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We consider the identity component of the Sato—Tate group of the Jacobian of curves of
the form

Cr:y?=229T241¢, Co:y? =229t 4 cx, Cz3:9°=2%9T! 1

where g is the genus of the curve and ¢ € Q* is constant.

We approach this problem in three ways. First we use a theorem of Kani-Rosen to
determine the splitting of Jacobians for Cp curves of genus 4 and 5 and prove what
the identity component of the Sato—Tate group is in each case. We then determine the
splitting of Jacobians of higher genus Cj curves by finding maps to lower genus curves
and then computing pullbacks of differential 1-forms. In using this method, we are able
to relate the Jacobians of curves of the form C7, C2 and C3. Finally, we develop a new
method for computing the identity component of the Sato—Tate groups of the Jacobians
of the three families of curves. We use this method to compute many explicit examples,
and find surprising patterns in the shapes of the identity components STY(C) for these
families of curves.
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1. Introduction

Let C' be a smooth projective curve defined over Q. For primes p of good reduction,
we define the trace of Frobenius to be

tp(C) =p+1—#C(Fp),

where C denotes the reduction of C' modulo p. A theorem of Weil [28] gives the
following bound for the trace of Frobenius:

|tp| < 2g9/p,

where ¢ is the genus of the curve.

Let , = t,/\/p denote the normalized trace. Then the Weil bounds tell us
that x, € [—2g,2¢g|, and we can look at the distribution of the z, in this inter-
val as p — oo. This distribution is known for elliptic curves. The values are not
uniformly distributed over the interval [—2,2], though they do have a predictable
limiting pattern. In the 1960s, Sato and Tate independently conjectured that, for
elliptic curves defined over Q without complex multiplication, the normalized traces
are equidistributed with respect to the measure %\/ 4 — x2dx. Barnet-Lamb et al.
13} [13] recently proved the Sato—Tate conjecture for elliptic curves without complex
multiplication. As is often the case with celebrated results in number theory, prov-
ing the Sato—Tate conjecture required heavy machinery and merged three massive
mathematical theories: L-functions, automorphic forms, and Galois representations.

Traces of higher genus curves are expected to have Sato—Tate-like distributions.
To determine the distributions, we study the Sato—Tate group of the Jacobians of
the curves. Recall that the Jacobian of a genus g curve is an abelian variety of
dimension g. Associated to any abelian variety of dimension g over a number field
there is a compact subgroup of USp(2¢g) known as the Sato—Tate group (see [26} Sec.
3.2]) that is uniquely determined up to conjugacy and comes equipped with a map
that sends Frobenius elements to conjugacy classes with the appropriate normalized
trace. It is conjectured that if we order Frobenius elements by norm, this sequence
of conjugacy classes is equidistributed with respect to the push forward of the Haar
measure on the Sato—Tate group, and this can be viewed as a generalization of the
Sato—Tate conjecture (see, for example, [26| Sec. 3.3]).

Determining these Sato—Tate groups is the source of ongoing work. For example,
Fité et al. [8] determine the complete set of Sato—Tate groups that arise for abelian
surfaces over number fields. In [11], Fité and Sutherland give the Sato—Tate groups
and distributions for the following families of genus 3 hyperelliptic curves:

V¥ =2%4+c¢ and y?=2" —cx,

where ¢ € Q* is constant. Fité, Lorenzo Garcia, and Sutherland have also worked out
the Sato—Tate groups for other genus 3 curves (see [10]). In [2], Arora et al. prove a
generalized Sato—Tate conjecture for Q-twists of the genus 3 curve % = 28 —142*+1.
See [9] for an in-depth discussion of the Sato-Tate groups of abelian varieties of
dimension 3.
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In this paper, we extend this work to families of hyperelliptic curves over Q of
the form

Cr:vy?=a%9"24¢, Co:y? =29 4cx, Cy:9y>=2a29"4¢

where g is the genus of the curve and ¢ € Q* is a constant. We denote the Sato—Tate
group of the Jacobian of a smooth projective curve by ST(C') := ST (Jac(C)q). Note
that while the Sato—Tate group is a compact Lie group, it may not be connected
[11]. In our work we study the connected component of the identity of ST(C),
denoted STY(C) := ST"(Jac(C)g). Note that STY(C) is isomorphic to the full
Sato—Tate group ST (Jac(C)r), where F' is the minimal extension over which all
endomorphisms of Jac(C') are defined.

This problem of determining the identity component of the Sato—Tate groups of
families of trinomial hyperelliptic curves was originally posed as part of the Arizona
Winter School Analytic Methods in Arithmetic Geometry in March 2016. Using
similar methods to |11] and a theorem of Kani-Rosen |15| Theorem C|, we obtain
the following explicit results for ST?(C) for families of genus 4 and 5 curves (the
notation is defined in Sec.[2).

Theorem 1.1. The identity component of the Sato—Tate group of the Jacobian of
the hyperelliptic curve y*> = x'% 4 ¢ is U(1)2 x U(1)s.

Theorem 1.2. The identity component of the Sato—Tate group of the Jacobian of
the hyperelliptic curve y* = x'? + ¢ is U(1)2 x U(1)s.

These results are proved in Sec.[3] The methods used for the proof of Theo-
rems and [1.2] require using automorphisms and morphisms of curves to prove
the result. To generalize results like those of Theorems[1.1]and[1.2]to higher genus
C curves, we prove a partial splitting of the Jacobians of higher genus curves in
the following theorem (see Theorem [4.3).

Theorem 1.3. Let vy : Q* — Z denote the 2-adic valuation map, i.e. v2(a/b) = «a,
where ¢ = 245 and p does not divide e ord. Let Cy : y? = 22912 4c be a hyperelliptic
curve of genus g and write k := vo(g+1). Then we have the following isogeny over Q:
. k—1 ‘
Jac(Cy) ~ Jac(y? = 20+1/2" 1 )2 H Jac(y? = x9TD/2H1 ey,
i=0

which relates the curves
Ciiy? =2 pe, Cory’=a® ter, Ci:y’ =2 +e

Theorem breaks down the Jacobian of a curve into the Jacobians of lower
genus curves. We break these Jacobians down even further in Sec.[5] In some cases,
we can then use known results for lower genus curves (see, for example, [3,18][11]) to
immediately determine the identity component of the Sato—Tate group. Also, note
that Theorems[1.1]and[1.2]follow as corollaries to Theorem [1.3]
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In Sec. [6] we describe a new algorithm that computes the identity component
of the Sato—Tate group of the Jacobian of hyperelliptic curves C, Cs, and C's men-
tioned above.

Theorem 1.4. Algorithm[6.7] gives the identity component of the Sato—Tate group
of the Jacobian of curves of the form

Cr:y?=a29"24¢, Co:y?=a?9"4cx, C3:y°=2%"+ec

Using Theorem [1.4] we prove the following (see Theorem[6.9) which confirms an
unpublished result of Zywina [30].

Theorem 1.5. The identity component of the Sato—Tate group of the Jacobian of
the hyperelliptic curve y?> = x° + ¢ is U(1) x U(1) x U(1).

Remark 1.6. Shioda studies the Hodge group of curves of the form y? = 2™ — 1
in [24] Secs.[5] and[6]. In particular, Shioda shows that the Jacobian of the curve
y? = 2% — 1 satisfies the Hodge conjecture and is a four-dimensional abelian variety
[24] Example 6.1]. Indeed, he remarks that the Jacobian is isogenous to the product
of a CM elliptic curve E and a three-dimensional absolutely simple CM abelian
variety. The elliptic curve E has STY(E) ~ U(1) and the abelian variety A has
ST?(A) ~ U(1) x U(1) x U(1). Thus, ST?(A) x STY(E) # ST°(A x E), even though

A and E do not share any common factor up to Q-isogeny.

We also use Theorem[T-4]to compute ST(C}), ST (Cy) and ST?(Cs) for genus 2
through 10, and find surprising patterns in the shapes of the identity components for
these families of curves. Following these computations, we form several conjectures
(see Sec.[6.6).

The remainder of this paper is organized as follows. In Sec. [2] we give some
necessary background information that will be used throughout the paper. In Sec.
we prove Theorems [1.1]and and in Sec. [4] we prove Theorem In Sec. [5] we
work to break down the Jacobians that appear in Theorem so that we can
potentially use known results for the Sato—Tate groups of lower genus curves to
determine the identity components of the Sato—Tate groups of higher genus curves.
In Sec. [6] we discuss an algorithm for computing the identity components of the
Sato—Tate group. In Sec. we prove Theorem [1.5]and provide an alternate proof
of Theorem [1.1] using this method. This algorithm requires an explicit formula for
the number of points on the curve over [F,, in terms of Jacobi sums, which we prove
in Appendices A and B.

2. Background

For the Jacobian of a genus g curve, the Sato—Tate group will be a compact subgroup
of USp(2g), which is the group of 2¢g x 2¢g complex unitary matrices preserving a
fixed symplectic form. In what follows, we describe the possible forms of the identity
components of the Sato—Tate groups.
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Let u € U(1) := {e¥ : § € [0,27)}. We then define the following subgroups of
USp(2n):
UQ), := (diag(u,a,...,u,u) : u € U(1))
and
U)" := (diag(uy, @, ..., un, uy) : u; € U(1)).

As we will see in later sections, the identity components of the Sato—Tate groups
we study will be products of these groups.

We use the following theorem of Kani and Rosen, specified to suit our problem,
to express the Jacobian of a curve C into the product of Jacobians of curves of
smaller genus.

Theorem 2.1 ([15) Theorem C]). Let k be a positive integer. Let C' be a curve of
genus g and let ai; be an element of the automorphism group of C, fori=1,... k.
Suppose that

(1) (as) - (o) = (o) - {a), for i, j=1,....k;

(2) g =91+ -+ gk, where g; is the genus of the curve C/{cy), fori =1,...,k
and

(3) the genus of the curve C/{a;, o) is 0 for all 1 <i # j <k.

Then, we have the Q-isogeny
Jac(C) ~ Jac(C/{aq)) x -+ x Jac(C/{ax)).

2.1. Gauss and Jacobi sums

Let p be a prime and F, be a finite field with ¢ = p/ elements. We define the
standard trace map Tr : F, — I, by

Tr(z) —rfaP a2

Let ¢, = e?™/P be a p™ root of unity. Then for x € F; we define the Gauss sum
9(x) to be
g(x) = > x(@)¢ ™, (2.1)
z€lF,

where we extend x to all of F, by setting x(0) = 0 (see, for example, |14 Chap.
8]). Note that g(e) = —1, where € is the trivial character. If y is nontrivial and if
denotes its inverse, then g(x)g(x) = x(—1)g.

Let 0 : F), — C be the additive character defined by 0(z) = (7, so that g(x) :=
Emeﬂs‘p X(x)0(x). We will make use of the following identity from [12].

Lemma 2.2 ([12, Lemma 2.2]). Let a € F)\. Then
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where T is a fixed generator for the character group and G_; is the Gauss sum
g(T™).
For two multiplicative characters A, B over [F),, we define their Jacobi sum by
J(A,B) =) A(z)B(1-=).
z€elF,

We have the following connection between Gauss sums and Jacobi sums (see, for

example, 4] Chap. 2]). For nontrivial characters A and B over F, whose product is

also nontrivial, we have

9(A)g(B)
9(AB)

On the other hand, if ¢ is a quadratic character then J(¢, 9) = —¢(—1).

J(A,B) = (2.2)

3. Proofs of Theorems and

3.1. The curve y2 = 2% + ¢

Theorem 3.1. The identity component of the Sato—Tate group of the Jacobian of
the hyperelliptic curve y?> = x'% + ¢ is U(1)2 x U(1)a.

Proof. Consider the genus g = 4 curve C : y? = z'° + ¢. We decompose the Jaco-
bian of our curve C' via suitable automorphisms in such a way to apply Theorem|[2.1]
effectively. We let o, 8 : C' — C be the following automorphisms of C":

aeg) = (51,2 L)

5
and
- Y
o) (51 2,
We verify the conditions of Theorem [2.1] for o and 3. We first find that

aﬁ(m,y) - 50&(1’,y) = (I, _y)' (31)

Via the Hurwitz genus formula, one has g, = g3 = ¢/2, where g, and gg are
the genuses of the curves C/(a) and C/(f3), respectively. One similarly verifies
that g, 3 = 0, where g, g denotes the genus of the curve C/(c, 8), so that all the
conditions of Theorem[2.1] are verified. We thus have the Q-isogeny

Jac(C) ~ Jac(C/{a)) x Jac(C/{B)) ~ Jac(C/{a))?, (3.2)

where the second isogeny holds via the isomorphism C/(o) — C/(B) given by
(z,y) = (—x,y). Thus, Jac(C) is isogenous to the square of an abelian variety.

Now note that ¢ : (x,y) — (22, y) is a map from C to the curve C’ : y? = 2° +¢,
so that we have

Jac(C) ~ Jac(C') x A
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for some abelian variety A of dimension 2. By Eq. (3.2) we know that Jac(C) is
isogenous to the square of an abelian variety. Since End(Jac(Cé))Q ~ Q(¢5) we

have that Jac(C”) is simple and we must therefore have that
Jac(C) ~ Jac(C')2.
It is shown in [8] that the identity component of the Sato—Tate group of Jac(C") is
STY(C") = U(1) x U(1),
which in turn concludes the proof that

STO(C) = U(l)g X U(l)g O

3.2. The curve C:y? = z'%? + ¢

Theorem 3.2. The identity component of the Sato—Tate group of the Jacobian of
the hyperelliptic curve y?> = x'? + ¢ is U(1)2 x U(1)s.

Proof. Consider the genus g = 5 curve C : y? = 2292 + ¢. As in the proof of
Theorem (3.1} we let o, B : C' — C be the following automorphisms of C"

- Y
a(z,y) = <Cl/6x 1’61/296_6)

and

B(z,y) = (Cl/6x—1’ —01/2£>.

6
x
However, in order to apply Theorem [2.1]effectively, we require an additional auto-
morphism of C'. Namely, we let v : C' — C be defined by
Y(z,y) = (G, y),

where (3 is a primitive 3rd root of unity. We may now check the conditions of
Theorem [2.1] for the automorphisms «, 8 and . We first find that

aﬁ(ﬂmy) :ﬁa(x,y) = (Ia_y)' (33)
We readily check that

and

so that with Eq. the first condition of Theorem[2.1]holds. Now by the Hurwitz
genus formula, we find that g, = gg = gT_l, and that g, = 1, so that the second
condition holds. Finally the third condition holds as «af is the hyperelliptic map.
We thus have the isogeny

Jac(C) ~ Jac(C/{a)) x Jac(C/{B)) x Jac(C/{)) ~ Jac(C/{(a))* x E1, (3.4)



Int. J. Number Theory 2021.17:2175-2206. Downloaded from www.worldscientific.com

by UNIVERSITY OF TORONTO on 02/01/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

2182 M. Emory, H. Goodson € A. Peyrot

where F is the elliptic curve defined by E; : y? = 2* +¢. Now let Ey : y2 = 23 + ¢
be an elliptic curve. Note that there exist two maps, ¢1 : C — E; and ¢o : C' — FEo,
where the maps are given by ¢1(z,y) = (23,y) and ¢2(z,y) = (x4, 7).

Let (12 be a primitive 12th root of unity, and let a = (32 %¥/c. The change of
variables z — ax and y — a®y transforms C to the model C’ : y? = 22 + 1.
Computing with Magma [5], we find C’/{«) to be the genus 2 curve given by

C'/{a) 1 y? =25 — 62 + 922 — 2.

We have a map ¢3 : C'/{a) — E3, where ¢(z,y) = (2%, y) and E3 : y? = 2® — 622 +
9x — 2, which is an elliptic curve that has CM by Q(7). Hence, via the maps ¢2 and
¢3, we have that

JaC(C//<Oé>) ~ Eg X E3 ~ E2 X El,

where the second isogeny holds since, up to Q-isogeny, there is only one elliptic
curve with CM by orders in Q(7). Hence,

Jac(C) ~ E3 x E3.
We thus conclude that
STO(C) = U(l)g X U(l)g O

4. Splitting of the Jacobians

We will first prove two lemmas that give a partial splitting of the Jacobian of the
curve C : y?2 = 22912 4 ¢ in the case that g is even or odd. We will build from these
two cases to give a proof of Theorem [1.3]

Lemma 4.1. Let g = 2k an even integer, and C : y? = 22972 + ¢c. Then
Jac(C) ~ Jac(C)?,

where C : y? = 297! + c.

Proof. We have a map, ¢ : C' — C, given by ¢(z,y) = (22,y). Moreover, we have
1

an automorphism, o, of C' given by a(z,y) = (co+Tz~ 1, ¢'/2yz=(9+D)), This in turn

induces a second map ¢ : C — C via

(x,y) = dla(z,y)) = pcTTa™, M 2ya=(HD) = (7272, M2yp~ (D),

As noted in [11] Sec. 5.2], in order to prove the lemma it is sufficient to check that
the pullbacks of a basis of differential forms for J ac(é ) via ¢ and $ give a basis for
the space of differential forms for Jac(C). A basis for the space of regular 1-forms
of the Jacobian of a hyperelliptic curve of genus g is given by forms z'dx/y for
i=0,...,9 —1 (see, for example, 27| Sec. 3]). We thus compute:

gb* (xzd_x) _ xZid(xQ) - 2x2i+1dx

y y y
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and

€r — = = —2¢c 9+1 2

) )
The only thing that remains to be checked is that
{x2j+1,mg_2_2j\j:0,...7g —1} — {2 ]i=0,...,9—1}.

However, to obtain even exponents, say 2™, in the set of the left-hand side of the

equation, we may take j = g/2 — (m + 1) with 2972-2(9/2=m=1) — 22m TFor all of
2m—+1

2
i , 9+1
cTIT T2 C—2 xIt1
~, ( -dm) z 2641 1 297272y
¢* | ' 2 —

the odd exponents, say , we may take j = m with 2271, O

Lemma 4.2. Let g = 2k + 1 be an odd integer, and C : y?> = 22972 + c. Then

Jac(C) ~ Jac(C) x Jac(C"),
where C y? =29t +cand C' : y? = 292 + cx are curves of genus k and k + 1,
respectively.

Proof. We have a map ¢ : C — C, given by é(x,y) = (z2,y), and a map ¢:C —
C’, given by (E(x, y) = (22, xy). We now only need to check that the pullbacks of
the basis elements for the space of regular 1-forms of the Jacobians of C and C’
give a basis for the space of regular 1-forms of Jac(C'). We therefore compute:

& ( idx) 2x2i+1da:
r— | =2—,
Y Y

while

pe (xzd_x> _ 2 d(x?) _ 2x2idx‘
Y ) Y
Now, in the first case, as i runs through 0,...,k — 1, we get all the odd forms
corresponding to z,...,z?*~1. In the second case we get all of the even ones, and
this concludes the proof. a

We are now in a position to prove the following theorem.

Theorem 4.3. Let vo : Q* — Z denote the 2-adic valuation map, i.e. va(a/b) = «,
where ¢ = 25 and p does not dwvide e ord. Let Cy : y? = 22912 ¢ be a hyperelliptic
curve of genus g and write k := vy(g+1). Then we have the following isogeny over Q:
k—1
Jac(Cy) ~ Jac(y® = plotD/2" c)? x H Jac(y? = zl9tD/2+L 4 o),
i=0

Proof. Let k := v2(g + 1). We will prove the result by induction on k. If £ = 0,
then g is even and we have already shown that

Jac(Cy) ~ Jac(y? = 29" +¢)%
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If k =1, then g = 2a—1 (with (2,a) = 1), and by our result for odd genus, we have
Jac(Cy) ~ Jac(y? = 297! + ¢) x Jac(y? = 2972 + cx).

Now, g+ 1 =2a =2(2b+ 1) = 2(2b) + 2, for some integer b, and our result for even
genus case implies that

Jac(Cy) ~ Jac(y? = 29TY/2 4 ¢)2 x Jac(y? = 2972 + ca).

By induction, we suppose that our result holds for [ and suppose vy(g+ 1) =1+ 1.
Then by our result for odd genus, we have

Jac(Cy) ~ Jac(y® = 291 + ¢) x Jac(y? = 2972 + cx).

By assumption, g + 1 = 2!*1d (with d = 2e + 1, for some integer e), so that
g+1=2%1(2e+1) =2¢" +2, where ¢’ = 2!Tte + 2! — 1. Thus, v2(¢’ + 1) =, and
we may therefore use our induction hypothesis to conclude that

-1
Jac(Cy) ~ (Jac(gf = g0’ +1/2 c)? x l_IJac(y2 = g +D/2H1 cac))
=0

x Jac(y? = 912 + cx)
!
~ Jac(y? = plot /2y c)? x H Jac(y? = 2ot /24 cx),
i=0
since ¢’ = (g — 1)/2. O

5. A Further Splitting of The Jacobians of Theorem 1.3
Note that the curve y? = g(@+1D/2 7 41 o that appears in Theorem [1.3] has odd

genus since
+1 +1
ng_l +1:2<92k )+1,

and v2(g + 1) = k implies that 92%.1 is odd. In this section, we show how to further
split curves of this form.

Let g be an odd integer and C : y? = 297! + cx be a genus g curve. Let
E : y?> = 23 4 cx be an elliptic curve. Throughout this section, we work over the
field F = Q(¢,c'/9), where ¢ = (, is a primitive gth root of unity. The morphism

¢ : C — E defined by

d(z,y) = (29, yz91/?)

is a nonconstant morphism from C' to the elliptic curve E. We would like to find
more morphisms from C' to families of lower genus curves.

Our ultimate goal is to be able to further break down our result from Theo-
rem [1.3]so that we may write the Jacobians of curves as a product of Jacobians of
lower genus curves. Ideally, we would like to be able to write the Jacobian as a prod-
uct of Jacobians of elliptic curves (genus 1) or genus 2 curves since the Sato—Tate
groups of these lower dimension Jacobians are completely classified (see |3/8)[13)).
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5.1. Morphisms to lower genus curves
For i = 0,1 we define the curve C; to be

(9-1)/2 Go BN gk 1\
CzyQZ Z (_1)k |:( L )+( o1 ):| Czkck/gmg—2k'

k=0
Note that this is a curve of genus ¢’ = (¢ — 1)/2 and it is defined over F. The
following table gives C; for small values of g and for ¢ = 1.

Genus of C' | Curve C;
3 y? = 2% — 3('x
5 y? = x° — 5C%x3 + 5¢%x
7 y2 — I7 o 7czm5 + 14(22’(,1/,3 o 7<3zx
9 y? = 2% — 9C%x" + 27¢%a® — 303 23 + 9¢%x
11 y? =o't — 11¢%° + 44¢ 2" — T7¢% 0 4 55¢ a? — 11¢7"

Lemma 5.1. The map

x E)’

(o) = (2

where a = QTH

, 18 a nonconstant morphism from C to C;.

Proof. The proof relies on the following identity attributed to Lockwood (see, for
example, [16] Sec. 9.8]):

A"+ B" = LnZ/QJ(—l)’“ K" . k) + (” ;f; 1)} (AB)*(A+ B)"?,

k=0
where n > 1 and (,) = 0. Letting n = g, A = 2% and B = (c'/9 yields
2g _gT_l kl(9—k g—Fk—1 ik k/g 2k 2 i 1/g\g—2k
0 +c_kzzo<—1) [( L >+< Lo )}g M9 (22 4l 9)Im
since (%9 = 1. We multiply both sides by = to get
9=1
229+ 4 oy i(_l)k [<g;k) N (g;fi 1)}
k=0
% (R R/ g2R 1 (42 4 (ic1/9)9-2k (5.1)

We now demonstrate that ¢; is indeed a morphism between C' and C;. We apply
the transformation of variables to C; to get

= () ()
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(9-1)/2 P g—k-1\] . |
y2: Z (_l)k [( B} >_|_< o )]Czkck/gx2k+1(x2+Czcl/g)g—2k

k=0
= 2297 4 cx,
where the last equality holds by Eq. (5.1). Hence, we have shown that ¢; is a
morphism from C' to C;. O

5.2. Pullback of differentials

We claim that
Jac(C) ~ E x A,

where ~ denotes isogeny over Q and A is an abelian variety defined over Q for
which A ~ Jac(Cy) x Jac(C1). As noted in [11] Sec. 5.2], in order to prove this
claim it is sufficient to check that there is an isomorphism of F-vector spaces of
regular differential forms

Qe = ¢*(QE) ® ¢8(QCO) S5 QST(QCH)
As noted in Sec. 4] a basis for the space of regular 1-forms of the hyperelliptic
curve C of genus g is given by the forms w; = z?dx/y for j =0,...,g—1 . Similarly,
for both of the curves C;, we have the following basis:

dxr zdz x%*ldx
y b y AR y b

since they are both hyperelliptic curves of genus 9—51. For the elliptic curve, we will
use the nowhere vanishing differential dx/y.
We let a = (g + 1)/2 and first note that

(A ) gl
Y ygj(g_l)/2 Y
Furthermore, let m be some integer between 0 and % — 1. Then

22 +Cic1/g m 22 +gz‘c1/g
vy (T ) ()
o (ac dx) B x x

"y yr—a

<Z (TIZ) xm—2k+a<ikck/g> dr
k=0

Y

(Z (77];) xm—Zk—Z—l—aCikck/g) dr

Y

wo- (52)
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where f; ,,, are polynomials given by

frol@) = 2 — (iet/go=2

fi,m(CE) = gmte i <(T/Z) — (l{:ril 1)) xm72k+acikck/g
k=1

m-+1

+Ci(m+1)c 5 xa—m—27 (54)

and

if m > 0.

Claim 5.2. Given an integer 0 < n < 9%1 — 1, the set of polynomials P, :=

{fimli=0,1;0 <m < n}U{z* 1} forms a linearly independent set.

Proof. We argue by induction on n. We note that fo o is of degree a, while 2%~ *

is of degree a — 1 and

foolz) = fio(z) = (1 — (cV/9)z2
a polynomial of degree a — 2, so that the claim holds for n = 0. For n > 1, we let
{i k }i=0,1;,0<k<n be scalars such that

> Nwfik + Aac12® =0, (5.5)
i=0,1;0<k<n
We note that fy, and f; , are the only two polynomials in our family that are of
degree a + n, so that holds only if
Aon + A1 =0 (5.6)

by looking at the leading coefficients of f;,, in (5.4). Moreover, fo, and f1, are the
only two polynomials in our family that contain a monomial of degree a — n — 2.
We, therefore, must have that

Ao + A" = 0. (5.7)

Since n < g and ( is a primitive gth root of unity, ¢("*! # 1, and together with
Eqgs. and this implies that Ao, = A1, = 0. The set of remaining polyno-
mials in the family is now P,,_; and, by induction, this implies that the remaining
Air=0foralli=0,1and 0 <k <n-—1and \,—; =0, proving our claim. O

By the above claim for n = gT_l —1, the family P,, exhibits g linearly independent
polynomials inside the g-dimensional vector space of polynomials of degree less than
or equal to g — 1. In particular P, is a basis for that space. We can thus write a
basis for ¢*(Qg,.) ® o§(Qc,) B @5 (¢, ) that is also a basis for Q¢, via and
(5.3). Thus, we have proved the following.

Proposition 5.3.
Jac(C) ~ E x Jac(Cy) x Jac(Ch),

where ~ denotes isogeny over Q.
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6. A New Algorithm to Compute ST°(C)

In this section, we describe an algorithm to compute the identity component of the
Sato—Tate group of the Jacobian for curves of the form

Cr:y2=a%24¢ Cyr:y?=z 4, C3:9y? =229 + e,

where ¢ € Q* is a constant. Note that the Jacobians of the curves in all three
families are CM abelian varieties (see, for example, [17] or [29]). We show that the
algorithm coincides with our result for the curve y? = 2! + c¢. We then use this
method to prove that the identity component of the Sato-Tate group of 42 = z° + ¢
is U(1) x U(1) x U(1), which confirms an unpublished result of Zywina [30]. We
then compute ST?(C}),ST?(Cy), and STY(C3) for genus 2 through 10 which give
evidence for several conjectures which we formulate.

6.1. Preliminaries

We begin by defining the Sato—Tate group ST(A) of an abelian variety A/ K, where
K is a number field, of dimension g as in [26} Sec. 3.2;[18] Chap. 15].

For an odd prime ¢, the Tate module is defined as Ty := lim A[l"] to be a free
Ze-module of rank 2¢g, and the rational Tate module is defined as V; := T; ®z Q
to be a Qg-vector space of dimension 2¢g. The Galois action on the Tate module is
given by an f-adic representation

PAL: Gal(f/K) — Aut(Vg) = Gng(Qg).

Let Gy denote the image of this map. We let G%%" denote the Zariski closure of Gy
in GLyg g, (as an algebraic group), and we define Gé’zar by adding the symplectic
constraint M*QM = Q, where
Q.= _Ig
: I, ,

so that G%’Za‘r is a subgroup of Spy, g, -

Choose an embedding ¢ : Q; — C and use it to define G;”Lzar((C), which is unique
up to conjugacy. We then define ST(A) C USp(2g) as a maximal compact subgroup
of Géfar((}) (unique up to conjugacy).

Over an appropriate cyclotomic field k, the Tate module of the Jacobian splits
into a sum of one-dimensional Galois characters (see, for example, 22| Exam-
ple 1.2]). This allows us to apply some results from group theory. The f-adic
monodromy group G#% is equal to the dual of the Tate module (see [19, Sec. 0])
and so G%ar is dual to the group generated by these characters. By work of Serre
[23] Sec. 8.3.2], G;’Zar is the dual of the group generated by these characters mod-
ulo the cyclotomic character. By definition, the group ST(A) is a maximal compact
subgroup of Gz’bzar((C), so STY(A) is dual to the maximal torsion-free quotient of
the group generated by these characters. If all of the one-dimensional characters

come from Jacobi sums, as is the case in Secs.[6.5]and [6.6] then the p-adic valuation
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map is a map from this group to an explicit abelian group and the kernel of this
map is the torsion subgroup.
Before we define the map, we first recall Stickelberger’s congruence theorem.

6.2. Stickelberger’s congruence theorem

The background information in this section can be found in |6} |14} Chaps. 6 and
8]. Let p be a prime, F, be a finite field with ¢ = p? elements, and CpsCq—1 € C be
fixed roots of unity with respective orders p and ¢ — 1. We then have the following
diagram of number fields and primes:

Q(CQ—lv Cp) ‘Bllj_1 e %5_1
| l
Q(¢g-1) P1-- Py
| |
Q p

where 9B; lies over the prime p; and g = ¢(q — 1)/f (and ¢ is Euler’s totient
function). Fix any prime p in Q((,—1) lying over p and let B be the unique prime
in Q({4—1,¢p) lying over p. Let wy, be the Teichmiiller character on F,.

For 0 < b < g — 1, write the base p expansion of b as

b=by+bip+--+br1p/ 7,

where 0 < b; < p—1 and not all b; = p— 1. Recall from Eq.[2.I]that the Gauss sum
of a multiplicative character x of IF, is

g(x) =Y x(@)g ™.
zel,

The normalized Jacobi sum of the multiplicative characters x1, x2,...,x» of Fy is
defined by

Tt oxe) =07 > xal@n) - xe().

z1twe+-Frr=1
Theorem 6.1 (Stickelberger’s congruence theorem [25]).

bo++by_1
oy _ (G = 1) ! bot-tby 141
= mod $B”° fort,
9(w, ") bol- byl 0

We will use Stickelberger’s congruence theorem with ¢ = p to compute the 8-
adic valuations of the Jacobi sums arising in Theorems[A.1l and [B.1l Given that B
will always divide the quantity (¢, —1) exactly once, we note the following immediate
consequence of Stickelberger’s congruence theorem.
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Corollary 6.2. Let ordy : Q(Cp—1,(p) — Z denote the B-adic valuation map.
Then, for 0 <b<p-—1,

ordmy (g(wp_b)) =b.

In the case of 4> = 2° + ¢ and p = 1 (mod 9), Corollary[A.3] tells us that the
Jacobi sums that arise in the point count formula are all of the form J(x™, ¢) for

1 <m < 8 where y = T?W=D/9 ¢ = T®P=1)/2 and T is any fixed generator of the

character group Fy . In particular, given p dividing 9B, we can choose T' = wy, 1

6.3. The map

Let p be a split prime of the CM field K and let ¢q,...,t, be the embeddings of
the field of definition of the one-dimensional Galois characters into the algebraic
closure of Q,. Consider the homomorphism that sends a character p to the n-tuple
(vp(t1(p(Froby))), ..., vp(tn(p(Froby)))), where v, is the p-adic valuation map. Let

T be a fixed generator for the character group Fy, x = TP~1/4 for some positive
integer d and ¢ = TP=1)/2 be a quadratic character. In the case where p is a Jacobi
sum character, so that p(Frob,) = J(x™, ), we use Stickelberger’s Theorem to
compute a matrix whose columns are the images under this homomorphism of the
characters appearing in the Tate module.

There is one such embedding for each injective map from the group of characters
to the unit circle because there is one embedding for each primitive root of unity
(and primitive roots of unity give these maps). We form a matrix of size n x k with
this information, forming one column for each of k pairs of characters in J(x™, ¢),
and one row for each of the n embeddings of the group of characters into the circle.
The matrix is defined so that the (j, m)th entry is the p-adic valuation of the Jacobi
sum of the mth character under the jth embedding.

Next we formally define this matrix, call it M, whose columns are the images
under this homomorphism of the characters appearing in the Tate module.

Definition 6.3. The matrix M is constructed as follows. We define a map ¢ : Z¥ —
7", where n is the number of embeddings, as a composition of two maps ¢; and
¢2. Given a = (a1, as,...,a;) € Z* any k-tuple of integers, ¢ maps a — [ x{",
where the y; are the one-dimensional characters coming from the Tate module.?
The second map ¢, takes this character product to each of n embeddings ¢, (] x;*)
and then computes the p-adic valuation of each embedding. The composition of the
maps can be expressed as a matrix M.
To be more precise, let

—

¢1: ZF — Gal(K/K)

aIn Sec. the characters ; are Jacobi sums of the form J(x?, #). See Appendices A and B for
more detailed descriptions of the Jacobi sums that appear in our examples.
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be the map which sends a = (a1, az,...,ax) to [], xj*. The second map,

s : Gal(K /K) — Z",
combines the embedding and the p-adic valuation steps: it sends a character p to the
n-tuple (vp(e1(p(Froby))), vp(t2(p(Froby))), . .., vp(tn(p(Froby)))). The composition
¢2 o ¢1 forms a matrix M whose (j, m)th entry is v,(¢;(p(Froby))).

In Secs. [6.5] and [6.6] we will form this matrix for curves in the three families
C1,C5, and (3. For curves in each of the three families, the number of points on the
curve over the field IF,, can be expressed as a sum of Jacobi sums (see Appendices A
and B). Thus, as is the case for Fermat curves in [21], the f-adic representation
p(Frob,) is described by the Jacobi sums that appear in the point count formulas.
These Jacobi sums are the eigenvalues of the IF)-Frobenius endomorphism action
on the ¢-adic Tate module (see, for example, [1 Sec. 2.1]).

In the case where p is a Jacobi sum character, the matrix M has (j, m)th entry
vp(t5(J(X™, ¢))). Each entry of M is 1 if the angles sum to at least 27 and zero
otherwise. A method of completing the first row, for y?> = 2% +cand p =1 (mod 9),
is as follows. A similar argument can be made for the remaining rows, as well as for
other curves.

Lemma 6.4. For 1 < m <4, we have
ordg (J(x™,¢)) =0,
while for 5 < m < 8, we have
ordss (J(x™, ) =p — 1.

Proof. Using Eq. (2.2), we see that

_m(p—1) p—1 _ (2m+9)(p—1)
18

ordgs (J(x™,¢)) = ordys (g(w, ° ))+ordms(g(w, > ))— ords(g(wy
m(p —1) Lpl (2m+9)(p—1)

_ =0 if 1 <m <4,
B 9 2 18
mip—1) p—-1 (2m-9)(p—1) :
— =p—1 if5<m<
9 + 5 13 P it 5 <m <8,
where the second equality holds by Corollary[6.2] O

This leads us to the following theorem.

Theorem 6.5. Let M be the matriz in Definition with (4, m)th entry
vp(Li(J(X™, @))). The elements in the kernel of M give the relations between char-
acters x; fori=1,2,..., k, where k < g, that determine the structure of the identity
component of the Sato—Tate group of the genus g curves of the form

2 2g+2 2 2g+1 2 2g+1
Cr:y*=x9" ¢, Cyr:y* =29 4cx, Cs:y? =2 +ec
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Proof. Let C be a smooth projective curve defined over Q. Recall from Sec.
the Tate module of the Jacobian splits into a sum of one-dimensional characters
and STY(C) is dual to the maximal torsion-free quotient of the group generated by
these characters which is Gé’zar. Let M be the matrix in Definition

Since the p-adic valuations that make up the entries of M are integers, they are
not torsion, so the image of M is torsion-free. Recall that the matrix is constructed
using a composition of maps, see Definition We claim that the kernel of the
second map is torsion and so the kernel of the first map is a finite index submodule
of the kernel of M. Indeed, any element in the kernel has v, (¢;(J(x™, ¢))) = 0 for all
p-adic valuations. Moreover, all /-adic valuations are zero since J(x", ¢)) acts on the
(-adic Galois representations as an ¢-adic unit. In addition, the absolute value must
be one at all infinite places since the absolute value is independent of the complex
embedding by Weil’s Riemann Hypothesis |7] and the product of the absolute value
over all complex embeddings vanishes by the product formula. Hence, J(x™, ¢) is
a root of unity; for ease of notation, we will denote it by x,,. Because this holds for
all split p, the image of the character consists of roots of unity, so it has finite order.

We can easily determine the elements a in the kernel of the first map by com-
puting the kernel of M since the kernel of the first map is a finite index submodule
of the kernel of M. Setting x{"'x5> - - x3* = 1 for each element a in the kernel of
M gives a set of relations on the characters x1,..., xx. Thus, we can express the
list of characters in the form

{Xb1s Xbrs -« > Xbrs Xb }

where there are ¢; copies of each pair xs,, Xp, for some positive integers ¢; satisfying
> t; = g. Note that the characters in this list may not be independent since a
character may just be the product of other characters in the list. Thus, a list of
independent characters will be

{XCl’X_C17"‘7XCh7m}’

where there are r; copies of each pair xp,, Xn, for some positive integers r; satisfying
> < g.

Since the characters are roots of unity, we will denote them by u; := x; to match
the notation of Sec. [2] We claim that we can then write

STY(C) = (diag(te,, Tays - - - » Uy > Tay) | Ue, T, = 1),

where there are r; copies of each pair u,,, U, for some positive integers r; satisfying
> r; < g. The claim follows since by construction the columns of the matrix are
images under the above described homomorphism of the characters appearing in
the Tate module, and we have shown the kernel of the first map is a normal finite
index subgroup of the kernel of the matrix (see [26] p. 31]). O

Remark 6.6. By [26| Definition 4.1] or [23] Sec. 8.2] each element of the form
diag(te,, Ueys - - - Uey, Uy, ) 18 & Hodge circle by Serre’s definition and the Hodge
circles generate a dense nontrivial subgroup of ST°(C).
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6.4. Algorithm to compute ST°(C)

We use this theory to efficiently compute ST O(C’), for the curves C, Cy and Cf,
with the following algorithm.

Algorithm 6.7. (1) Use Theorems and to determine which characters
contributeto the Jacobi sums.

(2) Form the matrix M of Definition For the columns use the appropriate
J(x™, ¢), and for the rows use the embeddings into the circle. By the compo-
sition of the embeddings with J(x™, ¢) we mean take the composition of the
embedding with each of the characters x and ¢. The entries in the matrix are
1 if the sum of the angles is at least 2 and 0 otherwise.

(3) Compute the kernel of the matrix M.

(4) Note that the p-adic valuation of the product of any Jacobi sum with its complex
conjugate is 1. Use the elements of the kernel to find the additional relations
that define the identity component of the Sato—Tate group.

Our work in Secs. and Theorem Theorem and proves the

following theorem.

Theorem 6.8. Algorithm (6.7) gives the identity component of the Sato—Tate group
of curves of the form

2 2g+2 2 2g+1 2 2g+1
Cr:y* =292 t¢, Cy:y* =2 4cx, C3:9° =24

6.5. Worked examples
We now use Algorithm[6.7]to prove Theorems[1.1] and

Alternate proof of Theorem[1.1] We can use any prime p = 1 (mod 10), so we
choose to work in F1; to simplify our calculations. Theorem tells us that the
Jacobi sums that contribute are of the form J(TJ%, ¢), where Tyg = TP~1/10 and
where m ranges over all values from 1 to 9. The four embeddings from the group of
characters to the unit circle are given by

Tio — 671"1:/5’ Tio — 637ri/5’ Tio — e77ri/57 Tio — 697”;/5.

We compute the matrix described in Algorithm[6.7] Its kernel is given by

( 1 0 0 1 -1 0\ )
0 1 1 0 0 —1
0 0 0 0 0 1
0 0 0 0 1 0
Span =11, -=1|,1-11|,]-11, 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0/ )
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Let x; = J(T}y, ¢), so that each vector in the kernel is a tuple of exponents for
the characters

X1, X2, X3, X4, X5, X6, X7, X8 X9

The p-adic valuation of the product of any Jacobi sum with its complex conjugate
is 1 and so, for example, x1x9 = 1. The additional relations are as follows. From the
first vector, Xlxglxg = 1 so x5 = 1. Similarly, from the second vector, xgs = x5 L
From the third vector, x7 = X2_1~ From the fourth vector, xg = Xl_l. From the fifth
vector, x4 = x1. Finally, from the sixth vector x3 = x2. Thus,

X1, X2, X3, X4, X6, X7, X8, X9
=X1, X2» X2» X1, X1 Xas Xa, X1t

and the identity component of the Sato-Tate group of the Jacobian of y? = z'? 4+ ¢
is U(l)g X U(l)g O

Theorem 6.9. The identity component of the Sato—Tate group of the hyperelliptic
curve C :y? =29 + ¢ is U(1) x U(1) x U(1).

Proof. We can use any prime p = 1 (mod 9), so we choose to work in Fig to
simplify our calculations. Corollary[A.3]tells us that the Jacobi sums that contribute
are J(Tg", ¢), where Ty = T®=1/9 and where m ranges over all values from 1 to 8.
Note that Ty =T B =T 2 so we are only considering even powers of T'.

We have six embeddings into the circle, given by the primitive roots of unity
e?™k/9 wwhere ged(k,p — 1) = 1. We compute the matrix M described in Algo-
rithm Its kernel is given by

( 1 1 1 2\ )
-1 -1 0 -1
—1 0 —1 —1
1 0 0 0
Span ol il il 21 >
0 1 0 0
0 1
L 0 0 0 1))

Let x; = J(T¢, ¢), so that each vector in the kernel is a tuple of exponents for the
characters x1, X2, X3, X4, X5, X6, X7, Xs- Lhe p-adic valuation of the product of any
Jacobi sum with its complex conjugate is 1 and so, for example, x1xs = 1. The
additional relations are as follows. From the first vector, x4 = x2x3X] '; from the
second vector, xg = X2X5X1_1§ from the third vector, x7 = X3X5X1_1§ from the last
vector, xyg = X2X3X5X1_2- Furthermore, since x1xs = 1, the relation from last vector

can be written as x1 = x2Xx3Xs5. Substituting y1 = x2x3xs5 into x4 = XzX:aXf1
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yields x5 = Xil. Repeating this process with the other relations yields x¢ = X3 !
and y7 = X2_1~ Hence, all characters can be written in terms of x2, xs and xs.
Putting this together we have

X2, X3, X5, X2_17 X??17 X5_1

Thus, the identity component of the Sato—Tate group of the Jacobian of y? = 2%+-c s

U(1) x U(1) x U(1). O

As noted in the introduction, the identity component of the Sato—Tate group
over Q is isomorphic to the Sato—Tate group over the CM field of the Jacobian of
the curve. To determine the Sato—Tate distribution, we need an explicit description
of the embedding of the Sato—Tate of the Jacobian of the curve into USp(8) (see, for
example, [11} Remark 4.1]). Since x1 = xa2x3Xs5 and xs = x; ' we have the following
embedding into USp(8):

U(1) x U(1) x U(1) = (diag(u1, U1, uz, Uz, us, Us))
~ (diag(u1, U1, ug, Uz, uz, Us, ua(u1, ug, usz), ua(ui, us, us)))
~ ST(Cg) ~ ST(CF) C USp(8),

where we view uy as a function of uq,us,u3 and F is the minimal extension over
which all endomorphisms of the Jacobian of y? = 22 + ¢ are defined.

Corollary 6.10. The identity component of the Sato—Tate group of the Jacobian
of the hyperelliptic curve y*> = '8 + ¢ is U(1)2 x U(1)2 x U(1)s.

Proof. Let C : y? = 28 + ¢. From Lemma [£.1] Jac(C) ~ Jac(C’) where C’ :
y?> = x° + ¢ and the result follows from Theorem [6.9] Alternatively, one can use

Algorithm O

6.6. Higher genus examples and conjectures

Using Algorithm [6.7] we compute additional examples of the identity component of
the Sato-Tate group and formulate conjectures for curves of the form

2 2g+2 2 2 1 2 2 1
Cl:y :xg+ +C, 02:3/ :x9+ ‘JFCCL', ng :x9+ +C,

where g is the genus of the curve and ¢ € Q* is a constant. As previously stated, the
calculations for Algorithm[6.7]can be implemented in Sage [20]. Using Algorithm[6.7]
we obtain Table

Note that the genus 2 example is also handled in |8], the genus 3 example is also
handled in [11] Corollary 5.3], and the genus 4 and 5 examples are worked out in
Sec. [3]of this paper. This gives evidence for the following conjecture.



Int. J. Number Theory 2021.17:2175-2206. Downloaded from www.worldscientific.com

by UNIVERSITY OF TORONTO on 02/01/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

2196 M. Emory, H. Goodson € A. Peyrot

Table 1. Identity components STY(Cy) for genus 2-10.

Genus of C; Curve C1 STO (C1)
2 2 =2%+c¢ U(1)2
3 y? =28 +c U(l)2 x U(1)
4 y2 =z 4 ¢ U(1)2 x U(1)2
5 y? =212 +¢ U(1)s x U(1)2
6 y2=zx+c U(1)2 x U(1)2 x U(1)2
7 y2 =216 +¢ U(1)2 x U(l)2 x U(1)2 x U(1)
8 y2 =z18 4 ¢ U(1l)2 x U(1)2 x U(1)2
9 y2 =220 +¢ U(1)s x U(l)2 x U(1)2 x U(1)
10 y2 =222 +c | Ul)2 x Ul)2 x Ul)z x Ul)z x U(1)2

Table 2. Identity components STO(Cs)
for genus 2-10.

Genus of Co Curve Co STO(Cy)
2 y? =z +c U(1)2
3 y?=2"+c U(1)3
4 y? =2%+c U(1)3
5 y2 =zt +¢ U(1)®
6 y? =213 +¢ U(1)8
7 y? =215+ ¢ U(1)*
8 y?=2"+¢ U(1)3
9 y? =219 +¢ U(1)*
10 y? =221 +¢ U7

Conjecture 6.11. Let Cyy, : y* = 2% + ¢ where p > 2 is prime. Then
STY(Cyp) = U(1)g x Ul)g x --- x U(1)y.

(.

(p—1)/2-times

We use Algorithm[6.7]again to compute the identity component of the Sato—Tate
group for curves of the form Cs : y? = 22971 4 ¢ and obtain Table

Note that the genus 2 example is also handled in [§]. This gives evidence for the
following conjecture.

Conjecture 6.12. Let C, : y* = aP + ¢, where p > 5 is prime. Then
STY(C,) = U(1)P=1)/2,

We also use Algorithm[6.7]to compute the identity component of the Sato—Tate
group for curves of the form C3 : y? = 22971 4 cz. We have the results as in Table[3]
Note that the genus 2 example is also handled in |8] and the genus 3 example is
also handled in [11] Corollary 5.3]. This gives evidence for our following conjecture.

Conjecture 6.13. Let C3 : y?> = 22911 4 cx, where the genus g = 2k + 1 is odd.
Then

ST%(C3) = U(1),.
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Table 3. Identity components STY(C3) for genus 2-10.

Genus of Cs Curve C3 ST9 (C3)

2 y2=a%+cx U(1)2

3 y? =27 +cx U(1)s

4 y2 =%+ cx U(1l)2 x U(1)2

5 y2 =zl +cx U(1)s

6 2 =z3 4 cx U(1)a x U(1)2

7 y2=z% 4 cx U(1)7

8 y? =z +cx | Ul)2 x U(l)2 x U(l)2 x U(1)2
9 y2 =zt cx U(1)g

10 y2 =221 +cx | Ul)2 x U(l)2 x U(l)2 x U(1)2
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Appendix A. Point Count Computation: y? = z¢ + ¢

We have the following theorem regarding the point count of curves of the form
2 d
Yy =x"+c

Theorem A.1. Let Cy : y> = 2% + ¢ and let p be an odd prime. Furthermore, let

T be a fized generator for the character group F, and ¢ = T be a quadratic
character. Then

#Ca(Fp) =p+1+> Ty (—c)p(c)J(T]", ),

where the sum is over all m € 7 such that W € [1,p — 2] is integral, and
m(p—1)

Tg‘:T d

Remark A.2. The number of terms in the point count formula partly depends on
the congruence class of p. For example, if p =1 (mod d) then we will sum over the
entire interval [1,d — 1]. If p— 1 and d are relatively prime, then this summand will
be empty. When p — 1 and d share at least some factors (for example, if d is even)
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then there will be some terms that arise from this summand since we will be able
£ (p—1)m
d

to cancel the remaining factors in the denominator o with some m € Z.

In the case where p—1 and d are relatively prime, no m € Z will yield a fraction

w in the correct interval. To see why this is true, note that we would need

m = db, for some positive b € Z, in order to have W € Z. But this yields

(p—1m
d

which is not in the required interval. Hence, in this case, the number of points will
simply be p + 1.

Proof. Throughout, assume that p is an odd prime. We follow the method of proof
used in [12] to compute the number of points on a family of elliptic curves. Let
P(z,y) = 2% + ¢ — y2. Recall from Sec. 2.1] that we define the additive character 6
on F), by 6(x) = ¢*, where ( is a primitive pth root of unity. Since 6 is an additive
character (0) = 1, we have that

S 0(=P(r.y) = {p  Ple,y) =0,

eF, 0 otherwise.

Hence,

p - (F#Cq(F ZZ@szy

z€F, z,yelF,
Note that when 2 =0, >, cp 6(0- P(z,y)) = p?. We break up the sum as follows:
Y. 0G=Py) =p"+ Y 0(=P0,0)+ > 0(zP(0,y))
z,y,2€Fp z€Fy y,2€F)
+ Y 0(P(z,0)+ > 0(zP(z,y))

z,z€Fy x,y,2€F)
=p°’+A+B+C+D.

We will use Lemma and properties of Gauss sums to evaluate each of these
sums.

Computing A:

A= " 0(zP(0,0)) = Y _ 6(zc)

z€Fy z€F)

ZZG T (zc)

z€F )} 1=0
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= —ZG_ZTZ Tz

ZGFX
=1,
since ZzeF; T*(z) = 0 unless 4 = 0, in which case it equals p — 1 and Gy = —1.
Computing B:
B= ) 0@=P0.y)= ), 0(z)0(-z)
y,2€Fy y,z€F )
1 =2 |
= poTE 2 GHOSTET () 3 TG 3 T )
2,7=0 ZEFX ye]}.“;
Note that zyeFS T%(y) = 0 unless j = 0 or j = %. In either case,

ZzeF; Tt (z) = 0 unless i = j. Hence, letting ¢ = T,
B = GoGoT ()T"(—1) + Gpo1 Gor6(c)p(—1)
=1+ po(c),
since Gp%leQ;l = pp(—1).

Computing C:

C= > 0(zP(x,0)= Y 6za")0(zc

z@GF? LzGF?

We will not break this down further since this will cancel with part of sum D.

Computing D:

m,y,zEF;
1 - ] k i+j+k
= o 1E 2 GGGl @I (1) 3 T G)
i,5,k=0 z€Fy

x Y T@) Y T (y).

zeFy y€eF)
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As before, ZyeJF; T?(y) = 0 unless k = 0 or k = 25*. Note that the case where
k = 0 negates the expression we found for C' since G_; = —1 when k£ = 0. We will
denote the term with k& = % as D’. We break this term down further as follows:

o E Z GGG T 1) S T () S 1)

(p 1,j=0 2€F) z€F)
The sum }_px THi+%2 () = 0 unless j = p-1 — . Hence,
1=
D = - ZG iG_(z1_G o T e 1)) Tx)
z€F)
The sum ZmeF; T'(z) = 0 unless i = 0 or i is a multiple of %, ie. i =

L_j)m € [0,p — 2] for some m € Z. Hence,

p—1

= GoGps Gpa T ()T (—1)

DO et Gt e Gona T°7 T (777 (-1)

= —pé(c +ZG ezt Gt o G T7™57 () ().

Note that the term —pgb(c) will cancel with part of the expression in sum B.
Letting 77" = T4
expression as

and recalling that G, := ¢(T'*), we can write the above

D' = =po(0) + L o(To(T )9 0 TF ()

Note that, for any nontr1v1al character A # ¢,

- oA L5
9(Dg(40)9(¢) = 9(Dg(40)g(¢) - T 52
_ @ <¢>>

= Ap(-1)pJ (A ¢),
where the last equality holds by Eq.[2.2] On the other hand, if A = ¢, then

9(A)g(Ad)g(¢) = g(d)g(€)g(9)
= —pp(—1)

= Ap(-1)pJ(4, ),

where the last equality holds because J(¢, ¢) = —¢p(—1). Hence, for any nontrivial
character A,

9(A)g(Ad)g(¢) = Ap(—1)pJ (A, ). (A1)
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We use this to rewrite D’ as

D' = —p¢(c +pZT’” )T, ).
We now combine these results to get

1
#Cd(IFp>:1+2—j<p2+A+B+C+D)

—1+- (p +pZTm (@;d’))
=p+1+) T (T],0),
where the sum is over all m € Z such that w € [1,p — 2] is integral. O

Corollary A.3. The number of points on the curve y*> = x° + ¢ over F, is

8
p+1+ ) Ti(=o)¢(c)J(T5,¢) ifp=1 (mod9),

#Co(F,) = p+ 1+ T5(—c)d(c)J(T5, 6)
+T§(—c)p()J (TS, ) ifp=4,7 (mod9),

(p+1 ifp=2 (mod 3) orp=3.

Proof. For this result we are merely applying Theorem[A.1]to the case where d = 9.
We need to determine when w € [1,p — 2] is integral.

If p=1 (mod 9), then any integer m will make %m integral. We restrict m
to the interval [1, 8] so that p,%lm €l,p—2].

On the other hand, if p = 4,7 (mod 9), i.e. p=1 (mod 3) and p # 1 (mod 9),
then any integer of the form m = 3b, where b € Z, will make %m integral. We
restrict m to the interval [1, 8] so that Z 1 % € [1,p — 2]. Hence, only m = 3 and
m = 6 will contribute to the point count sum.

Finally, if p = 2 (mod 3) then no m € Z will yield a fraction 2 _dl)m in the

correct interval. O

Appendix B. Point Count Computation: y? = z? + cx

Theorem B.1. Let Cy : y?> = 2% + cx and let p_b be an odd prime Furthermore,

let T be a fixed generator for the character group ¥, and ¢ = T bea quadratic
character. Then

#(Ca(Fp) =p+1+ ZT”‘“ o(c) (T, 9),
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where the sum is over all m € Z such that Gmet@=D ¢ [0,p — 2] is integral (so

2(d—1)
CmtDE-1)
that T3" 4! := T 2@ s a character).

Proof of Theorem Throughout, assume that p is an odd prime. We fol-
low the method of proof used in [Appendix Al Let P(z,y) = 2% + cx — y%. As in

[Appendix A] this yields
p- (#Ci(Fp) —1) =1+ - Z Z 0(zP(x,y)).

ZGF x,yelF,

Note that when z =0, ) yeF, 9(0- P(z,y)) = p?. We break up the sum as follows:

Z 0(zP(z,y)) = p* + Z 6(zP(0,0)) + Z 6(zP(0,y))

z,y,2€F, 2€F) y,2€F)
+ 3 0GP(,0)+ Y 0(zP(z,y))
x,z€F) x,y,2€Fy

=p’+ A+ B+C+D.

We will use Lemma and properties of Gauss sums to evaluate each of these
sums.

Computing A:
Since P(0,0) =0, A= 3" _zx 0(2P(0,0)) =p — L.

Computing B:

B= Z 0(zP(0,y)) = Z 0(—2y%)

y,z€F) y,z€Fy
1 2 ‘
- LS e ren Y re Y e
P i=0 yeFy z€F)

Note that ZZQF; T*(z) = 0 unless i = 0, in which case both of the sums over z and
y equal p — 1. Hence

B=GT(-1)(p—-1)=—(p—1).
Computing C:
C= > 0(zP(0)= > 0(za")0(zcx)
z,z€F) z,z€F)

-2

- T (p _11 2 Z G_iG_;T7(c) Z T (z) Z T ().

4,j=0 z€F) zEF,

We will not break this down further since this will cancel with part of sum D.
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Computing D:
D= Y 0(zP(x,y)

Y, 2€Fy
= Z 0(zxh)0(zcx)0(—2y?)
x7yaZ€F;
1 =
_ j k itj+k
PRV Y GG G T (T (1) Y T ()
Za]ak:() ZG]FX
x ) T (@) Y T(y)
z€Fy yeFry
Note that ZyeF; T?(y) = 0 unless k = 0 or k = . The case where k = 0
negates the expression we found for C since G_; = —1 When k = 0. We will denote

the term with k = E as D’. We break this term down further as follows:

D' = ﬁ Z G_iG_jGraT( 1) Y T (2) Y T (a)

7] 0 z EIF X xT GIF;

. . L_l . — .
The sum Zzeﬂr; T+ 727 (2) = 0 unless j = pz—l — 1. Hence,

1 p=2 p-1_. p—1 i(d— p—1
D=-=3) G-iGpp ) GopnT7 HT7 (-1) 3 T (@),
1=0

z€Fy
The sum ) eFX Tid—1+25 () =0 unless i(d—1) 4+ E is a multiple of p — 1.

This occurs when 7 is an odd multiple of 1= M

5(d-1) for some m >0
in Z,

2(d 1)’le

p—1__ (2m+1)(p—1) p—1

ZG (2m+1)(p— 1)G<2m+1)<p 1) _pt 1Gp YAER 2(a-1) (C)TT(—l).

2(d—1)

. 2m—+1 @2m+1)(p=1) . a .
Letting T, =T 2@-0 and recalling that G, := g(T'*), we can write the

above expression as

Zg T3 gL 6)g(9)T3+ () (—e).
We use Eq. (A.1) to rewrite D’ as
—pZT2m+1 )o(c)J (T3, ¢).

We now combine these results to get

1
#C’d(]Fp):1+]—?(p2+A+B+C+D)

=1+p+ ZTQ’”“ V() (T3, )
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where, as above, the sum is over all m € Z such that % € [0,p—2] is

integral. O

We will now explore the sets of m that we obtain for different values of p and
d. Our sum of Gauss sums in the point count is over all ¢ such that i(d — 1) + %

is an integer multiple of p — 1. Hence, we are looking for values of ¢ that are odd
multiples of 2&;_11).

First note that, regardless of the value of d, 2(d — 1) is even. We can write

2(d — 1) = 2'n, for some odd n € Z. Hence, % € [0,p — 2] is integral when

(2m +1)(p — 1) is divisible by 2!n. The values of m will now depend on p. We split
into cases.

If p=1 (mod 2'n), then i = (Qm;(jz(g_l) = (2m+2ll)n(p_1) is an integer for any
integer m. We restrict m to the interval [0, d — 2] in order to obtain ¢ € [0,p—2]. To
mil)(p—1) _ p—1

Py YR

see why this is true, note that if m = 0 then (2 which is in the

interval [0, p — 2|. Similarly, if m = d — 2, then (2”12"{;1({))_1) = (2d—23)£;2)—1) <p-—2P
However if m = d — 1, then (ZW;J{;Z%_D = (2d_2611)—(]29_1) >p—1>p—2.

Suppose instead that p = 1 (mod 2'n’), where n’ < n is a divisor of n (and that
p # 1 (mod 2!n)). In this case, i = % is an integer whenever 2m + 1 is a
multiple of n/n’. To see why this is true, we let 2m + 1 = 2 (2k + 1), where k is

some integer. Then

2m+1)(p—1) %(% +1)(p-1)
20d—1) 20n

p—1
2n!’

= (2k+1)-

which is in Z. We restrict k to the interval |0, 2n =1 —1] in order to obtain i € [0, p—2]

2
. . l /_
since if k = % — 1 then

n 0 21y (p—1)
kD -1) 2 P @r'-De-1 _
1 = p— = — 1.
2ln 2ln/ 2ln/ b

Note that in the special case where n’ = 1, then we simply need 2m + 1 =
l
n(2k +1) and k € [0, 251 — 1].
Finally, suppose p Z 1 (mod 2'). In this case, there are no values of m such that

. @2mtD)(p-1) . . . : .
= % is an integer because we will be left with an even number in our

i
denominator after canceling powers of 2 with p — 1. In this case, the point count

formula reduces to

[Ca(Fp)| =p+ 1.

bNote that this is true whenever p > 2d — 1. For smaller values of p, we will need to further restrict
how large m is.
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We demonstrate this in the following example.

Example B.2. We will examine the number of points on the curve y?> = 27 + cz
over F,, for various primes p. Note that this is the genus 3 curve studied in [11].
Since d = 7, we have 2(d — 1) =12 and d — 2 = 5.

If p =1 (mod 12), then we will have the maximum number of values for i.

e{@m+3@—1w0§m§5}

Explicitly, we have

Thus, when p =1 (mod 12), our point count will be

#CO7(Fp) =p+ 1+ 30 o T2 (=c)p(c) J(T3™ T, 9),

where Ty is a character of order 12.

If p =1 (mod4) and p # 1 (mod 12), we will still have some terms from
the Jacobi sum expression. Note that in this case, %
whenever 2m + 1 is divisible by 3. Hence,

6{3@k+U@—1)

will be an integer

< k< —15.
= 0<k<d/3 }

This yields the following;:

where Tg’, is a character of order 4.
If p=3 (mod 4), then % will never be an integer. Hence,

#C7(Fp) =p+ 1.
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