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We determine the Sato-Tate groups and prove the generalized 
Sato-Tate conjecture for the Jacobians of curves of the form 
y2 = xp − 1 and y2 = x2p − 1, where p is an odd 
prime. Our results rely on the fact the Jacobians of these 
curves are nondegenerate, a fact that we prove in the paper. 
Furthermore, we compute moment statistics associated to 
the Sato-Tate groups. These moment statistics can be used 
to verify the equidistribution statement of the generalized 
Sato-Tate conjecture by comparing them to moment statistics 
obtained for the traces in the normalized L-polynomials of the 
curves.
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1. Introduction

The original Sato-Tate conjecture is a statistical conjecture regarding the distribution
of the normalized traces of Frobenius on an elliptic curve without complex multiplication 

* Corresponding author.
E-mail addresses: memory@math.toronto.edu (M. Emory), heidi.goodson@brooklyn.cuny.edu

(H. Goodson).
https://doi.org/10.1016/j.jalgebra.2022.01.002
0021-8693/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jalgebra.2022.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2022.01.002&domain=pdf
mailto:memory@math.toronto.edu
mailto:heidi.goodson@brooklyn.cuny.edu
https://doi.org/10.1016/j.jalgebra.2022.01.002


242 M. Emory, H. Goodson / Journal of Algebra 597 (2022) 241–265
(CM), and the conjecture was recently generalized to higher genus curves by Serre [31]. 
Recent results on this topic of determining Sato-Tate distributions in genus 2 and 3 
curves have been achieved in [3,12–16,23,26]. In 2016, Fité-González-Lario [11] obtained 
Sato-Tate equidistribution results for a family of curves of arbitrarily high genus. The 
main purposes of this paper are to compute the Sato-Tate groups and to prove the 
generalized Sato-Tate conjecture for the following two families of hyperelliptic curves of 
arbitrarily high genus

Cp : y2 = xp − 1 and C2p : y2 = x2p − 1,

where p is an odd prime. The generalized Sato-Tate conjecture is known for CM abelian 
varieties due to the work of Johansson in [22]; in our proof for Cp we follow Serre’s 
strategy from [30]. We provide numerical evidence to support our results by computing 
moment statistics associated to the curves.

We start by recalling the original Sato-Tate conjecture for elliptic curves. Let F be a 
number field, E/F be an elliptic curve without complex multiplication, and v be a finite 
prime of F such that E has good reduction at v. By a theorem of Hasse, the number of 
Fqv

points of E is qv +1 −av, where Fqv
denotes the residue field of v and av is an integer 

(called the trace of Frobenius at v) satisfying |av| ≤ 2qv
1/2. The Sato-Tate conjecture 

predicts that, as v varies through the primes of good reduction for E, the normalized 
Frobenius traces av/qv

1/2 are equidistributed in the interval [−2, 2] with respect to the 
image of the Haar measure on the special unitary group SU(2). This conjecture has 
been proven for non-CM elliptic curves defined over totally real fields (see [6,7,17,36]). 
The distributions of the normalized Frobenius traces are also known for CM elliptic 
curves over all fields: they are distributed with respect to the image under the trace 
map of the Haar measure on either the unitary group U(1) or the normalizer of U(1) in 
SU(2), depending on whether or not the field of definition contains the field of complex 
multiplication (see, for example, [1] or [5]).

The generalized Sato-Tate conjecture for an abelian variety predicts the existence of 
a compact Lie group that determines the limiting distribution of normalized local Euler 
factors. We now state the conjecture more precisely for abelian varieties that are the 
Jacobians of curves defined over Q, following the exposition of [11].

Let C be a smooth, projective, genus g curve defined over Q and let K be the minimal 
extension over which all endomorphisms of Jac(C) are defined. The Sato-Tate group of 
the Jacobian of C, ST(Jac(C)) ⊆ USp(2g), is a compact Lie group satisfying the following 
property. For each prime p at which C has good reduction, there exists a conjugacy class 
xp of ST(Jac(C)) whose characteristic polynomial equals the normalized L-polynomial

Lp(C, T ) = T 2g + a1T 2g−1 + a2T 2g−2 + · · · + a2T 2 + a1T + 1. (1)

Let F be a number field and let XF be the set of conjugacy classes of ST(Jac(C)F ). 
Let {pi}i≥1 be an ordering by norm of the set of primes of good reduction for C over F
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and define a map that sends pi to xpi
in XF . We can now state the generalized Sato-Tate 

conjecture.

Conjecture 1.1 (Generalized Sato-Tate conjecture). The sequence {xpi
}i≥1 is equidis-

tributed on XF with respect to the image on XF of the Haar measure of ST(Jac(C)F ).

Our goals in this paper are to determine the Sato-Tate groups of the Jacobians of the 
curves Cp and C2p (see Theorem 4.2 and Theorem 4.4) and to prove the equidistribution 
predicted by the generalized Sato-Tate conjecture for these two families of curves (see 
Theorem 5.5 and Theorem 5.6).

Theorem 1.2. Let p be an odd prime. The generalized Sato-Tate conjecture holds for the 
Jacobians of the curves Cp : y2 = xp − 1 and C2p : y2 = x2p − 1.

The Sato-Tate conjecture was proven for CM abelian varieties in [22], and the Ja-
cobians of both curves in Theorem 1.2 are CM abelian varieties. However, to provide 
an explicit description of the limiting distribution of the normalized L-polynomial, we 
need the explicit embedding of the Sato-Tate group of the Jacobian of the curve in-
side USp(2g), where g is the genus of the curve. Our approach is similar to that of, for 
example, [11] and [26].

This paper is organized as follows. In Section 2, we establish the nondegeneracy of the 
Jacobians of Cp and C2p. In Section 3, we prove that the twisted Lefschetz group of the 
Jacobian, defined by Banaszak and Kedlaya in [5], is equal to the algebraic Sato-Tate 
group; this essentially follows from the work of [4] since the Jacobians of our curves are 
nondegenerate. The equality of the twisted Lefschetz group and the algebraic Sato-Tate 
group allows one to interpret the Sato-Tate group as a maximal compact subgroup of 
the group of C-points of the base change of the algebraic Sato-Tate group to C.

In Section 4, we apply the work of Section 3 to determine the Sato-Tate groups of the 
Jacobians of the curves Cp and C2p. We first determine the identity components of the 
Sato-Tate groups (see Proposition 4.1 and Proposition 4.3). Note that these propositions 
confirm Conjectures 6.8 and 6.9 of [9]. The computation of the twisted Lefschetz groups 
then gives the generators of the component groups (see Theorems 4.2 and 4.4). We give 
explicit examples of some of these generators in Table 3 in Appendix A.

In Section 5, we establish Conjecture 1.1 for Cp and C2p. For the curve Cp, we prove 
the generalized Sato-Tate conjecture by following Serre’s strategy in [30], i.e. showing 
that a certain L-function attached to the irreducible nontrivial representations of the 
Sato-Tate group of the Jacobian of the curve does not vanish. We then use a theorem 
of Hecke that the L-function attached to a nontrivial unitarized Hecke character does 
not vanish for Re(s) ≥ 1. This proof technique requires a cyclic Galois group Gal(K/Q), 
where K is the minimal extension over which all endomorphisms of the Jacobian are 
defined. The Galois group associated to the curve C2p is not cyclic, so we use the work 
of [22] to prove the generalized Sato-Tate conjecture in this case.
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In Section 6, we compute moment statistics associated to the Sato-Tate groups of the 
Jacobians of Cp and C2p. These moment statistics can be used to verify the equidistri-
bution statement of the generalized Sato-Tate conjecture by comparing them to moment 
statistics obtained for the traces ai in the normalized L-polynomial Lp(C, T ) in Equation 
(1). Note that the numerical moment statistics are an approximation since one can only 
ever compute them up to some prime. It is of interest to those dealing with equidistri-
bution statements to compare how close these two computations are. We compare the 
moments in Table 2 in Section 6.

Notation and conventions. We begin by fixing notation used in later sections. Let C

be a smooth projective curve defined over Q. We write End(Jac(C)k) for the ring of 
endomorphisms defined over the field k of the Jacobian of C. Let K := KC denote the 
minimal extension L/Q over which all the endomorphisms of the abelian variety Jac(C)
are defined, i.e. the minimal extension for which End(Jac(C)L) � End(Jac(C)Q); the 
field K is called the endomorphism field of Jac(C).

We denote the Sato-Tate group of the Jacobian of C by ST(Jac(C)) := ST(Jac(C)Q)
with identity component denoted ST0(Jac(C)) := ST0(Jac(C)Q) and component group 
ST(Jac(C))/ ST0(Jac(C)). The curve y2 = xm − 1 is denoted by Cm, and when we 
specialize to Cp or to C2p we assume throughout the paper that p is an odd prime. 
We will write ζm for a primitive mth root of unity. For any rational number x whose 
denominator is coprime to an integer r, 〈x〉r denotes the unique representative of x

modulo r between 0 and r − 1.
Define the two matrices

I :=
(

1 0
0 1

)
and J :=

(
0 1

−1 0

)
.

The symplectic form considered throughout the paper is given by diag(J, . . . , J). Lastly, 
for any positive integer n, we define the following subgroups of the unitary symplectic 
group USp(2n).

U(1)n :=
〈

diag(u, u, . . . , u, u︸ ︷︷ ︸
n−times

) : u ∈ C×, |u| = 1
〉

and

U(1)n :=
〈
diag(u1, u1, . . . , un, un) : ui ∈ C×, |ui| = 1

〉
.
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2. Nondegenerate abelian varieties

Our main results hold for curves whose Jacobians are nondegenerate. In this section 
we define the term nondegenerate and give some known results that will be relevant to 
our later work.

Let A be a nonsingular projective variety over C. We denote (as in [33]) the (com-
plexified) Hodge ring of A by

B∗(A) :=
dim(A)∑

d=0

Bd(A),

where Bd(A) = (H2d(A, Q) ∩Hd,d(A)) ⊗C is the C-span of Hodge cycles of codimension 
d on A. Furthermore, we define the ring

D∗(A) :=
dim(A)∑

d=0

Dd(A)

where Dd(A) is the C-span of classes of intersection of d divisors. This is the subring of 
B∗(A) generated by the divisor classes, i.e. generated by B1(A). In general, it is known 
that we have containment D∗(A) ⊆ B∗(A) [33].

Definition 2.1. [2] An abelian variety A is said to be nondegenerate if D∗(A) = B∗(A). 
If D∗(A) �= B∗(A), then A is said to be degenerate.

Definition 2.2. [2,20] An abelian variety A is said to be stably nondegenerate if, for any 
integer k ≥ 1, D∗(Ak) = B∗(Ak).

Hazama proves in Theorem 1.2 of [20] that A is stably nondegenerate if and only if 
the dimension of its Hodge group is maximal. Note that in [11], the authors use the word 
nondegenerate to describe abelian varieties with this property.
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Nondegeneracy is related to the CM-type of an abelian variety. Let A/Q be a dimen-
sion d abelian variety. Suppose that there is a number field K with [K : Q] = 2d and an 
injective ring homomorphism ι : K → End(A) ⊗ Q. The map ι induces a representation 
Φ of K on the space of holomorphic 1-forms on A and we say that (A, ι) is of CM-type
(F, Φ) (see, for example, [2,24,28,32]). When A is an absolutely simple abelian variety 
with complex multiplication, stable nondegeneracy is equivalent to the CM-type being 
nondegenerate, i.e. the CM-type has maximal rank (see, for example, [2,24]).

Let C d(A) be the subspace of Bd(A) generated by the classes of algebraic cycles on 
A of codimension d. Then

Dd(A) ⊆ C d(A) ⊆ Bd(A)

and the Hodge Conjecture for A asserts that C d(A) = Bd(A) for all d [2,33]. It is clear 
from Definition 2.1 that if A is nondegenerate then the Hodge Conjecture holds. However, 
there are many cases where the Hodge Conjecture holds for degenerate abelian varieties. 
For example, Shioda verified the Hodge Conjecture for Jac(Cm) for all m ≤ 21, though 
Jac(C9), Jac(C15), and Jac(C21) are degenerate (see [33, Section 6]).

The following results are crucial to our work with the curves Cp and C2p.

Proposition 2.3. [33, Corollary 5.3] If p ≥ 3 is a prime number, then the Hodge ring 
B∗(Jac(Cp)) is generated by B1(Jac(Cp)). The same result holds for arbitrary powers 
of Jac(Cp).

By definition, this tells us that Jac(Cp) is stably nondegenerate. The nondegen-
erate CM-type for the curve Cp is {Q(ζp), {σ1, σ2, . . . , σ(p−1)/2}}, where each σt ∈
Gal(Q(ζp)/Q) is defined by σt(ζp) = ζt

p (see, for example, [32, Section 15.4]). The CM-
type for the curve Cp is primitive (see, for example, [24] for a definition) which implies 
that Jac(Cp) is absolutely irreducible.

Proposition 2.4. [9, Lemma 4.1] Let g = 2k be an even integer, and C2g+2 : y2 =
x2g+2 + c, where c ∈ Q×. Then we have the following isogeny over Q

Jac(C2g+2) ∼ Jac(Cg+1)2,

where Cg+1 : y2 = xg+1 + c.

Combining these two results yields the following.

Corollary 2.5. For any prime p ≥ 3, Jac(Cp) and Jac(C2p) are nondegenerate.

Proof. Note that if p is an odd prime, then we can write p = 2k + 1, for some integer k. 
Hence, 2p = 2(2k+1) = 2(2k) +2 and Proposition 2.4 tells us that for C2p : y2 = x2p −1,
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Jac(C2p) ∼ Jac(Cp)2.

Thus, Jac(C2p) is a power of Jac(Cp), and we apply Proposition 2.3 to get the desired 
result. �

An alternative proof that Jac(Cp) is nondegenerate is Theorem 2 in [24]. Note that 
curve C2p has CM field Q(ζ4p). See the proof of Theorem 4.4 for the generators of the 
reduced automorphism group of C2p.

3. The algebraic Sato-Tate group

We start by defining notation as in [11] and [35, Section 3]. For more detailed back-
ground information, see [35, Section 3.2].

Let A/k be an abelian variety of dimension g defined over the number field k. Let � be 
a prime and we define the Tate module T� := lim←−−n

A[�n] to be a free Z�-module of rank 
2g, and the rational Tate module V� := T� ⊗Z Q to be a Q�-vector space of dimension 
2g. The Galois action on the Tate module is given by an �-adic representation

ρA,� : Gal(k/k) → Aut(V�) ∼= GL2g(Q�).

Let G� denote the image of this map, and let GZar
� be the Zariski closure of G� in 

GL2g(Q�). We then define G1,Zar
� := GZar

� ∩ Sp2g(Q�).

Definition 3.1. The Sato-Tate group of A, denoted by ST(A), is a maximal compact Lie 
subgroup of G1,Zar

� ⊗Q�
C contained in USp(2g)

The algebraic Sato-Tate Conjecture for Jac(C) predicts the existence of an algebraic 
Sato-Tate group AST(Jac(C)) of Sp2g /Q such that

G1,Zar
� = AST(Jac(C)) ⊗Q Q�

for every prime � (see, for example, [12, Conjecture 2.13] and [5, Conjecture 2.1]).
For each τ ∈ Gal(Q/Q), define the set

L(Jac(C))(τ) := {γ ∈ Sp2g |γαγ−1 = τ(α) for all α ∈ End(Jac(C)Q) ⊗Z Q}

where α is viewed as an endomorphism of H1((Jac(C)C, Q).

Definition 3.2. [5] The twisted Lefschetz group TL(Jac(C)) is defined to be

TL(Jac(C)) :=
⋃

L(Jac C)(τ).

τ∈Gal(Q/Q)
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When τ is the identity automorphism, L(Jac(C))(τ) forms a group, called the Lef-
schetz group, which we denote simply by L(Jac(C)).

Proposition 3.3. Let p be an odd prime and Cp be the curve y2 = xp − 1. Then the 
algebraic Sato-Tate Conjecture holds for Jac(Cp) with AST(Jac(Cp)) = TL(Jac(Cp)).

Proof. This follows from [5, Theorem 6.6] since Jac(Cp) is a nondegenerate CM abelian 
variety. Still, we include a proof that is similar to the proof of [11, Lemma 3.5] for the 
sake of completion. By [12, Theorem 2.16(a)], we need to verify two criteria: the Hodge 
group Hg(Jac(Cp)) equals the Lefschetz group L(Jac(Cp)), and that the Mumford-Tate 
Conjecture holds for Jac(Cp). The Mumford-Tate Conjecture is known to be true for 
CM abelian varieties (see, for example, [11,28,39]), so we only need to verify the first of 
the criteria.

By Deligne [8, I, Proposition 6.2] and [5, Definition 4.4], we have

G1,Zar,0
� (Jac(Cp)) ⊆ Hg(Jac(Cp)) ⊗Q Q� ⊆ L(Jac(Cp)) ⊗Q Q� (2)

for every prime �. We will show that G1,Zar,0
� (Jac(Cp)) = L(Jac(Cp)) ⊗Q Q� to obtain 

the desired result. Note that it is sufficient to show this for any prime �.
Since p is prime, Jac(Cp) is simple (see, for example, [32, Section 15.4]). Furthermore, 

Proposition 2.3 tells us that Jac(Cp) has nondegenerate CM-type. We apply the results 
of Section 2 of [4] to get, for every prime � of good reduction for which Jac(Cp) splits 
completely in Q(ζp),

G1,Zar,0
� (Jac(Cp)) = {diag(x1, y1, . . . , xg, yg) ∈ Q×

� | x1y1 = · · · = xgyg = 1}, (3)

where g = (p − 1)/2 is the genus of Cp.
We now compute the Lefschetz group L(Jac(C)) ⊗QQ�. In order for a matrix γ ∈ Sp2g

to commute with any matrix α ∈ End(H1(Jac(Cp)C, C)), it must be diagonal. Hence,

L(Jac(Cp)) ⊗Q Q� = {diag(x1, y1, . . . , xg, yg) ∈ Q×
� | x1y1 = · · · = xgyg = 1},

which yields the desired result. �
Corollary 3.4. If p is an odd prime then the algebraic Sato-Tate Conjecture holds for 
Jac(C2p) with AST(Jac(C2p)) = TL(Jac(C2p)).

Proof. Recall from Proposition 2.4 that

Jac(C2p) ∼ (Jac(Cp))2.

Corollary 2.5 tells us that both Jac(C2p) and Jac(Cp) are nondegenerate. Furthermore, 
they are both abelian varieties with CM. Hence, as in the proof of Lemma 3.5 of [11], 
proving the inclusions in Equation (2) were actually equalities gives us
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G1,Zar,0
� (Jac(C2p)) = Hg(Jac(C2p)) ⊗Q Q� = L(Jac(C2p)) ⊗Q Q�. �

Note that we cannot apply Theorem A of [4] to determine G1,Zar,0
� (Jac(C2p)) since 

Jac(C2p) is not simple. We will determine the identity component of the Sato-Tate group 
of Jac(C2p) using another method in Section 4.2.

Corollary 3.5. The group of components of G1,Zar
� (Jac(Cp)) and AST(Jac(Cp)) are iso-

morphic to Gal(Q(ζp)/Q). Also, the group of components of G1,Zar
� (Jac(C2p)) and 

AST(Jac(C2p)) are isomorphic to Gal(Q(ζ4p)/Q).

Proof. This follows from Proposition 3.3 (see [12, Prop 2.17]). �
Remark. Although [12, Prop 2.17] is stated for g ≤ 3, Proposition 3.3 is for curves of 
arbitrarily high genus, and since the Mumford-Tate conjecture holds for Jac(Cp) the 
requirement that g ≤ 3 in [12, Prop 2.17] can be removed for the proof of Corollary 3.5.

It is known that when the algebraic Sato-Tate conjecture holds, we may interpret the 
Sato-Tate group ST(Jac(C)) as a maximal compact subgroup of AST(Jac(C)) ⊗QC (see, 
for example, [12, Section 2.2]).

4. Sato-Tate groups

In this section we compute the Sato-Tate groups of the Jacobians of the curves Cp :
y2 = xp − 1 and C2p : y2 = x2p − 1. For both families of curves, we obtain the 
component group of the Sato-Tate group by computing the twisted Lefschetz groups 
(recall the results of Proposition 3.3 and Corollary 3.4).

4.1. The Sato-Tate group of y2 = xp − 1

We first determine the identity component of the Sato-Tate group.

Proposition 4.1. If p is an odd prime then

ST0(Jac(Cp)) � U(1)g

where g = (p − 1)/2 is the genus of Cp.

Proof. Let � be a prime, and take an embedding of Q� into the complex numbers. By 
definition, ST0(Jac(C)) is a maximal compact subgroup of AST0(Jac(C)) ⊗Q C. From 
Proposition 3.3 and Equation (3), it follows that we can take the maximal compact 
subgroup U(1)g. �
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Remark. Proposition 4.1 could also be derived from [11] where they consider the curve 
Ck : v� = u(u + 1)�−k−1. If we let k = p − 2 and � = p, then the curve Cp−2 is isomorphic 
to Cp over the field Q(41/p, i). This immediately gives the identity component of the 
Sato-Tate group of the Jacobian of Cp since the connected component only depends on 
the variety over Q.

The main result of the following theorem is determining the component group of the 
Sato-Tate group of Jac(Cp). Explicit examples of the generator of the component group 
are given in Table 3 in Appendix A.

Theorem 4.2. Let S = {1, . . . , g} and let a be a generator of the cyclic group (Z/pZ)×. 
Up to conjugation in USp(2g),

ST(Jac(Cp)) = 〈U(1)g, γ〉 ,

where γ is a 2g × 2g matrix whose block entries are given by

γi,j =

⎧⎪⎪⎨⎪⎪⎩
I if j = 〈ai〉p and 〈ai〉p ∈ S,

J if j = p − 〈ai〉p and 〈ai〉p /∈ S,

0 otherwise.
(4)

Furthermore, there is an isomorphism

ST(Jac(Cp)) � U(1)g
� (Z/pZ)×.

Proof. We compute the twisted Lefschetz group of Jac(Cp). Applying Proposition 3.3
then yields the desired result.

We can identify the group G = (Z/pZ)× with Gal(Q(ζp)/Q) via the isomorphism 
that maps t ∈ G to the Galois element σt, where σt(ζp) := ζt

p.
A basis for the space of regular 1-forms of a genus g hyperelliptic curve is given by 

{ωj = xjdx/y : j = 0, · · · , g − 1} (see, for example, [37, Section 3]). We consider the 
automorphism α : Cp → Cp defined by α(x, y) = (ζpx, y), and compute the pullbacks of 
the differentials to be

α∗(ωj) = ζj+1
p ωj .

We now write the endomorphism α ∈ End(Jac(CK)) in terms of a symplectic basis 
of H1(Jac(Cp)C, C) (with respect to the matrix diag(J)) and get the diagonal matrix 
α = diag(X1, X2, . . . , Xg), where each Xi is a block matrix defined by

Xi := diag
(

ζi
p, ζp

i
)

.
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Let σa be a generator for the cyclic Galois group Gal(Q(ζp)/Q) � (Z/pZ)×. Since 
the action of the Galois element σa is given by σa(ζp) = ζa

p , we have

σaXi = diag
(

ζai
p , ζp

ai
)

.

Hence, letting S = {1, . . . , g}, we can write

σaXi =
{

X〈ai〉p
if 〈ai〉p ∈ S,

Xp−〈ai〉p
if 〈ai〉p /∈ S,

where

Xm := diag
(

ζp
m, ζp

m
)

.

Note that JXm(−J) = Xm. This characterization allows to express each σaXi in the 
form Xj or Xj , for some 1 ≤ j ≤ g.

We will now verify that γαγ−1 = σaα, where γ is as defined in Equation (4). Note 
that there is only one nonzero block entry in each row and each column in the block 
matrix γ. Furthermore, one easily checks that the entries of the inverse of γ are given by

γ−1
j,i =

⎧⎪⎪⎨⎪⎪⎩
I if j = 〈ai〉p and 〈ai〉p ∈ S,

−J if j = p − 〈ai〉p and 〈ai〉p /∈ S,

0 otherwise.

Some basic linear algebra shows that the only nonzero blocks in the product γαγ−1

will be the diagonal entries. We will now determine what those diagonal entries will be. 
Suppose that the only nonzero block in column j of γ is in row i. Based on the definitions 
of γ and γ−1, this nonzero entry will yield the following product in the ith diagonal entry 
of γαγ−1

γi,jXjγ−1
j,i =

{
Xj if j = 〈ai〉p and 〈ai〉p ∈ S,

Xj if j = p − 〈ai〉p and 〈ai〉p /∈ S.

Hence, γαγ−1 = σaα, which confirms that γ is an element of the twisted Lefschetz group.
We now show that γp−1 ∈ ST0(Jac(Cp)), but γd /∈ ST0(Jac(Cp)) for any proper 

divisor d of p − 1, which will prove that ST(Jac(Cp)) = 〈U(1)g, γ〉 � U(1)g
� (Z/pZ)×.

Since σa generates the Galois group Gal(Q(ζp)/Q), we have |σa| = 2g and, for 1 ≤
d ≤ 2g,

(σa)d(ζp) =
{

ζp if d = 2g,

ζ if d = g,
p
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and (σa)d(ζp) �= ζp nor ζp otherwise. Hence, the action of σa on the block matrix Xi

satisfies

(σa)d(Xi) =

⎧⎪⎪⎨⎪⎪⎩
Xi if d = 2g,

Xi if d = g,

Xj or Xj otherwise,

for some j ∈ {1, . . . , g} not equal to i.
We have seen that γαγ−1 = σaα, and so conjugating α by γ permutes (and sometimes 

conjugates) the diagonal block entries of α. Since γαγ−1 is again a diagonal block matrix, 
conjugating this by γ will again just permute (and sometimes conjugate) the diagonal 
block entries. Hence, γdαγ−d is a diagonal block matrix for any d. In fact, we can write 
γdαγ−d = (σa)d

α.
Thus, γd has a nonzero, off-diagonal block entry if and only if there is some i for which 

(σa)d

Xi = Xj or Xj with j �= i, p − i. This is possible if and only if d �= 2g or g.
If d = g, then (σa)d

Xi = Xi for all i. Hence, all of the diagonal block entries of γg must 
be J or −J since JXi(−J) = −JXiJ = Xi. Thus, γg /∈ ST0(Jac(Cp)). However, J2 =
(−J)2 = −I, so γ2g = − Id, which is an element of ST0(Jac(Cp)). Thus, ST(Jac(Cp)) �
U(1)g

� (Z/pZ)×. �
4.2. The Sato-Tate group of y2 = x2p − 1

We use the results of Section 2 and Proposition 4.1 to determine the identity compo-
nent of the Sato-Tate group of C2p.

Proposition 4.3. If p is an odd prime and C2p : y2 = x2p − 1, then

ST0(Jac(C2p)) � (U(1)2)g/2

where g = p − 1 is the genus of C2p.

Proof. Recall from Proposition 2.4 that

Jac(C2p) ∼ (Jac(Cp))2.

The curve Cp has genus g′ = (p − 1)/2 = g/2, and Proposition 4.1 gives the identity 
component for the Sato-Tate group of its Jacobian. It follows that the identity component 
of ST0(Jac(C2p)) is ST0(Jac(Cp)) embedded into USp(2g), yielding ST0(Jac(C2p)) �
(U(1)g/2)2 � (U(1)2)g/2. �

The main result of the following theorem is determining the component group of the 
Sato-Tate group of Jac(C2p). This is an interesting addition to the literature as the 
Sato-Tate groups of these curves do not have cyclic component groups.
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Theorem 4.4. Let p be an odd prime, g = p − 1, S = {1, . . . , g}, and a be a generator 
of the cyclic group (Z/2pZ)∗. Up to conjugation in USp(2g), the Sato-Tate group of 
C2p : y2 = x2p − 1 is

ST(Jac(C2p)) =
〈

(U(1)2)g/2, γ, γ′
〉

,

where the 2 × 2 block entries of γ are given by

γi,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I if j = 〈ai〉2p and 〈ai〉2p ∈ S,

J if i < �p
2 �, j = p − 〈ai〉2p, and 〈ai〉2p /∈ S,

−J if i > �p
2 �, j = p − 〈ai〉2p, and 〈ai〉2p /∈ S,

0 otherwise,

for 1 ≤ i, j ≤ g, and γ′ = diag(I, −I, . . . , I, −I). Furthermore, there is an isomorphism

ST(Jac(C2p)) � (U(1)2)g/2
� Gal(Q(ζ4p)/Q).

See Table 3 in Appendix A for explicit examples of the matrix γ.

Proof. The reduced automorphism group of C2p is isomorphic to the dihedral group D2p

(see, for example, [27]). We consider the following generators of the automorphism group 
of C2p. Let

α(x, y) = (ζ2px, y) and β(x, y) = (x−1, iyx−p),

where ζ2p is a primitive 2pth root of unity. Thus, End(Jac(C2p)K) � End(Jac(C2p)Q), 
where K = Q(ζ2p, i) = Q(ζ4p).

We compute pullbacks of the differentials ωj = xjdx/y, where 0 ≤ j < g = p − 1, 
in order to determine the generators of the endomorphism ring End(Jac(C2p)K). 
As in the proof of Theorem 4.2, the pullback α∗ leads to the endomorphism α =
diag(X1, X2, . . . , Xg). Computing the pullback β∗ on the differential ωj yields

β∗ωj = x−jd(x−1)
iyx−p

= iωp−2−j .

Thus, the endomorphism β ∈ End(Jac(C2p)K) is the antidiagonal matrix β =
antidiag(Z, Z, . . . , Z︸ ︷︷ ︸

g

), where Z = diag (i, −i).

We choose two elements σa, σb that generate the Galois group Gal(K/Q) � (Z/4pZ)×

and satisfy

σa :
{

ζ2p �→ ζa
2p

i �→ i
σb :

{
ζ2p �→ ζ2p

i �→ −i,
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where a is a generator of (Z/4pZ)×.
Let γ and γ′ be defined as in the statement of the theorem. One can verify that

σaα = γαγ−1, σaβ = γβγ−1, σbα = γ′αγ′ −1, and σbβ = γ′βγ′ −1

using a similar strategy to the one used in the proof Theorem 4.2, so we omit the proof 
here. In this case, the matrix γ contains both J and −J as entries so that it conjugates 
β properly.

Lastly, one can show as in the proof of Theorem 4.2 that the component group of 
ST(Jac(C2p)) is 〈γ, γ′〉. �
Corollary 4.5. Up to conjugation in USp(2g, C), the Sato-Tate group of C2p over Q(i) is

ST(Jac(C2p)Q(i)) =
〈

(U(1)2)g/2, γ
〉

.

Proof. This follows from the fact that the minimal extension L/Q(i) over which all the 
endomorphisms of Jac(C)Q(i) are defined is L = Q(ζ4p) = Q(ζ2p,i). �
5. Equidistribution results

In this section we prove Theorem 1.2, which states that the generalized Sato-Tate 
conjecture holds for the Jacobians of Cp and C2p. We first specify to the curve Cp. We 
begin by discussing the L-functions associated to the curve and then state the generalized 
Sato-Tate conjecture. We then prove the generalized Sato-Tate conjecture following the 
strategy of Serre [30]. Finally, we prove the generalized Sato-Tate conjecture for the 
Jacobian of C2p using a result of [22].

5.1. Hecke characters and L-functions

We follow the exposition in [11, Section 2.2], specifying to the curve Cp. For a more 
thorough review of Hecke characters, we refer the reader to [25] and [38]. Let p be a 
prime ideal to p in Q(ζp) and let x be an element in the ring of integers of Q(ζp). Then 
there is precisely one pth root of unity χp(x) satisfying the condition

χp(x) ≡ x(N(p)−1)/p mod p.

We extend this to all of Q(ζp) by setting χp(x) = 0 whenever x ≡ 0 (mod p), and, thus, 
χp is a multiplicative character of order p on Fp := OQ(ζp)/p.

We now define the Jacobi sums that appear in the L-functions of our curves. For all 
h = (h1, h2) ∈ Z/pZ × Z/pZ, and for any ideal p in Q(ζp) not dividing p, we define

Jh(p) := −
∑

χp(x)h1χp(1 − x)h2
x∈Fp
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(see [25, Section 1.4]) and Jh(p) can be viewed as a function on Z/pZ ×Z/pZ in terms of 
the characters on Z/pZ × Z/pZ (see [38]). For each h we extend the definition of Jh(p)
to all ideals prime to p in Q(ζp) by multiplicativity.

Lemma 5.1. Let h be of the form ((p − 2)a, a) for a ∈ G = (Z/pZ)× then

L((Cp)Q(ζp), s) = L(Jh, s)p−1 and L(Cp, s) = L(Jh, s).

Proof. This follows from the remark after Proposition 4.1. One can also see this by 
computing the set Mp−2 as defined in [11, (2.2)]:

Mp−2 = {j ∈ G : 〈j〉p < 〈(p − 1)j〉p} = {j ∈ G : 〈j〉p < 〈−j〉p} = {1, 2, . . . , (p − 1)/2}

which gives the CM type for the curve Cp. Using the Hecke characters Jh for these h, 
[11, Lemma 2.10] gives the desired result. �
5.2. Generalized Sato-Tate conjecture

We specify the generalized Sato-Tate conjecture to the Jacobian of the curve Cp. 
Before we state the conjecture, we need to set up some notation.

Let E/Q be a subextension of Q(ζp)/Q. Denote the set of conjugacy classes of 
ST(Jac(Cp)E) by XE . Let P be an infinite subset of primes of a number field, and 
{pi}i≥1 be an ordering by norm of P . Define a map AE : P → XE by sending p to xp. 
For any representation ρ : ST(Jac(Cp)E) → GLn(C) of ST(Jac(Cp)E), write

LAE
(ρ, s) =

∏
p∈P

det(1 − ρ(xp)N(p)−s)−1.

We specify a theorem of Serre to the curve Cp (see also [11, Theorem 3.12]).

Theorem 5.2. [30, page I-23] Suppose that for every irreducible nontrivial representation 
ρ of ST(Jac(Cp)E) the Euler product LA(ρ, s) converges for Re(s) > 1 and extends to 
a holomorphic and nonvanishing function for Re(s) ≥ 1. Then the sequence {xpi

}i≥1
is equidistributed over XE with respect to the projection on XE of the Haar measure of 
ST(Jac(Cp)E).

For a prime q of E, let xq be the conjugacy class of ST(Jac(Cp)E) using the isomor-
phism ST(Jac(Cp)E) � ST(Jac(Cp)Q(ζp)) � Gal(Q(ζp)/E). Specifically, set

xq :=
(

diag
(

Jr1(p)
N(p)1/2 ,

Jr1(p)
N(p)1/2 , . . . ,

Jr(p−1)/2(p)
N(p)1/2 ,

Jr(p−1)/2(p)
N(p)1/2

)
, Frobq

)
∈ XQ,

where each ri = ((p − 2)i, i). The set {r1, r2, . . . , r(p−1)/2} is a complete set of represen-
tatives of M , and p is a prime of Q(ζp) lying over q.
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Now specify P to be the set of primes of good reduction for (Cp)E and let {pi}i≥1 be 
an ordering by norm of P . We can now state the generalized Sato-Tate conjecture for 
Jac(Cp) (see, for example, [30, page I-23]).

Conjecture 5.3 (Generalized Sato-Tate). The sequence xE := {xpi
}i≥1 is equidistributed 

on XE with respect to the image on XE of the Haar measure of ST(Jac(Cp)E).

The following theorem specifies this conjecture to E = Q(ζp).

Theorem 5.4. The generalized Sato-Tate conjecture holds for Jac(Cp) over Q(ζp).

Proof. See [10, Theorem 3.6]. �
To prove Conjecture 5.3 for Jac(Cp) over Q, we will prove the convergence condition 

of Theorem 5.2. We first describe the irreducible representations of ST(Jac(Cp)) as in 
[29]. Let G = ST(Jac(Cp)) so that G0 = ST0(Jac(Cp)). We associate to any tuple b =
(b1, b2, . . . , b(p−1)/2) ∈ Z(p−1)/2 the irreducible representation φb : U(1)(p−1)/2 → C×

defined by

φb(u1, . . . , u(p−1)/2) =
(p−1)/2∏

i=1
ubi

i ,

where U = diag(u1, u1, . . . , u(p−1)/2, u(p−1)/2) ∈ U(1)(p−1)/2.
Let Hb ⊆ Gal(Q(ζp)/Q) be the subgroup such that

φb(u1, . . . , u(p−1)/2) = φb(h(u1, . . . , u(p−1)/2)) (5)

for every h ∈ Hb. Let H := G0
� Hb. Then we can extend φb to H via the map

φb : H → C×, φb(u1, . . . , u(p−1)/2, h) =
(p−1)/2∏

i=1
ubi

i .

By work of Serre [29], every irreducible representation of G is of the form Θ :=
IndG

H(χ ⊗φb), where χ is a character of Hb viewed as a character of H using composition 
with the projection H → Hb.

Theorem 5.5. The generalized Sato-Tate conjecture holds for Jac(Cp) over Q.

Proof. We wish to apply Theorem 5.2, so we need to show

LAQ
(Θ, s) =

∏
pi

det(1 − Θ(xpi
)p−s

i )−1

is holomorphic and non-vanishing on Re(s) ≥ 1.
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Let n be the cardinality of Hb. We first consider the case where χ is the trivial 
character. The theory of L-functions gives

LAQ
(φb, s) = LAQ

(IndG
H IndH

G0 φb, s)

= LAQ
(n IndG

H φb, s)

= LAQ
(Θ, s)n.

Note that the second equality holds by Equation (5). By [10, Section 3.5], we then have 
LAQ

(φb, s) = L(Ψ, s) up to a finite number of Euler factors, where Ψ is a Grössenchar-
acter and L(Ψ, s) is holomorphic and nonvanishing on Re(s) ≥ 1.

We now consider the case where χ is non-trivial. Since Gal(Q(ζp)/Q) is cyclic there 
exists a character χ̃ of Gal(Q(ζp)/Q) such that χ̃ restricted to Hb equals χ. Thus,

Θ = IndG
H(χ ⊗ φb) = χ̃ ⊗ IndG

H φb.

Furthermore, Gal(Q(ζp)/Q) being cyclic also gives us that

nΘ = χ̃ ⊗ IndG
G0 φb = IndG

G0 φb.

Hence, we again have that LAQ
(Θ, s)n = L(Ψ, n) up to a finite number of Euler factors, 

where Ψ is a Grössencharacter and L(Ψ, s) is holomorphic and nonvanishing on Re(s) ≥
1. �
Remark. The result also follows from [22, Prop. 16].

Theorem 5.6. Let E/Q be any subextension of Q(ζ4p)/Q. Then the generalized Sato-Tate 
conjecture holds for Jac(C2p) over E.

Proof. By Proposition 2.4, Jac(C2p) ∼ Jac(Cp)2. The result then follows from [22, Prop. 
16]. �
6. Moment statistics

In this Section we compute moment statistics associated to the Sato-Tate groups. 
These moment statistics can be used to verify the equidistribution statement of the 
generalized Sato-Tate conjecture by comparing them to moment statistics obtained for 
the traces ai in the normalized L-polynomial Lp(C, T ) in Equation (1).

6.1. Preliminaries

The following background information has been adapted from [26, Section 4] and [35, 
Section 4]. We start by recalling some basic properties of moment statistics. We define 
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the nth moment (centered at 0) of a probability density function to be the expected 
value of the nth power of the values, i.e. Mn[X] = E[Xn].

Recall that for independent variables X and Y we have E[X + Y ] = E[X] + E[Y ] and 
E[XY ] = E[X]E[Y ] (see, for example, [26]). Thus, we have the following

Mn[XY ] = Mn[X]Mn[Y ], (6)
Ma[X]Mb[X] = Ma+b[X], (7)

and

Mn[X1 + · · · + Xm] =
∑

a1+···+am=n

(
n

a1, . . . , am

)
Ma1 [X1] · · · Mam

[Xm]. (8)

Furthermore, for any constant b, we have Mn[b] = bn.
We will now work to define the Haar measure on the groups that we obtain for the 

identity component ST0(Jac(C)). From Propositions 4.1 and 4.3 we see that the possible 
groups are

U(1)g and (U(1)2)g/2.

For each of these groups, we are interested in the pushforward of the Haar measure onto 
the set of conjugacy classes conj(U(1)g) or conj((U(1)2)g/2).

We start with the unitary group U(1) and consider the trace map tr on U ∈ U(1)
defined by z := tr(U) = u + u = 2 cos(θ), where u = eiθ. This trace map takes values in 
[−2, 2]. From here we see that dz = 2 sin(θ)dθ and

μU(1) = 1
π

dz√
4 − z2

= 1
π

dθ

gives a uniform measure of U(1) on θ ∈ [−π, π] (see [35, Section 2]). We can deduce the 
following pushforward measures

μU(1)n =
n∏

i=1

1
π

dzi√
4 − z2

i

=
n∏

i=1

1
π

dθi and μ(U(1)2)n =
n∏

i=1

1
π

dzi√
4 − z2

i

=
n∏

i=1

1
π

dθi.

Note that though the measure μ(U(1)2)n is expressed the same as the measure μU(1)n , 
we will get a different distribution since in the former case each eigenangle θi occurs with 
multiplicity 2 (see, for example, [35, Section 4.3]).

We can now define the moment sequence M [μ], where μ is a positive measure on some 
interval I = [−d, d]. The nth moment Mn[μ] is, by definition, the expected value of φn

with respect to μ, where φn is the function z �→ zn. It is therefore given by

Mn[μ] =
∫

znμ(z).

I
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For U(1) we have Mn[μU(1)] =
(

n
n/2
)
, where 

(
n

n/2
)

= 0 if n is odd. Hence,

M [μU(1)] = (1, 0, 2, 0, 6, 0, 20, 0, . . .).

From here, we can compute Mn[μU(1)2 ] = 2n
(

n
n/2
)
, and take binomial convolutions to 

obtain

Mn[μU(1)×U(1)] =
n∑

r=0

(
n

r

)
Mn[μU(1)]Mn−r[μU(1)].

We can combine these strategies with Equations (6), (7), and (8) to compute moments 
for μU(1)g and μ(U(1)2)g/2 .

For each i ∈ {1, 2, . . . , g}, denote by μi the projection of the Haar measure onto the 
interval 

[
−
(2g

i

)
,
(2g

i

)]
. We can compute Mn[μi] by averaging over the components of the 

Sato-Tate group. For example, in the case where the curve has CM by Q(ζd), we will 
denote the restriction of μi to the component ST0(Jac(C)) · γk by kμi and

μi = 1
d

d∑
k=0

kμi and Mn[μi] = 1
d

d∑
k=0

Mn[kμi].

6.2. Characteristic polynomials

In this subsection, we give results for the characteristic polynomials in each component 
of the Sato-Tate groups of Cp and C2p.

6.2.1. Characteristic polynomials for Cp

We start with a random matrix U in the identity component ST0(Jac(Cp)). We will 
denote the characteristic polynomial of Uγi by Pγi(T ). Since γp−1 ∈ ST0(Cp), we only 
compute Pγi(T ) for i = 0, . . . , p − 2.

Example 6.1. We compute the characteristic polynomials of the curve C11 : y2 = x11 − 1. 
This yields Pγ1(T ) = Pγ3(T ) = Pγ7(T ) = Pγ9(T ) = T 10 + 1 and

Pγ0(T ) =
5∏

i=1
(T − ui)(T − ui),

Pγ2(T ) = Pγ6(T ) = (T 5 + u1u2u3u4u5)(T 5 + u1u2u3u4u5),

Pγ4(T ) = Pγ8(T ) = (T 5 − u1u2u3u4u5)(T 5 − u1u2u3u4u5),

Pγ5(T ) = (T 2 + 1)5.

We have two general results for the characteristic polynomials associated to the Sato-
Tate group of Cp, which we combine into the following proposition.



260 M. Emory, H. Goodson / Journal of Algebra 597 (2022) 241–265
Proposition 6.2. Let Cp be the genus g curve y2 = xp − 1, where p = 2g + 1 is prime. 
Then

Pγ0(T ) =
g∏

i=1
(T − ui)(T − ui) and Pγg (T ) = (T 2 + 1)g.

Proof. The first equality is a consequence of Proposition 4.1 which tells us that 
ST0(Jac(Cp)) = U(1)g.

For a justification of the second equality, we recall from our work in the proof of 
Theorem 4.2. There we proved that γg is a diagonal block matrix with ±J on its diagonal 
entries. Multiplying U by γg yields a diagonal block matrix, whose diagonal blocks are 
of the form (

0 ui

−ui 0

)
or
(

0 −ui

ui 0

)
,

depending on whether we multiplied by J or −J . In either case, the factor of the char-
acteristic polynomial associated to this block is of the form

T 2 + u1u1 = T 2 + 1.

Thus, since there are g diagonal blocks, the characteristic polynomial is

Pγg (T ) = (T 2 + 1)g. �
6.2.2. Characteristic polynomials for C2p

We again start with a random matrix U in the identity component of the Sato-Tate 
group. Recall that the Sato-Tate group of C2p has two generators for the component 
group: γ and γ′. We will denote the characteristic polynomial of Uγi(γ′)j by Pi,j(T ). 
Since γp−1, (γ′)2 ∈ ST0(C2p), we only compute Pi,j(T ) for i = 0, . . . , p − 2 and j = 0, 1.

Example 6.3. We compute the characteristic polynomials of the curve C10 : y2 = x10 − 1. 
This yields P1,0(T ) = P3,0(T ) = P1,1(T ) = P3,1(T ) = (T 4 + 1)2 and

P0,0(T ) =
2∏

i=1
(T − ui)2(T − ui)2,

P2,0(T ) = (T 2 + 1)4,

P0,1(T ) = T 8 − 2(u1u2 + u1u2)T 6 + (4 + (u1u2)2 + (u1u2)2)T 4

− 2(u1u2 + u1u2)T 2 + 1,

P2,1(T ) = T 8 + 2(u1u2 + u1u2)T 6 + (4 + (u1u2)2 + (u1u2)2)T 4

+ 2(u1u2 + u1u2)T 2 + 1.
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We have two general results for the characteristic polynomials associated to the Sato-
Tate group of C2p, which we combine into the following proposition.

Proposition 6.4. Let C2p be the genus g curve y2 = x2p − 1, where p is prime. Then

P0,0(T ) =
g/2∏
i=1

(T − ui)2(T − ui)2 and Pg/2,0(T ) = (T 2 + 1)g.

Proof. The first equality is a consequence of Proposition 4.3 which tells us that 
ST0(Jac(Cp)) = (U(1)2)g/2. For a justification of the second equality, see the proof 
of Proposition 6.2. �

We also have the following conjecture.

Conjecture 6.5. Let C2p be the genus g curve y2 = x2p − 1, where p is prime. Then 
Pd,j(T ) = (T g + 1)2, for any d relatively prime to 2g and j = 0 or 1.

6.3. General results for the moments

Based on the results of Section 6.2.1, we have the following general result for the 
moment statistics associated to the Sato-Tate group of Cp.

Proposition 6.6. For the curve Cp we have

Mn[gμi] =
{(

g
i/2
)n if i is even

0 otherwise.

Proof. Recall from Proposition 6.2 that Pγg (T ) = (T 2 + 1)g. Expanding this yields

Pγg (T ) =
g∑

i=0

(
g

j

)
T 2j .

Thus, ai =
(

g
i/2
)

when i is even and it equals 0 when i is odd. It is then clear that μi(φn)
in this case is 

(
g

i/2
)n when i is even and 0 when i is odd �

We also have the following conjecture for characteristic polynomials and moments.

Conjecture 6.7. Let Cp be the genus g curve y2 = xp − 1, where p = 2g + 1 is prime. 
Then Pγd(T ) = T 2g + 1, for any d relatively prime to 2g and Mn[kμi] = 0.
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Table 1
Moment Statistics for y2 = x11 − 1.

M [μ1] (1, 0, 1, 0, 27, 0, 1090, . . .)
M [μ2] (1, 1, 9, 133, 2873, 75453, 2200605, . . .)
M [μ3] (1, 0, 24, 0, 1381080, 0, 161935061760, . . .)
M [μ4] (1, 2, 64, 4688, 498236, 61887736, 8430343600, . . .)
M [μ5] (1, 0, 72, 0, 934332, 0, 22782049800, . . .)

Table 2
Table of μ1- and a1-moments for y2 = xm − 1 over Q.

m M2 M4 M6 M8

10 μ1 2 72 3200 156800
a1 1.989 71.484 3172.685 155240.208

11 μ1 1 27 1090 55195
a1 0.991 26.425 1049.681 52204.146

13 μ1 1 33 1660 106785
a1 0.999 33.108 1677.458 108839.689

14 μ1 2 120 9920 954240
a1 1.982 118.214 9694.808 923186.514

17 μ1 1 45 3160 290605
a1 0.991 44.178 3068.003 279757.762

19 μ1 1 51 4090 432915
a1 0.995 50.601 4040.554 425599.259

22 μ1 2 216 34880 7064960
a1 1.996 213.572 34047.140 6805376.261

6.4. Explicit examples of moment statistics

We first determine moment statistics for the genus 5 curve C11 : y2 = x11 − 1. 
Using characteristic polynomials Pγk (T ) that were computed for each component in 
Example 6.1 and the properties in Equations (6), (7), and (8), we can compute the nth 
moments for each μi, 1 ≤ i ≤ 5. These moments, given in Table 1, are easily computed 
using Sage [21]. See Table 2 in Section 6.5 for a comparison of M [μ1] to the numerical 
moments M [a1] of the normalized L-polynomial of the curve.

Using the same strategy as above, we determine that the μ1-moment statistics for the 
Sato-Tate group of C10 : y2 = x10 − 1 are

M [μ1] = (1, 0, 2, 0, 72, 0, 3200, 0, 156800, 0, 8128512 . . .).

In Fig. 1 we give a histogram of a1-values of y2 = x10−1, as well as moment statistics (up 
to the 10th moment). Observe that the numerical moments M [a1], which are computed 
using primes up to 228, are quite close to what we obtained for M [μ1]. See [34] for an 
animated histogram of the a1-distribution. The algorithm used to make the histogram 
is described in [18] and [19].

See Table 2 in Section 6.5 for moment statistics for other curves.
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Fig. 1. Histogram of a1 values of y2 = x10 − 1 for primes less than 228. See [34].

6.5. Tables of μ1- and a1-moment statistics

We first consider curves of the form Cp : y2 = xp − 1. Note that M [kμ1] = 0 for all 
0 < k < p − 1. One can easily determine from Proposition 6.2 that the coefficient of T
in Pγ0(T ) is 

∑g
i=1 si, where si = −(ui + ui). Hence,

Mn[0μ1] =
n∑

α1,...,αg=0

(
n

α1, α2, . . . , αg

)
Mα1 [s1]Mα2 [s2] · · · Mαg

[sg]. (9)

Similarly, for curves of the form C2p : y2 = x2p − 1,

Mn[k,jμ1] = 2n
n∑

α1,...,αg/2=0

(
n

α1, α2, . . . , αg/2

)
Mα1 [s1]Mα2 [s2] · · · Mαg/2 [sg/2] (10)

whenever k = j = 0 and Mn[k,jμ1] = 0 otherwise.
We used Sage [21] to evaluate Equations (9) and (10), and then average over the 

components, to get the μ1-moments shown in Table 2. Note that Mn[μ1] = 0 for all odd 
n, so we omit those values from the table. For comparison, we computed the numerical 
a1-moments for primes up to 223.
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Appendix A. Examples of the γ matrix

In Table 3 we give examples of the matrix γ from Theorems 4.2 and 4.4. These were 
computed in Sage [21] using Sage’s chosen generators for (Z/pZ)× and (Z/2pZ)×.

Table 3
Examples of γ matrices for y2 = xm − 1.

m γ m γ

10

⎛⎝0 0 J 0
0 0 0 I
I 0 0 0
0 −J 0 0

⎞⎠ 13

⎛⎜⎜⎜⎝
0 I 0 0 0 0
0 0 0 I 0 0
0 0 0 0 0 I
0 0 0 0 J 0
0 0 J 0 0 0
J 0 0 0 0 0

⎞⎟⎟⎟⎠

11

⎛⎜⎜⎝
0 I 0 0 0
0 0 0 I 0
0 0 0 0 J
0 0 J 0 0
J 0 0 0 0

⎞⎟⎟⎠ 14

⎛⎜⎜⎜⎝
0 0 I 0 0 0
0 0 0 0 0 I
0 0 0 0 J 0
0 −J 0 0 0 0
I 0 0 0 0 0
0 0 0 I 0 0

⎞⎟⎟⎟⎠

References

[1] P.B. Allen, F. Calegari, A. Caraiani, T. Gee, D. Helm, B.V.L. Hung, J. Newton, P. Scholze, R. 
Taylor, J.A. Thorne, Potential Automorphy over CM Fields, 2018.

[2] N. Aoki, Hodge cycles on CM abelian varieties of Fermat type, Comment. Math. Univ. St. Pauli 
51 (1) (2002) 99–130.

[3] S. Arora, V. Cantoral-Farfán, A. Landesman, D. Lombardo, J.S. Morrow, The twisting Sato-Tate 
group of the curve y2 = x8 − 14x4 + 1, Math. Z. 290 (3–4) (2018) 991–1022.

[4] G. Banaszak, W. Gajda, P. Krasoń, On Galois representations for abelian varieties with complex 
and real multiplications, J. Number Theory 100 (1) (2003) 117–132.

[5] G. Banaszak, K.S. Kedlaya, An algebraic Sato-Tate group and Sato-Tate conjecture, Indiana Univ. 
Math. J. 64 (1) (2015) 245–274.

[6] T. Barnet-Lamb, D. Geraghty, M. Harris, R. Taylor, A family of Calabi-Yau varieties and potential 
automorphy II, Publ. Res. Inst. Math. Sci. 47 (1) (2011) 29–98.

[7] L. Clozel, M. Harris, R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois repre-
sentations, Publ. Math. Inst. Hautes Études Sci. 108 (2008) 1–181, With Appendix A, summarizing 
unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras.

[8] P. Deligne, J.S. Milne, A. Ogus, K.-y. Shih, Hodge Cycles, Motives, and Shimura Varieties, Lecture 
Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982.

[9] M. Emory, H. Goodson, A. Peyrot, Towards the Sato-Tate groups of trinomial hyperelliptic curves, 
Int. J. Number Theory 17 (2021) 2175–2206.

[10] F. Fité, Equidistribution, L-functions, and Sato-Tate groups, in: Trends in Number Theory, in: 
Contemp. Math., vol. 649, Amer. Math. Soc., Providence, RI, 2015, pp. 63–88.

[11] F. Fité, J. González, J.-C. Lario, Frobenius distribution for quotients of Fermat curves of prime 
exponent, Can. J. Math. 68 (2) (2016) 361–394.

[12] F. Fité, K.S. Kedlaya, V. Rotger, A.V. Sutherland, Sato-Tate distributions and Galois endomor-
phism modules in genus 2, Compos. Math. 148 (5) (2012) 1390–1442.

[13] F. Fité, K.S. Kedlaya, A.V. Sutherland, Sato-Tate groups of abelian threefolds: a preview of the 
classification, ArXiv e-prints, arXiv :1911 .02071, Nov. 2019.

[14] F. Fité, E. Lorenzo García, A.V. Sutherland, Sato-Tate distributions of twists of the Fermat and 
the Klein quartics, Res. Math. Sci. 5 (4) (2018) 41.

[15] F. Fité, A.V. Sutherland, Sato-Tate distributions of twists of y2 = x5 − x and y2 = x6 + 1, Algebra 
Number Theory 8 (3) (2014) 543–585.

[16] F. Fité, A.V. Sutherland, Sato-Tate groups of y2 = x8 + c and y2 = x7 − cx, in: Frobenius Distri-
butions: Lang-Trotter and Sato-Tate Conjectures, in: Contemp. Math., vol. 663, Amer. Math. Soc., 
Providence, RI, 2016, pp. 103–126.

[17] M. Harris, N. Shepherd-Barron, R. Taylor, A family of Calabi-Yau varieties and potential automor-
phy, Ann. Math. (2) 171 (2) (2010) 779–813.

http://refhub.elsevier.com/S0021-8693(22)00005-9/bibC94D9E68860DA1B2D04ADACB9C80F943s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibC94D9E68860DA1B2D04ADACB9C80F943s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib46D0FEBD7C8822C32F10B30C083D6685s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib46D0FEBD7C8822C32F10B30C083D6685s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib9E4288006ACCF2D624F1339034D94BDFs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib9E4288006ACCF2D624F1339034D94BDFs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib9E36C9332D48AE11FD471E23062AF165s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib9E36C9332D48AE11FD471E23062AF165s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib8D5945E0FAAD5237E13C754AA40B69A0s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib8D5945E0FAAD5237E13C754AA40B69A0s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib720E9E2F8B50C0E3023AF8DC4AC1A5B5s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib720E9E2F8B50C0E3023AF8DC4AC1A5B5s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibE8338D8B1C8EC9ECB6621AF8136B6F35s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibE8338D8B1C8EC9ECB6621AF8136B6F35s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibE8338D8B1C8EC9ECB6621AF8136B6F35s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib54BDAB0C6EFBBFBC7C99505AAC595756s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib54BDAB0C6EFBBFBC7C99505AAC595756s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibBE30902AB7D4E628FF4227F9CA2DBFB9s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibBE30902AB7D4E628FF4227F9CA2DBFB9s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibCC39F3F4C036D7EC03B8800081003BF0s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibCC39F3F4C036D7EC03B8800081003BF0s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib8F006D4EB7A8230353E14483C7320B0Es1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib8F006D4EB7A8230353E14483C7320B0Es1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib7275345737AC8F55AEF9405E8DBBB9CFs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib7275345737AC8F55AEF9405E8DBBB9CFs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib36B60370E377AD23BD4DFEB4F4717527s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib36B60370E377AD23BD4DFEB4F4717527s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib5B20512283F689FD56C33AFA75947DAFs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib5B20512283F689FD56C33AFA75947DAFs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib436CB8A1AFC5C05CF4187BA8932A4796s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib436CB8A1AFC5C05CF4187BA8932A4796s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib657E8C0E040892164FA84FC59F8383EDs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib657E8C0E040892164FA84FC59F8383EDs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib657E8C0E040892164FA84FC59F8383EDs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib63621FBD0A4E453E4743CFFBC9560672s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib63621FBD0A4E453E4743CFFBC9560672s1


M. Emory, H. Goodson / Journal of Algebra 597 (2022) 241–265 265
[18] D. Harvey, A.V. Sutherland, Computing Hasse-Witt matrices of hyperelliptic curves in average 
polynomial time, LMS J. Comput. Math. 17 (suppl. A) (2014) 257–273.

[19] D. Harvey, A.V. Sutherland, Computing Hasse-Witt matrices of hyperelliptic curves in average poly-
nomial time, II, in: Frobenius Distributions: Lang-Trotter and Sato-Tate Conjectures, in: Contemp. 
Math., vol. 663, Amer. Math. Soc., Providence, RI, 2016, pp. 127–147.

[20] F. Hazama, Algebraic cycles on nonsimple abelian varieties, Duke Math. J. 58 (1) (1989) 31–37.
[21] S. Inc., CoCalc collaborative computation online, https://cocalc .com/, 2020.
[22] C. Johansson, On the Sato-Tate conjecture for non-generic abelian surfaces, Trans. Am. Math. Soc. 

369 (9) (2017) 6303–6325, With an appendix by Francesc Fité.
[23] K.S. Kedlaya, A.V. Sutherland, Hyperelliptic curves, L-polynomials, and random matrices, in: 

Arithmetic, Geometry, Cryptography and Coding Theory, in: Contemp. Math., vol. 487, Amer. 
Math. Soc., Providence, RI, 2009, pp. 119–162.

[24] T. Kubota, On the field extension by complex multiplication, Trans. Am. Math. Soc. 118 (1965) 
113–122.

[25] S. Lang, Cyclotomic Fields I and II, second edition, Graduate Texts in Mathematics, vol. 121, 
Springer-Verlag, New York, 1990, With an appendix by Karl Rubin.

[26] J.-C. Lario, A. Somoza, The Sato-Tate conjecture for a Picard curve with complex multiplica-
tion (with an appendix by Francesc Fité), in: Number Theory Related to Modular Curves—
Momose Memorial Volume, in: Contemp. Math., vol. 701, Amer. Math. Soc., Providence, RI, 2018, 
pp. 151–165.

[27] N. Müller, R. Pink, Hyperelliptic curves with many automorphisms, arXiv e-prints, arXiv :1711 .
06599, Nov 2017.

[28] H. Pohlmann, Algebraic cycles on abelian varieties of complex multiplication type, Ann. Math. (2) 
88 (1968) 161–180.

[29] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, vol. 42, 
Springer-Verlag, New York-Heidelberg, 1977, Translated from the second French edition by Leonard 
L. Scott.

[30] J.-P. Serre, Abelian l-Adic Representations and Elliptic Curves, Research Notes in Mathematics, 
vol. 7, A K Peters, Ltd., Wellesley, MA, 1998, With the collaboration of Willem Kuyk and John 
Labute, Revised reprint of the 1968 original.

[31] J.-P. Serre, Lectures on NX(p), Chapman & Hall/CRC Research Notes in Mathematics, vol. 11, 
CRC Press, Boca Raton, FL, 2012.

[32] G. Shimura, Y. Taniyama, Complex Multiplication of Abelian Varieties and Its Applications to 
Number Theory, Publications of the Mathematical Society of Japan, vol. 6, The Mathematical 
Society of Japan, Tokyo, 1961.

[33] T. Shioda, Algebraic cycles on abelian varieties of Fermat type, Math. Ann. 258 (1) (1981/1982) 
65–80.

[34] A.V. Sutherland, Sato-Tate distribution of y2 = x10 − 1, http://math .mit .edu /~drew /x10m1 _a1f .
gif, 2019. (Accessed 9 October 2019).

[35] A.V. Sutherland, Sato-Tate distributions, in: Analytic Methods in Arithmetic Geometry, in: Con-
temp. Math., vol. 740, Amer. Math. Soc., Providence, RI, 2019, pp. 197–248.

[36] R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, Publ. 
Math. Inst. Hautes Études Sci. 108 (2008) 183–239.

[37] P. van Wamelen, Equations for the Jacobian of a hyperelliptic curve, Trans. Am. Math. Soc. 350 (8) 
(1998) 3083–3106.

[38] A. Weil, Jacobi sums as “Grössencharaktere”, Trans. Am. Math. Soc. 73 (1952) 487–495.
[39] C.-F. Yu, A note on the Mumford-Tate conjecture for CM abelian varieties, Taiwan. J. Math. 19 (4) 

(2015) 1073–1084.

http://refhub.elsevier.com/S0021-8693(22)00005-9/bibADA47165FE9836BC5165A3FCE288091Ds1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibADA47165FE9836BC5165A3FCE288091Ds1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib7B4C8EBC2D5E3EB4E7A9CB8C4D2EE37As1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib7B4C8EBC2D5E3EB4E7A9CB8C4D2EE37As1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib7B4C8EBC2D5E3EB4E7A9CB8C4D2EE37As1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib5D8ACF8849CC540093F969928F899142s1
https://cocalc.com/
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibEBCF6FBC2A271DC92A9B90903AF46942s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibEBCF6FBC2A271DC92A9B90903AF46942s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib48ECCBF0B012AC5839D96B1BE3A9108Bs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib48ECCBF0B012AC5839D96B1BE3A9108Bs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib48ECCBF0B012AC5839D96B1BE3A9108Bs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib66387A5E45B00AE214BFC1D68DEDCF1Bs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib66387A5E45B00AE214BFC1D68DEDCF1Bs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib5064D41A06DEC90ED74037EEA53FAFC8s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib5064D41A06DEC90ED74037EEA53FAFC8s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibDD182967D48C26D40E4AEB95901A4452s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibDD182967D48C26D40E4AEB95901A4452s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibDD182967D48C26D40E4AEB95901A4452s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibDD182967D48C26D40E4AEB95901A4452s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib414878C9B1F0ADEEA980B300FE7F500Bs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib414878C9B1F0ADEEA980B300FE7F500Bs1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibA0B6624DDD7FCF6489252EDE6DF048F2s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibA0B6624DDD7FCF6489252EDE6DF048F2s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibEE042B2D7039088E2ADE59F19EC75711s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibEE042B2D7039088E2ADE59F19EC75711s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibEE042B2D7039088E2ADE59F19EC75711s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib967C81499E844F4BD66A6F129A2CB142s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib967C81499E844F4BD66A6F129A2CB142s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib967C81499E844F4BD66A6F129A2CB142s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibF070B60E9923BC36DBC590F70CC5A5F5s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibF070B60E9923BC36DBC590F70CC5A5F5s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib00C14B225A98BAB76413A436A931CCE0s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib00C14B225A98BAB76413A436A931CCE0s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib00C14B225A98BAB76413A436A931CCE0s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib244BE9A4CD87D86FA233BF8408D46724s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib244BE9A4CD87D86FA233BF8408D46724s1
http://math.mit.edu/~drew/x10m1_a1f.gif
http://math.mit.edu/~drew/x10m1_a1f.gif
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib289352972708F5314AF648979B72AD23s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib289352972708F5314AF648979B72AD23s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib37070300643B1CCBA38CFB883BB9A551s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib37070300643B1CCBA38CFB883BB9A551s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibEF8B126091B82AE9F39BBDA741E72515s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bibEF8B126091B82AE9F39BBDA741E72515s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib256A9B17D56A2A37C7D3AC459ABF143As1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib678837E6C5B3514B221BF5AE47314946s1
http://refhub.elsevier.com/S0021-8693(22)00005-9/bib678837E6C5B3514B221BF5AE47314946s1

	Sato-Tate distributions of y2=xp−1 and y2=x2p−1
	1 Introduction
	2 Nondegenerate abelian varieties
	3 The algebraic Sato-Tate group
	4 Sato-Tate groups
	4.1 The Sato-Tate group of y2=xp−1
	4.2 The Sato-Tate group of y2=x2p−1

	5 Equidistribution results
	5.1 Hecke characters and L-functions
	5.2 Generalized Sato-Tate conjecture

	6 Moment statistics
	6.1 Preliminaries
	6.2 Characteristic polynomials
	6.2.1 Characteristic polynomials for Cp
	6.2.2 Characteristic polynomials for C2p

	6.3 General results for the moments
	6.4 Explicit examples of moment statistics
	6.5 Tables of μ1- and a1-moment statistics

	Appendix A Examples of the γ matrix
	References


