

∣
∣degB(v) − deg(v)(δ − s∗)/δ

∣
∣> deg(v)1/2+ε.
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Lemma 29 With probability at least 1 − k′e−δ2ε/6, for all 1 ≤ q ≤ k′,

|ZSq |<
4ns∗

δk′ exp(−δ2ε/6). (34)

In addition, when δ >
√
n, with probability at least 1 − 1/n,

⋃
1≤q≤k′ ZSq = ∅.

Proof Consider any fixed integer q ∈ [1, k′]. For each vertex v, let Zv be the indicator
random variable that v ∈ Sq but

∣
∣degB(v) − deg(v)(δ − s∗)/δ

∣
∣ > deg(v)1/2+ε. Thus,

|ZSq | = ∑
v Zv . For each vertex v,

Pr(Zv = 1) = Pr
(
v ∈ Sq

)
Pr

(∣
∣degB(v) − deg(v)(δ − s∗)/δ

∣
∣> deg(v)1/2+ε

∣
∣
∣ v ∈ Sq

)
.

Each neighbor of v is placed in B independently with probability (δ − s∗)/δ, and
thus E[degB(v)] = deg(v)(δ − s∗)/δ, which is greater than deg(v)1/2+ε. Thus, by the
Chernoff Bound,

Pr

(∣
∣
∣
∣degB(v) − deg(v)

δ − s∗

δ

∣
∣
∣
∣> deg(v)1/2+ε

∣
∣
∣ v ∈ Sq

)

≤ 2 exp

(

− deg(v)1+2ε

3 deg(v) δ−s∗
δ

)

< 2e−δ2ε/3. (35)

Therefore,

E[|ZSq |] = E

[
∑

v

Zv

]

=
∑

v

Pr(Zv = 1) ≤
∑

v

Pr(v ∈ Sq) · 2 exp(−δ2ε/3)

<
2ns∗

δk′ · 2 exp(−δ2ε/3). (36)

By Markov’s Inequality and (36),

Pr

(

|ZSq | ≥ 2ns∗

δk′ · 2 exp(−δ2ε/6)

)

≤ E[|ZSq |]/
(
2ns∗

δk′ · 2 exp(−δ2ε/6)

)

≤ exp(−δ2ε/6),

and therefore, (34) holds by a union bound for 1 ≤ q ≤ k′.
In addition, when δ >

√
n, by a union bound over v and q on (35), with probability

at least 1 − nk′2e−δ2ε/3 > 1 − 1/n, ZSq = ∅ for all 1 ≤ q ≤ k′. ��
So far we have obtained the following sets of bad vertices, which require different

treatments in Step C:

1. the set Z B
[0,2n) ⊂ B, whose weights in Step A are not close to the expected values,

2. the set ZS , whose degrees to S are less than s∗deg(v)/(2δ),
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3. a set Zn
S ⊂ B, which are neighbors of vertices in ZS such that each vertex in ZS

has at least s∗/2 neighbors in Zn
S , and lastly,

4. the sets ZSq ⊂ Sq , 1 ≤ q ≤ k′ of vertices whose degrees to B are far from
expected.

Definition 30 Denote by Ub the union of all these four types of bad vertices. The
complement of Ub in S will in turn be referred to as the set of good vertices and
denoted Ug, Ug = S\Ub ⊂ S.

Claim 31 With probability at least 1 − 2e−n/(4δ0.5) − (8δ2)e
− 1

3

√
n

δ1−2α − 5δ2e−δ2α/4,

|Ub| < 3ne−δ2α/4

(provided δ and n/δ are sufficiently large). Furthermore, if δ >
√
n, then with

probability at least 1 − 3/n, Ub = ∅.
Proof By Corollary 20, Lemmas 22 and 29,

|Ub|<|Z B
[0,2n)| + |ZS| + |Zn

S| +
⎛

⎝
k′

∑

q=1

|ZSq |
⎞

⎠

≤2ne−δ2α/4 + 2ne−s∗/24 + 2ns∗e−s∗/24 + k′ 4ns∗

δk′ e−δ2ε/6 < 3ne−δ2α/4

with probability at least 1− 4δ2e−δ2α/4 − (8δ2)e
− 1

3

√
n

δ1−2α − e−s∗/24 − 2e−n/(4δ0.5) −
k′e−δ2ε/6 > 1 − 2e−n/(4δ0.5) − (8δ2)e

− 1
3

√
n

δ1−2α − 5δ2e−δ2α/4.
In addition, when δ >

√
n, again by Corollary 20, Lemmas 22 and 29, with

probability at least 1 − 3/n, Ub = ∅. ��
We will further refer to two vertices in S as being “close” (Definition 32) if their

vertex weights could potentially be very close in terms of values after Step C. We will
make sure vertices which are “close”do not have the same vertex weight after Step C.
Informally, u ∈ L(v) if u, v are “close”, whereas for u /∈ L(v) we will prove later that
the weights of u, v cannot be the same after Step C.

Definition 32 For any two vertices v, u ∈ S, we say u ∈ L(v) and v ∈ L(u) if there
are integers 1 ≤ p, q ≤ k′ such that v ∈ Sq , u ∈ Sp and both of the following two
conditions hold:

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) +
(
13n

δ1+ε
+ 4

))

deg(v)

>

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + p) −
(
13n

δ1+ε
+ 4

))

deg(u); (37)
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(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
13n

δ1+ε
+ 4

))

deg(v)

<

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + p) +
(
13n

δ1+ε
+ 4

))

deg(u). (38)

Lemma 33 With probability at least 1 − 2n exp
(
− 1

3
s∗n
δk′

)
(if n/δ and δ are large

enough), for every v ∈ S,

|L(v)| ≤ 2

⌈
s∗

k′

⌉
n

δ
.

Proof Suppose (37) holds. Note ��n/δ�/(3k′)�(k′ + q) ≤ ��n/δ�/(3k′)�(k′ + k′) <

(((n/δ) + 1)/(3k′) + 1)2k′ = 2n/(3δ) + 2/3 + 2k′ < 0.99n/δ. Therefore, the left
hand side of (37) equals at most (n/δ) deg(v). Analogously, the right hand side
of (37) equals at least (n/(3δ) − n/(6δ)) deg(u) = deg(u)n/(6δ). Therefore, (37)
implies: (n/δ) deg(v) > deg(u)n/(6δ), i.e., 6 deg(v) > deg(u). Similarly, (38)
implies 6 deg(u) > deg(v). Therefore, if u ∈ L(v), then

1/6 < deg(v)/ deg(u) < 6. (39)

Given v ∈ Sq for some fixed 1 ≤ q ≤ k′, we compute the probability that |L(v)| is
large. To this end we first show that for a given vertex u ∈ V (G) \ {v}, if it satisfies
both (37) and (38), then there is only one Sp with 1 ≤ p ≤ k′ that u can be placed in.
Rearranging inequality (37), we obtain

k′ + p <

(⌈⌈

n/δ

⌉

/(3k′)
⌉

(k′ + q) +
(

13n
δ1+ε + 4

))
deg(v)
deg(u)

+
(

13n
δ1+ε + 4

)

⌈⌈

n/δ

⌉

/(3k′)
⌉ .

Similarly, by (38),

k′ + p >

(⌈⌈

n/δ

⌉

/(3k′)
⌉

(k′ + q) −
(

13n
δ1+ε + 4

))
deg(v)
deg(u)

−
(

13n
δ1+ε + 4

)

⌈⌈

n/δ

⌉

/(3k′)
⌉ .

These two inequalities mean that if u ∈ L(v), then by (39), k′ + p must belong to an
interval in R of length at most

2

((
13n

δ1+ε
+ 4

)

· 6 +
(
13n

δ1+ε
+ 4

))

/

⌈⌈

n/δ

⌉

/(3k′)
⌉

< 14

(
13n

δ1+ε
+ 4

)

/(n/(3δk′)) <
546k′

δε
+ 168k′δ

n
< 1.
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Therefore, there indeed may be at most one p so that u ∈ Sp implies u ∈ L(v). Thus,

Pr
(
u ∈ L(v)

∣
∣ v ∈ Sq

) ≤
⌈
s∗

k′

⌉
1

δ
.

Hence, the expected number of vertices u such that u ∈ L(v) given v ∈ Sq equals
at most �s∗/k′�(n − 1)/δ < �s∗/k′�n/δ. Since for fixed v and q such that v ∈ Sq , the
events u ∈ L(v) are independent for all u �= v, by the Chernoff Bound we thus obtain
that:

Pr

(

|L(v)| −
⌈
s∗

k′

⌉
n

δ
>

⌈
s∗

k′

⌉
n

δ

∣
∣
∣ v ∈ Sq

)

≤ 2 exp

(

−1

3

(⌈
s∗

k′

⌉
n

δ

))

≤2 exp

(

−1

3

(
s∗n
δk′

))

.

Therefore, by the law of total probability, for any given v ∈ V (G),

Pr
(
|L(v)| > 2� s∗

k′ � n
δ

∣
∣
∣ v ∈ S

)
≤ 2 exp

(
− 1

3

(
s∗n
δk′

))
. Hence,

Pr

(

(v ∈ S) ⇒
(

|L(v)| ≤ 2

⌈
s∗

k′

⌉
n

δ

))

= 1 − Pr

(

(v ∈ S) ∧
(

|L(v)| > 2

⌈
s∗

k′

⌉
n

δ

))

≥ 1 − Pr

(

|L(v)| > 2

⌈
s∗

k′

⌉
n

δ

∣
∣
∣ v ∈ S

)

≥ 1 − 2 exp

(

−1

3

(
s∗n
δk′

))

.

By a union bound over all vertices v we thus obtain the thesis. ��
Corollary 34 With positive probability, all the following inequalities hold (for δ and
n/δ sufficiently large):

|Ub| < 3n exp(−δ2α/4),

|S| ∈ [s∗n/δ − n/δ0.5−ε, s∗n/δ + n/δ0.5−ε],
|L(v)| ≤ 2

⌈
s∗

k′

⌉
n

δ
for all v ∈ S.

∣
∣
∣V[h∗

i ,h
∗
j )

∣
∣
∣ ≤ μ[h∗

i ,h
∗
j )

+
√
nμ[h∗

i ,h
∗
j )

δ1−2α for any two benchmarks h∗
i <h∗

j .

In addition, when δ >
√
n, then Ub = ∅.

Proof This corollary is an immediate consequence of Corollary 20, Lemma 22, Claim

31 and Lemma 33, as 1−4δ2e−δ2α/4−8δ2 exp
(
− 1

3

√
n

δ1−2α

)
−e−s∗/24−2e−n/(4δ0.5)−

2e−n/(4δ0.5) − 8δ2 exp
(
− 1

3

√
n

δ1−2α

)
− 5δ2e−δ2α/4 − 2n exp

(
− 1

3
s∗n
δk′

)
− 3

n > 0 when

δ is sufficiently large. ��
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4.5 Step C

Throughout Step C, we assume the statements in Corollary 34 hold.

4.5.1 Goal

Definition 35 Let G ′ be the graph on the vertex set Ub ∪ S whose edges consist of all
the edges in G[S], all the edges between Ub and S in G and all the edges between ZS

and Zn
S ⊂ B in G.

Note that by the definitions of G ′, ZS and Zn
S , for every v ∈ V (G ′),

degG ′(v) ≥ s∗

2
. (40)

In this step we will only change the weights of edges in G ′. Our goal is to obtain
pairwise distinct weights in Z \Z′ (i.e., equal to 0, 1, . . . , 5 modulo k) for all vertices
in V (G ′) = Ub ∪ S after Step C. Within it we will not change the weights of edges
incident to vertices in B \Ub. Therefore, the weights of vertices in B \Ub will remain
distinct and in Z′ by Steps A and B (Corollary 27).

4.5.2 Step C-1

Initialization We initialize Step C by assigning to all edges in G ′[S] = G[S] and
G ′[B] the new weight: �� n

δ
�/2�. We do not modify the weights of edges across B and

S in G ′ yet, though.
Suppose C1, . . . ,CT are the non-trivial connected components in G ′[S] (i.e., of

order larger than one), ordered arbitrarily. Let W be the set of isolated vertices in
G ′[S]. Clearly, W ⊂ ZS ⊂ Ub by the definitions of ZS and Ub. Set

U ′ := V (G ′) \ (S \ W ).

Claim 36 We may modify every edge weight in G ′ by at most 2 so that each vertex
weight in U ′ equals 0 or 1 modulo k, each vertex weight in Ug \ U ′ equals 2 or 3
modulo k and each vertex weight in Ub \U ′ equals 4 or 5 modulo k.

Proof Wewill apply an algorithm analogous to the ones used in [25, 30], whose origins
date back to [39].

Given an arbitrary ordering v1, v2, . . . , v|S∪Ub| of vertices in G ′, each edge {vi , v j }
with i < j is called a forward edge of vi and a backward edge of v j . For each v ∈ U ′,
define a set Av = {0, 1}. For each v ∈ Ug \U ′, define Av = {2, 3}. Finally, for each
v ∈ Ub \U ′, set Av = {4, 5}. For i = 1, 2, . . . , we consider each consecutive vi after
another and modify weights of edges incident with vi in G ′ so that the weight of vi
lands in Av modulo k. We also guarantee that this weight does not leave Av (modulo
k) throughout the further part of the algorithm.

By (40), the first vertex v1 has at least s∗/2 neighbors, i.e., at least s∗/2 forward
edges inG ′.Wemodify each forward edge of v1 by adding 0 or 1 to itsweight. Thereby,
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wemay obtain at least s∗/2+1> k + 6 distinct weights which are consecutive integers
for v1. Thus, there is a way of choosing these modifications so that the weight of v1
belongs to Av modulo k.

We then proceed consecutively with vi , i = 2, 3, . . .. For a given i , we again admit
adding 0 or 1 to the weights of the forward edges of vi . There are two admissible
modifications for the weights of backward edges of vi as well. These belong to the set
{−1, 0, 1}. Specifically, say {vi , u} is a backward edge of vi . If the vertex weight of u
modulo k is currently the smaller value in Au , then we admit modifying the weight of
{vi , u} by adding 0 or 1. Note that this in particular guarantees that the updated vertex
weight of u will remain in Au modulo k. By the same reason, we admit adding 0 or
−1 to the weight of {vi , u} if the vertex weight of u modulo k is currently the larger
value in Au .

Consequently, analogously as for v1, we may thereby obtain at least degG ′(v)+1 ≥
s∗/2+1 > k+6 weights which are consecutive integers for vi . Thus, there is a way of
choosing these modifications so that the weight of vi belongs to Av modulo k, which
is our goal.

Since each edge in G ′ can be modified at most twice: once as a forward edge and
once as a backward edge, each edge in G ′ changes its weight by at most 2 in Step
C-1. ��
4.5.3 Step C-2

Step C-2 is more technical. We in particular handle all bad vertices within it. Given
an ordering v1, . . . , v|S∪Ub| of vertices in G ′ (specified later), again each edge {vi , v j }
with i < j is called a forward edge of vi and a backward edge of v j . We will again
use an algorithm inspired by [25, 30, 39].

If vi ∈ Ub, we say all its forward and backward edges are active. If vi ∈ Ug, then
only its forward and backward edges in E(S) are called active. (Note that a good
vertex v in S could be adjacent to some vertex u in Ub \ S. Such an edge would still
be active for u ∈ Ub, but would not be active for v ∈ Ug.) We call a vertex terminal
if it has no active forward edge in the ordering.

Recall that by the definitions in Step C-1, the non-trivial components in G ′[S]:
C1, . . . ,CT together with the setW of isolated vertices in S partition S. Furthermore,
as W ⊂ ZS ⊂ Ub, by Corollary 34, |W | ≤ |Ub| < |S|. Thus, there is at least one
nontrivial connected component in G ′[S]. Recall

V (G ′) = S ∪Ub, U ′ = V (G ′) \ (C1 ∪ · · · ∪ CT ).

The following properties of G ′ are immediate from the definitions of different types
of bad vertices and G ′.
Claim 37 Each vertex in G ′ has at least s∗/2 active edges in G ′,

U ′ ⊂ Ub, Ug ⊂ S \U ′, V (G ′) = U ′ ∪ S. (41)

Thus, in particular, if v ∈ V (G ′) is a good vertex, then its neighbors in G ′ which are
not in S are bad vertices.
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Fig. 1 Illustration of ordering of vertices in V (G′). Black vertices are good vertices in S; gray vertices are
bad vertices in S, and white vertices are bad vertices in U ′ \ S.

Ordering of VerticesWe now specify the ordering of the vertices in G ′. Let ti , i =
1, 2, . . . denote the terminal vertices in the ordering. For each i , let ri be the vertex
immediately preceding ti in the ordering. We show there is an ordering satisfying the
following claim.

Claim 38 There is an ordering of the vertices in G ′ such that all vertices in U ′ come
before vertices not inU ′. Furthermore, the ordering satisfies the following conditions.

1. For each i , {ri , ti } is always an edge in G ′ and moreover, this edge is an active
forward edge for ri .

2. The vertex sets {ri , ti }i are pairwise disjoint.
3. For each i , the pair {ri , ti } satisfies one of the following: either both ti , ri are in

U ′ ⊂ Ub, or both ti , ri are in S \U ′.

Proof Let C ′
1, . . . ,C

′
T ′ be the non-trivial connected components in G ′[U ′]. Suppose

W ′ is the set of isolated vertices in G ′[U ′].
We order the vertices in G ′ as follows: we start from the vertices in W ′, ordered

arbitrarily. Coming next will be the vertices in C ′
1, . . . ,C

′
T ′ , sequentially. Last in the

ordering will in turn be vertices in C1, . . . ,CT , sequentially. Note that we have not
specified the ordering within each Ci or C ′

i yet. Nevertheless, it is already clear that
vertices in U ′ will all come before vertices not in U ′ in the ordering. (See Fig. 1).

We finally specify the ordering within non-trivial connected componentsCi ,C ′
i . To

this end we simply use reversed BFS to order the vertices in each of these, one after
another. Consequently, if r , t are the last two vertices in the ordering in a given such
component, then t is the root of the corresponding BFS tree, and hence {r , t} ∈ E(G ′).

Consider a given C ′
i , 1 ≤ i ≤ T ′. Since all the vertices in C ′

i are bad, in particular
the last two vertices r , t in C ′

i are bad vertices inU
′, hence, {r , t} is an active forward

edge for r . Analogously, for a given Ci , 1 ≤ i ≤ T , all vertices in Ci are in S \ U ′
and, in particular, so are the last two vertices r , t in Ci . Moreover, since all edges in
Ci ⊂ S are active, the edge {r , t} is an active forward edge for r . Additionally, by the
definition of BFS, only the last vertex (i.e., the root t) can be a terminal vertex in any
given C ′

i or Ci .
We are left to show that there is no terminal vertex inW ′. Since theminimum degree

of G ′ is at least s∗/2 andW ′ itself is an independent set in G ′, each vertex inW ′ has at
least s∗/2 incident edges joining it with vertices in V (G ′) \W ′, which come after W ′
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in the ordering. Since W ′ ⊂ Ub, these forward edges are active. Therefore vertices in
W ′ cannot be terminal. ��

Anchor sets Let tb = �48ne−δ2α/4/s∗�, tg = 2� 16n
δk′ 1

tb
�tb. In particular, (2tb) |

tg.
Each vertex in G ′ is either in U ′, and thus is a bad vertex, or is in S \U ′, and thus

could either be good or bad.
Each bad vertex v ∈ U ′ will be assigned in step C-2 an anchor set APv of two

elements of the following form: {l+ (2λ)tbk+ak, l+ (2λ+1)tbk+ak}, where λ ≥ 0
anda ∈ [0, tb−1] are integers to be determined in StepC-2, and l = 0 or 1 is theweight
of v modulo k at the end of Step C-1, and thus is pre-determined. All the elements in
APv are regarded modulo tgk. For a fixed l = 0 or 1, by varying λ and a, these sets
partition the set of integers {l + k · Z} modulo tgk. Different values of a correspond
to different congruence classes modulo tbk, denoted by Ca(l) = {l + ak + tbk · Z
mod tgk}. Note these are well defined, as tg is divisible by tb.

Similarly, each vertex v ∈ V (G ′)\U ′ will be assigned in step C-2 a setAPv of the
form {l + (2λ)tgk + ak, l + (2λ + 1)tgk + ak} ⊂ Z≥0, where λ, a are integers with
λ ≥ 0, a ∈ [0, tg − 1] to be determined in Step C-2, and l = 2, 3, 4, or 5 is the vertex
weight of v modulo k at the end of Step C-1. For a fixed l, these sets partition the set
of non-negative integers {l + k · Z≥0}. Different values of a correspond to different
congruence classes, denoted by Ca(l) = {l + ak + tgk · Z}.

Goal For i = 1, 2, . . . , the algorithm sequentially analyzes each vi , greedily mod-
ifying weights of active edges incident to vi in G ′ in order to prescribe the vertex
weight of vi to an appropriately chosen set APvi (if vi ∈ U ′) or APvi (if vi /∈ U ′),
described above. Furthermore:

(i) In the process of analyzing a given v j , for any i < j , the setAPvi orAPvi remains
unchanged. That is, the vertex weight of vi stays in APvi if vi /∈ U ′, and stays in
APvi modulo tgk if vi ∈ U ′ throughout this and all later stages of the algorithm.

(ii) The bad vertices in U ′ = Ub ∩ U ′ have distinct APv’s (modulo tgk) assigned,
with vertex weights being 0 or 1 modulo k.

(iii) The bad vertices in Ub \ U ′ have distinct APv’s assigned, with vertex weights
being 4 or 5 modulo k.

(iv) Each good vertex v ∈ Ug \ U ′ = Ug has assigned a set APv different from the
ones of vertices in L(v), with vertex weights being 2 or 3 modulo k.

Rules Rules of modifying edge weights are as follows. Suppose we are analyzing
vi and {u, vi } is an edge incident to vi in G ′.
1. For v1, let APv1 (if v1 /∈ U ′) or APv1 (if v1 ∈ U ′) be the set of the desired form

that contains the current vertex weight of v1 (modulo tgk, if v1 ∈ U ′). Note the
current weight of v1 uniquely determines the setAPv1 orAPv1 , respectively. We
next move to v2.

2. Only the active backward and forward edges of vi can get weights changed.
3. To modify an active forward edge {vi , u} of vi , we admit adding to its weight an

integer in {0, k, 2k, . . . tbk} if vi ∈ Ub ∩ U ′ = U ′, and respectively, an integer in
{0, k, 2k, . . . tgk} if vi /∈ U ′. The forward edges of vi will together account for
the congruence class Ca(l), if vi ∈ U ′, or Ca(l), if vi /∈ U ′, the weight of vi will
ultimately belong to.
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4. There are two options to modify each active backward edge {vi , u} of vi if both
vi , u ∈ S \ U ′. We admit to modify the weight of {vi , u} by adding 0 or tgk if
the current weight of u is the smaller value in APu , and adding 0 or −tgk if the
current weight of u is the larger value in APu .

5. There are two options to modify each active backward edge {vi , u} of vi if both
vi , u ∈ U ′. We admit to modify the weight of {vi , u} by adding 0 or tbk if the
current weight of u is congruent to the element l+(2λ)tbk+ak inAPu , and adding
0 or−tbk if the current weight of u is congruent to the element l+(2λ+1)tbk+ak
in APu modulo tgk.

6. If vi ∈ U ′ but u /∈ U ′, since all vertices in U ′ come before vertices not in U ′ (by
Claim 38), {vi , u} cannot be a backward edge of vi . Follow Rule 3 to modify this
edge as an active forward edge of vi .

7. If vi /∈ U ′ but u ∈ U ′, there are two options to modify each active backward edge
{vi , u}. We admit to modify the weight of {vi , u} by adding 0 or tgk. Note however
that if vi ∈ Ug and u ∈ U ′\S, then {vi , u} is not an active backward edge of vi ,
by the definition of active edges for good vertices.

Claim 39 The Rules above guarantee Goal (i) holds throughout the algorithm.

Proof It is easy to see from Rules 4–6 that the updated weight of u remains inAPu or
APu , respectively, even after changing the weight of an active backward edge {vi , u}
of vi . Since APu’s are regarded modulo tgk, Rule 7 also guarantees that the updated
weight of u stays in APu . ��
Claim 40 Assume (16) holds for all benchmarks h∗

i < h∗
j .

After StepC-2, each edge ofG[S] hasweight in [��n/δ�/2�−2tgk−2, ��n/δ�/2�+
2tgk + 2] and each edge of G ′[B] has weight in [��n/δ�/2� − 2tbk − 2, ��n/δ�/2� +
2tbk + 2]. During Step C, each edge across U ′\S and Ug changes its weight by at
most tbk + 2 and each edge across U ′\S and S\Ug changes its weight by at most
tgk + tbk + 2. Edges not in G ′ do not get weights changed.

However, if Ub = ∅, then G ′ = G[S] and U ′ = ∅. After Step C-2, each edge
of G[B] has then weight 1 or �n/δ� + a′ and each edge in G[S] has weight in
[��n/δ�/2� − 2tgk − 2, ��n/δ�/2� + 2tgk + 2]. Moreover, during Step C, no weights
are changed for edges across B and S.

Proof Each edge can be modified at most twice in Step C-2: once as an active forward
edge and once as an active backward edge. By the Rules above, each time its weight
is modified, it can be changed by at most tgk. Thus each edge weight can be changed
in total by at most 2tgk in Step C-2. Step C-1 changes in turn an edge weight by at
most 2 by Claim 36. Since at the beginning of Step C-1, each edge weight in E(S)

was initialized as ��n/δ�/2�, the result for edges in E(S) follows.
For each edge in E(G ′) ∩ E(B), both its ends are bad vertices, and thus Step C-1

changes its weight by at most 2 and Step C-2 changes its weight by at most 2tbk, by
Rules 3 and 5. The result follows, since the edge weight was initialized as ��n/δ�/2�
at the beginning of Step C-1.

For each edge between v ∈ Ug and u ∈ U ′\S, again Step C-1 changes its weight
by at most 2. Vertex u must be a bad vertex and it comes before v in the ordering. In
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Step C-2, while analyzing u, the weight of {v, u} is changed by at most tbk, by Rule
3. In the process of analyzing v in turn, since v ∈ Ug but u /∈ S, the edge {v, u} is not
active for v, by the definition of active edges for good vertices, and thus could not be
changed. The result follows.

For each edge between v ∈ S\Ug and u ∈ U ′\S, v is either inU ′ or not. If v ∈ U ′,
then since u ∈ U ′, Step C-2 changes the weight of {u, v} by at most 2tbk, by Rules
3 and 5. If v /∈ U ′, then v comes after u in the ordering. In Step C-2, the weight of
{u, v}, being an active forward edge of u, is thus changed by at most tbk, and, as an
active backward edge of v, changed by at most tgk, due to Rules 3 and 7. The result
follows analogously as above, as tg > tb.

The case when Ub = ∅ follows from Corollary 27, by noting that V (G ′) = S and
U ′ ⊂ Ub = ∅, by Claim 37, and thus Step C does not change weights of edges in
E(B) or edges across B and S. ��
Lemma 41 Suppose all the inequalities in Corollary 34 hold. There is a way to modify
the edge weights abiding the Rules of the algorithm so that Goals (i)–(iv) are fulfilled.

Proof Goal (i) is fulfilled by Claim 39. By the Rules, all edge weights in G ′ are
changed in Step C-2 by multiples of k. Thus, the modulo k conditions in Goals (ii)
to (iv) automatically hold by the preparatory measures from Step C-1 (Claim 36). It
remains to show that we can process the vertices vi for i = 1, 2, . . . , complying with
the Rules, so that the rest of the conditions in Goals (ii) to (iv) hold.

Suppose we are analyzing a given vi which is not a terminal vertex nor a vertex
immediately preceding a terminal vertex. Suppose at the end of Step C-1 the weight
of vi equals li modulo k.

Case 1. Suppose vi ∈ U ′. We first choose any of its active forward edges, say e. Due
to adding to its weight admissible values in the set {0, k, 2k, . . . , tbk} (Rule 3), the
weight of vi runs through all the congruence classes Ca(li ) with 0 ≤ a ≤ tb − 1. The
setsAPu fixed already for u ∈ U ′ prior to vi occupy at most |U ′| ≤ |Ub| congruence
classes Ca(li ), with possible duplicates. By an averaging argument, there must be an
a∗ such that at most |Ub|/tb of these sets APu are in the same congruence class
Ca∗(li ). Fix such a congruence class Ca∗(li ) and assure the weight of vi belongs in it
via adjusting the weight of e. We then modify the rest of the active forward edges of
vi by adding 0 or tbk to their weights, and modify the weights of its active backward
edges by 0 or ±tbk, according to Rules 5 and 6. Since vi is incident to at least s∗/2
active edges in G ′ (by Claim 37), the vertex weight of vi can thus be attributed at least
min(tg/tb, s∗/2) consecutive terms in the set {li +a∗k+ tbk ·Z mod tgk} = Ca∗(li ).
Since each of the at most |Ub|/tb existing setsAPu in Ca∗(li ) blocks two consecutive
terms in Ca∗(li ), we can find an achievable APvi ⊂ Ca∗(li ) that is disjoint from all
the prior APu (modulo tgk) with u ∈ U ′ if

min(tg/tb,s∗/2) >2|Ub|/tb.

Since we assumed inequalities in Corollary 34 hold, |Ub| ≤ 3n exp(−δ2α/4), and
thus:

min(tg/tb,s∗/2) > 4|Ub|/tb + 2. (42)
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Therefore we are done with vi .
Case 2. Suppose vi /∈ U ′. The analysis is almost the same as in Case 1. Suppose

vi is a good vertex. By an averaging argument, there must be an a∗ such that the
congruence class Ca∗(li ) hosts at most |L(vi )|/tg prior sets APu with u ∈ L(vi ). We
insert the weight of vi in this congruence class via modifying one of its active forward
edges, by adding to its weight one of the admissible integers in {0, k, 2k, . . . , tgk}. We
then modify the weights of the rest of the active edges of vi by an integer in {0,±tgk}
abiding the Rules. Since vi is incident to at least s∗/2 active edges in G ′ (by Claim
37), the vertex weight of vi can thereby be attributed at least s∗/2 consecutive terms in
Ca∗(li ) = {li + a∗k + tgk ·Z}. Since each of the at most |L(vi )|/tg existing setsAPu

in Ca∗(li ) and with u ∈ L(vi ) blocks two consecutive terms in Ca∗(li ), we can find an
achievable APvi ⊂ Ca∗(li ) that is disjoint from all the prior APu with u ∈ L(vi ) if

s∗/2>2|L(vi )|/tg.

Thus we are done with vi by the bound |L(v)| ≤ 2�s∗/k′�(n/δ) in Corollary 34, which
holds for every v ∈ S, and implies in particular that:

s∗/2>4|L(v)|/tg + 2. (43)

The case when vi /∈ U ′ and vi ∈ Ub follows by the same argument, with L(vi )

replaced by Ub \U ′. Thus we are done with vi if only

s∗/2>2|Ub|/tg≥2|Ub \U ′|/tg.

The first inequality above follows however by (42), as tg > tb, while the second one
trivially holds.

We are left to show how to manage ri , ti , where ti is a terminal vertex and ri is the
vertex preceding ti in the ordering. We apply a similar approach as above, analyzing
the both vertices simultaneously. By Claim 38, {ri , ti } is an edge in G ′, which is an
active forward edge for ri .

Case 1’. Suppose both ri , ti are inU ′. Thus the both vertices are bad vertices. By an
averaging argument, when we reach ri , we can modify its forward edge {ri , ti } so that
the two new congruence classes of ri , ti each hosts at most 2|U ′|/tb ≤ 2|Ub|/tb prior
sets APu with u ∈ U ′, ignoring temporarily ri from the point of view of ti . Fix such
two new congruence classes for ri , ti by choosing an admissible modification for the
edge {ri , ti }. By the same argument as before, since min(tg/tb,s∗/2) > 4|Ub|/tb + 2
(where “+2” might be necessary to adjust the weight of ti in the case when it belongs
to the same congruence class as ri ), which holds by (42), via changing the weights
of active backward edges of ri and all its other active forward edges except {ri , ti }
by values in {0,±tbk} complying with the Rules, there is an achievable choice of
APri that is disjoint from all the sets APu for u ∈ U ′ prior to ri . Next, via changing
the weights of the active backward edges of ti except {ri , ti } by values in {0,±tbk}
complying with the Rules, and by (42) again, we can find an achievable AP ti that is
disjoint from all the prior sets APu with u ∈ U ′ including APri .
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Case 2’. Suppose neither ri nor ti are inU ′, i.e., ri , ti ∈ S\U ′. If both ri , ti are bad
vertices, we carry out the same reasoning as in Case 1’ with tb replaced by tg. The
inequality we need to guarantee in such a case is s∗/2> 4|Ub|/tg + 2, which holds
by (42). If both ri and ti are good vertices, again we use the same reasoning as in Case
1’, with |Ub| replaced by max(|L(ri )|, |L(ti )|) and tb replaced by tg. The inequality
we need to guarantee this time is:

s∗/2> 4max(|L(ri )|, |L(ti )|)/tg + 2,

which holds by (43). If finally one of ri , ti is good and the other one is bad, say among
{ri , ti }, u is the bad vertex and v is the good one, by modifying the active forward
edge {ri , ti }, we may assure each of the weights of ti and ri to be in a congruence
class containing at most (|L(v)|+ |Ub \U ′|)/tg ≤ (|L(v)|+ |Ub|)/tg prior setsAPv′
with v′ ∈ L(v) (in the case of v) and APu′ with u′ ∈ Ub\U ′ (in the case of u). Fix
such a congruence class by choosing an appropriate admissible weight for {ri , ti }.
By changing the weights of the remaining active edges of v by values in {0,±tgk}
complying with the Rules, we can find an achievable APv that is disjoint from all
APv′ with v′ ∈ L(v) prior to v if

s∗/2 > 2(|L(v)| + |Ub|)/tg.

The inequality holds by (42) and (43), and thus v can be successfully processed. To
adjust the weight of the bad vertex u, we analogously as above change the weights of
active edges of u except the edge {u, v} = {ri , ti } by values in {0,±tgk} complying
with the Rules. By the same argument as for v, we can find an achievable set APu

that is disjoint from the ones of the other prior bad vertices not in U ′ if s∗/2 >

2(|L(v)| + |Ub|)/tg, which again holds by (42) and (43). This finishes the proof by
the third condition in Claim 38. ��

4.6 Proof of Theorems 4 and 5

Lemma 42 Assume all statements in Corollary 34 hold. Then, for any two good
vertices u, v with u /∈ L(v), the weights of v and u are distinct after Step C provided
that δ and n/δ are sufficiently large.

Proof Suppose v ∈ Sq∩Ug for some 1 ≤ q ≤ k′. By Corollary 27, prior to Step C,
the weight of any edge e between v and its neighbor in B is in the interval

[⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
11n

δ1+ε
+ 2

)

,

⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) +
(
11n

δ1+ε
+ 2

)]

.

Let x = 1 if Ub �= ∅ and x = 0 if Ub = ∅. By Claim 40, since v ∈ Ug, the weight of
an edge e between v and B is changed by at most x(tbk + 2) during Step C. Thus the
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final weight of e is in the interval

[⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
11n

δ1+ε
+ xtbk + 2x + 2

)

,

⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q)

+
(
11n

δ1+ε
+ xtbk + 2x + 2

)]

.

Since tb = �48ne−δ2α/4/s∗�, if δ ≤ √
n and δ is sufficiently large, then n/δ1+ε > tbk.

If δ >
√
n in turn, then by the last statement in Corollary 34, Ub = ∅, and hence

x = 0. Thus, the weight of e is in any case in the interval

[⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
12n

δ1+ε
+ 4

)

,

⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) +
(
12n

δ1+ε
+ 4

)]

.

Therefore, the weight of v coming from its neighbors in B equals at least

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
12n

δ1+ε
+ 4

))

degB(v). (44)

Similarly, the weight of v coming from its neighbors in B equals at most

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) +
(
12n

δ1+ε
+ 4

))

degB(v). (45)

Note that by definition, for large enough δ and n/δ, k < k′/960 < 10−5n/δ, and thus

tgk <
32n

δk′ k + 2tbk <
1

30

n

δ
+ 96ne−δ2α/4k

δ1/2+ε+α
+ 2k <

1

20

n

δ
. (46)

Therefore, by (46) and Claim 40, weights of edges in E(S) are contained in the
interval

[⌈⌈
n

δ

⌉
1

2

⌉

− 2tgk − 2,

⌈⌈
n

δ

⌉
1

2

⌉

+ 2tgk + 2

]

⊂ [1, n/δ). (47)

Since v is a good vertex, by the definition of ZSq ,

| degB(v) − deg(v)(δ − s∗)/δ|≤ deg(v)1/2+ε, (48)

and thus,
| degS(v) − deg(v)s∗/δ|≤ deg(v)1/2+ε. (49)
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By (44), (47), and (48), we conclude that for δ and n/δ large enough, the weight of
v equals at least

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
12n

δ1+ε
+ 4

))

degB(v) + 0 · degS(v)

≥
(⌈⌈

n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
12n

δ1+ε
+ 4

))(
deg(v)(δ − s∗)

δ
− deg(v)1/2+ε

)

≥ deg(v)

(

1 − s∗

δ
− 1

δ1/2−ε

)(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
12n

δ1+ε
+ 4

))

> deg(v)

(

1 − 2s∗

δ

)(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
12n

δ1+ε
+ 4

))

> deg(v)

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
12n

δ1+ε
+ 4

)

− 2s∗

δ

n

δ

)

> deg(v)

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
13n

δ1+ε
+ 4

))

, (50)

where the last inequality follows by (1). Similarly, by (45), (47) and (49), when δ and
n/δ are sufficiently large, the weight of v equals at most

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) +
(
12n

δ1+ε
+ 4

))

degB(v) + degS(v)
n

δ

≤
(⌈⌈

n

δ

⌉
1

3k′

⌉

(k′ + q) +
(
12n

δ1+ε
+ 4

))

deg(v) +
(

deg(v)
s∗

δ
+ deg(v)1/2+ε

)
n

δ

≤
(⌈⌈

n

δ

⌉
1

3k′

⌉

(k′ + q) +
(
12n

δ1+ε
+ 4

))

deg(v) + deg(v)

(
s∗

δ
+ 1

δ1/2−ε

)
n

δ

<

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) +
(
12n

δ1+ε
+ 4

)

+ 2s∗

δ

n

δ

)

deg(v)

<

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) +
(
13n

δ1+ε
+ 4

))

deg(v), (51)

where the last inequality again follows by (1). Therefore, (50) and (51) provide the
lower and upper bounds on the weight of v ∈ Sq ∩Ug after Step C. Analogous bounds
hold also by the same reasoning for any u ∈ Sp ∩ Ug, where 1 ≤ p, q ≤ k′. Thus, if
the weights of v and u are equal after Step C, both of the following two inequalities
must hold:

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) +
(
13n

δ1+ε
+ 4

))

deg(v) >

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + p) −
(
13n

δ1+ε
+ 4

))

deg(u);
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(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + q) −
(
13n

δ1+ε
+ 4

))

deg(v) <

(⌈⌈
n

δ

⌉
1

3k′

⌉

(k′ + p) +
(
13n

δ1+ε
+ 4

))

deg(u).

These two conditions are equivalent to u ∈ L(v) and v ∈ L(u), cf. Definition 32.
Therefore, if u /∈ L(v), then the weights of u and v cannot be the same after Step C. ��

We are finally ready to argument that Theorem 4 indeed holds.
If δ or n/δ are small, say δ < c or n/δ < c for some absolute constant c, we make

use of the result in [25]. This implies that s(G) ≤ (n/δ)(1 + 5) + 6, and therefore

s(G) ≤ n
δ

+ 5c + 6 in the case when n/δ < c, and s(G) ≤ n
δ

(
1 + 5cε

δε

)
+ 6 in the

case when δ < c.
Fromnowonwe can assume that δ and n/δ are sufficiently large. Thus,with positive

probability, all the inequalities in Corollary 34 hold. In particular, Ub = ∅ if δ >
√
n.

We first show that all the vertex weights are distinct after Step C. Most vertices in B
receive distinct weights in Z′ within Step B, cf. Corollary 27. The remaining ones are
distinguished in Step C by means of weights outside Z′. By Lemma 41, Goals (i) to
(iv) can be achieved in Step C. By the Goals, it is clear that all the vertex weights are
distinct, with the only possible exception between vertices v ∈ Ug and good vertices
not in L(v). However, Lemma 42 shows that if u /∈ L(v), then the weights of u, v

cannot be identical. Thus we have shown that all vertices in G indeed have distinct
weights.

We next bound the values of the final edge weights after Step C. By Claim 40, the
fact that tg>tb, and (47), weights of edges inG[S] andG ′[B] are contained in [1, n/δ).
Other edges in B but not inG ′ do not get weights changed during Step C (byClaim 40).
Thus, by Corollary 27, these edges in B have weights either 1 or �n/δ�+a′. As for the
edges across B and S, prior to Step C, by (33) in Corollary 27, their weights were in

the interval
[
�� n

δ
� 1
3k′ �k′ −

(
11n
δ1+ε + 2

)
, �� n

δ
� 1
3k′ �2k′ +

(
11n
δ1+ε + 2

)]
⊂ [ n

4δ ,
3n
4δ

]
after

Step B. During Step C, by Claim 40 again, their weights are changed by at most
tgk + tbk + 2< n

4δ , by (46). Thus, after Step C, the weights between B and S lie
in the interval [1, n/δ). Consequently, we have shown that all final edge weights are
positive, with the maximum weight at most

⌈

n/δ

⌉

+ a′ ≤
⌈
n

δ

⌉

+
⌈
7n

δk

⌉

.

By our choice of k, Theorem 4 holds, i.e. there are absolute constants c1, c2 (for any
fixed ε ∈ (0, 0.25)) such that s(G) ≤ n

δ
+ c1n

δ1+ε + c2. To see why Theorem 5 holds,

note that when δ1+ε≥n, then c1n
δ1+ε is upper bounded by c1.
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5 Conclusion

In this paper, we proved a uniform upper bound s(G) ≤ n
δ
(1 + c1/δε) + c2, where

c1, c2 are absolute constants for any ε ∈ (0, 0.25). This confirms the Faudree-Lehel
Conjecture for δ ≥ n1/(1+ε).We did not strive to optimize all the constants in our result.
We believe that with a slightly modified construction one should be in particular able
to magnify the 0.25 upper bound on ε. Our bound matches the bound in Conjecture
2 asymptotically when δ is large. It would also be interesting to prove a bound of the
form s(G) ≤ n

δ
(1 + on(1)) + c for some absolute constant c.
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