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We consider the identity component of the Sato–Tate group of the Jacobian of curves of
the form

C1 : y2 = x2g+2 + c, C2 : y2 = x2g+1 + cx, C3 : y2 = x2g+1 + c,

where g is the genus of the curve and c ∈ Q∗ is constant.
We approach this problem in three ways. First we use a theorem of Kani-Rosen to

determine the splitting of Jacobians for C1 curves of genus 4 and 5 and prove what
the identity component of the Sato–Tate group is in each case. We then determine the
splitting of Jacobians of higher genus C1 curves by finding maps to lower genus curves
and then computing pullbacks of differential 1-forms. In using this method, we are able
to relate the Jacobians of curves of the form C1, C2 and C3. Finally, we develop a new
method for computing the identity component of the Sato–Tate groups of the Jacobians
of the three families of curves. We use this method to compute many explicit examples,
and find surprising patterns in the shapes of the identity components ST0(C) for these
families of curves.
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1. Introduction

Let C be a smooth projective curve defined over Q. For primes p of good reduction,
we define the trace of Frobenius to be

tp(C) = p+ 1−#C(Fp),

where C denotes the reduction of C modulo p. A theorem of Weil [28] gives the
following bound for the trace of Frobenius:

|tp| ≤ 2g
√
p,

where g is the genus of the curve.
Let xp = tp/

√
p denote the normalized trace. Then the Weil bounds tell us

that xp ∈ [−2g, 2g], and we can look at the distribution of the xp in this inter-
val as p → ∞. This distribution is known for elliptic curves. The values are not
uniformly distributed over the interval [−2, 2], though they do have a predictable
limiting pattern. In the 1960s, Sato and Tate independently conjectured that, for
elliptic curves defined over Q without complex multiplication, the normalized traces
are equidistributed with respect to the measure 1

2π

√
4− x2dx. Barnet-Lamb et al.

[3, 13] recently proved the Sato–Tate conjecture for elliptic curves without complex
multiplication. As is often the case with celebrated results in number theory, prov-
ing the Sato–Tate conjecture required heavy machinery and merged three massive
mathematical theories: L-functions, automorphic forms, and Galois representations.

Traces of higher genus curves are expected to have Sato–Tate-like distributions.
To determine the distributions, we study the Sato–Tate group of the Jacobians of
the curves. Recall that the Jacobian of a genus g curve is an abelian variety of
dimension g. Associated to any abelian variety of dimension g over a number field
there is a compact subgroup of USp(2g) known as the Sato–Tate group (see [26, Sec.
3.2]) that is uniquely determined up to conjugacy and comes equipped with a map
that sends Frobenius elements to conjugacy classes with the appropriate normalized
trace. It is conjectured that if we order Frobenius elements by norm, this sequence
of conjugacy classes is equidistributed with respect to the push forward of the Haar
measure on the Sato–Tate group, and this can be viewed as a generalization of the
Sato–Tate conjecture (see, for example, [26, Sec. 3.3]).

Determining these Sato–Tate groups is the source of ongoing work. For example,
Fité et al. [8] determine the complete set of Sato–Tate groups that arise for abelian
surfaces over number fields. In [11], Fité and Sutherland give the Sato–Tate groups
and distributions for the following families of genus 3 hyperelliptic curves:

y2 = x8 + c and y2 = x7 − cx,

where c ∈ Q∗ is constant. Fité, Lorenzo Garćıa, and Sutherland have also worked out
the Sato–Tate groups for other genus 3 curves (see [10]). In [2], Arora et al. prove a
generalized Sato–Tate conjecture forQ-twists of the genus 3 curve y2 = x8−14x4+1.
See [9] for an in-depth discussion of the Sato–Tate groups of abelian varieties of
dimension 3.
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In this paper, we extend this work to families of hyperelliptic curves over Q of
the form

C1 : y2 = x2g+2 + c, C2 : y2 = x2g+1 + cx, C3 : y2 = x2g+1 + c,

where g is the genus of the curve and c ∈ Q∗ is a constant. We denote the Sato–Tate
group of the Jacobian of a smooth projective curve by ST(C) := ST(Jac(C)Q). Note
that while the Sato–Tate group is a compact Lie group, it may not be connected
[11]. In our work we study the connected component of the identity of ST(C),
denoted ST0(C) := ST0(Jac(C)Q). Note that ST0(C) is isomorphic to the full
Sato–Tate group ST(Jac(C)F ), where F is the minimal extension over which all
endomorphisms of Jac(C) are defined.

This problem of determining the identity component of the Sato–Tate groups of
families of trinomial hyperelliptic curves was originally posed as part of the Arizona
Winter School Analytic Methods in Arithmetic Geometry in March 2016. Using
similar methods to [11] and a theorem of Kani-Rosen [15, Theorem C], we obtain
the following explicit results for ST0(C) for families of genus 4 and 5 curves (the
notation is defined in Sec. 2).

Theorem 1.1. The identity component of the Sato–Tate group of the Jacobian of
the hyperelliptic curve y2 = x10 + c is U(1)2 × U(1)2.

Theorem 1.2. The identity component of the Sato–Tate group of the Jacobian of
the hyperelliptic curve y2 = x12 + c is U(1)2 × U(1)3.

These results are proved in Sec. 3. The methods used for the proof of Theo-
rems 1.1 and 1.2 require using automorphisms and morphisms of curves to prove
the result. To generalize results like those of Theorems 1.1 and 1.2 to higher genus
C1 curves, we prove a partial splitting of the Jacobians of higher genus curves in
the following theorem (see Theorem 4.3).

Theorem 1.3. Let v2 : Q∗ → Z denote the 2-adic valuation map, i.e. v2(a/b) = α,
where a

b = 2α e
d and p does not divide e or d. Let C1 : y2 = x2g+2+c be a hyperelliptic

curve of genus g and write k := v2(g+1). Then we have the following isogeny over Q:

Jac(C1) ∼ Jac(y2 = x(g+1)/2k + c)2 ×
k−1∏

i=0

Jac(y2 = x(g+1)/2i+1 + cx),

which relates the curves

C1 : y2 = x2g+2 + c, C2 : y2 = x2g+1 + cx, C3 : y2 = x2g+1 + c.

Theorem 1.3 breaks down the Jacobian of a curve into the Jacobians of lower
genus curves. We break these Jacobians down even further in Sec. 5. In some cases,
we can then use known results for lower genus curves (see, for example, [3, 8, 11]) to
immediately determine the identity component of the Sato–Tate group. Also, note
that Theorems 1.1 and 1.2 follow as corollaries to Theorem 1.3.
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In Sec. 6, we describe a new algorithm that computes the identity component
of the Sato–Tate group of the Jacobian of hyperelliptic curves C1, C2, and C3 men-
tioned above.

Theorem 1.4. Algorithm 6.7 gives the identity component of the Sato–Tate group
of the Jacobian of curves of the form

C1 : y2 = x2g+2 + c, C2 : y2 = x2g+1 + cx, C3 : y2 = x2g+1 + c.

Using Theorem 1.4 we prove the following (see Theorem 6.9) which confirms an
unpublished result of Zywina [30].

Theorem 1.5. The identity component of the Sato–Tate group of the Jacobian of
the hyperelliptic curve y2 = x9 + c is U(1)× U(1)× U(1).

Remark 1.6. Shioda studies the Hodge group of curves of the form y2 = xm − 1
in [24, Secs. 5 and 6]. In particular, Shioda shows that the Jacobian of the curve
y2 = x9 − 1 satisfies the Hodge conjecture and is a four-dimensional abelian variety
[24, Example 6.1]. Indeed, he remarks that the Jacobian is isogenous to the product
of a CM elliptic curve E and a three-dimensional absolutely simple CM abelian
variety. The elliptic curve E has ST0(E) ) U(1) and the abelian variety A has
ST0(A) ) U(1)×U(1)×U(1). Thus, ST0(A)×ST0(E) *= ST0(A×E), even though
A and E do not share any common factor up to Q-isogeny.

We also use Theorem 1.4 to compute ST0(C1), ST
0(C2) and ST0(C3) for genus 2

through 10, and find surprising patterns in the shapes of the identity components for
these families of curves. Following these computations, we form several conjectures
(see Sec. 6.6).

The remainder of this paper is organized as follows. In Sec. 2 we give some
necessary background information that will be used throughout the paper. In Sec. 3
we prove Theorems 1.1 and 1.2, and in Sec. 4 we prove Theorem 1.3. In Sec. 5 we
work to break down the Jacobians that appear in Theorem 1.3 so that we can
potentially use known results for the Sato–Tate groups of lower genus curves to
determine the identity components of the Sato–Tate groups of higher genus curves.
In Sec. 6 we discuss an algorithm for computing the identity components of the
Sato–Tate group. In Sec. 6.5, we prove Theorem 1.5 and provide an alternate proof
of Theorem 1.1 using this method. This algorithm requires an explicit formula for
the number of points on the curve over Fp in terms of Jacobi sums, which we prove
in Appendices A and B.

2. Background

For the Jacobian of a genus g curve, the Sato–Tate group will be a compact subgroup
of USp(2g), which is the group of 2g × 2g complex unitary matrices preserving a
fixed symplectic form. In what follows, we describe the possible forms of the identity
components of the Sato–Tate groups.
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Let u ∈ U(1) := {eiθ : θ ∈ [0, 2π)}. We then define the following subgroups of
USp(2n):

U(1)n := 〈diag(u, u, . . . , u, u) : u ∈ U(1)〉

and

U(1)n := 〈diag(u1, u1, . . . , un, un) : ui ∈ U(1)〉.

As we will see in later sections, the identity components of the Sato–Tate groups
we study will be products of these groups.

We use the following theorem of Kani and Rosen, specified to suit our problem,
to express the Jacobian of a curve C into the product of Jacobians of curves of
smaller genus.

Theorem 2.1 ([15, Theorem C]). Let k be a positive integer. Let C be a curve of
genus g and let αi be an element of the automorphism group of C, for i = 1, . . . , k.
Suppose that

(1) 〈αi〉 · 〈αj〉 = 〈αj〉 · 〈αi〉, for i, j = 1, . . . , k;
(2) g = g1 + · · · + gk, where gi is the genus of the curve C/〈αi〉, for i = 1, . . . , k

and
(3) the genus of the curve C/〈αi,αj〉 is 0 for all 1 ≤ i *= j ≤ k.

Then, we have the Q-isogeny

Jac(C) ∼ Jac(C/〈α1〉)× · · ·× Jac(C/〈αk〉).

2.1. Gauss and Jacobi sums

Let p be a prime and Fq be a finite field with q = pf elements. We define the
standard trace map Tr : Fq → Fp by

Tr(x) = x+ xp + · · ·+ xpf−1

.

Let ζp = e2πi/p be a pth root of unity. Then for χ ∈ F̂×
q we define the Gauss sum

g(χ) to be

g(χ) :=
∑

x∈Fq

χ(x)ζTr(x)p , (2.1)

where we extend χ to all of Fq by setting χ(0) = 0 (see, for example, [14, Chap.
8]). Note that g(ε) = −1, where ε is the trivial character. If χ is nontrivial and if χ
denotes its inverse, then g(χ)g(χ) = χ(−1)q.

Let θ : Fp → C be the additive character defined by θ(x) = ζxp , so that g(χ) :=∑
x∈Fp

χ(x)θ(x). We will make use of the following identity from [12].

Lemma 2.2 ([12, Lemma 2.2]). Let α ∈ F×
p . Then

θ(α) =
1

p− 1

p−2∑

i=0

G−iT
i(α),
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where T is a fixed generator for the character group and G−i is the Gauss sum
g(T−i).

For two multiplicative characters A,B over Fp, we define their Jacobi sum by

J(A,B) =
∑

x∈Fq

A(x)B(1 − x).

We have the following connection between Gauss sums and Jacobi sums (see, for
example, [4, Chap. 2]). For nontrivial characters A and B over Fq whose product is
also nontrivial, we have

J(A,B) =
g(A)g(B)

g(AB)
. (2.2)

On the other hand, if φ is a quadratic character then J(φ,φ) = −φ(−1).

3. Proofs of Theorems 1.1 and 1.2

3.1. The curve y2 = x10 + c

Theorem 3.1. The identity component of the Sato–Tate group of the Jacobian of
the hyperelliptic curve y2 = x10 + c is U(1)2 × U(1)2.

Proof. Consider the genus g = 4 curve C : y2 = x10 + c. We decompose the Jaco-
bian of our curve C via suitable automorphisms in such a way to apply Theorem 2.1
effectively. We let α,β : C → C be the following automorphisms of C:

α(x, y) =
(
c1/5x−1, c1/2

y

x5

)

and

β(x, y) =
(
c1/5x−1,−c1/2

y

x5

)
.

We verify the conditions of Theorem 2.1 for α and β. We first find that

αβ(x, y) = βα(x, y) = (x,−y). (3.1)

Via the Hurwitz genus formula, one has gα = gβ = g/2, where gα and gβ are
the genuses of the curves C/〈α〉 and C/〈β〉, respectively. One similarly verifies
that gα,β = 0, where gα,β denotes the genus of the curve C/〈α,β〉, so that all the
conditions of Theorem 2.1 are verified. We thus have the Q-isogeny

Jac(C) ∼ Jac(C/〈α〉)× Jac(C/〈β〉) ∼ Jac(C/〈α〉)2, (3.2)

where the second isogeny holds via the isomorphism C/〈α〉 → C/〈β〉 given by
(x, y) -→ (−x, y). Thus, Jac(C) is isogenous to the square of an abelian variety.

Now note that φ : (x, y) -→ (x2, y) is a map from C to the curve C′ : y2 = x5+c,
so that we have

Jac(C) ∼ Jac(C ′)×A
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for some abelian variety A of dimension 2. By Eq. (3.2) we know that Jac(C) is
isogenous to the square of an abelian variety. Since End(Jac(C′

Q))Q ) Q(ζ5) we

have that Jac(C′) is simple and we must therefore have that

Jac(C) ∼ Jac(C ′)2.

It is shown in [8] that the identity component of the Sato–Tate group of Jac(C′) is

ST0(C ′) = U(1)× U(1),

which in turn concludes the proof that

ST0(C) = U(1)2 × U(1)2.

3.2. The curve C: y2 = x12 + c

Theorem 3.2. The identity component of the Sato–Tate group of the Jacobian of
the hyperelliptic curve y2 = x12 + c is U(1)2 × U(1)3.

Proof. Consider the genus g = 5 curve C : y2 = x2g+2 + c. As in the proof of
Theorem 3.1, we let α,β : C → C be the following automorphisms of C:

α(x, y) =
(
c1/6x−1, c1/2

y

x6

)

and

β(x, y) =
(
c1/6x−1,−c1/2

y

x6

)
.

However, in order to apply Theorem 2.1 effectively, we require an additional auto-
morphism of C. Namely, we let γ : C → C be defined by

γ(x, y) = (ζ3x, y),

where ζ3 is a primitive 3rd root of unity. We may now check the conditions of
Theorem 2.1 for the automorphisms α,β and γ. We first find that

αβ(x, y) = βα(x, y) = (x,−y). (3.3)

We readily check that

〈α〉 · 〈γ〉 = 〈γ〉 · 〈α〉

and

〈β〉 · 〈γ〉 = 〈γ〉 · 〈β〉,

so that with Eq. (3.3) the first condition of Theorem 2.1 holds. Now by the Hurwitz
genus formula, we find that gα = gβ = g−1

2 , and that gγ = 1, so that the second
condition holds. Finally the third condition holds as αβ is the hyperelliptic map.
We thus have the isogeny

Jac(C) ∼ Jac(C/〈α〉)× Jac(C/〈β〉) × Jac(C/〈γ〉) ∼ Jac(C/〈α〉)2 × E1, (3.4)
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where E1 is the elliptic curve defined by E1 : y2 = x4 + c. Now let E2 : y2 = x3 + c
be an elliptic curve. Note that there exist two maps, φ1 : C → E1 and φ2 : C → E2,
where the maps are given by φ1(x, y) = (x3, y) and φ2(x, y) = (x4, y).

Let ζ12 be a primitive 12th root of unity, and let a = ζ12 12
√
c. The change of

variables x -→ ax and y -→ a6y transforms C to the model C′ : y2 = x12 + 1.
Computing with Magma [5], we find C′/〈α〉 to be the genus 2 curve given by

C ′/〈α〉 : y2 = x6 − 6x4 + 9x2 − 2.

We have a map φ3 : C′/〈α〉 → E3, where φ(x, y) = (x2, y) and E3 : y2 = x3 − 6x2+
9x− 2, which is an elliptic curve that has CM by Q(i). Hence, via the maps φ2 and
φ3, we have that

Jac(C′/〈α〉) ∼ E2 × E3 ∼ E2 × E1,

where the second isogeny holds since, up to Q-isogeny, there is only one elliptic
curve with CM by orders in Q(i). Hence,

Jac(C) ∼ E2
2 × E3

1 .

We thus conclude that

ST0(C) = U(1)2 × U(1)3.

4. Splitting of the Jacobians

We will first prove two lemmas that give a partial splitting of the Jacobian of the
curve C : y2 = x2g+2 + c in the case that g is even or odd. We will build from these
two cases to give a proof of Theorem 1.3.

Lemma 4.1. Let g = 2k an even integer, and C : y2 = x2g+2 + c. Then

Jac(C) ∼ Jac(C̃)2,

where C̃ : y2 = xg+1 + c.

Proof. We have a map, φ : C → C̃, given by φ(x, y) = (x2, y). Moreover, we have
an automorphism, α, of C given by α(x, y) = (c

1
g+1 x−1, c1/2yx−(g+1)). This in turn

induces a second map φ̃ : C → C̃ via

φ̃(x, y) = φ(α(x, y)) = φ(c
1

g+1 x−1, c1/2yx−(g+1)) = (c
2

g+1x−2, c1/2yx−(g+1)).

As noted in [11, Sec. 5.2], in order to prove the lemma it is sufficient to check that
the pullbacks of a basis of differential forms for Jac(C̃) via φ and φ̃ give a basis for
the space of differential forms for Jac(C). A basis for the space of regular 1-forms
of the Jacobian of a hyperelliptic curve of genus g is given by forms xidx/y for
i = 0, . . . , g − 1 (see, for example, [27, Sec. 3]). We thus compute:

φ∗
(
xi dx

y

)
=

x2id(x2)

y
= 2

x2i+1dx

y
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and

φ̃∗
(
xi dx

y

)
=

c
2i

g+1−
1
2x−2id

(
c

2
g+1

x2

)
xg+1

y
= −2c

2(i+1)
g+1 − 1

2
xg−2−2idx

y
.

The only thing that remains to be checked is that
{
x2j+1, xg−2−2j | j = 0, . . . ,

g

2
− 1

}
= {xi | i = 0, . . . , g − 1}.

However, to obtain even exponents, say x2m, in the set of the left-hand side of the
equation, we may take j = g/2 − (m + 1) with xg−2−2(g/2−m−1) = x2m. For all of
the odd exponents, say x2m+1, we may take j = m with x2j+1.

Lemma 4.2. Let g = 2k + 1 be an odd integer, and C : y2 = x2g+2 + c. Then

Jac(C) ∼ Jac(C̃)× Jac(C′),

where C̃ : y2 = xg+1 + c and C′ : y2 = xg+2 + cx are curves of genus k and k + 1,
respectively.

Proof. We have a map φ : C → C̃, given by φ(x, y) = (x2, y), and a map φ̃ : C →
C′, given by φ̃(x, y) = (x2, xy). We now only need to check that the pullbacks of
the basis elements for the space of regular 1-forms of the Jacobians of C̃ and C′

give a basis for the space of regular 1-forms of Jac(C). We therefore compute:

φ∗
(
xi dx

y

)
= 2

x2i+1dx

y
,

while

φ̃∗
(
xi dx

y

)
=

x2id(x2)

xy
= 2

x2idx

y
.

Now, in the first case, as i runs through 0, . . . , k − 1, we get all the odd forms
corresponding to x, . . . , x2k−1. In the second case we get all of the even ones, and
this concludes the proof.

We are now in a position to prove the following theorem.

Theorem 4.3. Let v2 : Q∗ → Z denote the 2-adic valuation map, i.e. v2(a/b) = α,
where a

b = 2α e
d and p does not divide e or d. Let C1 : y2 = x2g+2+c be a hyperelliptic

curve of genus g and write k := v2(g+1). Then we have the following isogeny over Q:

Jac(C1) ∼ Jac(y2 = x(g+1)/2k + c)2 ×
k−1∏

i=0

Jac(y2 = x(g+1)/2i+1 + cx).

Proof. Let k := v2(g + 1). We will prove the result by induction on k. If k = 0,
then g is even and we have already shown that

Jac(C1) ∼ Jac(y2 = xg+1 + c)2.
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If k = 1, then g = 2a−1 (with (2, a) = 1), and by our result for odd genus, we have

Jac(C1) ∼ Jac(y2 = xg+1 + c)× Jac(y2 = xg+2 + cx).

Now, g+1 = 2a = 2(2b+1) = 2(2b)+ 2, for some integer b, and our result for even
genus case implies that

Jac(C1) ∼ Jac(y2 = x(g+1)/2 + c)2 × Jac(y2 = xg+2 + cx).

By induction, we suppose that our result holds for l and suppose v2(g + 1) = l+ 1.
Then by our result for odd genus, we have

Jac(C1) ∼ Jac(y2 = xg+1 + c)× Jac(y2 = xg+2 + cx).

By assumption, g + 1 = 2l+1d (with d = 2e + 1, for some integer e), so that
g + 1 = 2l+1(2e+ 1) = 2g′ + 2, where g′ = 2l+1e+ 2l − 1. Thus, v2(g′ + 1) = l, and
we may therefore use our induction hypothesis to conclude that

Jac(C1) ∼
(
Jac(y2 = x(g′+1)/2l + c)2 ×

l−1∏

i=0

Jac(y2 = x(g′+1)/2i+1 + cx)

)

×Jac(y2 = xg+2 + cx)

∼ Jac(y2 = x(g+1)/2l+1

+ c)2 ×
l∏

i=0

Jac(y2 = x(g+1)/2i+1 + cx),

since g′ = (g − 1)/2.

5. A Further Splitting of The Jacobians of Theorem 1.3

Note that the curve y2 = x(g+1)/2k−1+1 + cx that appears in Theorem 1.3 has odd
genus since

g + 1

2k−1
+ 1 = 2

(
g + 1

2k

)
+ 1,

and v2(g + 1) = k implies that g+1
2k is odd. In this section, we show how to further

split curves of this form.
Let g be an odd integer and C : y2 = x2g+1 + cx be a genus g curve. Let

E : y2 = x3 + cx be an elliptic curve. Throughout this section, we work over the
field F = Q(ζ, c1/g), where ζ = ζg is a primitive gth root of unity. The morphism
φ : C → E defined by

φ(x, y) = (xg, yx(g−1)/2)

is a nonconstant morphism from C to the elliptic curve E. We would like to find
more morphisms from C to families of lower genus curves.

Our ultimate goal is to be able to further break down our result from Theo-
rem 1.3 so that we may write the Jacobians of curves as a product of Jacobians of
lower genus curves. Ideally, we would like to be able to write the Jacobian as a prod-
uct of Jacobians of elliptic curves (genus 1) or genus 2 curves since the Sato–Tate
groups of these lower dimension Jacobians are completely classified (see [3, 8, 13]).
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5.1. Morphisms to lower genus curves

For i = 0, 1 we define the curve Ci to be

Ci : y
2 =

(g−1)/2∑

k=0

(−1)k
[(

g − k
k

)
+

(
g − k − 1
k − 1

)]
ζikck/gxg−2k.

Note that this is a curve of genus g′ = (g − 1)/2 and it is defined over F. The
following table gives Ci for small values of g and for c = 1.

Genus of C Curve Ci

3 y2 = x3 − 3ζix
5 y2 = x5 − 5ζix3 + 5ζ2ix
7 y2 = x7 − 7ζix5 + 14ζ2ix3 − 7ζ3ix
9 y2 = x9 − 9ζix7 + 27ζ2ix5 − 30ζ3ix3 + 9ζ5ix
11 y2 = x11 − 11ζix9 + 44ζ2ix7 − 77ζ3ix5 + 55ζ4ix3 − 11ζ5ix

Lemma 5.1. The map

φi(x, y) =

(
x2 + ζic1/g

x
,
y

xa

)
,

where a = g+1
2 , is a nonconstant morphism from C to Ci.

Proof. The proof relies on the following identity attributed to Lockwood (see, for
example, [16, Sec. 9.8]):

An +Bn =

&n/2'∑

k=0

(−1)k
[(

n− k
k

)
+

(
n− k − 1
k − 1

)]
(AB)k(A+B)n−2k,

where n ≥ 1 and
(

r
−1

)
= 0. Letting n = g, A = x2 and B = ζic1/g yields

x2g + c =

g−1
2∑

k=0

(−1)k
[(

g − k
k

)
+

(
g − k − 1
k − 1

)]
ζikck/gx2k(x2 + ζic1/g)g−2k,

since ζig = 1. We multiply both sides by x to get

x2g+1 + cx =

g−1
2∑

k=0

(−1)k
[(

g − k
k

)
+

(
g − k − 1
k − 1

)]

× ζikck/gx2k+1(x2 + ζic1/g)g−2k. (5.1)

We now demonstrate that φi is indeed a morphism between C and Ci. We apply
the transformation of variables to Ci to get

( y

xa

)2
=

(g−1)/2∑

k=0

(−1)k
[(

g − k

k

)
+

(
g − k − 1

k − 1

)]

× ζikck/g
(
x2 + ζic1/g

x

)g−2k

,

In
t. 

J. 
N

um
be

r T
he

or
y 

20
21

.1
7:

21
75

-2
20

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 U

N
IV

ER
SI

TY
 O

F 
TO

R
O

N
TO

 o
n 

02
/0

1/
22

. R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.



September 14, 2021 7:30 WSPC/S1793-0421 203-IJNT 2150082

2186 M. Emory, H. Goodson & A. Peyrot

y2 =

(g−1)/2∑

k=0

(−1)k
[(

g − k

k

)
+

(
g − k − 1

k − 1

)]
ζikck/gx2k+1(x2 + ζic1/g)g−2k

= x2g+1 + cx,

where the last equality holds by Eq. (5.1). Hence, we have shown that φi is a
morphism from C to Ci.

5.2. Pullback of differentials

We claim that

Jac(C) ∼ E ×A,

where ∼ denotes isogeny over Q and A is an abelian variety defined over Q for
which A ∼ Jac(C0) × Jac(C1). As noted in [11, Sec. 5.2], in order to prove this
claim it is sufficient to check that there is an isomorphism of F-vector spaces of
regular differential forms

ΩC = φ∗(ΩE)⊕ φ∗
0(ΩC0)⊕ φ∗

1(ΩC1).

As noted in Sec. 4, a basis for the space of regular 1-forms of the hyperelliptic
curve C of genus g is given by the forms ωj = xjdx/y for j = 0, . . . , g−1 . Similarly,
for both of the curves Ci, we have the following basis:

{
dx

y
,
xdx

y
, . . . ,

x
g−1
2 −1dx

y

}
,

since they are both hyperelliptic curves of genus g−1
2 . For the elliptic curve, we will

use the nowhere vanishing differential dx/y.
We let a = (g + 1)/2 and first note that

φ∗
(
dx

y

)
=

d(xg)

yx(g−1)/2
=

gx(g−1)/2dx

y
= gxa−1ω0. (5.2)

Furthermore, let m be some integer between 0 and g−1
2 − 1. Then

φ∗
i

(
xmdx

y

)
=

(
x2 + ζic1/g

x

)m

d

(
x2 + ζic1/g

x

)

yx−a

=

(
m∑

k=0

(
m
k

)
xm−2k+aζikck/g

)
dx

y

− ζic1/g

(
m∑

k=0

(
m
k

)
xm−2k−2+aζikck/g

)
dx

y

= fi,m(x)
dx

y
, (5.3)
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where fi,m are polynomials given by

fi,0(x) = xa − ζic1/gxa−2

and

fi,m(x) = xm+a +
m∑

k=1

((
m
k

)
−

(
m

k − 1

))
xm−2k+aζikck/g

+ ζi(m+1)c
m+1

g xa−m−2, (5.4)

if m > 0.

Claim 5.2. Given an integer 0 ≤ n ≤ g−1
2 − 1, the set of polynomials Pn :=

{fi,m|i = 0, 1; 0 ≤ m ≤ n} ∪ {xa−1} forms a linearly independent set.

Proof. We argue by induction on n. We note that f0,0 is of degree a, while xa−1

is of degree a− 1 and

f0,0(x) − f1,0(x) = (1− ζc1/g)xa−2

a polynomial of degree a − 2, so that the claim holds for n = 0. For n ≥ 1, we let
{λi,k}i=0,1;0≤k≤n be scalars such that

∑

i=0,1;0≤k≤n

λi,kfi,k + λa−1x
a−1 = 0. (5.5)

We note that f0,n and f1,n are the only two polynomials in our family that are of
degree a+ n, so that (5.5) holds only if

λ0,n + λ1,n = 0 (5.6)

by looking at the leading coefficients of fi,n in (5.4). Moreover, f0,n and f1,n are the
only two polynomials in our family that contain a monomial of degree a − n − 2.
We, therefore, must have that

λ0,n + λ1,nζ
n+1 = 0. (5.7)

Since n < g and ζ is a primitive gth root of unity, ζn+1 *= 1, and together with
Eqs. (5.6) and (5.7) this implies that λ0,n = λ1,n = 0. The set of remaining polyno-
mials in the family is now Pn−1 and, by induction, this implies that the remaining
λi,k = 0 for all i = 0, 1 and 0 ≤ k ≤ n− 1 and λa−1 = 0, proving our claim.

By the above claim for n = g−1
2 −1, the family Pn exhibits g linearly independent

polynomials inside the g-dimensional vector space of polynomials of degree less than
or equal to g − 1. In particular Pn is a basis for that space. We can thus write a
basis for φ∗(ΩEF ) ⊕ φ∗

0(ΩC0) ⊕ φ∗
1(ΩC1) that is also a basis for ΩC , via (5.2) and

(5.3). Thus, we have proved the following.

Proposition 5.3.

Jac(C) ∼ E × Jac(C0)× Jac(C1),

where ∼ denotes isogeny over Q.
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6. A New Algorithm to Compute ST0(C)

In this section, we describe an algorithm to compute the identity component of the
Sato–Tate group of the Jacobian for curves of the form

C1 : y2 = x2g+2 + c, C2 : y2 = x2g+1 + c, C3 : y2 = x2g+1 + cx,

where c ∈ Q∗ is a constant. Note that the Jacobians of the curves in all three
families are CM abelian varieties (see, for example, [17] or [29]). We show that the
algorithm coincides with our result for the curve y2 = x10 + c. We then use this
method to prove that the identity component of the Sato–Tate group of y2 = x9+ c
is U(1) × U(1) × U(1), which confirms an unpublished result of Zywina [30]. We
then compute ST0(C1), ST

0(C2), and ST0(C3) for genus 2 through 10 which give
evidence for several conjectures which we formulate.

6.1. Preliminaries

We begin by defining the Sato–Tate group ST(A) of an abelian variety A/K, where
K is a number field, of dimension g as in [26, Sec. 3.2; 18, Chap. 15].

For an odd prime ,, the Tate module is defined as T& := lim←−n
A[,n] to be a free

Z&-module of rank 2g, and the rational Tate module is defined as V& := T& ⊗Z Q
to be a Q&-vector space of dimension 2g. The Galois action on the Tate module is
given by an ,-adic representation

ρA,& : Gal(K/K) → Aut(V&) ∼= GL2g(Q&).

Let G& denote the image of this map. We let GZar
& denote the Zariski closure of G&

in GL2g,Q! (as an algebraic group), and we define G1,Zar
& by adding the symplectic

constraint M tΩM = Ω, where

Ω :=

(
−Ig

Ig

)
,

so that G1,Zar
& is a subgroup of Sp2g,Q!

.

Choose an embedding ι : Q& → C and use it to define G1,Zar
&,ι (C), which is unique

up to conjugacy. We then define ST(A) ⊆ USp(2g) as a maximal compact subgroup
of G1,Zar

&,ι (C) (unique up to conjugacy).
Over an appropriate cyclotomic field k, the Tate module of the Jacobian splits

into a sum of one-dimensional Galois characters (see, for example, [22, Exam-
ple 1.2]). This allows us to apply some results from group theory. The ,-adic
monodromy group GZar

& is equal to the dual of the Tate module (see [19, Sec. 0])
and so GZar

& is dual to the group generated by these characters. By work of Serre
[23, Sec. 8.3.2], G1,Zar

& is the dual of the group generated by these characters mod-
ulo the cyclotomic character. By definition, the group ST(A) is a maximal compact
subgroup of G1,Zar

&,ι (C), so ST0(A) is dual to the maximal torsion-free quotient of
the group generated by these characters. If all of the one-dimensional characters
come from Jacobi sums, as is the case in Secs. 6.5 and 6.6, then the p-adic valuation
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map is a map from this group to an explicit abelian group and the kernel of this
map is the torsion subgroup.

Before we define the map, we first recall Stickelberger’s congruence theorem.

6.2. Stickelberger’s congruence theorem

The background information in this section can be found in [6; 14, Chaps. 6 and
8]. Let p be a prime, Fq be a finite field with q = pf elements, and ζp, ζq−1 ∈ C be
fixed roots of unity with respective orders p and q − 1. We then have the following
diagram of number fields and primes:

Q(ζq−1, ζp) Bp−1
1 · · ·Bp−1

g

Q(ζq−1) p1 · · · pg

Q p

where Bi lies over the prime pi and g = φ(q − 1)/f (and φ is Euler’s totient
function). Fix any prime p in Q(ζq−1) lying over p and let B be the unique prime
in Q(ζq−1, ζp) lying over p. Let ωp be the Teichmüller character on Fq.

For 0 ≤ b < q − 1, write the base p expansion of b as

b = b0 + b1p+ · · ·+ bf−1p
f−1,

where 0 ≤ bi ≤ p−1 and not all bi = p−1. Recall from Eq. 2.1 that the Gauss sum
of a multiplicative character χ of Fq is

g(χ) :=
∑

x∈Fq

χ(x)ζTr(x)p .

The normalized Jacobi sum of the multiplicative characters χ1,χ2, . . . ,χr of Fq is
defined by

J(χ1, . . . ,χr) := (−1)r
∑

x1+x2+···+xr=1

χ1(x1) · · ·χr(xr).

Theorem 6.1 (Stickelberger’s congruence theorem [25]).

g(ω−b
p ) ≡ (ζp − 1)b0+···+bf−1

b0! · · · bf−1!
mod Bb0+···+bf−1+1.

We will use Stickelberger’s congruence theorem with q = p to compute the B-
adic valuations of the Jacobi sums arising in Theorems A.1 and B.1. Given that B
will always divide the quantity (ζp−1) exactly once, we note the following immediate
consequence of Stickelberger’s congruence theorem.
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Corollary 6.2. Let ordB : Q(ζp−1, ζp) → Z denote the B-adic valuation map.
Then, for 0 ≤ b ≤ p− 1,

ordB(g(ω−b
p )) = b.

In the case of y2 = x9 + c and p ≡ 1 (mod 9), Corollary A.3 tells us that the
Jacobi sums that arise in the point count formula are all of the form J(χm,φ) for
1 ≤ m ≤ 8 where χ = T (p−1)/9,φ = T (p−1)/2 and T is any fixed generator of the

character group F̂×
p . In particular, given p dividing B, we can choose T = ω−1

p .

6.3. The map

Let p be a split prime of the CM field K and let ι1, . . . , ιn be the embeddings of
the field of definition of the one-dimensional Galois characters into the algebraic
closure of Qp. Consider the homomorphism that sends a character ρ to the n-tuple
(vp(ι1(ρ(Frobp))), . . . , vp(ιn(ρ(Frobp)))), where vp is the p-adic valuation map. Let

T be a fixed generator for the character group F̂×
p , χ = T (p−1)/d for some positive

integer d and φ = T (p−1)/2 be a quadratic character. In the case where ρ is a Jacobi
sum character, so that ρ(Frobp) = J(χm,φ), we use Stickelberger’s Theorem to
compute a matrix whose columns are the images under this homomorphism of the
characters appearing in the Tate module.

There is one such embedding for each injective map from the group of characters
to the unit circle because there is one embedding for each primitive root of unity
(and primitive roots of unity give these maps). We form a matrix of size n× k with
this information, forming one column for each of k pairs of characters in J(χm,φ),
and one row for each of the n embeddings of the group of characters into the circle.
The matrix is defined so that the (j,m)th entry is the p-adic valuation of the Jacobi
sum of the mth character under the jth embedding.

Next we formally define this matrix, call it M , whose columns are the images
under this homomorphism of the characters appearing in the Tate module.

Definition 6.3. The matrixM is constructed as follows. We define a map φ : Zk →
Zn, where n is the number of embeddings, as a composition of two maps φ1 and
φ2. Given a = (a1, a2, . . . , ak) ∈ Zk any k-tuple of integers, φ1 maps a -→

∏
χai
i ,

where the χi are the one-dimensional characters coming from the Tate module.a

The second map φ2 takes this character product to each of n embeddings ιj(
∏

χai
i )

and then computes the p-adic valuation of each embedding. The composition of the
maps can be expressed as a matrix M .

To be more precise, let

φ1 : Zk → ̂Gal(K/K)

aIn Sec. 6.5, the characters χi are Jacobi sums of the form J(χi,φ). See Appendices A and B for
more detailed descriptions of the Jacobi sums that appear in our examples.
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be the map which sends a = (a1, a2, . . . , ak) to
∏

i χ
ai
i . The second map,

φ2 : ̂Gal(K/K) → Zn,

combines the embedding and the p-adic valuation steps: it sends a character ρ to the
n-tuple (vp(ι1(ρ(Frobp))), vp(ι2(ρ(Frobp))), . . . , vp(ιn(ρ(Frobp)))). The composition
φ2 ◦ φ1 forms a matrix M whose (j,m)th entry is vp(ιj(ρ(Frobp))).

In Secs. 6.5 and 6.6, we will form this matrix for curves in the three families
C1, C2, and C3. For curves in each of the three families, the number of points on the
curve over the field Fp can be expressed as a sum of Jacobi sums (see Appendices A
and B). Thus, as is the case for Fermat curves in [21], the ,-adic representation
ρ(Frobp) is described by the Jacobi sums that appear in the point count formulas.
These Jacobi sums are the eigenvalues of the Fp-Frobenius endomorphism action
on the ,-adic Tate module (see, for example, [1, Sec. 2.1]).

In the case where ρ is a Jacobi sum character, the matrix M has (j,m)th entry
vp(ιj(J(χm,φ))). Each entry of M is 1 if the angles sum to at least 2π and zero
otherwise. A method of completing the first row, for y2 = x9+c and p ≡ 1 (mod 9),
is as follows. A similar argument can be made for the remaining rows, as well as for
other curves.

Lemma 6.4. For 1 ≤ m ≤ 4, we have

ordB(J(χm,φ)) = 0,

while for 5 ≤ m ≤ 8, we have

ordB(J(χm,φ)) = p− 1.

Proof. Using Eq. (2.2), we see that

ordB(J(χm,φ)) = ordB(g(ω
−m(p−1)

9
p )) + ordB(g(ω

−p−1
2

p ))− ordB(g(ω
− (2m+9)(p−1)

18
p ))

=






m(p− 1)

9
+

p− 1

2
− (2m+ 9)(p− 1)

18
= 0 if 1 ≤ m ≤ 4,

m(p− 1)

9
+

p− 1

2
− (2m− 9)(p− 1)

18
= p− 1 if 5 ≤ m ≤ 8,

where the second equality holds by Corollary 6.2.

This leads us to the following theorem.

Theorem 6.5. Let M be the matrix in Definition 6.3 with (j,m)th entry
vp(ιj(J(χm,φ))). The elements in the kernel of M give the relations between char-
acters χi for i = 1, 2, . . . , k, where k ≤ g, that determine the structure of the identity
component of the Sato–Tate group of the genus g curves of the form

C1 : y2 = x2g+2 + c, C2 : y2 = x2g+1 + cx, C3 : y2 = x2g+1 + c.
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Proof. Let C be a smooth projective curve defined over Q. Recall from Sec. 6.1
the Tate module of the Jacobian splits into a sum of one-dimensional characters
and ST0(C) is dual to the maximal torsion-free quotient of the group generated by
these characters which is G1,Zar

& . Let M be the matrix in Definition 6.3.
Since the p-adic valuations that make up the entries of M are integers, they are

not torsion, so the image of M is torsion-free. Recall that the matrix is constructed
using a composition of maps, see Definition 6.3. We claim that the kernel of the
second map is torsion and so the kernel of the first map is a finite index submodule
of the kernel ofM . Indeed, any element in the kernel has vp(ιj(J(χm,φ))) = 0 for all
p-adic valuations. Moreover, all ,-adic valuations are zero since J(χm,φ)) acts on the
,-adic Galois representations as an ,-adic unit. In addition, the absolute value must
be one at all infinite places since the absolute value is independent of the complex
embedding by Weil’s Riemann Hypothesis [7] and the product of the absolute value
over all complex embeddings vanishes by the product formula. Hence, J(χm,φ) is
a root of unity; for ease of notation, we will denote it by χm. Because this holds for
all split p, the image of the character consists of roots of unity, so it has finite order.

We can easily determine the elements a in the kernel of the first map by com-
puting the kernel of M since the kernel of the first map is a finite index submodule
of the kernel of M . Setting χa1

1 χa2
2 · · ·χak

k = 1 for each element a in the kernel of
M gives a set of relations on the characters χ1, . . . ,χk. Thus, we can express the
list of characters in the form

{χb1 ,χb1 , . . . ,χbr ,χbr},

where there are ti copies of each pair χbi ,χbi for some positive integers ti satisfying∑
ti = g. Note that the characters in this list may not be independent since a

character may just be the product of other characters in the list. Thus, a list of
independent characters will be

{χc1 ,χc1 , . . . ,χch ,χch},

where there are ri copies of each pair χhi ,χhi for some positive integers ri satisfying∑
ri ≤ g.
Since the characters are roots of unity, we will denote them by uj := χj to match

the notation of Sec. 2. We claim that we can then write

ST0(C) = 〈diag(uc1 , uc1 , . . . , uch , uch) |uciuci = 1〉,

where there are ri copies of each pair uci, uci for some positive integers ri satisfying∑
ri ≤ g. The claim follows since by construction the columns of the matrix are

images under the above described homomorphism of the characters appearing in
the Tate module, and we have shown the kernel of the first map is a normal finite
index subgroup of the kernel of the matrix (see [26, p. 31]).

Remark 6.6. By [26, Definition 4.1] or [23, Sec. 8.2] each element of the form
diag(uc1 , uc1, . . . , uch , uch) is a Hodge circle by Serre’s definition and the Hodge
circles generate a dense nontrivial subgroup of ST0(C).
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6.4. Algorithm to compute ST0(C)

We use this theory to efficiently compute ST0(C), for the curves C1, C2 and C3,
with the following algorithm.

Algorithm 6.7. (1) Use Theorems A.1 and B.1 to determine which characters
contributeto the Jacobi sums.

(2) Form the matrix M of Definition 6.3. For the columns use the appropriate
J(χm,φ), and for the rows use the embeddings into the circle. By the compo-
sition of the embeddings with J(χm,φ) we mean take the composition of the
embedding with each of the characters χm and φ. The entries in the matrix are
1 if the sum of the angles is at least 2π and 0 otherwise.

(3) Compute the kernel of the matrix M .
(4) Note that the p-adic valuation of the product of any Jacobi sum with its complex

conjugate is 1. Use the elements of the kernel to find the additional relations
that define the identity component of the Sato–Tate group.

Our work in Secs. 6.1 and 6.2, Theorem 6.5, Theorem A.1 and B.1 proves the
following theorem.

Theorem 6.8. Algorithm (6.7) gives the identity component of the Sato–Tate group
of curves of the form

C1 : y2 = x2g+2 + c, C2 : y2 = x2g+1 + cx, C3 : y2 = x2g+1 + c.

6.5. Worked examples

We now use Algorithm 6.7 to prove Theorems 1.1 and 1.5.

Alternate proof of Theorem 1.1. We can use any prime p ≡ 1 (mod 10), so we
choose to work in F11 to simplify our calculations. Theorem A.1 tells us that the
Jacobi sums that contribute are of the form J(Tm

10 ,φ), where T10 = T (p−1)/10 and
where m ranges over all values from 1 to 9. The four embeddings from the group of
characters to the unit circle are given by

T10 → eπi/5, T10 → e3πi/5, T10 → e7πi/5, T10 → e9πi/5.

We compute the matrix described in Algorithm 6.7. Its kernel is given by

Span










1
0
0
0

−1
0
0
0
1





,





0
1
0
0

−1
0
0
1
0





,





0
1
0
0

−1
0
1
0
0





,





1
0
0
0

−1
1
0
0
0





,





−1
0
0
1
0
0
0
0
0









0
−1
1
0
0
0
0
0
0










.
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Let χi = J(T i
10,φ), so that each vector in the kernel is a tuple of exponents for

the characters

χ1, χ2, χ3, χ4, χ5, χ6, χ7, χ8, χ9.

The p-adic valuation of the product of any Jacobi sum with its complex conjugate
is 1 and so, for example, χ1χ9 = 1. The additional relations are as follows. From the
first vector, χ1χ

−1
5 χ9 = 1 so χ5 = 1. Similarly, from the second vector, χ8 = χ−1

2 .
From the third vector, χ7 = χ−1

2 . From the fourth vector, χ6 = χ−1
1 . From the fifth

vector, χ4 = χ1. Finally, from the sixth vector χ3 = χ2. Thus,

χ1, χ2, χ3, χ4, χ6, χ7, χ8, χ9

= χ1, χ2, χ2, χ1, χ−1
1 , χ−1

2 , χ−1
2 , χ−1

1

and the identity component of the Sato–Tate group of the Jacobian of y2 = x10 + c
is U(1)2 × U(1)2.

Theorem 6.9. The identity component of the Sato–Tate group of the hyperelliptic
curve C : y2 = x9 + c is U(1)× U(1)× U(1).

Proof. We can use any prime p ≡ 1 (mod 9), so we choose to work in F19 to
simplify our calculations. Corollary A.3 tells us that the Jacobi sums that contribute
are J(Tm

9 ,φ), where T9 = T (p−1)/9 and where m ranges over all values from 1 to 8.
Note that T9 = T

p−1
9 = T 2, so we are only considering even powers of T .

We have six embeddings into the circle, given by the primitive roots of unity
e2πik/9, where gcd(k, p − 1) = 1. We compute the matrix M described in Algo-
rithm 6.7. Its kernel is given by

Span










1

−1

−1

1

0

0

0

0





,





1

−1

0

0

−1

1

0

0





,





1

0

−1

0

−1

0

1

0





,





2

−1

−1

0

−1

0

0

1










.

Let χi = J(T i
9,φ), so that each vector in the kernel is a tuple of exponents for the

characters χ1,χ2,χ3,χ4,χ5,χ6,χ7,χ8. The p-adic valuation of the product of any
Jacobi sum with its complex conjugate is 1 and so, for example, χ1χ8 = 1. The
additional relations are as follows. From the first vector, χ4 = χ2χ3χ

−1
1 ; from the

second vector, χ6 = χ2χ5χ
−1
1 ; from the third vector, χ7 = χ3χ5χ

−1
1 ; from the last

vector, χ8 = χ2χ3χ5χ
−2
1 . Furthermore, since χ1χ8 = 1, the relation from last vector

can be written as χ1 = χ2χ3χ5. Substituting χ1 = χ2χ3χ5 into χ4 = χ2χ3χ
−1
1
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yields χ5 = χ−1
4 . Repeating this process with the other relations yields χ6 = χ−1

3

and χ7 = χ−1
2 . Hence, all characters can be written in terms of χ2,χ3 and χ5.

Putting this together we have

χ2, χ3, χ5, χ−1
2 , χ−1

3 , χ−1
5 .

Thus, the identity component of the Sato–Tate group of the Jacobian of y2 = x9+c is

U(1)× U(1)× U(1).

As noted in the introduction, the identity component of the Sato–Tate group
over Q is isomorphic to the Sato–Tate group over the CM field of the Jacobian of
the curve. To determine the Sato–Tate distribution, we need an explicit description
of the embedding of the Sato–Tate of the Jacobian of the curve into USp(8) (see, for
example, [11, Remark 4.1]). Since χ1 = χ2χ3χ5 and χ8 = χ−1

1 we have the following
embedding into USp(8):

U(1)× U(1)× U(1) ) 〈diag(u1, u1, u2, u2, u3, u3)〉

) 〈diag(u1, u1, u2, u2, u3, u3, u4(u1, u2, u3), u4(u1, u2, u3))〉

) ST0(CQ) ) ST(CF ) ⊆ USp(8),

where we view u4 as a function of u1, u2, u3 and F is the minimal extension over
which all endomorphisms of the Jacobian of y2 = x9 + c are defined.

Corollary 6.10. The identity component of the Sato–Tate group of the Jacobian
of the hyperelliptic curve y2 = x18 + c is U(1)2 × U(1)2 × U(1)2.

Proof. Let C : y2 = x18 + c. From Lemma 4.1 Jac(C) ∼ Jac(C ′) where C′ :
y2 = x9 + c and the result follows from Theorem 6.9. Alternatively, one can use
Algorithm 6.7.

6.6. Higher genus examples and conjectures

Using Algorithm 6.7 we compute additional examples of the identity component of
the Sato–Tate group and formulate conjectures for curves of the form

C1 : y2 = x2g+2 + c, C2 : y2 = x2g+1 + cx, C3 : y2 = x2g+1 + c,

where g is the genus of the curve and c ∈ Q∗ is a constant. As previously stated, the
calculations for Algorithm 6.7 can be implemented in Sage [20]. Using Algorithm 6.7
we obtain Table 1.

Note that the genus 2 example is also handled in [8], the genus 3 example is also
handled in [11, Corollary 5.3], and the genus 4 and 5 examples are worked out in
Sec. 3 of this paper. This gives evidence for the following conjecture.
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Table 1. Identity components ST0(C1) for genus 2–10.

Genus of C1 Curve C1 ST0(C1)
2 y2 = x6 + c U(1)2
3 y2 = x8 + c U(1)2 × U(1)
4 y2 = x10 + c U(1)2 × U(1)2
5 y2 = x12 + c U(1)3 × U(1)2
6 y2 = x14 + c U(1)2 × U(1)2 × U(1)2
7 y2 = x16 + c U(1)2 ×U(1)2 × U(1)2 × U(1)
8 y2 = x18 + c U(1)2 × U(1)2 × U(1)2
9 y2 = x20 + c U(1)4 ×U(1)2 × U(1)2 × U(1)
10 y2 = x22 + c U(1)2 × U(1)2 × U(1)2 × U(1)2 × U(1)2

Table 2. Identity components ST0(C2)
for genus 2–10.

Genus of C2 Curve C2 ST0(C2)
2 y2 = x5 + c U(1)2

3 y2 = x7 + c U(1)3

4 y2 = x9 + c U(1)3

5 y2 = x11 + c U(1)5

6 y2 = x13 + c U(1)6

7 y2 = x15 + c U(1)4

8 y2 = x17 + c U(1)8

9 y2 = x19 + c U(1)9

10 y2 = x21 + c U(1)7

Conjecture 6.11. Let C2p : y2 = x2p + c where p ≥ 2 is prime. Then

ST0(C2p) = U(1)2 × U(1)2 × · · ·×U(1)2︸ ︷︷ ︸
(p−1)/2-times

.

We use Algorithm 6.7 again to compute the identity component of the Sato–Tate
group for curves of the form C2 : y2 = x2g+1 + c and obtain Table 2.

Note that the genus 2 example is also handled in [8]. This gives evidence for the
following conjecture.

Conjecture 6.12. Let Cp : y2 = xp + c, where p ≥ 5 is prime. Then

ST0(Cp) = U(1)(p−1)/2.

We also use Algorithm 6.7 to compute the identity component of the Sato–Tate
group for curves of the form C3 : y2 = x2g+1+cx. We have the results as in Table 3.

Note that the genus 2 example is also handled in [8] and the genus 3 example is
also handled in [11, Corollary 5.3]. This gives evidence for our following conjecture.

Conjecture 6.13. Let C3 : y2 = x2g+1 + cx, where the genus g = 2k + 1 is odd.
Then

ST0(C3) = U(1)g.
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Table 3. Identity components ST0(C3) for genus 2–10.

Genus of C3 Curve C3 ST0(C3)
2 y2 = x5 + cx U(1)2
3 y2 = x7 + cx U(1)3
4 y2 = x9 + cx U(1)2 × U(1)2
5 y2 = x11 + cx U(1)5
6 y2 = x13 + cx U(1)4 × U(1)2
7 y2 = x15 + cx U(1)7
8 y2 = x17 + cx U(1)2 × U(1)2 × U(1)2 × U(1)2
9 y2 = x19 + cx U(1)9
10 y2 = x21 + cx U(1)2 × U(1)2 × U(1)2 × U(1)2
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Appendix A. Point Count Computation: y2 = xd + c

We have the following theorem regarding the point count of curves of the form
y2 = xd + c.

Theorem A.1. Let Cd : y2 = xd + c and let p be an odd prime. Furthermore, let

T be a fixed generator for the character group F̂×
p and φ = T

p−1
2 be a quadratic

character. Then

#Cd(Fp) = p+ 1 +
∑

m

Tm
d (−c)φ(c)J(Tm

d ,φ),

where the sum is over all m ∈ Z such that (p−1)m
d ∈ [1, p − 2] is integral, and

Tm
d = T

m(p−1)
d .

Remark A.2. The number of terms in the point count formula partly depends on
the congruence class of p. For example, if p ≡ 1 (mod d) then we will sum over the
entire interval [1, d− 1]. If p− 1 and d are relatively prime, then this summand will
be empty. When p− 1 and d share at least some factors (for example, if d is even)
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then there will be some terms that arise from this summand since we will be able
to cancel the remaining factors in the denominator of (p−1)m

d with some m ∈ Z.
In the case where p−1 and d are relatively prime, no m ∈ Z will yield a fraction

(p−1)m
d in the correct interval. To see why this is true, note that we would need

m = db, for some positive b ∈ Z, in order to have (p−1)m
d ∈ Z. But this yields

(p− 1)m

d
= (p− 1)b ≥ p− 1,

which is not in the required interval. Hence, in this case, the number of points will
simply be p+ 1.

Proof. Throughout, assume that p is an odd prime. We follow the method of proof
used in [12] to compute the number of points on a family of elliptic curves. Let
P (x, y) = xd + c− y2. Recall from Sec. 2.1 that we define the additive character θ
on Fp by θ(x) = ζx, where ζ is a primitive pth root of unity. Since θ is an additive
character θ(0) = 1, we have that

∑

z∈Fp

θ(zP (x, y)) =

{
p if P (x, y) = 0,

0 otherwise.

Hence,

p · (#Cd(Fp)− 1) =
∑

z∈Fp

∑

x,y∈Fp

θ(zP (x, y)).

Note that when z = 0,
∑

x,y∈Fp
θ(0 ·P (x, y)) = p2. We break up the sum as follows:

∑

x,y,z∈Fp

θ(zP (x, y)) = p2 +
∑

z∈F×
p

θ(zP (0, 0)) +
∑

y,z∈F×
p

θ(zP (0, y))

+
∑

x,z∈F×
p

θ(zP (x, 0)) +
∑

x,y,z∈F×
p

θ(zP (x, y))

:= p2 +A+B + C +D.

We will use Lemma 2.2 and properties of Gauss sums to evaluate each of these
sums.

Computing A:

A =
∑

z∈F×
p

θ(zP (0, 0)) =
∑

z∈F×
p

θ(zc)

=
1

p− 1

∑

z∈F×
p

p−2∑

i=0

G−iT
i(zc)
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=
1

p− 1

p−2∑

i=0

G−iT
i(c)

∑

z∈F×
p

T i(z)

= −1,

since
∑

z∈F×
p
T i(z) = 0 unless i = 0, in which case it equals p− 1 and G0 = −1.

Computing B:

B =
∑

y,z∈F×
p

θ(zP (0, y)) =
∑

y,z∈F×
p

θ(zc)θ(−zy2)

=
1

(p− 1)2

p−2∑

i,j=0

G−iG−jT
i(c)T j(−1)

∑

z∈F×
p

T i+j(z)
∑

y∈F×
p

T 2j(y).

Note that
∑

y∈F×
p
T 2j(y) = 0 unless j = 0 or j = p−1

2 . In either case,
∑

z∈F×
p
T i+j(z) = 0 unless i = j. Hence, letting φ = T

p−1
2 ,

B = G0G0T
0(c)T 0(−1) +G p−1

2
G p−1

2
φ(c)φ(−1)

= 1 + pφ(c),

since G p−1
2
G p−1

2
= pφ(−1).

Computing C:

C =
∑

x,z∈F×
p

θ(zP (x, 0)) =
∑

x,z∈F×
p

θ(zxd)θ(zc)

=
1

(p− 1)2

p−2∑

i,j=0

G−iG−jT
j(c)

∑

z∈F×
p

T i+j(z)
∑

x∈F×
p

T id(x).

We will not break this down further since this will cancel with part of sum D.

Computing D:

D =
∑

x,y,z∈F×
p

θ(zP (x, y))

=
∑

x,y,z∈F×
p

θ(zxd)θ(zc)θ(−zy2)

=
1

(p− 1)3

p−2∑

i,j,k=0

G−iG−jG−kT
j(c)T k(−1)

∑

z∈F×
p

T i+j+k(z)

×
∑

x∈F×
p

T id(x)
∑

y∈F×
p

T 2k(y).
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As before,
∑

y∈F×
p
T 2k(y) = 0 unless k = 0 or k = p−1

2 . Note that the case where
k = 0 negates the expression we found for C since G−k = −1 when k = 0. We will
denote the term with k = p−1

2 as D′. We break this term down further as follows:

D′ =
1

(p− 1)2

p−2∑

i,j=0

G−iG−jG p−1
2
T j(c)T

p−1
2 (−1)

∑

z∈F×
p

T i+j+ p−1
2 (z)

∑

x∈F×
p

T id(x).

The sum
∑

z∈F×
p
T i+j+ p−1

2 (z) = 0 unless j = p−1
2 − i. Hence,

D′ =
1

p− 1

p−2∑

i=0

G−iG−( p−1
2 −i)G p−1

2
T

p−1
2 −i(c)T

p−1
2 (−1)

∑

x∈F×
p

T id(x).

The sum
∑

x∈F×
p
T id(x) = 0 unless i = 0 or i is a multiple of p−1

d , i.e. i =
(p−1)m

d ∈ [0, p− 2] for some m ∈ Z. Hence,

D′ = G0G p−1
2
G p−1

2
T

p−1
2 (c)T

p−1
2 (−1)

+
∑

m

G−m p−1
d
Gm p−1

d − p−1
2
G p−1

2
T

p−1
2 −m p−1

d (c)T
p−1
2 (−1)

= −pφ(c) +
∑

m

G−m p−1
d
Gm p−1

d − p−1
2
G p−1

2
T−mp−1

d (c)φ(−c).

Note that the term −pφ(c) will cancel with part of the expression in sum B.

Letting Tm
d = T

m(p−1)
d and recalling that Ga := g(T a), we can write the above

expression as

D′ = −pφ(c) +
∑

m

g(Tm
d )g(Tm

d φ)g(φ)Tm
d (c)φ(−c).

Note that, for any nontrivial character A *= φ,

g(A)g(Aφ)g(φ) = g(A)g(Aφ)g(φ) · g(Aφ)
g(Aφ)

= Aφ(−1)p
g(A)g(φ)

g(Aφ)

= Aφ(−1)pJ(A,φ),

where the last equality holds by Eq. 2.2. On the other hand, if A = φ, then

g(A)g(Aφ)g(φ) = g(φ)g(ε)g(φ)

= −pφ(−1)

= Aφ(−1)pJ(A,φ),

where the last equality holds because J(φ,φ) = −φ(−1). Hence, for any nontrivial
character A,

g(A)g(Aφ)g(φ) = Aφ(−1)pJ(A,φ). (A.1)
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We use this to rewrite D′ as

D′ = −pφ(c) + p
∑

m

Tm
d (−c)φ(c)J(Tm

d ,φ).

We now combine these results to get

#Cd(Fp) = 1 +
1

p
(p2 +A+B + C +D)

= 1 +
1

p

(
p2 + p

∑

m

Tm
d (−c)φ(c)J(Tm

d ,φ)

)

= p+ 1 +
∑

m

Tm
d (−c)φ(c)J(Tm

d ,φ),

where the sum is over all m ∈ Z such that (p−1)m
d ∈ [1, p− 2] is integral.

Corollary A.3. The number of points on the curve y2 = x9 + c over Fp is

#C9(Fp) =






p+ 1 +
8∑

m=1

Tm
9 (−c)φ(c)J(Tm

9 ,φ) if p ≡ 1 (mod 9),

p+ 1 + T 3
9 (−c)φ(c)J(T 3

9 ,φ)

+T 6
9 (−c)φ(c)J(T 6

9 ,φ) if p ≡ 4, 7 (mod 9),

p+ 1 if p ≡ 2 (mod 3) or p = 3.

Proof. For this result we are merely applying Theorem A.1 to the case where d = 9.
We need to determine when (p−1)m

9 ∈ [1, p− 2] is integral.
If p ≡ 1 (mod 9), then any integer m will make p−1

9 m integral. We restrict m
to the interval [1, 8] so that p−1

9 m ∈ [1, p− 2].
On the other hand, if p ≡ 4, 7 (mod 9), i.e. p ≡ 1 (mod 3) and p *≡ 1 (mod 9),

then any integer of the form m = 3b, where b ∈ Z, will make p−1
3

m
3 integral. We

restrict m to the interval [1, 8] so that p−1
3

m
3 ∈ [1, p − 2]. Hence, only m = 3 and

m = 6 will contribute to the point count sum.
Finally, if p ≡ 2 (mod 3) then no m ∈ Z will yield a fraction (p−1)m

d in the
correct interval.

Appendix B. Point Count Computation: y2 = xd + cx

Theorem B.1. Let Cd : y2 = xd + cx and let p be an odd prime. Furthermore,

let T be a fixed generator for the character group F̂×
p and φ = T

p−1
2 be a quadratic

character. Then

#(Cd(Fp)) = p+ 1 +
∑

m

T 2m+1
d′ (−c)φ(c)J(T 2m+1

d′ ,φ),
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where the sum is over all m ∈ Z such that (2m+1)(p−1)
2(d−1) ∈ [0, p − 2] is integral (so

that T 2m+1
d′ := T

(2m+1)(p−1)
2(d−1) is a character).

Proof of Theorem B.1. Throughout, assume that p is an odd prime. We fol-
low the method of proof used in Appendix A. Let P (x, y) = xd + cx − y2. As in
Appendix A, this yields

p · (#Cd(Fp)− 1) = 1 +
1

p

∑

z∈Fp

∑

x,y∈Fp

θ(zP (x, y)).

Note that when z = 0,
∑

x,y∈Fp
θ(0 ·P (x, y)) = p2. We break up the sum as follows:

∑

x,y,z∈Fp

θ(zP (x, y)) = p2 +
∑

z∈F×
p

θ(zP (0, 0)) +
∑

y,z∈F×
p

θ(zP (0, y))

+
∑

x,z∈F×
p

θ(zP (x, 0)) +
∑

x,y,z∈F×
p

θ(zP (x, y))

:= p2 +A+B + C +D.

We will use Lemma 2.2 and properties of Gauss sums to evaluate each of these
sums.

Computing A:
Since P (0, 0) = 0, A =

∑
z∈F×

p
θ(zP (0, 0)) = p− 1.

Computing B:

B =
∑

y,z∈F×
p

θ(zP (0, y)) =
∑

y,z∈F×
p

θ(−zy2)

=
1

p− 1

p−2∑

i=0

G−iT
i(−1)

∑

y∈F×
p

T 2i(y)
∑

z∈F×
p

T i(z).

Note that
∑

z∈F×
p
T i(z) = 0 unless i = 0, in which case both of the sums over z and

y equal p− 1. Hence

B = G0T
0(−1)(p− 1) = −(p− 1).

Computing C:

C =
∑

x,z∈F×
p

θ(zP (x, 0)) =
∑

x,z∈F×
p

θ(zxd)θ(zcx)

=
1

(p− 1)2

p−2∑

i,j=0

G−iG−jT
j(c)

∑

z∈F×
p

T i+j(z)
∑

x∈F×
p

T id+j(x).

We will not break this down further since this will cancel with part of sum D.
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Computing D:

D =
∑

x,y,z∈F×
p

θ(zP (x, y))

=
∑

x,y,z∈F×
p

θ(zxd)θ(zcx)θ(−zy2)

=
1

(p− 1)3

p−2∑

i,j,k=0

G−iG−jG−kT
j(c)T k(−1)

∑

z∈F×
p

T i+j+k(z)

×
∑

x∈F×
p

T id+j(x)
∑

y∈F×
p

T 2k(y).

Note that
∑

y∈F×
p
T 2k(y) = 0 unless k = 0 or k = p−1

2 . The case where k = 0
negates the expression we found for C since G−k = −1 when k = 0. We will denote
the term with k = p−1

2 as D′. We break this term down further as follows:

D′ =
1

(p− 1)2

p−2∑

i,j=0

G−iG−jG p−1
2
T j(c)T

p−1
2 (−1)

∑

z∈F×
p

T i+j+ p−1
2 (z)

∑

x∈F×
p

T id+j(x).

The sum
∑

z∈F×
p
T i+j+ p−1

2 (z) = 0 unless j = p−1
2 − i. Hence,

D′ =
1

p− 1

p−2∑

i=0

G−iG−( p−1
2 −i)G p−1

2
T

p−1
2 −i(c)T

p−1
2 (−1)

∑

x∈F×
p

T i(d−1)+p−1
2 (x).

The sum
∑

x∈F×
p
T i(d−1)+p−1

2 (x) = 0 unless i(d− 1)+ p−1
2 is a multiple of p− 1.

This occurs when i is an odd multiple of p−1
2(d−1) , i.e. i =

(2m+1)(p−1)
2(d−1) for some m ≥ 0

in Z,

D′ =
∑

m

G− (2m+1)(p−1)
2(d−1)

G (2m+1)(p−1)
2(d−1) − p−1

2
G p−1

2
T

p−1
2 − (2m+1)(p−1)

2(d−1) (c)T
p−1
2 (−1).

Letting T 2m+1
d′ = T

(2m+1)(p−1)
2(d−1) and recalling that Ga := g(T a), we can write the

above expression as

D′ =
∑

m

g(T 2m+1
d′ )g(T 2m+1

d′ φ)g(φ)T 2m+1
d′ (c)φ(−c).

We use Eq. (A.1) to rewrite D′ as

D′ = p
∑

m

T 2m+1
d′ (−c)φ(c)J(T 2m+1

d′ ,φ).

We now combine these results to get

#Cd(Fp) = 1 +
1

p
(p2 +A+B + C +D)

= 1 + p+
∑

m

T 2m+1
d′ (−c)φ(c)J(T 2m+1

d′ ,φ)
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where, as above, the sum is over all m ∈ Z such that (2m+1)(p−1)
2(d−1) ∈ [0, p − 2] is

integral.

We will now explore the sets of m that we obtain for different values of p and
d. Our sum of Gauss sums in the point count is over all i such that i(d− 1) + p−1

2

is an integer multiple of p − 1. Hence, we are looking for values of i that are odd
multiples of p−1

2(d−1) .
First note that, regardless of the value of d, 2(d − 1) is even. We can write

2(d− 1) = 2ln, for some odd n ∈ Z. Hence, (2m+1)(p−1)
2(d−1) ∈ [0, p− 2] is integral when

(2m+1)(p− 1) is divisible by 2ln. The values of m will now depend on p. We split
into cases.

If p ≡ 1 (mod 2ln), then i = (2m+1)(p−1)
2(d−1) = (2m+1)(p−1)

2ln is an integer for any
integer m. We restrict m to the interval [0, d−2] in order to obtain i ∈ [0, p−2]. To
see why this is true, note that if m = 0 then (2m+1)(p−1)

2(d−1) = p−1
2(d−1) , which is in the

interval [0, p− 2]. Similarly, if m = d− 2, then (2m+1)(p−1)
2(d−1) = (2d−3)(p−1)

2d−2 < p− 2.b

However if m = d− 1, then (2m+1)(p−1)
2(d−1) = (2d−1)(p−1)

2d−2 > p− 1 > p− 2.

Suppose instead that p ≡ 1 (mod 2ln′), where n′ < n is a divisor of n (and that
p *≡ 1 (mod 2ln)). In this case, i = (2m+1)(p−1)

2(d−1) is an integer whenever 2m+ 1 is a
multiple of n/n′. To see why this is true, we let 2m + 1 = n

n′ (2k + 1), where k is
some integer. Then

(2m+ 1)(p− 1)

2(d− 1)
=

n

n′ (2k + 1)(p− 1)

2ln
= (2k + 1) · p− 1

2ln′ ,

which is in Z. We restrict k to the interval [0, 2
ln′−1
2 −1] in order to obtain i ∈ [0, p−2]

since if k = 2ln′−1
2 − 1 then

i =

n

n′ (2k + 1)(p− 1)

2ln
=

(
2 · 2

ln′ − 1

2
− 2 + 1

)
(p− 1)

2ln′ =
(2ln′ − 1)(p− 1)

2ln′ < p− 1.

Note that in the special case where n′ = 1, then we simply need 2m + 1 =
n(2k + 1) and k ∈ [0, 2

l−1
2 − 1].

Finally, suppose p *≡ 1 (mod 2l). In this case, there are no values of m such that
i = (2m+1)(p−1)

2ln is an integer because we will be left with an even number in our
denominator after canceling powers of 2 with p − 1. In this case, the point count
formula reduces to

|Cd(Fp)| = p+ 1.

bNote that this is true whenever p > 2d−1. For smaller values of p, we will need to further restrict
how large m is.
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We demonstrate this in the following example.

Example B.2. We will examine the number of points on the curve y2 = x7 + cx
over Fp for various primes p. Note that this is the genus 3 curve studied in [11].
Since d = 7, we have 2(d− 1) = 12 and d− 2 = 5.

If p ≡ 1 (mod 12), then we will have the maximum number of values for i.
Explicitly, we have

i ∈
{
(2m+ 1)(p− 1)

12

∣∣∣∣ 0 ≤ m ≤ 5

}
.

Thus, when p ≡ 1 (mod 12), our point count will be

#C7(Fp) = p+ 1 +
∑5

m=0 T
2m+1
d′ (−c)φ(c)J(T 2m+1

d′ ,φ),

where Td′ is a character of order 12.
If p ≡ 1 (mod 4) and p *≡ 1 (mod 12), we will still have some terms from

the Jacobi sum expression. Note that in this case, (2m+1)(p−1)
12 will be an integer

whenever 2m+ 1 is divisible by 3. Hence,

i ∈
{
3(2k + 1)(p− 1)

12

∣∣∣∣ 0 ≤ k ≤ d/3− 1

}
.

This yields the following:

#C7(Fp) = p+ 1 + T 3
d′(−c)φ(c)J(T 3

d′ ,φ) + T 9
d′(−c)φ(c)J(T 9

d′ ,φ),

where T 3
d′ is a character of order 4.

If p ≡ 3 (mod 4), then (2m+1)(p−1)
12 will never be an integer. Hence,

#C7(Fp) = p+ 1.
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