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1. Introduction

The original Sato-Tate conjecture is a statistical conjecture regarding the distribution
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(CM), and the conjecture was recently generalized to higher genus curves by Serre [31].
Recent results on this topic of determining Sato-Tate distributions in genus 2 and 3
curves have been achieved in [3,12-16,23,26]. In 2016, Fité-Gonzalez-Lario [11] obtained
Sato-Tate equidistribution results for a family of curves of arbitrarily high genus. The
main purposes of this paper are to compute the Sato-Tate groups and to prove the
generalized Sato-Tate conjecture for the following two families of hyperelliptic curves of
arbitrarily high genus

C’p:y2:x”—1 and C’gp:y2:x2p—1,

where p is an odd prime. The generalized Sato-Tate conjecture is known for CM abelian
varieties due to the work of Johansson in [22]; in our proof for C}, we follow Serre’s
strategy from [30]. We provide numerical evidence to support our results by computing
moment statistics associated to the curves.

We start by recalling the original Sato-Tate conjecture for elliptic curves. Let F be a
number field, E/F be an elliptic curve without complex multiplication, and v be a finite
prime of F' such that E has good reduction at v. By a theorem of Hasse, the number of
F,, points of E is ¢, +1—a,, where I, denotes the residue field of v and a, is an integer

1/2

(called the trace of Frobenius at v) satisfying |a,| < 2¢,'/¢. The Sato-Tate conjecture

predicts that, as v varies through the primes of good reduction for E, the normalized

1/2 are equidistributed in the interval [~2, 2] with respect to the

Frobenius traces a,/q,
image of the Haar measure on the special unitary group SU(2). This conjecture has
been proven for non-CM elliptic curves defined over totally real fields (see [6,7,17,36]).
The distributions of the normalized Frobenius traces are also known for CM elliptic
curves over all fields: they are distributed with respect to the image under the trace
map of the Haar measure on either the unitary group U(1) or the normalizer of U(1) in
SU(2), depending on whether or not the field of definition contains the field of complex
multiplication (see, for example, [1] or [5]).

The generalized Sato-Tate conjecture for an abelian variety predicts the existence of
a compact Lie group that determines the limiting distribution of normalized local Euler
factors. We now state the conjecture more precisely for abelian varieties that are the
Jacobians of curves defined over Q, following the exposition of [11].

Let C be a smooth, projective, genus g curve defined over Q and let K be the minimal
extension over which all endomorphisms of Jac(C') are defined. The Sato-Tate group of
the Jacobian of C, ST(Jac(C)) C USp(2g), is a compact Lie group satisfying the following
property. For each prime p at which C' has good reduction, there exists a conjugacy class
x, of ST(Jac(C')) whose characteristic polynomial equals the normalized L-polynomial

L,(C,T)=T% +a;T? ' +a;T?9 2 + -+ axT? + . T + 1. (1)

Let F' be a number field and let X be the set of conjugacy classes of ST(Jac(C)r).
Let {p;}i>1 be an ordering by norm of the set of primes of good reduction for C over F'
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and define a map that sends p; to z,, in Xr. We can now state the generalized Sato-Tate
conjecture.

Conjecture 1.1 (Generalized Sato-Tate conjecture). The sequence {xp, }i>1 is equidis-
tributed on Xp with respect to the image on X of the Haar measure of ST(Jac(C)p).

Our goals in this paper are to determine the Sato-Tate groups of the Jacobians of the
curves C), and Cy), (see Theorem 4.2 and Theorem 4.4) and to prove the equidistribution
predicted by the generalized Sato-Tate conjecture for these two families of curves (see
Theorem 5.5 and Theorem 5.6).

Theorem 1.2. Let p be an odd prime. The generalized Sato-Tate conjecture holds for the
Jacobians of the curves Cp : y*> = 2P — 1 and Cop : y* = 2?P — 1.

The Sato-Tate conjecture was proven for CM abelian varieties in [22], and the Ja-
cobians of both curves in Theorem 1.2 are CM abelian varieties. However, to provide
an explicit description of the limiting distribution of the normalized L-polynomial, we
need the explicit embedding of the Sato-Tate group of the Jacobian of the curve in-
side USp(2g), where g is the genus of the curve. Our approach is similar to that of, for
example, [11] and [26].

This paper is organized as follows. In Section 2, we establish the nondegeneracy of the
Jacobians of C), and Cs),. In Section 3, we prove that the twisted Lefschetz group of the
Jacobian, defined by Banaszak and Kedlaya in [5], is equal to the algebraic Sato-Tate
group; this essentially follows from the work of [4] since the Jacobians of our curves are
nondegenerate. The equality of the twisted Lefschetz group and the algebraic Sato-Tate
group allows one to interpret the Sato-Tate group as a maximal compact subgroup of
the group of C-points of the base change of the algebraic Sato-Tate group to C.

In Section 4, we apply the work of Section 3 to determine the Sato-Tate groups of the
Jacobians of the curves C, and Cy,. We first determine the identity components of the
Sato-Tate groups (see Proposition 4.1 and Proposition 4.3). Note that these propositions
confirm Conjectures 6.8 and 6.9 of [9]. The computation of the twisted Lefschetz groups
then gives the generators of the component groups (see Theorems 4.2 and 4.4). We give
explicit examples of some of these generators in Table 3 in Appendix A.

In Section 5, we establish Conjecture 1.1 for C}, and C5,. For the curve C),, we prove
the generalized Sato-Tate conjecture by following Serre’s strategy in [30], i.e. showing
that a certain L-function attached to the irreducible nontrivial representations of the
Sato-Tate group of the Jacobian of the curve does not vanish. We then use a theorem
of Hecke that the L-function attached to a nontrivial unitarized Hecke character does
not vanish for Re(s) > 1. This proof technique requires a cyclic Galois group Gal(K/Q),
where K is the minimal extension over which all endomorphisms of the Jacobian are
defined. The Galois group associated to the curve Cy, is not cyclic, so we use the work
of [22] to prove the generalized Sato-Tate conjecture in this case.



244 M. Emory, H. Goodson / Journal of Algebra 597 (2022) 241-265

In Section 6, we compute moment statistics associated to the Sato-Tate groups of the
Jacobians of C), and C5,. These moment statistics can be used to verify the equidistri-
bution statement of the generalized Sato-Tate conjecture by comparing them to moment
statistics obtained for the traces a; in the normalized L-polynomial fp(C, T) in Equation
(1). Note that the numerical moment statistics are an approximation since one can only
ever compute them up to some prime. It is of interest to those dealing with equidistri-
bution statements to compare how close these two computations are. We compare the
moments in Table 2 in Section 6.

Notation and conventions. We begin by fixing notation used in later sections. Let C'
be a smooth projective curve defined over Q. We write End(Jac(C')y) for the ring of
endomorphisms defined over the field k of the Jacobian of C. Let K := K¢ denote the
minimal extension L/Q over which all the endomorphisms of the abelian variety Jac(C')
are defined, i.e. the minimal extension for which End(Jac(C)r) ~ End(Jac(C)g); the
field K is called the endomorphism field of Jac(C').

We denote the Sato-Tate group of the Jacobian of C' by ST (Jac(C)) := ST(Jac(C)q)
with identity component denoted STY(Jac(C)) := ST"(Jac(C)g) and component group
ST(Jac(C))/ ST (Jac(C)). The curve y*> = ™ — 1 is denoted by C,,, and when we
specialize to C, or to Cy, we assume throughout the paper that p is an odd prime.

th root of unity. For any rational number = whose

We will write (,, for a primitive m
denominator is coprime to an integer 7, (z), denotes the unique representative of x
modulo r between 0 and r — 1.

Define the two matrices

_ (1 0 (0 1
= (0 1) and J:= (_1 0).

The symplectic form considered throughout the paper is given by diag(J, ..., J). Lastly,
for any positive integer n, we define the following subgroups of the unitary symplectic
group USp(2n).

u(l), = <diag(u,ﬂ, coumu)iu€CXllul = 1>
~—_———

n—times

and

U(l)n = <diag(u17u_17 c '7un7m) tu; € (Cxa |u7,‘ = 1> .
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2. Nondegenerate abelian varieties

Our main results hold for curves whose Jacobians are nondegenerate. In this section
we define the term nondegenerate and give some known results that will be relevant to
our later work.

Let A be a nonsingular projective variety over C. We denote (as in [33]) the (com-
plexified) Hodge ring of A by

where Z9(A) = (H*(A,Q)NH%4(A))®C is the C-span of Hodge cycles of codimension
d on A. Furthermore, we define the ring

dim(A)

7*(A) = > 2A)

d=0

where 2%(A) is the C-span of classes of intersection of d divisors. This is the subring of
P*(A) generated by the divisor classes, i.e. generated by %'(A). In general, it is known
that we have containment 2*(A) C #*(A) [33].

Definition 2.1. [2] An abelian variety A is said to be nondegenerate if 2*(A) = *(A).
If 2*(A) # #*(A), then A is said to be degenerate.

Definition 2.2. [2,20] An abelian variety A is said to be stably nondegenerate if, for any
integer k > 1, 2*(A*) = #*(AF).

Hazama proves in Theorem 1.2 of [20] that A is stably nondegenerate if and only if
the dimension of its Hodge group is maximal. Note that in [11], the authors use the word
nondegenerate to describe abelian varieties with this property.
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Nondegeneracy is related to the CM-type of an abelian variety. Let A/Q be a dimen-
sion d abelian variety. Suppose that there is a number field K with [K : Q] = 2d and an
injective ring homomorphism ¢ : K — End(A) ® Q. The map ¢ induces a representation
® of K on the space of holomorphic 1-forms on A and we say that (A, ) is of CM-type
(F, @) (see, for example, [2,24,28,32]). When A is an absolutely simple abelian variety
with complex multiplication, stable nondegeneracy is equivalent to the CM-type being
nondegenerate, i.e. the CM-type has maximal rank (see, for example, [2,24]).

Let €%(A) be the subspace of %9(A) generated by the classes of algebraic cycles on
A of codimension d. Then

2%(A) C ¢4A) C BYA)

and the Hodge Conjecture for A asserts that €4(A) = #%(A) for all d [2,33]. It is clear
from Definition 2.1 that if A is nondegenerate then the Hodge Conjecture holds. However,
there are many cases where the Hodge Conjecture holds for degenerate abelian varieties.
For example, Shioda verified the Hodge Conjecture for Jac(C,,) for all m < 21, though
Jac(Cy), Jac(C15), and Jac(Cay) are degenerate (see [33, Section 6]).

The following results are crucial to our work with the curves C, and Co,,.

Proposition 2.3. [33, Corollary 5.3/ If p > 3 is a prime number, then the Hodge ring
B*(Jac(Cp)) is generated by B*(Jac(Cp)). The same result holds for arbitrary powers
of Jac(C)).

By definition, this tells us that Jac(C,) is stably nondegenerate. The nondegen-
erate CM-type for the curve C, is {Q((p),{01,02,...,00p-1)/2}}, where each o; €
Gal(Q(¢p)/Q) is defined by 7¢(¢,) = ¢}, (see, for example, [32, Section 15.4]). The CM-
type for the curve C, is primitive (see, for example, [24] for a definition) which implies

that Jac(C)) is absolutely irreducible.

Proposition 2.4. [9, Lemma 4.1] Let g = 2k be an even integer, and Cagyo : y? =
22912 4 ¢, where ¢ € Q*. Then we have the following isogeny over Q

Jac(Cagya) ~ JaC(Cg+1)2»
where Cyyq 1 y* = 297 + ¢,
Combining these two results yields the following.
Corollary 2.5. For any prime p > 3, Jac(C)p) and Jac(Csp) are nondegenerate.

Proof. Note that if p is an odd prime, then we can write p = 2k + 1, for some integer k.
Hence, 2p = 2(2k+1) = 2(2k)+2 and Proposition 2.4 tells us that for Cy,, : y? = 2% —1,
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Jac(Cap) ~ Jac(Cp)?.

Thus, Jac(Cyp) is a power of Jac(Cp), and we apply Proposition 2.3 to get the desired
result. O

An alternative proof that Jac(C)) is nondegenerate is Theorem 2 in [24]. Note that
curve Co, has CM field Q(C4p). See the proof of Theorem 4.4 for the generators of the
reduced automorphism group of Cap,.

3. The algebraic Sato-Tate group

We start by defining notation as in [11] and [35, Section 3]. For more detailed back-
ground information, see [35, Section 3.2].

Let A/k be an abelian variety of dimension g defined over the number field k. Let £ be
a prime and we define the Tate module 7j := lim | A[€™] to be a free Zy-module of rank
2g, and the rational Tate module V; := Ty ®7 Q to be a Q-vector space of dimension
2g. The Galois action on the Tate module is given by an f-adic representation

pae: Gal(k/k) — Aut(Ve) = GLoy(Qp).

Let Gy denote the image of this map, and let GZZ(”” be the Zariski closure of Gy in
GLag(Qy). We then define Gy?*" := GZ9" (1 Spy, (Qy).

Definition 3.1. The Sato-Tate group of A, denoted by ST(A), is a maximal compact Lie

subgroup of G}"?*" ®g, C contained in USp(2g)

The algebraic Sato-Tate Conjecture for Jac(C') predicts the existence of an algebraic
Sato-Tate group AST (Jac(C)) of Spy, /Q such that

Gp7*" = AST(Jac(C)) ®@o Qq

for every prime ¢ (see, for example, [12, Conjecture 2.13] and [5, Conjecture 2.1]).
For each 7 € Gal(Q/Q), define the set

L(Jac(C))(7) := {7 € Spy, lyay™' = 7(a) for all a € End(Jac(C)g) ®z Q}
where « is viewed as an endomorphism of H;((Jac(C)c, Q).
Definition 3.2. [5] The twisted Lefschetz group TL(Jac(C)) is defined to be

TL(Jac(C)):= ) L(JacC)(r).
TeGal(@/Q)
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When 7 is the identity automorphism, L(Jac(C))(7) forms a group, called the Lef-
schetz group, which we denote simply by L(Jac(C)).

Proposition 3.3. Let p be an odd prime and C, be the curve y* = zP — 1. Then the
algebraic Sato-Tate Conjecture holds for Jac(C)p) with AST(Jac(C))) = TL(Jac(Cp)).

Proof. This follows from [5, Theorem 6.6] since Jac(C)) is a nondegenerate CM abelian
variety. Still, we include a proof that is similar to the proof of [11, Lemma 3.5] for the
sake of completion. By [12, Theorem 2.16(a)], we need to verify two criteria: the Hodge
group Hg(Jac(Cp)) equals the Lefschetz group L(Jac(C))), and that the Mumford-Tate
Conjecture holds for Jac(Cp). The Mumford-Tate Conjecture is known to be true for
CM abelian varieties (see, for example, [11,28,39]), so we only need to verify the first of
the criteria.
By Deligne [8, I, Proposition 6.2] and [5, Definition 4.4], we have

G170 (Jac(C,)) C Heg(Jac(Cy)) ®g Q¢ C L(Jac(C,)) ®o Q¢ (2)

for every prime £. We will show that Gy?*"°(Jac(C,)) = L(Jac(C,)) ®g Q¢ to obtain
the desired result. Note that it is sufficient to show this for any prime /.

Since p is prime, Jac(C)) is simple (see, for example, [32, Section 15.4]). Furthermore,
Proposition 2.3 tells us that Jac(C),) has nondegenerate CM-type. We apply the results
of Section 2 of [4] to get, for every prime ¢ of good reduction for which Jac(C),) splits

completely in Q((p),
G;’Zar’o(JaC(Op)) = {diag(m, Yiy - ’xmyg) S Q; | TiYr = = Tglg = 1}, (3)

where g = (p — 1)/2 is the genus of C,.
We now compute the Lefschetz group L(Jac(C')) ®g Q. In order for a matrix v € Sp,,
to commute with any matrix o € End(H;(Jac(Cp)c, C)), it must be diagonal. Hence,

L(Jac(Cp)) ®Q Qé = {diag(xh Yty .- axgvyg) € QZ | TiYyir = " = TgYg = 1}7
which yields the desired result. O

Corollary 3.4. If p is an odd prime then the algebraic Sato-Tate Conjecture holds for
Jac(Cyp) with AST(Jac(Cyp)) = TL(Jac(Cap)).

Proof. Recall from Proposition 2.4 that
Jac(Cap) ~ (Jac(Cy))%.

Corollary 2.5 tells us that both Jac(Cs,) and Jac(C),) are nondegenerate. Furthermore,
they are both abelian varieties with CM. Hence, as in the proof of Lemma 3.5 of [11],
proving the inclusions in Equation (2) were actually equalities gives us
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G 7 (Jac(Cyp)) = He(Jac(Cyp)) ®g Qi = L(Jac(Cay)) @ Q. O

Note that we cannot apply Theorem A of [4] to determine G?*"%(Jac(Cy,)) since
Jac(Cyp) is not simple. We will determine the identity component of the Sato-Tate group
of Jac(Cap) using another method in Section 4.2.

Corollary 3.5. The group of components of G;’Z‘"(Jac(CP)) and AST(Jac(C))) are iso-

morphic to Gal(Q(¢p)/Q). Also, the group of components of G%7ZGT(J3C(CQP)) and

AST(Jac(Cyp)) are isomorphic to Gal(Q((ap)/Q).

Proof. This follows from Proposition 3.3 (see [12, Prop 2.17]). O

Remark. Although [12, Prop 2.17] is stated for g < 3, Proposition 3.3 is for curves of

arbitrarily high genus, and since the Mumford-Tate conjecture holds for Jac(Cjy) the

requirement that g < 3 in [12, Prop 2.17] can be removed for the proof of Corollary 3.5.
It is known that when the algebraic Sato-Tate conjecture holds, we may interpret the

Sato-Tate group ST (Jac(C)) as a maximal compact subgroup of AST(Jac(C))®gC (see,
for example, [12, Section 2.2]).

4. Sato-Tate groups

In this section we compute the Sato-Tate groups of the Jacobians of the curves C,, :
y> = 2P — 1 and Cy, : y? = 2% — 1. For both families of curves, we obtain the
component group of the Sato-Tate group by computing the twisted Lefschetz groups
(recall the results of Proposition 3.3 and Corollary 3.4).

4.1. The Sato-Tate group of y*> = 2P — 1
We first determine the identity component of the Sato-Tate group.
Proposition 4.1. If p is an odd prime then
ST?(Jac(C,)) ~ U(1)?
where g = (p — 1)/2 is the genus of C,.
Proof. Let ¢ be a prime, and take an embedding of Q; into the complex numbers. By
definition, ST?(Jac(C)) is a maximal compact subgroup of AST"(Jac(C)) ®g C. From

Proposition 3.3 and Equation (3), it follows that we can take the maximal compact
subgroup U(1)9. O
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Remark. Proposition 4.1 could also be derived from [11] where they consider the curve
Cr:v' =u(u+1)"*"1 If we let k = p— 2 and £ = p, then the curve C,_» is isomorphic
to C, over the field Q(4'/7 i). This immediately gives the identity component of the
Sato-Tate group of the Jacobian of ), since the connected component only depends on
the variety over Q.

The main result of the following theorem is determining the component group of the
Sato-Tate group of Jac(C),). Explicit examples of the generator of the component group
are given in Table 3 in Appendix A.

Theorem 4.2. Let S = {1,...,g} and let a be a generator of the cyclic group (Z/pZ)*.
Up to conjugation in USp(2g),

ST(Jac(Cyp)) = (U(1)?,7),
where v is a 29 X 2g matrixz whose block entries are given by

I if j = (ai), and (ai), € S,
Yij=18J if j=p—(ai), and (ai), ¢ S, (4)

0 otherwise.

Furthermore, there is an isomorphism
ST(Jac(Cp)) ~U(1)? x (Z/pZ)*.

Proof. We compute the twisted Lefschetz group of Jac(C,). Applying Proposition 3.3
then yields the desired result.

We can identify the group G = (Z/pZ)* with Gal(Q((,)/Q) via the isomorphism
that maps ¢t € G to the Galois element oy, where 7((,) := C;.

A basis for the space of regular 1-forms of a genus g hyperelliptic curve is given by
{wj = aIdz/y : j=0,---,g9— 1} (see, for example, [37, Section 3]). We consider the
automorphism a : C, — C), defined by a(z,y) = (¢pz,y), and compute the pullbacks of
the differentials to be

Ck*(o.}j) = gg"'le.
We now write the endomorphism « € End(Jac(Ck)) in terms of a symplectic basis

of Hy(Jac(Cp)c,C) (with respect to the matrix diag(J)) and get the diagonal matrix
a = diag(X1, Xo, ..., X,), where each X, is a block matrix defined by

X; = diag( ;,5) .
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Let o, be a generator for the cyclic Galois group Gal(Q((,)/Q) ~ (Z/pZ)*. Since
the action of the Galois element o, is given by 7¢((,) = (7, we have

% X; = diag (Cgi7?) '

Hence, letting S = {1,..., g}, we can write

oux. {X(ai)p if <ai>p S S,
Xp—(ai), if {ai)p ¢ S,

where
X,, := diag (Cp—m, Cpm> .

Note that JX,,(—J) = X,,. This characterization allows to express each 7¢X; in the
form X; or Yj, for some 1 < j <g.

We will now verify that yay~!

= %aq, where 7 is as defined in Equation (4). Note
that there is only one nonzero block entry in each row and each column in the block

matrix v. Furthermore, one easily checks that the entries of the inverse of - are given by

I if j = (ai), and (ai), € S,
7—1j7i =4 —J if j =p—{ai), and (ai), ¢ S,
0 otherwise.
Some basic linear algebra shows that the only nonzero blocks in the product yory™?
will be the diagonal entries. We will now determine what those diagonal entries will be.
Suppose that the only nonzero block in column j of 7 is in row i. Based on the definitions
of v and y~1, this nonzero entry will yield the following product in the ith diagonal entry

of yay™!
Xyl = X; if j = (ai)p and (ai), € S,
TTITP X, i j=p— (ai), and (ai), ¢ S.
Hence, yay~! = %2, which confirms that + is an element of the twisted Lefschetz group.

We now show that 4#~' € ST?(Jac(C,)), but 4¢ ¢ ST°(Jac(C,)) for any proper
divisor d of p — 1, which will prove that ST (Jac(Cp)) = (U(1)9,7) ~ U(1)? x (Z/pZ)*.

Since o, generates the Galois group Gal(Q((,)/Q), we have |o,| = 2¢g and, for 1 <
d < 2g,

¢p ifd=2g,

d —
(7)"(G) = {g iy
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and (04)%(¢p) # (p nor Zp otherwise. Hence, the action of o, on the block matrix X,

satisfies
(0a)"(Xi) =3 X5 ifd=g,
X; or Z otherwise,

for some j € {1,..., g} not equal to i.

1

We have seen that yay™ = %2, and so conjugating « by v permutes (and sometimes

1

conjugates) the diagonal block entries of a. Since yay™! is again a diagonal block matrix,

conjugating this by + will again just permute (and sometimes conjugate) the diagonal

block entries. Hence, y?ay~¢
doy—d — (0a)?

vlay™4 =

Thus, v has a nonzero, off-diagonal block entry if and only if there is some i for which
("“)dXi =X or Z with j # 4, p — ¢. This is possible if and only if d # 2¢g or g.

If d = g, then (”a)dXZ- = X for all i. Hence, all of the diagonal block entries of 49 must
be J or —J since JX;(—J) = —JX;J = X;. Thus, 79 ¢ ST’(Jac(C,)). However, J? =
(—=J)? = —1I, s0 ¥%9 = —Id, which is an element of ST"(Jac(C,)). Thus, ST(Jac(C,))
U(1)? x (Z/pZ)*. O

is a diagonal block matrix for any d. In fact, we can write
a.

12

4.2. The Sato-Tate group of y* = x?P — 1

We use the results of Section 2 and Proposition 4.1 to determine the identity compo-
nent of the Sato-Tate group of Cy,.

Proposition 4.3. If p is an odd prime and Csp, : y? = x?P — 1, then
ST (Jac(Chy)) ~ (U(1),)%/?
where g = p — 1 is the genus of Csp.
Proof. Recall from Proposition 2.4 that
Jac(Cyp) ~ (Jac(C,))2.

The curve C), has genus ¢’ = (p — 1)/2 = ¢/2, and Proposition 4.1 gives the identity
component for the Sato-Tate group of its Jacobian. It follows that the identity component
of ST?(Jac(Cy,)) is ST(Jac(C,)) embedded into USp(2g), yielding ST (Jac(Cy,)) =
(U(1)97%)2 = (U(1)2)??. O

The main result of the following theorem is determining the component group of the
Sato-Tate group of Jac(Cyp,). This is an interesting addition to the literature as the
Sato-Tate groups of these curves do not have cyclic component groups.
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Theorem 4.4. Let p be an odd prime, g =p—1, S = {1,...,g9}, and a be a generator
of the cyclic group (Z/2pZ)*. Up to conjugation in USp(2g), the Sato-Tate group of
Cop:y? =2 — 1 is

ST(Jac(Csy)) = ((U(1)2)*/2,7.7')

where the 2 X 2 block entries of v are given by

I if j = (ai)s, and (ai)sp € S,
ifi<|5],7=p—(ai)sp, and (ai)y ¢S5,
-J Zfl > L§J7 ] =D <ai>2p7 and <ai>2p ¢ S,

0 otherwise,

Vi =

for1<i,j<g, and v = diag(Il,—1I,...,1,—1I). Furthermore, there is an isomorphism

ST(Jac(Cap)) = (U(1)2)?/? x Gal(Q((ap)/Q)-
See Table 3 in Appendix A for explicit examples of the matrix ~.

Proof. The reduced automorphism group of Cy,, is isomorphic to the dihedral group Dy,
(see, for example, [27]). We consider the following generators of the automorphism group
of Cyyp. Let

a(z,y) = (Copr,y) and Blx,y) = (7 iya™P),

where (o, is a primitive 2p* root of unity. Thus, End(Jac(Csp) k) =~ End(Jac(Cop)g),
where K = Q(CQ}D? i) = Q(C4p) )

We compute pullbacks of the differentials w; = 27dx/y, where 0 < j < g = p — 1,
in order to determine the generators of the endomorphism ring End(Jac(Cap)k).
As in the proof of Theorem 4.2, the pullback a* leads to the endomorphism o =
diag(X1, Xs,...,X,). Computing the pullback * on the differential w; yields

Bu; = xd(z71)

= Wp_o_3.
tyxr—P P27

Thus, the endomorphism S € End(Jac(Csp)k) is the antidiagonal matrix 8 =
antidiag(Z, Z, ..., Z), where Z = diag (i, —i).
———

g
We choose two elements o, 0, that generate the Galois group Gal(K/Q) ~ (Z/4pZ)*
and satisfy

- {@p = G5, o {@p = Cop

L 1= —1,
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where a is a generator of (Z/4pZ)*.
Let v and ' be defined as in the statement of the theorem. One can verify that

Tca=rqayTh, B =98y TPa=q'ay’ " and 7B =4y !

using a similar strategy to the one used in the proof Theorem 4.2, so we omit the proof
here. In this case, the matrix v contains both J and —J as entries so that it conjugates
(8 properly.

Lastly, one can show as in the proof of Theorem 4.2 that the component group of
ST(Jac(Cap)) is (v,7'). O

Corollary 4.5. Up to conjugation in USp(2g,C), the Sato-Tate group of Cop over Q(i) is

ST(Jac(Cap)aqw) = ((U(M)2)*/%,7)

Proof. This follows from the fact that the minimal extension L/Q(%) over which all the
endomorphisms of Jac(C)q;) are defined is L = Q((sp) = Q((2p,i). O

5. Equidistribution results

In this section we prove Theorem 1.2, which states that the generalized Sato-Tate
conjecture holds for the Jacobians of C, and Cs,. We first specify to the curve C),. We
begin by discussing the L-functions associated to the curve and then state the generalized
Sato-Tate conjecture. We then prove the generalized Sato-Tate conjecture following the
strategy of Serre [30]. Finally, we prove the generalized Sato-Tate conjecture for the
Jacobian of Cy, using a result of [22].

5.1. Hecke characters and L-functions

We follow the exposition in [11, Section 2.2], specifying to the curve C,. For a more
thorough review of Hecke characters, we refer the reader to [25] and [38]. Let p be a
prime ideal to p in Q((,) and let = be an element in the ring of integers of Q((,). Then
there is precisely one p*" root of unity x,(z) satisfying the condition

Xp(z) = NE)=D/P - mod p.

We extend this to all of Q({,) by setting x,(x) = 0 whenever x =0 (mod p), and, thus,
Xp is a multiplicative character of order p on Fy := Ogq(c,)/p-

We now define the Jacobi sums that appear in the L-functions of our curves. For all
h = (h1,he) € Z/pZ x Z/pZ, and for any ideal p in Q((,) not dividing p, we define

Tn(p) ==Y xp(@) " xp(1— )"

zelF,
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(see [25, Section 1.4]) and J,(p) can be viewed as a function on Z/pZ x Z /pZ in terms of
the characters on Z/pZ x Z/pZ (see [38]). For each h we extend the definition of J(p)
to all ideals prime to p in Q((,) by multiplicativity.

Lemma 5.1. Let h be of the form ((p — 2)a,a) for a € G = (Z/pZ)* then
L((Cp)ac,): s) = L(Jn, s)P~"  and  L(Cp,s) = L(Js, s).

Proof. This follows from the remark after Proposition 4.1. One can also see this by
computing the set M,_, as defined in [11, (2.2)]:

My = {iea: <j>p <{(p— 1)])1)} ={jeG: <J>p < <_.7>p} ={L,2,...,(p—1)/2}

which gives the CM type for the curve C,. Using the Hecke characters J; for these h,
[11, Lemma 2.10] gives the desired result. O

5.2. Generalized Sato-Tate conjecture

We specify the generalized Sato-Tate conjecture to the Jacobian of the curve C,.
Before we state the conjecture, we need to set up some notation.

Let E/Q be a subextension of Q({,)/Q. Denote the set of conjugacy classes of
ST(Jac(Cp)g) by Xg. Let P be an infinite subset of primes of a number field, and
{pi}i>1 be an ordering by norm of P. Define a map Ag : P — Xg by sending p to z,.
For any representation p : ST(Jac(C)p)g) — GL,(C) of ST(Jac(C)p)E), write

Lag(p,s) = [T det(1 — plzp)N(p)=)~".
peP

We specify a theorem of Serre to the curve C), (see also [11, Theorem 3.12]).

Theorem 5.2. [30, page I-23] Suppose that for every irreducible nontrivial representation
p of ST(Jac(Cp)g) the Euler product La(p,s) converges for Re(s) > 1 and extends to
a holomorphic and nonvanishing function for Re(s) > 1. Then the sequence {xp, }i>1
is equidistributed over Xp with respect to the projection on Xg of the Haar measure of
ST(Jac(Cp) k).

For a prime g of E, let =, be the conjugacy class of ST(Jac(C,)g) using the isomor-
phism ST (Jac(Cy)E) ~ ST(Jac(Cyp)g(c,)) ¥ Gal(Q((p)/E). Specifically, set

N Jr(p)  Jri(p) Tripory2(P) Iryry2(P)
o= (dio (s St R ) o) € X
where each r; = ((p — 2)i,4). The set {ry,72,...,7p—1)/2} is a complete set of represen-

tatives of M, and p is a prime of Q(¢,) lying over g.
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Now specify P to be the set of primes of good reduction for (C})g and let {p;};>1 be
an ordering by norm of P. We can now state the generalized Sato-Tate conjecture for
Jac(C)) (see, for example, [30, page 1-23]).

Conjecture 5.3 (Generalized Sato-Tate). The sequence xp = {xp, }i>1 s equidistributed
on Xg with respect to the image on Xg of the Haar measure of ST(Jac(Cp)Eg).

The following theorem specifies this conjecture to E = Q((p).
Theorem 5.4. The generalized Sato-Tate conjecture holds for Jac(Cp) over Q((p).
Proof. See [10, Theorem 3.6]. O

To prove Conjecture 5.3 for Jac(C)) over Q, we will prove the convergence condition
of Theorem 5.2. We first describe the irreducible representations of ST(Jac(Cp)) as in
[29]. Let G = ST(Jac(C})) so that G° = STY(Jac(C,)). We associate to any tuple b =
(b1,b2, ..., bp—1)/2) € ZP®~D/2 the irreducible representation ¢, : U(1)®~1/2 — C*
defined by

(p—1)/2
¢Q<u17" U,(p 1/2 H u

where U = diag(uy, U1, ..., Up—1)/2, Up—1)/2) € U(1)e-1/2,
Let Hy C Gal(Q(¢,)/Q) be the subgroup such that

¢Q(u13 s 7“(1)—1)/2) = ¢Q(h(ula R u(p—l)/Q)) (5)
for every h € Hy. Let H := G x Hy. Then we can extend ¢, to H via the map
(p—1)/2
dp: H—C*, dy(ur,... up-1)/2,h) = H )’

i=1

By work of Serre [29], every irreducible representation of G is of the form © :=
Ind% (x® ¢p), where x is a character of H viewed as a character of H using composition
with the projection H — Hp.

Theorem 5.5. The generalized Sato-Tate conjecture holds for Jac(Cp) over Q.

Proof. We wish to apply Theorem 5.2, so we need to show

Ly, (©,s) Hdet (1 —O(zp,)p; %)

is holomorphic and non-vanishing on Re(s) > 1.
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Let n be the cardinality of H,. We first consider the case where x is the trivial
character. The theory of L-functions gives

Lag (¢p,8) = Lag (Indf, Ind%s ¢y, s)
= Ly, (n Ind% ®b, S)
= LA@ (@, 8)”
Note that the second equality holds by Equation (5). By [10, Section 3.5], we then have
Lag(¢s,8) = L(V,s) up to a finite number of Euler factors, where ¥ is a Gréssenchar-
acter and L(W, s) is holomorphic and nonvanishing on Re(s) > 1.

We now consider the case where x is non-trivial. Since Gal(Q((,)/Q) is cyclic there
exists a character X of Gal(Q((,)/Q) such that X restricted to Hy equals x. Thus,

O = Ind,(x ® ¢1) = X @ Ind, 6.
Furthermore, Gal(Q(¢,)/Q) being cyclic also gives us that
3 g _ g
n® = X ® Indgo ¢p = Indgo Pp.

Hence, we again have that L4, (0©,s)” = L(¥,n) up to a finite number of Euler factors,
where V¥ is a Grossencharacter and L(¥, s) is holomorphic and nonvanishing on Re(s) >
1. O

Remark. The result also follows from [22; Prop. 16].

Theorem 5.6. Let E/Q be any subextension of Q((ap)/Q. Then the generalized Sato-Tate
conjecture holds for Jac(Cap) over E.

Proof. By Proposition 2.4, Jac(Cs,) ~ Jac(Cp)?. The result then follows from [22, Prop.
16]. O

6. Moment statistics

In this Section we compute moment statistics associated to the Sato-Tate groups.
These moment statistics can be used to verify the equidistribution statement of the
generalized Sato-Tate conjecture by comparing them to moment statistics obtained for
the traces a; in the normalized L-polynomial L,(C,T) in Equation (1).

6.1. Preliminaries

The following background information has been adapted from [26, Section 4] and [35,
Section 4]. We start by recalling some basic properties of moment statistics. We define
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the nth moment (centered at 0) of a probability density function to be the expected
value of the nth power of the values, i.e. M,[X] = E[X"].

Recall that for independent variables X and Y we have E[X +Y] = E[X]+ E[Y] and
E[XY] = E[X]E]Y] (see, for example, [26]). Thus, we have the following

Mn[XY] = Mn[X]Mn[Y]a (6)
M [X|Mp[X] = Maqs[X], (7)

and
M Xl = S (" MMl 6)

a1+ tam=n

Furthermore, for any constant b, we have M,[b] = b™.

We will now work to define the Haar measure on the groups that we obtain for the
identity component ST?(Jac(C)). From Propositions 4.1 and 4.3 we see that the possible
groups are

U(1)¢ and (U(1)2)9/2.

For each of these groups, we are interested in the pushforward of the Haar measure onto
the set of conjugacy classes conj(U(1)9) or conj((U(1)2)9/?).

We start with the unitary group U(1) and consider the trace map tr on U € U(1)
defined by z := tr(U) = u + U = 2cos(f), where u = €. This trace map takes values in
[—2,2]. From here we see that dz = 2sin(6)df and

li_ldg
T4 — 22 T

gives a uniform measure of U(1) on 6 € [—7, 7] (see [35, Section 2]). We can deduce the

Hu@) =

following pushforward measures

MU(l)n*H H —d; and  pqu(i)) H H —db;.

Note that though the measure py(1),)» is expressed the same as the measure pys(1yn,
we will get a different distribution since in the former case each eigenangle 6; occurs with
multiplicity 2 (see, for example, [35, Section 4.3]).

We can now define the moment sequence M [u], where p is a positive measure on some
interval I = [—d,d]. The n'* moment M, [u] is, by definition, the expected value of ¢,
with respect to u, where ¢, is the function z — 2™. It is therefore given by

Mol = [ #u(a)

I
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For U(1) we have My [uy(1)] = (n’/LQ)7 where (n%) = 0 if n is odd. Hence,
Mpyny] = (1,0,2,0,6,0,20,0,...).

From here, we can compute M, [uy(),] = 2" (nr;z), and take binomial convolutions to
obtain

r

i n
M, [puayxua)] = Z ( >Mn[MU(1)]Mn—r[MU(1)]~
r=0

We can combine these strategies with Equations (6), (7), and (8) to compute moments
for py(1ys and H(U(1)2)9/2-

For each ¢ € {1,2,..., g}, denote by p; the projection of the Haar measure onto the
interval [— (219), (219)} We can compute M, [u;] by averaging over the components of the
Sato-Tate group. For example, in the case where the curve has CM by Q((4), we will
denote the restriction of j; to the component ST (Jac(C)) - v* by #u; and

d d

iif_l i d n iif_l n g
o kgou and M, [u;] kEOM[u]

6.2. Characteristic polynomials

In this subsection, we give results for the characteristic polynomials in each component
of the Sato-Tate groups of C, and Csy,.

6.2.1. Characteristic polynomials for C,,

We start with a random matrix U in the identity component ST?(Jac(C,)). We will
denote the characteristic polynomial of U~y* by P,:(T). Since v~ € ST°(C,), we only
compute P.,:(T) fori =0,...,p—2.

Example 6.1. We compute the characteristic polynomials of the curve Cy;: y? = 2!t — 1.

This yields P,i (T) = Pys(T) = Pyr(T) = Pyo(T) = T + 1 and

5
Pyo(T) = [[(T = wi)(T — ),

=1
5 — 5
T° + ’LL1U2U3U4U5)(T + U1UQU3’LL4’LL5),

(
s(T) = (T° — wytzuzugus ) (T° — UrusWzTLTs5),
(

We have two general results for the characteristic polynomials associated to the Sato-
Tate group of C),, which we combine into the following proposition.
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Proposition 6.2. Let C}, be the genus g curve y? = 2P — 1, where p = 2g + 1 is prime.
Then

Po(T) = H(T —u))(T—) and Py(T) = (T?*+1).

Proof. The first equality is a consequence of Proposition 4.1 which tells us that
ST?(Jac(C,)) = U(1)9.

For a justification of the second equality, we recall from our work in the proof of
Theorem 4.2. There we proved that 79 is a diagonal block matrix with £.J on its diagonal
entries. Multiplying U by ¢ yields a diagonal block matrix, whose diagonal blocks are

0 Ujg 0 —U;
w0 or w 0 ,

depending on whether we multiplied by J or —J. In either case, the factor of the char-

of the form

acteristic polynomial associated to this block is of the form
T? +war =12+ 1.

Thus, since there are g diagonal blocks, the characteristic polynomial is
Pu(T)=(T?+1)?. O

6.2.2. Characteristic polynomials for Cap

We again start with a random matrix U in the identity component of the Sato-Tate
group. Recall that the Sato-Tate group of (', has two generators for the component
group: v and /. We will denote the characteristic polynomial of U~*(y') by P; ;(T).
Since 7?71, (/)2 € ST°(Cy,), we only compute P; ;(T) for i = 0,...,p — 2 and j = 0, 1.

Example 6.3. We compute the characteristic polynomials of the curve Cyg: 3% = 20 — 1.

ThlS ylelds Pl,O(T) = P&Q(T) = Pl,l(T) = P3,1(T) = (T4 + 1)2 and

Poo(T) = [[(T = w)*(T - m)?,

=1
Poo(T) = (T? +1)*,
Po1(T) =T — 2(uys + Tuz)TC + (4 + (wT2)? + (Wyus)?)T*
— 2(uy Ty + Tyug)T? + 1,
Py 1 (T) = T® + 2(u1Ts + Tuz)TC + (4 + (wT2)? + (Tyug)?)T*
+ 2(u1Thg + Wy un)T? + 1.
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We have two general results for the characteristic polynomials associated to the Sato-
Tate group of Cs),, which we combine into the following proposition.

Proposition 6.4. Let Cy, be the genus g curve y? = 2%? — 1, where p is prime. Then

9/2
PO’O(T> = H(T — ui)Q(T — UTZ)Q and Pg/g’()(T) = (Tz + 1)9
i=1

Proof. The first equality is a consequence of Proposition 4.3 which tells us that
ST (Jac(C,)) = (U(1)2)9/2. For a justification of the second equality, see the proof
of Proposition 6.2. O

We also have the following conjecture.

Conjecture 6.5. Let Cap, be the genus g curve y* = x?P — 1, where p is prime. Then
Py ;(T) = (T9 4 1), for any d relatively prime to 2g and j =0 or 1.

6.3. General results for the moments

Based on the results of Section 6.2.1, we have the following general result for the
moment statistics associated to the Sato-Tate group of Cp.

Proposition 6.6. For the curve C}, we have

M, 9] = (i72)n if i is even
0 otherwise.

Proof. Recall from Proposition 6.2 that Py (T) = (T 4 1)9. Expanding this yields

P (T) = Xg: (9) 7%

=0 J

Thus, a; = (i72) when i is even and it equals 0 when i is odd. It is then clear that p;(¢,,)

in this case is (i;’z)n when ¢ is even and 0 when ¢ is odd O
We also have the following conjecture for characteristic polynomials and moments.

Conjecture 6.7. Let C, be the genus g curve y? = aP — 1, where p = 2g + 1 is prime.
Then Pya(T) = T?9 + 1, for any d relatively prime to 2g and M,[*1;] = 0.



262 M. Emory, H. Goodson / Journal of Algebra 597 (2022) 241-265

Table 1
Moment Statistics for y? = z' — 1.

Mpa] (1,0,1,0,27,0,1090, ...)

M{us] (1,1,9, 133, 2873, 75453, 2200605, . . .)

M{pus] (1,0, 24,0, 1381080, 0, 161935061760, . . .)

M [p4] (1,2, 64, 4688, 498236, 61887736, 8430343600, . . .)
M{us] (1,0,72,0,934332,0, 22782049800, . . .)

Table 2
Table of pi1- and a;-moments for y2 =z™ — 1 over Q.
m M2 M4 M6 Mg
10 i 2 72 3200 156800
a1 1.989 71.484 3172.685 155240.208
11 w1 1 27 1090 55195
a 0.991 26.425 1049.681 52204.146
13 "1 1 33 1660 106785
a 0.999 33.108 1677.458 108839.689
14 I 2 120 9920 954240
a 1.982 118.214 9694.808 923186.514
17 I3 1 45 3160 290605
a 0.991 44.178 3068.003 279757.762
19 I 1 51 4090 432915
a 0.995 50.601 4040.554 425599.259
22 I 2 216 34880 7064960

ay 1.996 213.572 34047.140  6805376.261

6.4. Explicit examples of moment statistics

We first determine moment statistics for the genus 5 curve Cq; : y? = 2! — 1.
Using characteristic polynomials P.x(T) that were computed for each component in
Example 6.1 and the properties in Equations (6), (7), and (8), we can compute the nth
moments for each p;, 1 < i < 5. These moments, given in Table 1, are easily computed
using Sage [21]. See Table 2 in Section 6.5 for a comparison of M[u1] to the numerical
moments Ma;] of the normalized L-polynomial of the curve.

Using the same strategy as above, we determine that the p1-moment statistics for the
Sato-Tate group of Cig: y? = 2'° — 1 are

M) = (1,0,2,0,72,0,3200,0, 156800, 0,8128512. . .).

In Fig. 1 we give a histogram of aj-values of y? = 210 —1, as well as moment statistics (up
to the 10th moment). Observe that the numerical moments Ma;], which are computed
using primes up to 228, are quite close to what we obtained for M[u]. See [34] for an
animated histogram of the ai-distribution. The algorithm used to make the histogram
is described in [18] and [19].

See Table 2 in Section 6.5 for moment statistics for other curves.
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al histogram of y2 =x10 - 1forp<=228
14630836 data points in 3825 buckets, z1 = 0.875, out of range data has area 0.873

Moments: 1 0.000 2.000 0.003 71.983 0.321 3198.782 23.357 156710.029 1512.282 8121996.704

Fig. 1. Histogram of a; values of y? = ' — 1 for primes less than 228, See [34].

6.5. Tables of u1- and ay-moment statistics

We first consider curves of the form C), : y? = 2P — 1. Note that M[¥u] = 0 for all
0 < k < p—1. One can easily determine from Proposition 6.2 that the coefficient of T'
in Pyo(T) is >.7_, s;, where s; = —(u; + u;). Hence,

i n
ML= D (o ay ) oMl Mol
01,0 ag=0 ) ) )

Similarly, for curves of the form Cy, : y* = 22 — 1,

n

ACTAEE DY

al,...,ag/2:0

n
(al, g, ..., ag/z) Moy [s1]Mas[s2] -+ M., ,, [s4/2] (10)

whenever k = j = 0 and M, [/ 1] = 0 otherwise.

We used Sage [21] to evaluate Equations (9) and (10), and then average over the
components, to get the p1-moments shown in Table 2. Note that M, [u;] = 0 for all odd
n, so we omit those values from the table. For comparison, we computed the numerical

a;-moments for primes up to 223.
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Appendix A. Examples of the v matrix

In Table 3 we give examples of the matrix v from Theorems 4.2 and 4.4. These were
computed in Sage [21] using Sage’s chosen generators for (Z/pZ)* and (Z/2pZ)*.

Table 3
Examples of v matrices for y? = 2™ — 1.
m ¥ m ¥
0O I 0 0 0 O
0 0 J 0 0O 0 0 I 0 O
0 0 0 I 0O 0 0 0 0 I
10 (I 0 0 0) 13 0000 J O
0o —J 0 O o o0 J 0 0 O
J 0 0 0 0 O
oI 00 0 0 0 I 0 0 O
0 0 0O 0 0 I
0 0 0 I O
0 0 0o 0 J 0
11 0o 0 0 0 J 14
o —J 0 0 0 O
0 0 J 00 I 0 00 0 0
J 0 0 0 O
0 0 0O I 0 O
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