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ABSTRACT

It is important to develop statistical techniques to analyze high-dimensional data in the presence of both
complex dependence and possible heavy tails and outliers in real-world applications such as imaging data
analyses. We propose a new robust high-dimensional regression with coefficient thresholding, in which
an efficient nonconvex estimation procedure is proposed through a thresholding function and the robust
Huber loss. The proposed regularization method accounts for complex dependence structures in predictors
and is robust against heavy tails and outliers in outcomes. Theoretically, we rigorously analyze the landscape
of the population and empirical risk functions for the proposed method. The fine landscape enables us to
establish both statistical consistency and computational convergence under the high-dimensional setting.
We also present an extension to incorporate spatial information into the proposed method. Finite-sample
properties of the proposed methods are examined by extensive simulation studies. An application concerns
a scalar-on-image regression analysis for an association of psychiatric disorder measured by the general
factor of psychopathology with features extracted from the task functional MRI data in the Adolescent Brain
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Cognitive Development (ABCD) study. Supplementary materials for this article are available online.

1. Introduction

Regression analysis of high-dimensional data has been exten-
sively studied in many research fields over the last three decades.
To overcome the high-dimensionality, researchers have pro-
posed a variety of regularization methods to perform variable
selection and parameter estimation simultaneously. The £, reg-
ularization enjoys the oracle risk inequality (Barron, Birgé, and
Massart 1999) but it is impractical due to its NP-hard computa-
tional complexity. In contrast, the £; regularization (Tibshirani
1996) provides an effective convex relaxation of the £ regular-
ization and achieves variable selection consistency under the
irrepresentable condition (Zhao and Yu 2006; Zou 2006; Wain-
wright 2009). The adaptive £; regularization (Zou 2006) and the
folded concave regularization (Fan and Li 2001; Zhang 2010)
relax the irrepresentable condition and improve the estimation
and variable selection performance. The folded concave penal-
ized estimation can be implemented through solving a sequence
of adaptive £, penalized problems and achieves the strong oracle
property (Zou and Li 2008; Fan, Xue, and Zou 2014).

Despite these important advances, existing methods, includ-
ing the (adaptive) £; regularization and folded concave regular-
ization, do not work well when predictors are strongly corre-
lated, which is the case especially in scalar-on-image regression
analysis (Wang, Zhu, and Initiative 2017; Kang, Reich, and
Staicu 2018; He, Xu, and Kang 2018). This article is motivated by
the needs of analyzing the n-back working memory task fMRI

data in the Adolescent Brain Cognitive Development (ABCD)
study (Casey et al. 2018). The task-invoked fMRI imaging mea-
sures the blood oxygen level signal that is linked to personal
neural activities when performing a specific task. The n-back
task is a commonly used approach to making assessment in
psychology and cognitive neuroscience with a focus on work-
ing memory. One question of interest is to understand the
association between the risk of developing psychiatry disorder
and features related to functional brain activity. We use the 2-
back versus 0-back contrast map statistics derived from the n-
back task fMRI data as image predictors. We aim at identifying
important imaging biomarkers that are strongly associated with
the general factor of psychopathology (GFP) or “p-factor,” which
is a psychiatric disorder outcome used to evaluate the overall
mental health of a subject. In this application, it is expected that
the irrepresentable condition can be easily violated by strong
dependence among high-dimensional image predictors from
fMRI data. To illustrate the presence of strong dependence
among image predictors, Figure 1 shows the largest absolute
value of correlation coefficients and the number of correlation
coefficients that are > 0.8 or <= —0.8 between brain regions.
Among all pairs between 2518 voxels, there are 151,724 voxel
pairs across these regions having a correlation larger than 0.8 (or
less than —0.8), and 9,038 voxel pairs with a correlation larger
than 0.9 (or less than —0.9). We see that there exists strong
dependence among image predictors, so that existing methods
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Figure 1. lllustration of the strong dependence structure among image predictors. Panel (a) shows the largest absolute value of correlation coefficients between regions,
and Panel (b) shows the number of correlation coefficients that are = 0.8 or = —0.8 between regions.

may not have a satisfactory performance in the scalar-on-image
analysis.

To address potential technical challenges in the presence of
such strongly correlated predictors, we consider a new approach
based on the coefficient thresholding technique. The rationale
behind our idea is rooted in attractive properties given by var-
ious recently developed thresholding methods, including the
hard-thresholding property of the £, regularization (Fan and Lv
2013) and recovery properties of iterative hard thresholding
on badly conditioned problems (Jain, Tewari, and Kar 2014).
Especially, Fan and Lv (2013) showed that the global minimizer
of the £; regularization in the thresholded parameter space
enjoys the variable selection consistency. Thus, with proper
thresholding of coefficients, it is possible to significantly relax
the irrepresentable condition while to address the strong depen-
dence among predictors. Recently, manifested by the potential
power of the thresholding strategy, Shi and Kang (2015) and
Kang, Reich, and Staicu (2018) studied a new class of Bayesian
nonparametric models based on the thresholded Gaussian prior,
and Sun et al. (2019) proposed a two-stage hard thresholding
regression analysis that applies a hard thresholding function on
the initial £, -penalized estimator.

Beyond the strong dependence among imaging features,
there exist two additional challenges in this real application.
On the one hand, it is important to integrate the AAL region
partition, which provides useful information on the brain
structure and function, as grouping information of image
predictors to improve the accuracy of imaging feature selection.
On the other hand, the outcome variable “p-factor” has a right
skewed marginal distribution with heavy tails (and its kurtosis
equals to 66). Robustness against outliers occurring from heavy-
tailed errors is essential in the scalar-on-image analysis. fMRI
indirectly measures neural activity by assessing blood-oxygen-
level-dependent signals and its signal-to-noise ratio is often
low (Lindquist 2008). Also, due to various limitations of used
instruments and quality control in data preprocessing, fMRI
data often involves many potential outliers (Poldrack 2012),
compromising the stability and reliability of standard regression
analyses. The complexity of fMRI techniques limits the capacity
of unifying fMRI data preprocessing procedures (Bennett and
Miller 2010; Brown and Behrmann 2017) to identify and
remove outliers effectively. Standard regression analysis with

contaminated data may lead to a high rate of false positives
in inference, as shown in many empirical studies (Eklund
et al. 2012; Eklund, Nichols, and Knutsson 2016). It is loudly
advocated that potential outliers should be taken into account
in the study of brain functional connectivity using fMRI data
(Rosenberg et al. 2016). These challenges motivate us to design
a robust variable selection model against strong dependence
among features, heavy tailed distributions and outliers of the
response, and accommodate group structure at the same time.

In the current literature of the high-dimensional scalar-on-
image regression, Goldsmith, Huang, and Crainiceanu (2014)
introduced a single-site Gibbs sampler that incorporates spatial
information in a Bayesian regression framework to perform
the scalar-on-image regression. Li et al. (2015) introduced a
joint Ising and Dirichlet process prior to develop a Bayesian
stochastic search variable selection. Wang, Zhu, and Initiative
(2017) proposed a generalized regression model in which the
image is assumed to belong to the space of bounded total
variation incorporating the piece-wise smooth nature of fMRI
data. Motivated by these works, in this article we first introduce a
new integrated robust regression model with coefficient thresh-
olding and then propose a penalized estimation procedure with
provable theoretical guarantees, where the noise distribution is
not restricted to be sub-Gaussian. Specifically, we propose to
use a smooth thresholding function to approximate the discrete
hard thresholding function to tackle the strong dependence of
predictors together with the use of the smoothed Huber loss
(Charbonnier et al. 1997) to achieve desirable robust estimation.
We design a customized composite gradient descent algorithm
to efficiently solve the nonconvex and nonsmooth optimiza-
tion problem. The proposed coefficient thresholding method
is capable of incorporating intrinsic group structures of high-
dimensional image predictors and dealing with their strong
spatial and functional dependencies. Moreover, the proposed
method effectively improves robustness and reliability.

The proposed regression with the coefficient thresholding
method results in a nonconvex objective function in optimiza-
tion. In the current literature, it becomes an increasingly impor-
tant research topic to obtain the statistical and computational
guarantees for nonconvex optimization methods. The local lin-
ear approximation (LLA) approach (Zou and Li 2008; Fan, Xue,
and Zou 2014; Fan et al. 2018) and the Wirtinger flow method



(Candes, Li, and Soltanolkotabi 2015; Cai, Li, and Ma 2016)
directly have enabled to analyze the computed local solution.
The restricted strong convexity (RSC) condition (Negahban
et al. 2012; Negahban and Wainwright 2012; Loh and Wain-
wright 2013; Jain, Tewari, and Kar 2014; Loh and Wainwright
2017) and the null consistency condition (Zhang and Zhang
2012) were used to prove the uniqueness of the sparse local
solution. However, it still remains nontrivial to justify the nice
properties of the initial solution for LLA or prove the RSC
condition in the presence of strongly dependent predictors.
Thus, it is very challenging to study theoretical properties of
the proposed robust regression with coefficient thresholding.
The nonconvex optimization cannot be directly solved by the
LLA approach, and doesn’t belong to the family of nonconvex
function where RSC condition can be applied. Alternatively, fol-
lowing Mei, Bai, and Montanari (2018), we study the landscape
of the proposed method. We prove that the proposed nonconvex
loss function has a fine landscape with high probability and also
establish the uniform convergence of the directional gradient
and restricted Hessian of the empirical risk function to their
population counterparts. Thus, under some mild conditions, we
can establish key statistical and computational guarantees. Let
n be the sample size, p be the dimension of predictors, and s
the size of the support set of true parameters. Specifically, we
prove that, with high probability, (i) any stationary solution is
consistent under the £, norm when n > Cslogp, where C is
a constant; and (ii) the proposed composite gradient descent
algorithm attains the desired stationary solution. Both statistical
and computational guarantees of the proposed method do not
require a specific type of initial solutions.

The rest of this article is organized as follows. Section 2 pro-
poses the robust regression with coefficient thresholding pro-
cedure. Section 3 studies theoretical properties of the proposed
method, including both statistical guarantees and computa-
tional guarantees. Section 4 presents an extension to incorporate
the spatial information. Simulation studies are presented in
Section 5 and the real application is demonstrated in Section 6.
Section 7 includes a few concluding remarks. All the remaining
technical details and proofs are given in the supplementary
materials.

2. Methodology

In this section, we will first introduce the thresholding function
and its motivation in Section 2.1 and then present our proposed
robust regression with coefficient thresholding in Section 2.2.
Let (X;, Y;), be a sample of n independent observations
from (X,)), where X = (&X,.. .,XP)T is a p-dimensional
predictor vector and Y is a scalar response variable. Consider
the linear regression y = XpB* + ¢, where y = (Y1,..., Y,)' is
the response vector, X = (x1, ..., Xp) is the n x p deterministic
design matrix, 8* = (87,.. ., ,8; )T is the coefficient vector, and

& = (€1,...,&,)" is a random error with mean zero. To be
clear, X; € RF is a row of X while x; € R" is a column of
X. The support of " is § = {j : B; # 0} with cardinality
|S| < p. We aim to recover the true sparse signal g* given the
possibly strong dependence among predictors and heavy-tailed
distribution of .
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2.1. Thresholding Function

The thresholding strategy has been used to deal with strong
dependence among predictors by Jain, Tewari, and Kar (2014),
Shi and Kang (2015), Kang, Reich, and Staicu (2018), and Sun
et al. (2019). Especially in the imaging data analysis, Shi and
Kang (2015) proposed the hard-thresholded Gaussian process
for selecting important image features, and Kang, Reich, and
Staicu (2018) proposed the soft-thresholded Gaussian prior
and showed its promising numerical performance. Motivated
by these works, we design a thresholding function g(-) =
1) ... 80) = RP — TRP of the coefficient 8, to reweight
the linear effects Z;’:l xjB; as Zf:l xj(B;gj(Bj)) based on
the feature importance under the regression framework. Let
G(B) = Bog(B) = (f1(), ... ,)fu(-)), where a o b is the element-
wise product between a and b. Then reweighted linear effects
Z;,’:l xj(B;gj(B;)) can be written using matrix form as XG(B).
We call this reweight scheme as the coefficient thresholding.
The motivation of the coefficient thresholding is as below:
suppose we know some oracle information of the true signal g*
before fitting the model, such as the hard thresholding property
introduced in the next paragraph, we can design a function g
to use the oracle information and adaptively weight different
features in the linear effects. In this way, from arbitrary 8 ¢ R?,
G(-) will first map B to a point G(B) better mimic the true
signal B* and then operate on the features x;. The reweighted

linear effects Z’;l xj(B;gj(B;)) appears in the loss function for
goodness of fit. This largely relax the requirement of a “good
initial solution” for solving the adaptive £; or folded concave
penalized problem.

In the following, we only consider the case wheng; = --- =
g = & Let n* = minjc|B;| be the minimum true signal
strength. The hard thresholding function I{| - | = »n*}} would
be a good choice for g(-). This is motivated by the best subset
selection with the £-regularization, which enjoys the oracle risk
inequality (Barron, Birgé, and Massart 1999). (Fan and Lv 2013,
Proposition 2) further proved the hard-thresholding property of
the global solution of £y-regularized regression problem, that is,
each component of the estimator is either 0 or has magnitude
larger than some positive threshold. For space consideration,
we present the connection between the coefficient thresholding
and £y regularization in the thresholded parameter space in the
supplementary materials.

The discontinuity of I{|u| > 5} leads to a challenging opti-
mization problem. Thus, we consider a smooth approximation
given by f; ,(u) = u - g () and gr (W) = h.(u — 1) +
he(—u — 1), where hy(w) = 3 + < arctan (¥). Here, we use a
smooth arctan function to approximate the step function, and
the approximation is more accurate when t gets smaller. As
7 goes to 0, g, ,(u) converges to g(u) pointwisely except at 0.
Figure 2 illustrates the smooth approximation of g, , (u) to g(u)
and f; , (u) tof(u). To better control the approximation level and
reduce the number of hyperparameters, we fix 7/n = g, where
constant g € {0.1,0.01}, and the threshold 7 is left as a tuning
parameter whose scale is given in Section 5. Thus, we write g; ,

as g, and f; , asf;.
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Figure 2. The smooth approximation of g, (-) and fz 5 (-).

2.2. Robust Regression with Coefficient Thresholding

In the lens of robustness, many works have studied the high-
dimensional robust regression problem. El Karoui et al. (2013)
studied the consistency of regression with a robust loss func-
tion such as the least absolute deviation (LAD). In a high-
dimensional robust regression, Loh (2017) showed that the use
of a robust loss can help achieve the optimal rate of regression
coefficient estimation with independent zero-mean error terms.
In addition, Loh (2018) showed that by calibrating with a scale
estimator in the Huber loss, the regularized robust regression
estimator can be further improved. However, existing methods
cannot handle the strong dependence among predictors.

To design a robust regression model against strong depen-
dence among features, heavy tailed distributions, and possi-
ble outliers, we impose £; regularization on the regression
coefficients B and propose the following regularized high-
dimensional robust regression with coefficient thresholding:

n p
1
mgn - E L(yi — E xiiBign(B)) + Al Bllx
i=1 =1

IBlz<r. (1)

where L(-) is the pseudo-Huber loss (Charbonnier et al. 1997)
defined as L(a) = w?{\/1 + (a/w)? — 1},a € R,w € R. Note
that L(a) provides a smooth approximation of the Huber loss
(Huber 1964) and bridges over the /; loss and the I, loss. In this
way, outliers are down-weighted to alleviate potential estimation
bias. We note that L(-) has to be differentiable but not neces-
sarily convex in our framework. Other choices, such as Tukey’s
biweight loss, can also be used to achieve robustness. We shall
note that using the thresholding function in Section 2.1 alone
cannot avoid overfitting and may not lead to a parsimonious
model, especially when features are highly correlated. Consider
an extreme case when x; and x, are identical. Then the thresh-
olding function with threshold = 0.5 cannot distinguish
whether we should include x; or 5x; —4x; in the model. We will
easily obtain an overfitted model if we use thresholding function

subject to

f(); eta=0.1, tau= 0.01

f(); eta= 0.1, tau= 0.005

alone without any regularizations. The regularization in (1) is
necessary to pair with the thresholding function.

The framework (1) can be adapted to the group-structure
covariates. Suppose the coefficient 8 can be divided into d
separate groups B, ..., ﬁd. We consider group Lasso penalty
(Yuan and Lin 2006) to leverage known group information in
the scalar-on-image analysis. The main model we will analyze
in this article is as follows:

1 P d
min { > L= ) xiBignB) + 1Y 182
i=1 j=1 k=1

I1Blz=r (2

where L(-) is still the Pseudo-Huber loss. Other penalties to
incorporate group information include sparse group penalty
(Simon et al. 2013) and group SCAD penalty (Wang, Chen, and
Li 2007).

Following Mei, Bai, and Montanari (2018) and Loh and
Wainwright (2017), we assume that the regression coefficients
B are bounded in the Euclidean ball B (r) = {8 ¢ RP : ||B|2 <
r}, where r is a constant. As explained by Mei, Bai, and Monta-
nari (2018) and Loh and Wainwright (2017), this assumption is
reasonable given the true signal is sparse, and it avoids technical
complications. Both (1) and (2) can be efficiently solved by a
customized composite gradient descent algorithm with provable
guarantees. The details will be presented in Section 3.2. We note
that given ﬁ as the minimizer of (1) or (2), the final estimation
should be G(f). To further control model sparsity and address
the gradient vanishing issue, we use a second step based on hard
thresholding, that is,

Brer = B - I{|B| = n}. (3)
This step also helps to address the gradient vanishing issue,
which will be explained in Section 3.2. We call ,éRCT as the RCT
(Robust regression with Coefficient Thresholding) estimator.

subject to

Remark 1 (Connection with the adaptive Lasso). The RCT
estimator simultaneously estimates regression coefficients and
adaptive weights to improve the adaptive Lasso (Zou 2006),
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Penalty

Figure 3. The penalty functions and the univariate solution paths.

whose weights are usually solved from the initial solution or
iterated solution. Let G, = (f;,....fy) and § = G, (B), where
Jo(u) = u - gy(u). Consider the ¢, regularized RCT estimation
problem. Since Gy, is bijective, its inverse G, : R? — RP exists.
If we ignore the constrain, (2) can be equivalently rewritten as

5]
Zw, ngé})nLAZ (Gf@} L@

Solving (4) is extremely challenging, since both numerator and
denominator of the penalty terms go to zero as £ — 0. Also,
solving (4) is not ideal because we still need a good initializa-
tion to determine the weights. Especially given the curvature
of penalization term (See Figure 3(a)), which is flat and then
sharper again as |&j| increases, the solution is very sensitive to
the initialization. In our simulation results, we will show that
when Lasso fails, adaptive Lasso also fails due to the bad initial-
ization. In the end, the complicated penalty makes it hard to be
incorporate the group structure. In comparison, our proposed
formulation (2) leads to a nonconvex optimization, which is
computationally tractable, not sensitive to initialization, and
easily adapted to group penalty structure.

Remark 2 (Comparison with the STGP method). Compared to
Kang, Reich, and Staicu (2018), we use a very different approach
to incorporate the thresholding function that down weights
unimportant variables and achieves sparsity. Our proposed RCT
method and its extension in Section 4 are more robust to pos-
sible heavy tails and outliers (see the numerical comparison in
Table 6 of Section 5). The STGP requires stronger regularity
conditions such as the Gaussian error distribution to establish
the theoretical properties, and it is unclear about the conver-
gence rate of the posterior computation algorithm for making
inferences on the STGP. In addition, the RCT and its extension
in Section 4 are more flexible and accurate than the STGP when
the nonzero signals are sparsely distributed in a region instead
of being spatially connected (see the numerical comparison in
Table 5 of Section 5).

Remark 3 (The univariate thresholding rule of RCT). To fur-
ther illustrate the power of coefficient thresholding in RCT,
we consider the univariate solution of penalized least squares
using the coefficient thresholding, which is a special case of
(1). Assume that each covariate x; is rescaled to have an L;-

beta

Lasso

Table 1. Comparison of the RCT and MCP in a small-scale simulation study.

FPR FNR
MCP 0.456(0.205) 0.002(0.002)
RCT 0.022(0.085) 0.004(0.003)

norm n'/2. Suppose 8 is a global minimizer of (2), then each ,éj
minimizes a univariate problem, that is, ﬁj = argmingeg 5 Lz—
,Bg,, (B))? + A|B|. Then we can get exp11c1t relationship between
»8} andzasz = 51gn(,8}) f’_l(ﬂ_) + fa( ﬁj) Given this relationship,

Figure 3(b) shows the univariate solution path of our solution
with Lasso and £ penalty. We see that RCT achieves a balance
between Lasso and £, regularized estimator, and it enjoys the
hard thresholding property.

In what follows, we use a small simulation study to illustrate
the promising performance of the RCT estimator (1) in solving
the penalized least squares with strongly dependent predictors,
while folded concave penalized methods such as the MCP will
perform poorly and tend to include false positives or false nega-
tives of highly correlated covariates. Following He, Xu, and Kang
(2018) to mimic the image predictors, we generate predictors
with p = 100 and n = 50 from a Gaussian process covariate
structure with high correlation: o;; = exp(—|lsi[|> — [IsjI* —
10||s,-—sj||2), where s; and s; are in the rectangle [—1, 1] x[—1, 1].
Let B (3,1.5,0,0,2,0,...,0) and € ~ N(0,3). We use
MCP and RCT to fit sparse linear regression models. We choose
7/n = 0.01 for RCT, and we use cross-validation to choose the
tuning parameters for both RCT and MCP. The false positive
rate (FPR) and false negative rate (FNR) over 50 replications are
reported in Table 1. We see that MCP has significantly higher
false positives as it tends to keep lots of correlated covariates
with small coefficients, while RCT avoids this issue. Extensive
simulation studies will be conducted in Section 5.

3. Theoretical Properties

We present the landscape analysis and asymptotic properties in
Section 3.1, and then show the computational guarantee for an
efficient composite gradient descent algorithm in Section 3.2.

3.1. Statistical Guarantee

Let g(u) and f (u) be a shorthand of g, (#) and f,, (1), respectively.
Then G(B) = (f(B1)s....f(Bp)). In the following analysis,
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we assume t/n = o, where g is a constant such as 0.01. Let
Dg(B) € RP*P and DL(B) e RP*PXP be the first two order
derivatives of G(8), and both Dg(B) and Dé(ﬁ) are diagonal.
Let A < B mean that B — A is semi-positive definite. Given
n > 0, G is third continuously differentiable on its domain with
the explicit upper and lower bounds for the first two derivatives
as in Lemma 1. The proof of Lemma 1 is present in Section B.4
of the supplementary materials.

Lemma 1. (Landscape of thresholding function)

(a) Foranyp € B?(r),ky(0)Ipxp < D(B) < Ko(@)Ipxp: Where
k(o) and ko (o) are constants depending on ¢ only.

(b) There exist i (), k2(@) > 0, such that DZ(B) < Tolyxpxp
when |8 < (@) or |B] > (1 + k1(@)n for j =
1,...,p, wheremp = c(g)/n. Generally, for any g € R?, we
have D%(B) < ilpxpxp, Where Ty = c1(0)/n. (c1(0) >
c(p) are constants only depends on g).

We make the following assumptions on the distribution of
predictor &, the true parameter 8* and the random error ¢.

Assumption 1. (a) The predictor X € RPf is o-2-sub-Gaussian
with mean zero and continuous density p(-), thatis, E[X] =
0 and E{[exp((u, X))1} < exp(o?||u|3/2) for any u € RP.

(b) The predictor X spans all directions in R, that is,
ExxT) = }’szpxp for some 0 < y < 1, where o is
specified in (a).

(c) The true parameter 8* has sparsity level sy := supp(g*) =
o(n) and [|p*]2 <.

(d) The random error ¢ has a symmetric distribution whose
density is strictly positive and decreasing on (0, c0).

Assumption 1(a) and (b) presents the technical conditions
on the predictor. The sub-Gaussian assumption is a commonly
used mild condition in high-dimensional regression. Assump-
tion 1(c) imposes the sparsity on the true parameter vector
B*. We allow the size of the true support set to diverge at rate
o(n). Given the sparsity, it is reasonable to limit our theoretical
analysis in the Euclidean ball B?(r) := {8 € R?,||B|, < r},
which can avoid unnecessary technical complications. Assump-
tion 1(d) allows random error with heavier tails than the stan-
dard Gaussian distribution, and it suits for many applications in
practice. For example, in our simulation studies (Section 5), the
noise is chosen as a mixture of a small variance Gaussian distri-
bution and a large variance Gaussian distribution. Assumption
1(d) can be relaxed to accommodate right skewed errors or
discrete errors.

Section 3.1.1 provides the landscape analysis of population
risk and empirical risk. Section 3.1.2 further shows the conver-
gence rate of the minimizer of the objective function (2).

3.1.1. The Landscape of Population Risk and Empirical Risk
We analyze the landscape of the population risk function,
defined as

P
RB) =E[LY = D" XBgen(8)) | = EILY — XTG(B)].

=1
(5)

We first note that true signal g* is not a minimizer of R(f).
Instead, ﬁ* € R? isa minimizer of R(B) if G( ﬁ*) = B* uniquely.
Given B* € G(BF(r)), the existence and uniqueness of ﬁ‘ can
be guaranteed since the thresholding function G is a bijective
between BP(r) and G(BP(r)). In the sequel, we will study the sta-
tistical convergence to the surrogate A*, which shares the same
nonzero support with g*. Let BP(8, €p) be the £; ball centered
at B with radius g > 0. Let VR(B) be the gradient of R(8)
and V2R(B) the Hessian matrix. Let h(-) = E.[L'(- + £)] and
p(-) = infy<.{h(x)/x}. Lemma 2 shows that both VR(8) and
V2R(B) are bounded and proves the uniqueness of its stationary
point.

Lemma 2. (Landscape of population risk) Under Assumption 1,
the population risk function R(8) has the following properties:

(a) Forany B € B(r), |[VR(B)|l2 < Lo, where Ly = kowo;

(b) Forany B € B?(r), (B — B*, VR(B)) > To||p — B*|12, where
To = p(to)ykjo®/2 and to = (4koro)/Tlog(y/16)].
For any B € BP(r) such that | — B*|l2 = €, we have
IVR(B)|l2 = Ly, where Ly = Toe€o;

(c) For any B € BP(r), Amax(V2R(B)) < M, where My =
40‘2I[2) + w10/

(d) There exists an €g > 0 such that Ayin(VZR(B)) > M, for
any 8 € BP(B*, ), where M, = p'(0)yk2o?/2,

where ko, ky, and ¢, are shorthand of ky(0), ky(0), and ¢, (o)
defined in Lemma 1, depending on ¢ only; o and y are con-
stants about the distribution of predictor X, defined in Assump-
tion 1(a) and (b); w is a constant defined in the Pseudo-Huber
loss function L(-); function p(-) is a monotone decreasing func-
tion depends on the distribution of error ¢.

Lemma 2(b) indicates that no stationary point of R(S) exists
except ,é“‘. Lemma 2(d) indicates that Hessian matrix V2R(S)
is strictly positive definite inside the ball B?(B*,¢,). Combine
results in (b) and (d), we further conclude that g* is the unique
minimizer.

We then consider the empirical risk function:

n

P
RB) =~ 31— Y xibgea®))-  ©

i=1 j=1

Let Vﬁ,, (B) and Vfﬁ,, (B) be the gradient and Hessian of ﬁn (B).
We first establish thE uniform convergence from Vﬁ,, (B) to
VR(B) and from V?R,(B) to R(B). Thus, fine landscape of the
population risk R(B) in Lemma 2, such as existence of unique
minimizer, can be transferred to the erEpirical risk R,,(8). The
landscape properties of empirical risk R, (8) is summarized in
Lemma 3.

Lemma 3. (Landscape of empirical risk) Under Assumption 1,
for any 8 > 0,¢9 > 0, there exists a constant C; =
Coo *log(kora /8)(Lyeo V My)?, such that, if n > Ciplogp,
the following properties hold with probability at least 1 — §:

(a) Forany 8 < BP(r), ||V§,,(,8)||2 < L_D,:‘Zﬁ.

(b) Forany B € BP(r) such tﬁhat 1B — B*ll. = €/2, (B —
B VR,(B) = eLyllB — B*l2/4

(c) Forany B € BP(r), Amax(V?R,(B)) < Mo/2.



(d) Forany B € BP(B*,€p), lminivzﬁn (B)) = M,/2.
(e) "l:he empirical risk function R, (8) has a unique minimizer
B such that

1Bn — B*ll2 < C2y/p log n/n,

where C, = 4Cy8 log(m koro/8) /M,

where L, Ly, My, and M,, are specified in Lemma 2.

Lemma 3(e) implies the consistency of the unique minimizer
of the empiricial risk function when the dimension p diverges
with the sample size n under the low-dimensional setting with
n > C;plog p. In the sequel, we further establish the consistency
of the RCT estimator when the dimension p can be much larger
than the sample size n.

3.1.2. Consistency of RCT Estimator
In this section, we focus on the group lasso penalty case. Let

BT = ((BYHY,....(BH) € ]R®f=1"f, where B; is a subvector
with length /;, corresponding to the features in group j. For any
support index set S C {1,...,d}, let Bs = ((B))",...)T, where
j € S. Let Sy be the support of B* on the group index and
dy = [So|- Let d. = d — dj. Let ]; be the length of subvector §;
forj=1,...,d. Letls, = max{l;,j € So}, Is; = max{l;,j € S5},
and Inax = max{;,j = 1,...,d}.

Given the landscape analysis in the previous section, we will
establish the consistency of the RCT estimator when p is at the
nearly exponential order of n. To simplify the asymptotic result,
as in Mei, Bai, and Montanari (2018), we make the additional
assumption on the feature X as follows.

Assumption 2. The feature vector A is bounded, that is, there
exist a constant M, such that, || X'||oc < Mo almost surely.

Assumption 2 is stronger than Assumption 1(a). However, as
noted in Mei, Bai, and Montanari (2018), for independent sub-
Gaussian data {X;}} |, wehave sup, || Xi|lc < C,/log(np)c with
high probability. Thus, Theorem 1 can also be established for
sub Gaussian features with an additional ,/log(np) factor in the
error bound. To prove Theorem 1, we first show that the sample
directional gradient and restricted Hessian converges uniformly
to their population counterparts (Lemma S.6 in supplementary
materials). The proof of Theorem 1 is attached in supplementary
material B.8.

Theorem 1. Under Assumptions 1 and 2, for any § > 0, there
exist constants C,, C;, and C that depend on (r, o, v,0.m.M,1)
but independent of 1, p, sp, such thatas n > C,splogpand A, >
Cy+/ (log p)/n, then with probability at least 1 —§, any stationary
point A of group-regularized risk minimization (2) satisfies

1B —B*ll2 < C\/(SO logp)/n + soA2.

3.2. Computational Guarantee

Gradient descent algorithms do not work since the objective
function (2) is not differentiable at zero. We consider the com-
posite gradient descent algorithm (Nesterov 2013), which is
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computationally efficient for solving the nonsmooth noncon-
vex optimization and enjoys the convergence property. Specifi-
cally, solving the proposed RCT problem via composite gradient
descent algorithm contains two key steps at each iteration: the
gradient descent step and the £,-ball projection step.

In the first step, we perform gradient descent. Given the
previous iterated solution A®, with the step size h, we need to
solve the following subproblem:

d
1 n | BN A .
min { =18 — (B® — —VREODI3+ =D 1FI{. )
B 2 h h =
Note that (7) has a closed-form solution through the foll_ow—

ing group-wise soft thresholding operator: S; /(&) = II_E% o
(Igll2 — A/h)4, where & = (€NT,...,E)DT € RP shares
the same group structure as 8, and o denotes the Hadamard

product. Thus, the gradient descent step can be solved as
BED = 5 (B® — hV RA(BP))). (8)
In the second step, we project 3*+1 onto the £,-ball by

Bkt _ min{| 8% 15,1 241y

= 9
IBE+D, ®)

7 (
After solving (8) and (9) until convergence, we apply a hard
thresholding on the solution to get the final RCT estimator, that
is, ﬁRCT = 3 . I{|,§| > p}. Note that G(-) is a smooth approxi-
mation of the hard thresholding function, so this additional step
results in a sparse estimator ,3 close to G(,é). Moreover, this hard
thresholding step helps to address the gradient vanishing issue,
which we will illustrate as follows. To begin with, we derive an
upper bound of the partial derivative of the loss function at one
observation with respect to g;, that is,

ALy B) , > Bign (B
'—*‘ = L'(i — Y xiBign(B) ———
3p; pr 3p;
< 18(B) + Big (B)I.
Figure 4 plots the upper bound for 8 € (0,1) with = 0.5
and T = 0.005. We see that the derivative almost vanishes
1.00 L
7
f.
|
075 ‘
)
=
g 0.50 ‘
o}
N |
0.25 }
0.001 ==
0.00 0.25 0.50 0.75 1.00
beta

Figure 4. lllustration of the gradient vanishing issue for 8 < (0, 1).
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Input: ) € BP(r), step size h, penalization parameter
A, thresholding parameter 7, and predetermined
hyperparameter t, r

fork=0,1,2,... until convergence do

BED = 5m(B® — iV RA(BD)))
BRED = 7, (BRD)
end

Record thAe solutiop as Bl.
Output: rer = B - I{|B| = n}.

Algorithm 1: The composite gradient descent algorithm for
solving the RCT estimator.

when [B| < 5. That means, after the updated solution enters
the threshold (ie., |8j| < n), vanishing gradient will prevent
the solution approaching 0. Then the soft-thresholding (8) is
not enough to threshold the noise signals to 0. Such gradient
vanishing is a common issue in optimization when the objective
function is nonconvex (Hochreiter 1998). In our context this
hard thresholding step addresses this issue, as gradient vanish-
ing only happens when |8| < 7.

The proposed algorithm can be summarized as Algorithm 1.
At each iteration, the subproblem can be solved with a closed-
form solution, and the computational complexity is on the
quadratic order of dimension p. The algorithmic convergence
rate is presented in the following proposition.

Proposition 1. Let B be the kth iterated solution of Algo-
rithm 1. There exist constants ¢, and C, independent of (n, p, sp),
such that when h < ¢y, there exists k < Ce~2 and subgradient
u((BPY) € 31 (BPY |, such that

d
IVR.(B®) + 1 uBPW)lI2 < e,

j=1

where 3|| 87|, denotes the sub-differential of the group penalty
function.

Proposition 1 provides a theoretical justification of the algo-
rithmic convergence rate. The proposed algorithm always con-
verges to an approximate stationary solution (a.k.a. e-stationary
solution) at finite sample sizes. In other words, after O(1 /€?)
iterations, the £, norm of the subgradient of the objective func-
tion is bounded by € when the sample size is finite. When k
increases, the proposed algorithm will find the stationary solu-
tion that satisfies the subgradient optimality conditionase — 0.
To better visualize the convergence of the algorithm, we provide
the convergence plots and computational cost of the proposed
algorithm in Section C of the supplementary materials. From
both theoretical and practical aspects, the proposed algorithm
is computationally efficient and achieves the desired computa-
tional guarantee. Given the nice empirical gradient structure
proved in Theorem 1, we further prove the linear convergence
rate given that the solution is sparse in Proposition 3 in Section C
of the supplementary materials.

4. Extension with the Spatial Information

This section extends the methodology and applicability of the
RCT estimator to incorporate the possibly available spatial
information among predictors, especially for scalar-on-image
regression. In practice, the scalar-on-image regression model
has a large number of pixels or voxels as the predictors, but only
a few are significantly associated with the response. When a
pixel or voxel is selected as a significant one, its neighbors on
the image usually have similar effects. The spatial information
is commonly available and used in image data analysis such as
the STGP (Kang, Reich, and Staicu 2018).

Denote the neighbor index set of B; by A;, and denote the
subvector of B on A; by Ba,. Let nj = | Aj|. Let BAJ- be the average
of all neighbor signals of g;, that is, Ba, = ZkeAj Bi/n;. For a
two-dimensional image, we define the neighbors of a predictor
as the ones whose either row index or column index differs by 1
(i.e., nj = 4). Recall that we employ the coefficient thresholding
on each coordinate in the proposed RCT method (2). We now
modify it by thresholding over the average between coefficient
Bj and its average neighbor effect ﬁAj, that is,

Zen(B) = he((Bj + Ba)/2 — m) + he (—Bj — Ba)/2 — ).

Intuitively, when the neighbors of x; have significant effects
on the response, |,§Aj| tends to be above the threshold n and
helps to keep x; in the model, because the effects usually change
smoothly across different locations and have the same sign
within a neighbor in the scalar-on-image regression setting.
After incorporating the spatial information to the coefficient
thresholding, we then solve the following penalized problem:

1 ? -
min { ~ S L =Y xBigenB)) + rn Y (B2

n
i=1 j=1 k=1

IBll2 < r. (10)

After incorporating the spatial information, it is challenging
to analyze the landscape of the risk function in (10), and there
is no longer any guarantee of a unique stationary solution with
high probability. To handle the issue of multiple local solutions,
we propose a stochastic composite gradient descent algorithm
that also enjoys a convergence guarantee (see Proposition 2).

For the kth iteration, define xi”‘,. Xk

subject to

as the randomly split

batches with the given batch size and Rg" as the empirical loss
function calculated on the gth batch in the kth iteration. The
proposed stochastic composite gradient descent algorithm is
proceeded as follows.

Let L(B) = R(B) + A L, lIBill2 and Ln(B) = Ra(B) +
A Zﬁzl l| Bkll2- Let L* = mingep(,) L(B). We now establish the

following convergence guarantee for the above stochastic algo-
rithm based on (Ghadimi, Lan, and Zhang 2016, Theorem 1).

Proposition 2. Suppose that the step size {h¢} in the Algorithm 2
are chosen such that 0 < h; < 2a/M, with h; < 2«/M, for at
least one k, where M), is defined in Lemma 2(c). Then, we have

M,D?
Y (ahy — Moh/2)

18D — g0 <



Input: ) € BP(r), step size hy, penalization parameter
A, thresholding parameter 7, batch size b, and
predetermined hyperparameter t, r.

fork=0,1,2,... until convergence do

Split data into batches xi’*, ... ,xf"

forq=0,1,2,...,tdo

-t At -~h -
BEID = 5 (BED — MV R (BSDY))
pka+D) — g (Bka+1))

end

,g(k+1;0) — ,é\(k;t+1)
end
Output: Brcr = B - I{|B| = n}.

Algorithm 2: The proposed stochastic composite gradient

descent algorithm.

where D = /(L(B©) — L* /My). If we take h; = a/M, for all
k, then we have

IM.D?

ak+1) _ a0y
184D — B0 < =2

In the simulation studies of Section 5, we will show that the
generalized RCT method (10) and the stochastic algorithm are
promising for the scalar-on-image regression analysis.

5. Simulation Studies

This section examines the finite-sample properties of the RCT
estimator and its extension in simulation studies. Section 5.1
examines not only the linear regression settings but also the
scalar-on-image regression settings without spatial information.
Section 5.2 examines the scalar-on-image regression settings
when spatial information is available and can be incorporated
into the model.

Specifically, we compare the proposed RCT estimators with
the Lasso, Adaptive Lasso (denoted by AdaLasso), SCAD and
MCP penalized estimators in four different linear regression
models (Models 1-4) and with the Lasso, Group Lasso (denoted
by GLasso), and Sparse Group Lasso (denoted by SGL), and
the STGP in six Gaussian process regression models (Models
5-10), which mimic the scalar-on-image regression analysis.
We denote by RCT and STGP when the spatial information
is not used, and by RCT (info)/STGP (info) when the spatial
information is used. We implement the Lasso and the Adaptive
lasso estimators using R package “glmnet;” and we use the Lasso
as the initial estimate for the adaptive Lasso. The GLasso is
implemented using the method in (Yang 2015). The SCAD and
MCP estimators are implemented using R package “ncvreg,” and
we also verify that the estimation results are consistent with R
package “Picasso”

The estimation accuracy is measured by the root-mean-
square error (RMSE, that is |8 — B*||2) and the variable
selection performance is measured by both false positive rate
(FPR) and false negative rate (FNR). Specifically, let FPR =
FP/(FP + TN), and ENR = FEN/(FN + TP), where TN, TP, FP,
and FN represent the numbers of true negative, true positive,
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false positive and false negative, respectively. Each measure is
computed as the average over 50 independent replications.
Before proceeding, we explain the selection of parameters
for the proposed methods and algorithms. The penalization
parameter A controls the scale of penalization, and we choose
A by 3-folded cross-validation based on the L, prediction error.
We set w as 1 in the pseudo-Huber loss. The radius r of the
feasible region can be chosen as a large constant such that the
estimator lies in the interior of B?(r). In all simulations, we set
r = 20. Next, n and t are parameters in the thresholding func-
tion g, ,(B). t/n controls the difference between g, ,(8) and
ideal hard thresholding function I(] - | = #). A more rigorous
result on how solution depends on t is shown in Proposition
S.1 in the supplementary material. We explore different ways
of choosing 7 and t in our analysis to verify that results are
robust. For the choice of 5, in simulation study, we choose 7
by cross-validation, together with A. Simulation studies show
that any quantiles between 10% and 50% of the Lasso estimator’s
nonzero coefficients for n give comparable results. In real data
study, we let 77 be the 30% lower-quantile of the absolute value
of the nonzero coefficients estimated from the Lasso. Given n,
we fix the ratio /5 = 0.1 in Models 5-8, and choose T = 0.02
in Models 1-4. We explore these two choices to verify that our
results are robust against the choice of z. Lastly, the step size
h is chosen to be small enough such that the algorithm doesn’t
encounter overflow issues. We set 1 to be 0.01 after we normalize
the feature marginally. No nonconvergence issue happens in all
of our settings. h can also be chosen according to an acceleration
process in Nesterov (2013) to achieve faster convergence.

5.1. Simulation without Spatial Information

First, we consider the linear regression model Y = X8 + ¢.
We generate X ~ N(0, £), with the following four different
correlation structures for X = (o) pxp:

Model 1 : gy = 0.5, AR1(0.5)
Model 2 : g;; = 0.7/, AR1(0.7)
Model 3 : 0;; = 0.4 + 0.61(i = j), CS(0.4)
Model 4 : 0 = 0.6 + 0.41(i = j), CS(0.6).

Models 1-2 have autoregressive (AR) correlation structures, in
which the irrepresentable condition for Lasso holds for Model 1
but fails for Models 2. Models 3-4 have the compound symme-
try (CS) correlation structures and the irrepresentable condition
for Lasso fails in both two models.

We consider £ ~ 0.9N(0,02) + 0.1N(0, 07), where o is set
much larger than 2. For Models 1 and 2, consider setting (a)
0} = 10, 0% = 1and (b) 6} = 10, 0} = 2. For Models 3
and 4, consider setting (a) 07 = 3,0} = 0.1 and (b) 07 = 3,
o = 0.3. When theratio 0} /o increase, £ has a heavier tail and
more extreme values. For all the models, we choose n = 100,
P = 2000 to create a high-dimensional regime and let true signal
B* = (u,01080), where u € R?° and u; ~ unif(0.5, 1) iid for
i=1,...,20.

Tables 1 and 2 summarize the simulation results for Models
1-4. We have the following observations from these tables. First,
in Models 1-2, our RCT estimator outperforms Lasso, adaptive
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Table 2. Estimation and selection accuracy of different methods for Models 1-4.

FPR FNR £7 loss FPR FNR £7 loss FPR FNR £ loss FPR FNR £7 loss
Model (1a) Model (2a) Model (3a) Model (4a)

Lasso 0.021 0.199 3.198 0.014 0.153 3.035 0.040 0.337 4.075 0.041 0.374 4144
(0.009)  (0.130) (0475  (0.008)  (0.091)  (0.391)  (0.004)  (0.135)  (0.501)  (0.004)  (0.135)  (0.422)

Adalasso 0.020 0.212 3.787 0.014 0.156 3.739 0.033 0.369 4.035 0.032 0.443 4.512
(0.008)  (0.143)  (0.821)  (0.008)  (0.111)  (0.815)  (0.003)  (0.138)  (0.626)  (0.003)  (0.135)  (0.763)

SCAD 0.007 0.422 4.148 0.010 0.575 5.979 0.021 0.736 5.849 0.020 0.745 571
(0.006)  (0.137)  (0.950)  (0.006)  (0.107)  (1.054)  (0.007)  (0.147)  (1.238)  (0.009)  (0.149)  (1.151)

MCP 0.003 0.625 4.709 0.003 0.694 6.201 0.008 0.868 6.763 0.007 0.921 7.348
(0.002)  (0.065)  (0.537)  (0.002)  (0.049)  (0.536)  (0.003)  (0.084)  (0.558)  (0.003)  (0.064)  (0.510)

RCT 0.010 0177 2.860 0.002 0.018 1.466 0.061 0.215 3.982 0.066 0.253 4.093
(0.008)  (0.117)  (0.888)  (0.002)  (0.035)  (0.502)  (0.007)  (0.089)  (0.265)  (0.009)  (0.098)  (0.314)

Model (1b) Model (2b) Model (3b) Model (4b)

Lasso 0.019 0.243 3.446 0.014 0.187 3.273 0.040 0.351 4.092 0.041 0.364 4.124
(0.010)  (0.140)  (0372)  (0.008)  (0.087)  (0422)  (0.004)  (0.135)  (0.448)  (0.003)  (0.081)  (0.235)

Adalasso 0.018 0.256 4.134 0.013 0.199 4.062 0.033 0.377 4.083 0.033 0.459 4.553
(0.008)  (0.130)  (0.657)  (0.008)  (0.107)  (0.726)  (0.003)  (0.139)  (0.561)  (0.003)  (0.145)  (0.819)

SCAD 0.008 0.443 4.233 0.009 0.566 5.726 0.022 0.719 5.563 0.020 0.744 5.802
(0.005)  (0.140)  (0.998)  (0.007)  (0.153)  (1.393)  (0.022) (0135  (1.178)  (0.008)  (0.157)  (1.229)

MCP 0.003 0.636 477N 0.003 0.708 6.386 0.008 0.868 6.738 0.008 0.900 7.146
(0.002)  (0.069)  (0.627)  (0.002)  (0.058)  (0.667)  (0.003)  (0.079)  (0.600)  (0.004)  (0.080)  (0.719)

RCT 0.018 0.242 3.879 0.007 0.084 2939 0.060 0.226 4.019 0.066 0.275 4.138
(0.016)  (0.163) (0735  (0.005)  (0.127)  (0.755)  (0.008)  (0.090)  (0.249)  (0.007)  (0.089)  (0.255)

Lasso (AdaLasso) and nonconvex estimators (SCAD and MCP)
more obviously as the auto correlation increases. Nonconvex
estimators do not work well on all these settings, since they tend
to penalize the model too much, and result in much higher false
negative rates. The Lasso estimator misses many true signals due
to the highly correlated predictors, leading to bad performance
of adaptive Lasso given the Lasso initials. Especially in Model
2 when the auto correlation is high, our RCT estimator has
much smaller FPR and FNR compared to Lasso-type methods.
Second, in case (a) with more outliers, our estimator achieves
a relatively better performance than other estimators thanks to
the use of the Pseudo-Huber loss. Third, in more challenging
Models 3 and 4, our estimator is able to identify more true pre-
dictors and well controls false positives. In summary, RCT esti-
mator is more favorable in high-dimensional regression setting,
especially when the predictors are highly correlated. Nonconvex
estimators, such as the SCAD and MCP, do not work well in our
simulation settings when the dimension is very high compared
to the sample size and dependence among predictors is very
strong. In the existing literature, Zhang (2010) considered n =
300 and p = 2000, with features being generated independently;
Fan, Xue, and Zou (2014) considered n = 100 and p = 1000
with the AR1(0.5) covariance matrix; and Loh and Wainwright
(2017) used settings with p = 512, n > 100 and a family of
spiked identity covariance. In comparison to those simulation
studies, our settings are more challenging, and the SCAD and
MCP perform poorly.

Next, we present simulation results on the scalar-on-image
regression settings. Consider ) = X' + £. We generated fea-
ture A with a two-dimensional image structure, whose region
was generated by Gaussian processes with mean zero and sta-
tionary covariance function cov(X'(s), X'(s")) = «(s,s") for
some pre-specified covariance function «. Set n = 500 and
P = 50 x 50, and consider the following covariance structures:

Model 5 (GP1(10)) :

K (si> ) = exp(—|isil|* — lls;I* — 10[Isi — s;lI)s

Model 6 (GP1(5)) :
K (si> 57) = exp(—|Isil|* — lIsjlI* — 5lIsi — s;11%),

where {s; € R%,i = 1,...,2500} are two-dimensional grid
equally spaced over the rectangle [—1, 1] x[—1, 1]. Similar to the
simulation settings in He, Xu, and Kang (2018), the coefficients
with nonzero effects are located on a circle with radius 0.1 on
the graph and the values of the nonzero effects are set as 1. The
errors follow the same mixture model as in Models 1-4, that is,
e ~ 0.9N(0,a}) + 0.IN(0, o). For Models 5-6, set 07 = 30,
and refer to cases (a) and (b) with 0‘12 = 2 and 4, respectively. A
realization of A’ for Model 5 is illustrated in Figure 5(a).

As shown in Table 3, the Lasso, Adaptive Lasso, SCAD and
MCP fail to identify most of the true predictors and have a very
high FNR, while the RCT is consistently the best among all these
models. It indicates that the thresholding function helps us deal
with these very complicated covariance structures of predictors.
RCT also outperforms STGP, especially in terms of selection
accuracy.

5.2. Simulation with Spatial Information

In this section, we consider the available spatial neighborhood
information for the STGP and generalized RCT in Section 4.
The spatial neighborhood information is useful for scalar-on-
image regression applications, and the simulation results with
neighborhood information can provide more practical guidance
on the performance of different methods for image data analysis.

First, we consider Models 7 and 8 when there is a group
structure among covariates, and the group penalty is neces-
sary to be applied. Models 7 and 8 partition the whole image
space into 25 sub-regions with equal numbers of predictors
in each. The predictors from each sub-region are generated
from a Gaussian process with a constant mean function and
the same covariance structure as Models 5 and 6, respectively.
Correlations between the magnitude of mean functions across
different regions are 0.9. We randomly pick two sub-regions.



Table 3. Estimation and selection accuracy of different methods for Models 5 and 6.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION @ 725

FPR FNR £7 loss FPR FNR £7 loss FPR FNR £7 loss FPR FNR £7 loss
Model (5a) Model (5b) Model (6a) Model (6b)
Lasso 0.002 0.814 7.083 0.002 0.854 7.228 0.001 0.784 6.071 0.041 0.418 4265
(0.002)  (0.031)  (1561)  (0.001)  (0.033)  (1222)  (0.001)  (0.068) (1305  (0.006)  (0.050)  (0.360)
Adalasso 0.002 0.820 12.527 0.001 0.853 10.690 0.001 0.784 0.196 0.033 0.446 4.347
(0.031)  (0.031)  (0.041)  (0.001)  (0.033)  (2728)  (0.068)  (0.068)  (0306)  (0.003)  (0.127)  (0.446)
MCP 0.007 0.918 7.526 0.007 0.918 7.524 0.007 0.918 7.532 0.007 0.918 7.535
(0.003)  (0.060)  (0622)  (0.007)  (0.060)  (0612)  (0.003)  (0.060) (0655  (0.003)  (0.069)  (0.675)
STGP 0.001 0.435 2.729 0.001 0.484 2.753 0.002 0.461 2.584 0.003 0.476 2.561
(0.002)  (0.161)  (0335)  (0.003)  (0210)  (0610)  (0.006)  (0.185)  (0.621)  (0.008)  (0226)  (0.577)
RCT 0.025 0.018 2302 0.034 0.016 2.761 0.027 0.196 3.038 0.045 0.303 3.284
(0.001)  (0.041)  (0342)  (0.008)  (0.105)  (0.298)  (0.014)  (0306)  (1.083)  (0.016)  (0320)  (1.215)
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Figure 5. Plots of the simulated image predictors from the Gaussian process regression (Two circles of bright red color on covariates with nonzero coefficients).

Within each, we identify a circle with a randomly selected center
and radius 0.13 as nonzero effect regions. This makes around 1/3
of the points within the selected sub-region have nonzero effects.
We set all nonzero coefficients as 2. Mathemtically, Models 7
and 8 can be summarized as follows. For k = 1,...,25, let
X5 = (G5, Xi(s5y)) € R be an evaluation of
Gaussian process Xy at 100 location points (s¥, . . ., s ), which
equality spaced over kth sub-region. Let X = (X],..., X%)T e
(R190)®25 The Gaussian process {Xi(s),k = 1,...,25} has
the constant mean function pk, generated by (p1,. .., p2s5) ~
N(0,T") where T'; = 0.9 + 0.1I(i = j), and the following
covariance structures:

Model 7 (GP(10)) :

k(s 57) = exp(—[|sFI|2 — lIsf|1% — 10llsF — sFI%),
Model 8 (GP(5)) :

ke (sir57) = exp(—|sF|2 — [IsF|2 — 5lisF — sFI12).

Figure 3(b) shows one simulated sample image predictor A in
Model 7. For the noise term, we still set crf- = 2 and 4 as case (a)
and (b), respectively, and o7 = 30.

For Models 7 and 8, as shown in Table 4, we compare perfor-
mances of the Lasso, group Lasso (GLasso), sparse Group Lasso
(SGL), STGP, and RCT. We include the region-level FPR (R-
FPR) and region-level FNR (R-FNR) to measure the region-
level selection accuracy, which are computed based on whether
there is at least one variable in the region is selected. Compared
with GLasso and SGL, the RCT identifies almost all the correct
groups with zero false negatives and lower FPR. The RCT (info)

has more precise selection accuracy by using the spatial infor-
mation.

Second, we compare the performances between the STGP
and RCT in the more challenging generative model structure
when the spatial neighborhood information may not be helpful.
We consider the following Models 9 and 10 that have a much
less smooth pattern in the regression coefficients than Models 7
and 8:

Model 9 : Generate X and 8 as in Model 7, randomly keep
25% of nonzero B.
Model 10 : Generate X' and $ as in Model 8, randomly keep

25% of nonzero f.

We let the noise term follow setting (a) in Models 7 and 8.
Compare with Model 7 and 8, we only choose 25% of coefficients
in the selected circles to be nonzeroes. Now, the true signal does
not vary smoothly across the spatial location. We summarize
the results of the RCT and STGP in Table 5. We see that spatial
information does not necessarily improve the numerical per-
formance. In this scenario, RCT outperforms STGP, especially
without using the spatial neighbor information.

Lastly, we demonstrate the robustness of the RCT against
the STGP under the heavy-tailed error distribution. We con-
sider the same settings of Models 5 and 6 except that under
the standard Cauchy error distribution, and we denote them
by Model 5 (Cauchy) and Model 6 (Cauchy). We used spatial
neighborhood information for both STGP and RCT estimators.
We see that when the error is heavy-tailed, the RCT significantly
outperforms the STGP for both models (Table 6).
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Table 4. Selection accuracy of different methods for Models 7 and 8.

FPR FNR R-FPR R-FNR FPR FNR R-FPR R-FNR
Model (7a) Model (8a)
Lasso 0.019 0.270 0.101 0 0.028 041 0.140 0
(0.004) (0.072) (0.091) (0) (0.006) (0.100) (0.083) ()
Glasso 0.220 0.378 0.232 0 0.215 0.403 0.232 0
(0.055) (0.151) (0.094) (0) (0.054) (0.141) (0.094) ()
SGL 0.115 0.010 0.135 0 0.126 0.012 0.126 0
(0.035) (0.022) (0.060) (0) (0.037) (0.030) (0.063) (0)
STGP (info) 0.063 0 0.109 0 0.061 0 0.110 0
(0.010) (0) (0.060) (0) (0.007) (0) (0.060) ()
RCT 0.059 0 0.087 0 0.064 0 0.111 0
(0.003) (0) (0.087) (0) (0.007) (0) (0.091) ()
RCT (info) 0.051 0 0 0 0.052 0 0 0
(0.001) (0) (0) () (0.001) (0) (0) (0)
Model (7b) Model (8b)
Lasso 0.019 0.347 0.166 0 0.028 0415 0.145 0
(0.004) (0.078) (0.088) (0) (0.006) (0) (0.096) ()
Glasso 0.223 0.372 0.232 0 0.214 0.405 0.232 0
(0.053) (0.143) (0.094) (0) (0.056) (0.140) (0.094) ()
SGL 0.130 0.012 0.170 0 0.128 0.020 0.165 0
(0.032) (0.026) (0.060) (0) (0.037) (0.046) (0.091) ()
STGP (info) 0.061 0 0.114 0 0.062 0 0.113 0
(0.007) (0) (0.062) (0) (0.007) (0) (0.039) ()
RCT 0.066 0 0.161 0 0.065 0 0.120 0
(0.006) (0) (0.100) (0) (0.006) (0) (0.096) ()
RCT (info) 0.051 0 0 0 0.052 0 0 0
(0.001) (0) (0) () (0.001) (0) (0) (0)

Table 5. Selection accuracy of STGP and RCT for Models 9 and 10.

FPR FNR R-FPR R-FNR FPR FNR  R-FPR R-FNR
Model 9 Model 10
STGP 0.154 026 0.286 0336 0.175 0.117 0344 0.297
(info) (0.113) (0.106) (0.250) (0.206) (0.133) (0.092) (0.234) (0.179)
STGP  0.055 0.245 0.181 0.220 0.048 0.254 0157 0.250
(0.035) (0.175) (0.110) (0.250) (0.017) (0.145) (0.076) (0.253)
RCT 0.037 0.28 0 0.245 0.036 0.139 0 0.260
(info) (0.001)  (0) () (0)  (0.07012) (0.078) (0)  (0.252)
RCT 0.038 0117 0 0.240 0.038 0.122 0 0.240
(0.012) (0.080) (0) (0.252) (0.012) (0.072) (0)  (0.252)

Table 6. Selection accuracy of STGP and RCT for Models 5 and 6 with the Cacuchy
error.

FPR FNR £7 loss FPR FNR £7 loss
Model 5 (Cauchy) Model 6 (Cauchy)
STGP (info) 0.144 0.300 3.075 0.131 0.386 3.369
(0.197)  (0.470)  (0389)  (0.185)  (0.489)  (0.825)
RCT (info) 0.005 0.116 2.210 0.005 0.071 2.187
(0.007)  (0.184)  (0403)  (0.006)  (0.085)  (0.220)

6. Application to Scalar-on-Image Regression
Analysis

This section applies the proposed method to analyze the 2-
back versus 0-back contrast maps derived from the n-back task
fMRI imaging data in the Adolescent Brain Cognitive Develop-
ment (ABCD) study (Casey et al. 2018). Our goal is to identify
the important imaging features from the contrast maps that
are strongly associated with the risk of psychiatric disorder,
measured by the general factor of psychopathology (GFP) or
“p-factor” After the standard fMRI prepossessing steps, all the
images are registered into the 2 mm standard Montreal Neu-
rological Institute (MNI) space consisting of 160,990 voxels in
the 90 Automated Anatomical Labeling (AAL) brain regions.

With the missing values being removed, the data used in our
analysis consists of 2,070 subjects. To reduce the dimension of
the imaging data, we partition 90 AAL regions into 2,518 sub-
regions with each region consisting of an average of 64 voxels.
We refer to each subregion as a super-voxel. For each subject, we
compute the average intensity values of the voxels within each
super-voxel as its intensity. We consider those 2518 super-voxel-
wise intensity values as the potential image predictors.

There are several challenging issues in the scalar-on-image
regression analysis of this dataset. First, the correlations between
super-voxels across the 90 AAL regions can be very high and
the correlation patterns are complex. In fact, there are 151,724
voxel pairs across these regions having a correlation larger than
0.8 (or less than —0.8), and 9,038 voxel pairs with a correlation
larger than 0.9 (or less than —0.9). Figure 1 visualizes the region-
wise correlation structures, where panel (a) shows the highest
correlations between regions; and panel (b) counts the voxel
pairs that have a correlation higher than 0.8 (or less than —0.8)
in each corresponding region pair. Given the image predictors
having such high and complicated covariance structures, the
classical Lasso or the group Lasso method may fail to perform
variable selection satisfactorily. In contrast, the proposed model
with coefficient thresholding is developed to resolve this issue
since it does not require the strong conditions on the design
matrix. Second, the AAL brain atlas provides useful information
on the brain structure and function that may be related to the
risk of psychiatric disorders. It is of interest to integrate the AAL
region partition as grouping information of image predictors to
improve the accuracy of imaging feature selection. Third, the
outcome variable “p-factor” has a heavy tail with a kurtosis of
66. Compared with normal distribution having a kurtosis of 3,
our outcome variable is heavy-tailed with potential outliers. The
existing nonrobust scalar-on-image regression methods may
produce inaccurate results. All the aforementioned challenging
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region.

issues motivate the needs of developing our robust regression
with coefficient thresholding and group penalty.

In our analysis, we adjust confounding effects by including
a few predictors in the model: family size, gender, race, high-
est parents’ education, household marital status and household
income level. Given the intrinsic group structure, we compare
the performance of the proposed method and the STGP in this
data analysis. As we mentioned, the fMRI data analysis generally
suffers from the reliability issue due to its complex data struc-
ture and low signal-to-noise ratio (Bennett and Miller 2010;
Brown and Behrmann 2017; Eklund et al. 2012; Eklund, Nichols,
and Knutsson 2016). To evaluate the variable selection stability
for both methods, we consider a bootstrap approach with 100
replications. In each replication, we sample n observations with
replacement, and fit the bootstrap samples using the best set of
tuning parameters chosen by a 5-fold cross-validation. Then we
obtain the frequency of each super-voxel being selected over 100
replications as a measure of the selection stability, which can
be used to fairly compare the regions that can be consistently
selected against randomness, and thus ensure the reliability of
the scientific findings in our analysis.

RCT and STGP, respectively, select 124.5 and 245.3 super-
voxels per replication on average. Figure 6 displays the bootstrap
selection results, where the x-axis represents the maximum
selection frequency of super-voxels in each region. The circle
size is proportional to the number of super-voxels with the cor-
responding selection frequency being larger than 0.6. The color
represents the proportion of super-voxels being selected in each
region. Despite a smaller number of super-voxels being selected
in each bootstrap run, RCT consistently selects super-voxels in
several important brain regions over bootstrap samples, while
STGP identifies a less number of brain regions that contain
selected super-voxels.

Table 7 summarizes the comparisons of selected regions
from RCT and STGP by varying different thresholds of selec-
tion frequency from 0.6 to 0.9. Compared with STGP, RCT
selects more stable regions for each level of selection frequency,
indicating that our method produces more reliable selection
results. In particular, containing at least one super-voxels with
more than 60% selection frequency, seven and three regions are
respectively, identified by RCT and STGP. Among those regions,

Table 7. Comparisons of stable selection regions between RCT and STGP for differ-
ent levels of selection frequency threshold.

Selected frequency RCT STGP

0.6-0.7 Callcarine_L, Occipital_Mid_L, Frontal_Sup_Midial_R,
Temporal_Mid_L
Parietal_Inf_L
0.7-0.8 Temporal_Mid_L SupraMarginal_R
0.8-0.9 Frontal_Mid_Orb_L, Precuneus_L N/A
=09 Frontal_Sup_L N/A

only one common region, that is, the left temporal gyrus (Tem-
poral_Mid_L), is detected by both methods, where RCT has a
higher selection frequency (0.79) than STGP (0.69). The existing
functional neuroimaging studies have indicated that the middle
temporal gyrus is involved in language and semantic memory
processing (Cabeza and Nyberg 2000), and it is also related to
mental diseases such as chronic schizophrenia (Onitsuka et al.
2004).

Among other selected regions, with more than 90% selec-
tion frequency, RCT consistently selects super-voxels in the left
superior frontal gyrus (Frontal Sup_L), while the selection fre-
quency by STGP is below 60%. Superior frontal gyrus is known
to be strongly related to working memory (Boisgueheneuc et al.
2006) which plays a critical role in attending to and analyz-
ing incoming information. Deficits in working memory are
associated with many cognitive and mental health challenges,
such as anxiety and stress (Lukasik et al. 2019), which can be
captured by the “p-factor” The strong relationship between p-
factor and working memory has been discovered by existing
studies (Huang-Pollock et al. 2017).

In addition, RCT also identifies five more regions than STGP:
precuneus, the left middle frontal gyrus (Frontal Mid_Orb_L),
the left alcarine fissure and surrounding cortex (Calcarine_L),
the middle occipital gyrus (Occipital Mid_L) and the left
inferior parietal gyri (Parietal_Inf L). Percuneus is well studied
as a core of mind (Cavanna and Trimble 2006), and it is
highly related to posttraumatic stress disorder(PTSD) and other
mental health issue (Geuze et al. 2007). Middle frontal gyrus
is part of limbic system and known to be highly related to
emotion (Sprooten et al. 2017). Inferior parietal lobule has
been involved in the perception of emotions in facial stimuli,
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and interpretation of sensory information (Radua et al. 2010).
Calcarine fissure is related to vision. Middle occipital gyrus is
primarily responsible for object recognition. Our findings are
supported by the existing study on brain AAL regions such as
Power et al. (2011). Specifically, among the detected regions,
Frontal Sup_L, Frontal Mid_Orb_L and Parietal Inf L are
related to the task control network, and Calcarine L and
Ociptial_Mid_L are both in the visual network. This makes
sense as the working memory task is the visual task. We
also investigate the empirical correlation between the selected
region and p-factor. For the most frequently selected regions
Frontal Sup_L, Frontal Mid_Orb_L and Parietal_Inf L which
are related to the task control network, 28 out of 108 super voxels
are significantly correlated with p-factor at the significant level
of 0.1 based on the Kendall’s rank correlation test. It would be
interesting to further investigate how the brain activity in these
regions influences the p-factor.

To further demonstrate the proposed method providing
more reliable scientific findings in comparison to STGP, we
evaluate the prediction performance of the two methods. We
randomly split the data into two parts with 80% as the training
data for model fitting and 20% as the test data for computing
the prediction error. We repeat this procedure for 50 times.
The mean absolute prediction error of the RCT is 0.464 with
standard error 0.004, while the STGP has a mean absolute
prediction error of 0.480 with standard error 0.038. Compared
with the STGP, our proposed method improves the prediction
performance of the p-factor using working memory contrast
maps in the ABCD study.

7. Conclusion

In this article, we propose a novel high-dimensional robust
regression with coefficient thresholding in the presence of com-
plex dependencies among predictors and potential outliers. The
proposed method uses the power of thresholding functions and
the robust Huber loss to build an efficient nonconvex estimation
procedure. We carefully analyze the landscape of the nonconvex
loss function for the proposed method, which enables us to
establish both statistical and computational consistency. We
also present an extension to incorporate the spatial information
into the proposed method. We demonstrate the effectiveness
and usefulness of the proposed method in simulation studies
and a real application to imaging data analysis. In the future,
it is interesting to investigate how to incorporate the spatial-
temporal information of the imaging data into our proposed
method. Itisalso important to study the statistical consistency of
the near-stationary solution from the proposed gradient descent
based algorithm under more general conditions.

Supplementary Materials

The supplementary materials provide technical remarks, the proofs of
lemmas and theorems, and additional numerical results.
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