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ABSTRACT

Compositional data arises in a wide variety of research areas when some form of standardization and com-
position is necessary. Estimating covariance matrices is of fundamental importance for high-dimensional
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compositional data analysis. However, existing methods require the restrictive Gaussian or sub-Gaussian

assumption, which may not hold in practice. We propose a robust composition adjusted thresholding
covariance procedure based on Huber-type M-estimation to estimate the sparse covariance structure of
high-dimensional compositional data. We introduce a cross-validation procedure to choose the tuning
parameters of the proposed method. Theoretically, by assuming a bounded fourth moment condition, we
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obtain the rates of convergence and signal recovery property for the proposed method and provide the
theoretical guarantees for the cross-validation procedure under the high-dimensional setting. Numerically,
we demonstrate the effectiveness of the proposed method in simulation studies and also a real application

to sales data analysis.

1. Introduction

Compositional data analysis gives a powerful multivariate statis-
tical approach for the analysis of high-dimensional data, espe-
cially when some form of standardization and composition is
necessary. In this compositional framework, raw data are trans-
formed into compositional data after calculating their relative
proportions or percentages, and the sum of compositional data
is constrained to the be some constant. This data structure
is widely used in many research fields such as biological sci-
ences (Tsilimigras and Fodor 2016; Gloor et al. 2017), busi-
ness and economics (Fry, Fry, and McLaren 2000; Arata and
Onozaki 2017), and geological sciences (Thomas and Aitchison
2005). As the rate of data collection increases exponentially,
the need to analyze data under a compositional framework
increases as well. The comparison of raw data across experimen-
tal units can be misleading when raw totals may vary greatly
from experimental unit to experimental unit or be accidentally
large. To facilitate the comparison between experimental units,
researchers usually normalize the data matrix into a matrix of
proportions or percentages. For example, a sales data analysis
can provide helpful insights to design data-driven marketing
strategies, and the comparison of sales data of various prod-
ucts/categories can be biased by different scales of sales across
channels or store locations. In practice, compositions are com-
monly used in sales data to effectively compare the sales of
products through different sales channels or at different store
locations.

The constant-sum structure in compositional data leads to
the so-called negative bias problem (also known as the constant-
sum problem) in the covariance or correlation matrix (Aitchison
1982). Most of existing multivariate statistical methods do not
take into account the special nature of compositional spaces (i.e.,
the sum is constrained to be a constant), and they can lead to
inappropriate inferences and spurious findings. This problem
has been demonstrated in the statistical literature over the past
four decades (Aitchison 1982), and we will also illustrate this
issue in the empirical analysis of sales data in Section 5. As
a result, alternative multivariate statistical methods have been
developed to incorporate the special constant-sum structure of
compositional data, including compositional regression analy-
sis, logcontrast principal component analysis, and many others
(Aitchison 1982, 1983; Aitchison and Bacon-Shone 1984). In the
last decade, new multivariate statistical methods such as high-
dimensional regression analysis (Lin et al. 2014; Srinivasan, Xue,
and Zhan 2021) and large covariance matrix estimation (Cao,
Lin, and Li 2019; Li et al. in press) have been proposed for the
analysis of compositional data in the high-dimensional setting,
where the number of samples can be smaller or much smaller
than the number of variables.

Estimating covariance matrices is of fundamental impor-
tance for multivariate statistical methods since covariance
matrices characterize the important statistical relationships
between variables. The accurate estimation of the covariance
matrix is essential for a variety of downstream statistical
methods such as clustering, discriminant analysis, and principal
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components analysis, especially for high-dimensional data.
Recently, Cao, Lin, and Li (2019) proposed the composition
adjusted thresholding (COAT) procedure to estimate the
sparse covariance matrix of compositional data in the high-
dimensional setting. However, existing methods including Lin
et al. (2014), Cao, Lin, and Li (2019), Srinivasan, Xue, and Zhan
(2021), and Li et al. (in press) require the restrictive Gaussian or
sub-Gaussian assumption on the data-generating distribution
for compositional data. In real-world applications, we often need
to deal with nonnormal and heavy-tailed data. For example, the
issue of nonnormal and heavy-tailed data is demonstrated in
the application to sales data analysis in Section 5. The violation
of Gaussian or sub-Gaussian assumption can greatly diminish
the effectiveness of existing methods (Huber 1964, 1981; Fan,
Li, and Wang 2017; Avella-Medina et al. 2018).

In this article, we study the robust estimation of the large
covariance matrix for high-dimensional compositional data to
handle potential deviations from the normality. Synthesizing
robust estimation and compositional analysis provides an
promising approach without requiring the restrictive Gaussian
or sub-Gaussian assumption. We propose a robust composition
adjusted thresholding based on Huber-type M-estimation,
denoted by M-COAT, to estimate the sparse covariance
matrix for high-dimensional compositional data. M-COAT
is a two-step regularized estimation procedure. In the first
step, we combine both strengths of the centered log-ratio (clr)
transformation and Huber-type M-estimation to derive a pilot
estimator of the covariance matrix for compositional data. In
the second step, given this robust pilot estimate, we employ a
positive-definite thresholding scheme to induce sparsity and
ensure the positive-definiteness of our thresholding covariance
matrix estimator, which is vital for many downstream analysis.
The numerical properties of the proposed M-COAT method
are demonstrated in simulation studies and a real application to
the store-scanner DominicK’s Finer Foods dataset.

Theoretically, we study the asymptotic properties for the
proposed M-COAT method under the high-dimensional setting
where the dimension is nearly on the exponential order of the
sample size. We assume a bounded fourth moment condition,
allowing for a richer class of distributions beyond the Gaussian
or sub-Gaussian assumption. The proposed estimator achieves
the same convergence rates under both the spectral norm and
Frobenius norm as the COAT does under the sub-Gaussian
assumption. Also, we prove the correct sparsity and sign con-
sistency properties for the proposed M-COAT method.

The proposed M-COAT method includes two tuning
parameters: H in the piece-wise Huber loss function ¢y (z) =
min{max(—H,z) H} and A in the thresholding estimation.
We introduce a cross-validation procedure using the squared
Frobenius loss to choose both H and A. The proposed cross-
validation procedure enjoys the theoretical guarantees under the
high-dimensional setting. We prove that the tuning parameters
selected by this cross-validation procedure perform comparably
to the oracle tuning parameters that are based on the true
covariance matrix under an elliptical distribution assumption.
To the best of our knowledge, this result makes a separate
contribution to the literature, as it fills the gap of choosing the
tuning parameters with theoretical guarantees for robust large
covariance matrix estimation via Huber-type M-estimation
(Fan, Li, and Wang 2017; Avella-Medina et al. 2018).
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The rest of this article is organized as follows. In Section 2 we
first introduce the compositional framework and then present
the methodological details for the proposed M-COAT method
and its cross-validation procedure. In Section 3 we outline the
theoretical results including convergence rates, correct sparsity,
sign consistency, and a guarantee for cross-validation under the
compositional and nonnormal framework in high dimensions.
Sections 4 and 5 evaluate the numerical performance of the pro-
posed M-COAT through simulation studies and an application
to sales data analysis. Finally we conclude with a summary of
our results in Section 6. The proofs and additional numerical
results are presented in a supplementary file.

2. Methodology

We first describe the compositional framework (Aitchison 1982;
Aitchison and Bacon-Shone 1984) in Section 2.1. After these
preliminaries, we present the proposed two-step M-COAT
method in Section 2.2 and a new cross-validation procedure
to choose the tuning parameters of the M-COAT in Section 2.3.

2.1. The Compositional Framework

Following the compositional framework (Aitchison 1982;
Aitchison and Bacon-Shone 1984; Cao, Lin, and Li 2019), we
will use latent variables and the centered log-ratio (clr) trans-
formation to account for the special constant-sum structure of
compositional data.

Let W = (Wy,..., W) with Wy > 0,k = 1,...,p, be the
vector of latent variables known as the basis. We consider the
following normalization of W to obtain the vector of composi-
tional variables X = (X, ..., X,), where

Wi
y A=
Zk=1 Wi

for j = 1,...,p. With this normalization procedure, X lies on
the simplex A, in RP, which is known as the Aitchison Simplex
(Aitchison 1982) and is defined as follows:

(1)

p

Ap:{X:(X],...,Xp)/ERp : Xk>0, k= 1,...,p,ZXk=1}
k=1

2

One critical issue arising from this simplex is that the com-
positional vector X is non-identifiable. To combat this issue, we
define Y = log(W) = (log(Wy),. .. ,log(Wp))T as the log-basis
and assume that Y follows a distribution Fy with mean vector
w and covariance matrix ¥ = (0jj)pxp. The basis covariance
matrix ¥ is the parameter of interest that characterizes the
statistical relationship in the compositional data.

We will study the robust estimation of the sparse basis covari-
ance matrix X with the iid high-dimensional compositional data
X1,..., Xy, where p can be much larger than n. However, it
is infeasible to use W or X for estimating the basis covariance
matrix (Cao, Lin, and Li 2019). The clr transformation provides
a promising approach by transforming the compositional data
away from Ay, which is defined as Z = clr(X) = (Z1,...,%,)’
with
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p
1
Zj = log(X) = - Y log(Xp) =log(X;/g(X)  (3)
k=1

forj = 1,...,p, where g(X) = (]_[j?:l X;)V/? is the geometric
mean of X. The magnitude of each Z; is not restricted to (0, 1],
but Z is still rank-deficient due to the simple fact that ZPZI Zj =
0. The covariance matrix of Z, denoted by T', is also known as
the centered log-ratio covariance matrix. By definition, we know
that Z = AY with A = I,x, — (1/p) lplg. Thus, we have that
I'=AxA”.

As shown in Proposition 1 of Cao, Lin, and Li (2019), two
covariance parameters ¥ and I' are asymptotically indistin-
guishable if they belong to a class of sparse covariance matrices.
More specifically, the sparse basis covariance parameter ¥ is
approximately identifiable by estimating the sparse covariance
parameter I'. The sparse estimation of I with the clr trans-
formeddataZy,...,Z, servesasan effective proxy for the sparse
estimation of X.

2.2. The Proposed Method

The proposed M-COAT method consists of two steps. In the
first step, we use the Huber-type M-estimation to construct a
pilot estimator denoted by Iz based on the clr transformed
data Zi,...,Z,. In the second step, we use a positive-definite
thresholding scheme to obtain a positive-definite sparse covari-
ance matrix estimator denoted by T (T'). The resulting sparse
covariance estimator T; (I'y) can approximately estimate the
desired basis covariance parameter X.

The pilot estimator I'j; plays an important role in accounting
for both robustness and the compositional constraint before
progressing into the thresholding estimation. As will be shown
through numerical analysis, an accurate pilot estimator is nec-
essary to ensure that large errors from the pilot step do not
unduly influence thresholding. Cao, Lin, and Li (2019) used the
sample covariance matrix of the clr transformed data Z,, . . ., Z,
to construct the pilot estimator in the COAT method. If the log-
basis Y satisfies the Gaussian or sub-Gaussian assumption, the
sample covariance matrix of Z,, ..., Z, performs very well to
construct the pilot estimator in the high-dimensional regime.
However, the nonnormal, heavy-tailed, and leptokurtic distri-
bution of the log-basis Y will negatively impact the accuracy of
the pilot estimator for the COAT, which we will demonstrate in
the simulation studies in Section 4.

In the presence of nonnormal and heavy-tailed data, we
need to construct a robust pilot estimator from Zi,...,Z,. In
the literature, Huber’s M-estimation (Huber 1981) provides a
broad class of robust estimators in many statistical problems.
Recently, Avella-Medina et al. (2018) explored the Huber-type
M-estimation of the large covariance matrix. We extend the
Huber-type M-estimation to construct a robust pilot estimator
for high-dimensional compositional data in the sequel.

Recall that I' is the centered log-ratio covariance matrix of
Z = dr(X) = (Zy,...,Z,)". Since sparse I' and sparse X
are asymptotically indistinguishable, we use the Huber-type M-
estimation to estimate each entry of I = (yuy)pxp, where

Y = cov(Zy, Z,) = E(Z,Z,) — E(Z,)E(Z)) = /LZV - /Lzﬂi
(4)

forany u,v = 1,...,p. In view of (4), it is sufficient to provide
the robust estimation for u%, and uZ with Z; = (Zj, ..., Z;p)’
(i = 1,...,n), for any u,v = 1,...,p, respectively. Given
the Huber function ¥y (z) = min{max(—H, z), H} at level H,
we construct the Huber-type M-estimators of u?, and u? by
solving the solutions /1% and (1%, to the following estimating
equation, respectively:

n
> Un(Zi— 42 =0 (5)
i=1
and
n
> UnZiZiv — 15,) =0 (6)
i=1
foru,v = 1,...,p. Here, H is a tuning parameter that needs to

be chosen properly. Therefore, the robust pilot estimator can be
constructed as follows:

IAﬂH = ();uv)pxp = (lliv - ﬂi'aiz/)PXP' ?)

The robust pilot estimator Iz enjoys theoretical guarantees
which are explored in Section 3. In addition, Iz outperforms
other rank-based methods (Xue and Zou 2012, 2014) through
the simulation studies in Section 4.

Next, given the robust pilot estimator [y in the first step,
we use a positive-definite thresholding procedure to construct
a sparse estimator 3 for the basis covariance parameter in the
second step. Due to the rank-deficiency of Z, the rank of I H is
at most p — 1. Nonetheless, both the covariance parameter of
interest ¥ and the proxy covariance parameter I" are positive
definite. The positive-definiteness of 3 is essential to avoid
the potential identifiability issue or degeneracy in downstream
analysis. To this end, we use the positive-definite £; -penalization
(Xue, Ma, and Zou 2012) to compute the sparse estimator by
as

. 1 .
T(Cw) = argmin ~|13 = Cul[f+ 2 Zler  (8)

where ¢ > 0 is an arbitrarily small constant, A is a tuning
parameter, and | - |1 of denotes the £;-norm of the off-diagonal
entries. The constraint that ¢ > 0 ensures that the resulting
covariance estimator is positive-definite. Note that & can be set
as small as possible, and it is not a tuning parameter. Through
this constraint, we recover the optimal positive-definite estimate
of T, even though Iy itself is rank-deficient. We also note
that (8) is a convex but nonsmooth function that can be effi-
ciently solved by an alternating direction method of multipliers
(ADMM) as outlined in Algorithm 1 of Xue and Zou (2012). We
summarize the details about the proposed M-COAT method in
Algorithm 1.



Algorithm 1: The proposed M-COAT method.

Input. the compositional data matrix X and tuning
parameters H & A.

Preprocessing. use the clr transformation (3) to obtain

Z = cr(X).

Step 1. use Huber-type M-estimation to construct a robust
pilot estimator

P = (g, — G5 pxp

where 17, and 17 are solved from estimating equations
Z?:] Yy (Ziy — MZ) =0and Z?zl Yy (ZinZiv — ILZV) =0
asin (5)-(6) foru,v=1,...,p.

Step 2. use an alternating direction method of multipliers
(ADMM) to solve the positive-definite thresholding
estimator ¥ from

1 .
min =||Z — Tyll? + A 2| 10f.
EzsIZH HIE + A2 10

Output: a positive-definite sparse basis covariance
estimator X.

2.3. ACross-Validation Procedure

The effectiveness of our proposed M-COAT method lies in the
proper selection of H in the Huber loss function and A in the
positive-definite thresholding. The tuning parameter A is usu-
ally chosen by cross-validation that enjoys theoretical guaran-
tees (Bickel and Levina 2008; Cai and Liu 2011; Cao, Lin, and Li
2019). The tuning parameter H affects the accuracy of the pilot
estimator I'y and thus the sparse basis covariance estimator
3. The proper choice of H involves a tradeoff between bias
and robustness. Unlike the classical robust statistical methods
(Huber 1981), in order to alleviate the bias, we need to allow
H to grow as the sample size increases in the high-dimensional
setting (Avella-Medina et al. 2018).

However, Avella-Medina et al. (2018) do not provide a pro-
cedure with theoretical guarantees to choose this critical tuning
parameter for Huber-type M-estimation. Specifically, Avella-
Medina et al. (2018) used a conservative choice by assuming
the true distribution to be a Student t-distribution with five
degrees of freedom. In what follows, we fill this gap with a
cross-validation procedure with theoretical guarantees. Thus,
this is a separate contribution to the literature of Huber-type M-
estimation with high-dimensional data.

We propose a cross-validation procedure using the squared
Frobenius norm to select both H and A for the proposed M-
COAT method. We randomly partition the sample into two
subsamples of size n; and ny = n — n; and repeat this random
partition K times, where n; < n; < n and K is a fixed
integer. Let l:‘]f’H be the robust pilot estimator defined as (7)
using the training dataset with n; observations in the kth split,
and T) (f‘lf’H) is the corresponding M-COAT estimator. Let f"zc
be the sample covariance matrix computed from the hold-out
dataset with 7, observations in the kth split.

For any given tuning parameters H and A, we define the
squared Frobenius loss to assess the discrepancy between
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T,\(f‘ll‘,H) and f‘lz‘ fork=1,...,K as follows:

K

~ 1 ~ ~

ROLH) = 2 3 T () = FHIIE. ©)
k=1

To find a data-driven choice of (A, H), we optimize (9) by
searching over a set of candidate parameters (A1,...,4;) X
(Hi,...,Hyp,), where J; denotes the size of the grid for A and J,
denotes the size of the grid for H. More specifically, we choose
the pair (%, H) that minimizes (9) as follows:

(10)

,,,,,

The final estimator of the sparse basis covariance parameter
¥ is given by & = Ti(f‘ﬁ). In Section 3, we will prove that the
data-driven choice (i, H) as in (10) performs comparably to the
oracle tuning parameters that are based on the true covariance
matrix under an elliptical distribution assumption.

In practice, we may define the grid points for A to be evenly
spaced between a small value near 0 and a large value such that
the estimated covariance matrix would be close to a diagonal
matrix. As for the choice of H, we define the grid according
to the theoretical order (see Theorem 4 in the next section).
Although we need to choose two parameters A and H, it is very
efficient to solve the penalized covariance estimation for each
given (A, H) pair, so the overall computing time is still feasible
for large-scale real applications. We may also use a more efficient
C/C++ implementation to reduce the computing time of the
proposed method, and parallel computing can further reduce
the computing time.

3. Theoretical Properties

In this section, we study the theoretical properties of our pro-
posed M-COAT method and cross-validation procedure. We
first derive the desired convergence rate and signal recovery
properties in Section 3.1. Further, we provide a new theoreti-
cal guarantee for using the cross-validation to simultaneously
choose H and A in Section 3.2.

We consider the high-dimensional setting that logp/n — 0,
where the dimension p is on a nearly exponential order of the
sample size n. Also, we consider the following class of covariance
matrices defined by the £, norm with g € [0, 1):

P
U(gs0(p),M) ={Z : £ >0, m]a.xo]j <M, rniaxz lojl? < so(p)}-
j=1
U(0,s0(p), M) denotes the class of sparse covariance matri-
ces and U(qg, so(p), M) with ¢ € (0,1) denotes the class of
approximately sparse covariance matrices. U(g, so(p), M) was
first introduced by Bickel and Levina (2008) and then widely
explored in the large covariance matrix estimation (Rothman,
Levina, and Zhu 2009; Cai and Liu 2011; Xue, Ma, and Zou 2012;
Cao, Lin, and Li 2019).

3.1. Convergence Rates and Signal Recovery

We study the convergence rates and signal recovery of the M-
COAT without requiring the Gaussian or sub-Gaussian assump-
tion. Instead, we assume that the first four moments of Z are



1094 D.LIETAL.

finite, that is, max;<,< E[Z,)* = k% < oo. Our theoretical
analysis allows for a richer class of heavy-tailed distributions
such as the Laplace distribution and ¢-distributions with five or
more degrees of freedom.

Theorem 1 and Corollary 1 present the rate of convergence of
our proposed M-COAT estimator under the spectral norm and
under the Frobenius norm, respectively.

Theorem 1. Suppose thatlogp/n — 0and max;<y<p E[Z,]* =

k? < oo. Then, uniformly on U(g, so(p), M) with g € [0, 1), if

H =Ko /15 and A= Ci4/ lo%p + Czsopﬁ for some constants
Ko, C1,Cy > 0, we have

log s(p)
e - 2||2—op<so(p)( E °p> )

Corollary 1. Suppose thatlogp/n — 0and max;<,<, E[Z,]* =

k% < 00. Then, uniformly on U(g, so(p), M) with q € [0, 1), if

H =Ky /1ogp and A = C;

Ky, C1, C; > 0, we have

1"%? + CZSOP#» for some constants

n So(P)) ) '
p

The above rates of convergence can be decomposed into
two parts, the first matching the optimal rate proposed by Cai
and Liu (2011) and the additional S"’@ denoting the neces-
sary additional error from using Z instead of the unattainable

Y. An interesting feature of this rate is that in high dimen-
so(p)

logp
-IIE SI7 = Op | 50X "

sions the identification error == vanishes as the dimensionality

increases. Instead, for large p, the above rate is dominated by

logp which matches the rates on unconstrained data studied

by Cal and Liu (2011) and Bickel and Levina (2008).

As shown in Theorem 1 and Corollary 1, the proposed M-
COAT achieves the same convergence rates under the bounded
fourth moment condition as the COAT (Cao, Lin, and Li 2019)
does under the sub-Gaussian assumption.

Next, we present the signal recovery and sign consistency of
the M-COAT in Theorems 2 and 3, respectively. We show that
the proposed M-COAT estimator attains desirable guarantees
for the recovery of the support of the true signal and also the
sign of the true signal with high probability.

Theorem 2. Suppose that log p/n — 0 and max; <,<p E[Z,* =

k% < o0. Then, uniformly on U(g, so(p), M) with q € [0, 1), if

H = Ko, [ and & = Cry/ 82 + G, 22
Ko, C1, Cy > 0, we have

P(6jj=0forallo; =0) — 1

for some constants

(11)

Theorem 3. Suppose that log p/n — 0 and max; <,<p E[Z,* =

k% < oo. Then, uniformly on U(g, so(p), M) with q € [0,1),

if H = K /log and . = C; lo%p + CZSO;T‘” satisfying that

A< % min(i,j);mj#o |oj] for some constants Ky, C1, C; > 0, we
have

P(sign(6;j) = sign(oy) for all (i,)) — 1 (12)

3.2. Cross-validation Guarantees

To derive the theoretical guarantees for the cross-validation pro-
cedure, we need an additional assumption on the distribution
by assuming that Y; is drawn from the broad class of elliptical
distributions. Specifically, we assume that each Y; € R? follows
an elliptical distribution such that Y; ~ &,(u, Z,¢), where
Ey(1, X, @) is a p-dimensional elliptical distribution with the
location parameter u € RP, positive-definite shape matrix %,
and density generator ¢ (Cambanis, Huang, and Simons 1981;
Tyler 1987). By Cambanis, Huang, and Simons (1981), Y; is
equivalently represented as

Yi = p+ (D)2,

where u; be a scalar random variable, and & ~ N (0, TIpgxpo)-
This is not an overly restrictive assumption as commonly used
heavy-tailed distributions such as the t-distribution and Laplace
distribution are special examples of this class of elliptical distri-
butions (Goes, Lerman, and Nadler 2020).

To demonstrate the effectiveness of our proposed cross-
validation procedure, we define the oracle tuning parameters i,
and H, as the optimal choices that has the oracle information
about X as follows:

(b0, Hp) = argmin|| T3, (I'yy) —
(AH)

][

Theorem 4 shows that the error of the M-COAT estimator
computed using the selected tuning parameters A and H is close
to the optimal error with the oracle tuning parameters %o and
IEIO. Following Bickel and Levina (2008) and Cai and Liu (2011),
we just need to study the K = 1 setting in Theorem 4, and this
result holds for the general K.

Theorem 4. Let] = J1 X J,. Suppose that Yy, ..., Y, follows the
iid elliptical distribution &,(u, X, ¢) with ¥ € U(q, so(p), M),

1 I _
Eu} < oo,%p — 0, andp(%p)1 /2 5 50. Whenny = ny =<

n,50(p) = o(p(*B)!=42) and (log))* = o(n(*EL)!~9/2), we
have

1 A
Ty ) —
p LA

Lis sz logp , 054
pIIE EIIF—OP<So(p)(,/ s ) ) )

Note that Theorem 4 includes both settings: fixed J and
diverging J. When J; and J, are fixed, in view of p — o0, the
condition that (log])® = o(n(logp/n)'~9/?) naturally holds.
When J; or ], diverges, the upper bound on ] is required such
that the size of tuning set is proper with respect to the dimension
and sample size.

We would like to point out that Avella-Medina et al. (2018)
did not provide any theoretical guarantee to choose the tuning
parameter for Huber-type M-estimation. In the current liter-
ature, Bickel and Levina (2008) and Cai and Liu (2011) pro-
vided the theoretical guarantees for their cross-validation pro-
cedure to choose the thresholding parameter under the Gaus-
sian assumption. More specifically, Bickel and Levina (2008)

A 1 A
allp = T3, () = BIGA +0p(1)

and
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Figure 1. Plots of the kurtosis for department-level gross sale count data and clr transformed data. When kurtosis is greater than 3, the distribution is leptokurtic (heavy-

tailed).

Table 1. Comparison of estimation performance for the AR covariance structure
over 100 independent repetitions under the Laplace and ts distributions.

Laplace(0, 1) ts
Method p=150 p=200 p=250 p=150 p=200 p=250
Forbenius Norm
M-COAT 13.316 15.255 16.994 13.209 15.207 17.051
S-COAT 15.754 18.148 20.225 15.513 17.906 20.039
K-COAT 16.682 19.240 21.442 16.416 18.953 21.192
COAT 17.982 21.423 24.404 19.056 21.833 22.799
Max Norm
M-COAT 6.070 6.001 6.413 5.746 5.743 6.045
S-COAT 6.452 6.753 7.394 6.374 6.805 7.386
K-COAT 6.379 6.712 7317 6.354 6.817 7.382
COAT 8.523 10.660 13.726 12.006 12.886 10.553
Spectral Norm
M-COAT 4.354 4.308 4.296 4.322 4.289 4.297
S-COAT 4.892 4.874 4.869 4.868 4.858 4.864
K-COAT 5.061 5.052 5.049 5.037 5.034 5.039
COAT 5.605 6.352 7.082 7.259 7.479 6.035

assumed a diverging size of the grid under the Gaussian assump-
tion, and Cai and Liu (2011) assumed a fixed size of the grid
under the Gaussian assumption. See Theorem 4 of Bickel and
Levina (2008) and Theorem 5 of Cai and Liu (2011). To the
best of our knowledge, Theorem 4 fills a gap to choose the
tuning parameters with theoretical guarantees for the robust
estimation of large covariance matrices, which makes a separate
contribution to the literature.

4. Simulation Studies

We compare the numerical performance of the proposed M-
COAT against the COAT and also its rank-based alternatives
in simulation studies with different covariance structures and
sparsity patterns. The rank-based alternatives use the adjusted
Spearman’s or Kendall’s rank correlation as the pilot estimator
(Xue and Zou 2012, 2014; Avella-Medina et al. 2018), and we
denote them by S-COAT and K-COAT, respectively. The tuning
parameters for K-COAT, S-COAT and COAT were selected in

Table 2. Comparison of estimation and selection performance for the sparse
covariance structure over 100 independent repetitions under the Laplace and t5
distributions.

Laplace(0, 1) ts
Method p=150 p=200 p=250 p=150 p=200 p=250
Forbenius Norm
M-COAT 38.234 44,527 51.135 38.717 44.048 50.499
S-COAT 42.355 48.805 55.899 42.200 47.983 54.867
K-COAT 43.728 50.219 57.481 43.355 49.281 56.309
COAT 77.447 95.660 114.620 64.823 79.295 101.312
Max Norm
M-COAT 16.311 16.854 18.390 16.353 16.658 18.245
S-COAT 16.763 17.248 18.774 16.646 16.951 18.519
K-COAT 17.030 17.361 18.826 16.755 17.030 18.604
COAT 90.172 117594 151836 72.408 94.700 140.004
Spectral Norm
M-COAT 10.358 10.010 11.360 10.419 9.974 11.315
S-COAT 10.655 10.290 11.619 10.674 10.236 11.556
K-COAT 10.745 10.375 11.702 10.748 10.312 11.623
COAT 37.055 46.879 55.887 31.033 37.666 51.301
TPR
M-COAT 0.614 0.615 0.633 0.609 0.608 0.627
S-COAT 0.655 0.642 0.657 0.636 0.625 0.638
K-COAT 0.683 0.666 0.673 0.662 0.648 0.658
COAT 0.737 0.724 0.730 0.714 0.706 0.716
FPR
M-COAT 0.039 0.035 0.026 0.024 0.011 0.000
S-COAT 0.156 0.116 0.117 0.107 0.064 0.038
K-COAT 0.234 0.191 0.178 0.178 0.140 0.108
COAT 0.419 0.388 0.379 0.372 0.347 0.325

a similar manner as M-COAT; however, we replace the Huber-
based pilot estimator f"f 7 used in (9) with the adjusted Kendall
rank-based, the adjusted Spearman rank-based, and the stan-
dard covariance estimators accordingly.

We consider the following data generating process to com-
pare the numerical performance. We generate Y through a
Gaussian scale mixture framework. Gaussian scale mixtures fall
into the class of elliptical distributions and is useful for efficiently
generating elliptically distributed data (Andrews and Mallows
1974; Miller and Richter 2019; Goes, Lerman, and Nadler 2020;
Li et al. in press). Thus, Y; = p + u; X 1/2¢; where the heavy-
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Figure 2. Heatmaps for the thresholding estimator on the raw count data (on the top left panel), the COAT procedure (on the top right panel), and the M-COAT procedure
(on the bottom panel). The colors of the heatmap represent the correlation of the total sales between departments. Positive correlations are visualized by the orange color,
and negative correlations are visualized by the purple color. The departments are ordered by hierarchical clustering using the estimated correlations.

tailed behavior is captured by the choice of u;. We note that
Eix ~ N(0,I,5p) and set & = 0 and X denotes the true
covariance matrix of Y. When u; = 1foralli = 1,...,n,
we have that Y follows a Gaussian distribution. We explore two
heavy-tailed settings where u; ~ Laplace(0,1) and u; ~ ts for
alli=1,...,n

We consider two different covariance structures for X:
the autoregressive (AR) covariance structure with ¥ =
(0.7‘i_j|)pxp, and a sparse covariance structure with a block-
diagonal matrix ¥ = bdiag(A;,Az), where p = p1 + pa,
A1 = B+ ¢l, and Ay = 4l,,. Here, B is a symmetric
matrix whose lower triangle entries are independent and drawn
uniformly from [—3, —1.5] U [1.5, 3] with probability 0.15 and
are zero otherwise. Let &¢ = max(—Amin, 0) + .01 where Amin
is the minimum eigenvalue of B to ensure positive-definiteness.
Both covariance structures have served as the benchmarks in
the literature such as Bickel and Levina (2008), Cai and Liu
(2011), Xue, Ma, and Zou (2012), and Cao, Lin, and Li (2019).

We set n = 100, p = 100,150,200, and p; = |2,/p|. To
assess the effectiveness of different methods, we calculate the
Forbeinus norm ||f] — X||F, the entry-wise maximum norm
||f) — X||max> and the spectral norm ||X — f]||2. In the sparse
covariance setting, we also assess the true positive rate (TPR)
and false positive rate (FPR) that are defined as:

RA()) : 6jj # 0 and 0j; # 0}

#{(i,j) : 0jj # 0}
EPR — #{(1,)) : 6,-]-.# (iand oij = 0}

#{(i,5) : 03 = 0}

These measures are averaged over 100 independent repetitions.
The numerical results under the Laplace and ts5 distributions
are found in Tables 1 and 2, respectively. The results for the
Gaussian error setting across both covariance models is found
in the supplementary materials.

As shown in both tables, regardless of the covariance struc-
ture, the M-COAT attains the smallest estimation errors and the

TPR
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Figure 3. Heatmaps for the sparse covariance matrices of the product-level sales data in 1989 (left) and 1995 (right), estimated by the M-COAT procedure. The color of the
circular dots indicates which of the 27 departments the product is from. Products from the same department are given the same color dot label on the rows and columns.

COAT has the largest estimation errors under both the Laplace
and t5 distributions. The COAT uses the sample covariance
matrix as the pilot estimator, which is inappropriate for non-
normal and heavy-tailed distributions. As a result, the COAT
has much higher estimation errors than other methods across
all settings. The rank-based estimators S-COAT and K-COAT
are comparable to one another. The M-COAT provides further
improvement over S-COAT and K-COAT, especially with the
sparse covariance structure in Table 2. As for the selection
performance, the M-COAT attains similar TPRs as S-COAT
and K-COAT but achieves the significantly lower FPRs. The
COAT has the slightly better TPRs but much worse FPRs than
other methods across all settings. In summary, the M-COAT
outperforms the COAT and also other robust estimators based
on rank correlation in terms of both estimation and selection
performances.

5. Application to Sales Data Analysis

In this section, we examine the numerical performance of the
proposed M-COAT using the Dominick’s Finer Foods scanner
dataset, which is downloaded from Chicago Booth’s Kilts Center
for Marketing. This dataset contains a large amount of scan-
ner data from 1989 to 1994 across multiple locations of the
DominicKs Finer Foods store chain in the Chicago area. In this
sales dataset, the total sales per store vary greatly due to store
location. Besides, sales data is high-dimensional because of the
large product variety, and can often be nonnormal. Thus, to
effectively study the statistical associations of sales data, normal-
ization is a required preprocessing step, and the compositional
data analysis is then necessary.

This dataset consists the sales data of individual products
as well as their associated departments (e.g., FISH, MEAT,
GROCERY, DAIRY, and so on). Thus, researchers can perform
the analysis of sales data at the department level or at the

product level. In what follows, we first conduct the analysis
of department-level sales data to motivate the importance of
compositional analysis and robust estimation in Section 5.1,
and we explore the high-dimensional compositional analysis
of product-level sales data in Section 5.2. We demonstrate
the effectiveness of our proposed approach via this real-world
application. We also show that our method is a powerful tool
for cross-selling analytics to measure the linkage between the
sales of various products and provides a more accurate way of
visualizing shoppers’ behavior.

5.1. Department-Level Sales Analysis

Department-level sales were retrieved from the customer count
files in the scanner dataset. We preprocessed the sales data
by aggregating across years by store, and we formed a dataset
consisting of the total sales of p = 28 departments across n = 70
different stores.

Through the exploratory analysis, we computed the kurtosis
measures of the sales data at the department level. We plotted
the department-level kurtosis values in Figure 1 for both the raw
sales data, W, and the clr-transformed sales data, Z. As shown
in Figure 1, it is evident that about 25% of the department-
level observations are heavy-tailed or leptokurtic (i.e., kurtosis
is greater than 3) in terms of raw counts and about half of them
are heavy-tailed after the clr transformation. This suggests the
importance of robust estimation.

Next, we demonstrate the need for the compositional anal-
ysis. We computed the naive thresholding estimator on the
raw count data, the COAT on the compositional data, and
the M-COAT on the compositional data. All these covariance
estimators were normalized to correlation matrices for a better
visualization. In the heatmaps, the departments are ordered
by hierarchical clustering using the estimated correlations. The
thresholding estimator, the COAT, and the M-COAT are all
visualized in Figure 2.
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Figure 4. Heatmap for a subset of categories of products labeled by brand. The plots shows the correlation matrix in the year 1989 (left) during the recession and the year
1995 (right) after the recession. Products from the same category are given the same color on their labels.

When the compositional structure is ignored, as shown
in Figure 2, the naive thresholding estimator leads to a
very dense correlation structure, and it fails to identify any
meaningful dependence structure between departments. The
COAT improves the naive thresholding and captures the
block structure after performing the hierarchical clustering
using the estimated correlations. M-COAT provides the most

meaningful result that reveals rich associations of sales data
between departments. The COAT and M-COAT estimates
share some similarities (such as the dependencies among the
core departments of FISH, MEAT, GROCERY, and DAIRY) in
their heatmaps. Compared with COAT, M-COAT demonstrates
a better capability to capture an interconnected market by
identifying the significant associations between the core
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Figure 5. Heatmap for products in the categories of dish detergents and paper towels labeled by brand. The plots shows the correlation matrix in the year 1989 (left)
during the recession and the year 1995 (right) after the recession. Products from the same category are given the same color on their labels.

departments and other departments such as the food-to-go
(FTG) sections and BAKERY.

5.2. Product-Level Sales Analysis

This dataset also provides in-depth weekly sales data for individ-
ual products within each store. First, we aggregate the weekly
sales data by year in order to capture larger scale economic
factors that influence sales per year, and aid in our interpre-
tation. Next, we select the top 10 products for each of the 27
departments and only keep those products that were sold across
all 8 years for further investigation. Now, we have p = 173
unique products across n = 70 different stores, which falls into
the high-dimensional setting.

We used the proposed M-COAT method to robustly estimate
the high-dimensional covariance matrices for the yearly sales
of each product and provide insights on cross-selling patterns.
Figure 3 plots the heatmaps of the estimated covariance matrix
for year 1989 and 1995. Figure 4 shows the heatmaps of the
submatrices about five specific categories from the estimated
covariance matrix for year 1989 and 1995, including cook-
ies (red), front-end candies (purple), frozen entrees (black),
frozen dinners (green), soda (yellow), and tuna (blue). Figure 5
shows the sales of paper towels (dark red) and dish detergent
(dark blue) from the estimated covariance matrix for year 1989
and 1995. It is worth pointing out that an economic recession
affected the United States the early 1990s (1989-1992) and
the mid-nineties (1994-1996) was an era of strong economic
growth. By comparing these heatmaps, we can have the follow-
ing insights about product sales and consumer behavior during
or after the economic recession.

o First, as shown in Figure 3, the estimated covariance struc-
ture in 1995 shows many more dependencies than in 1989.
It is likely that more products were sold together in the mid-
nineties thanks to the improved economic prospects in the

post-recession years. Given the significant amount of sparsity
in the estimated covariance structure in 1989, products were
likely purchased individually or in smaller groups due to
the economic downturn and a jobless recovery during the
recession years.

« Second, Figure 4 shows the different co-purchasing behavior
in 1989 versus 1995. Products such as tuna and frozen entrees
are often considered the essential grocery products, while
soda, cookies and candies are generally sweets or treats. In
1989, we see that cookies and soda products are positively
correlated, suggesting they are often bought together, but
negatively correlated to the frozen meals. In 1995, after the
recession, the sales of sweets are more positively correlated
with meals.

o Third, another interesting finding discovered by the M-
COAT procedure is the effect of brand loyalty. As shown in
Figure 5, in both 1989 and 1995, Cascade brand product sales
are positively correlated with one another, but negatively
correlated with other dish detergent product sales. This
suggests some form of brand loyalty where an individual
who purchases Cascade products is more likely to purchase
other Cascade products. Notably, brand loyalty may develop
over time. In 1989, there does not appear to be a strong
dependence structure among paper towel varieties. However,
in 1995, we see that the Bounty brand product sales are
positively correlated with each other, and a similar pattern
occurs for the sales of Scott brand towels.

6. Conclusion

In this article we propose the M-COAT procedure to robustly
estimate the covariance structure of high-dimensional compo-
sitional data. The proposed method attains improved accuracy
in the presence of nonnormal and heavy-tailed distributions
by employing Huber-type M-estimation. We also introduce a
cross-validation procedure to choose the tuning parameters of
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the proposed M-COAT. Without requiring the Gaussian or sub-
Gaussian assumption, we obtain the rates of convergence and
signal recovery property under the high-dimensional setting.
We provide the theoretical guarantees for the cross-validation
procedure, which makes a separate contribution to the literature
of Huber-type M-estimation with high-dimensional data. The
finite-sample properties of the proposed M-COAT are demon-
strated in simulation studies. Finally, we apply the proposed
M-COAT in a real application to the DominicK’s Finer Foods
scanner dataset and show how the M-COAT can give insights
about product sales and consumer behavior.

Supplementary Materials

The complete proofs and additional numerical results are presented in a
supplementary file.
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