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We calculate the high-order post-Newtonian (PN) expansion of the energy and angular momentum
fluxes onto the horizon of a nonspinning black hole primary in eccentric-orbit extreme-mass-ratio inspirals.
The first-order black hole perturbation theory calculation uses Mathematica and makes an analytic
expansion of the Regge-Wheeler-Zerilli functions using the Mano-Suzuki-Takasugi formalism. The
horizon absorption, or tidal heating and torquing, is calculated to 18PN relative to the leading horizon flux
(i.e., 22PN order relative to the leading quadrupole flux at infinity). Each PN term is a function of
eccentricity e and is calculated as a series to ¢'®. A second expansion, to 10PN horizon-relative order
(or 14PN relative to the flux at infinity), is computed deeper in eccentricity to ¢?°. A number of resummed
closed-form functions are found for the low PN terms in the series. Using a separate Teukolsky perturbation
code, numerical comparisons are made to test how accurate the PN expansion is when extended to a close
p = 10 orbit. We find that the horizon absorption expansion is not as convergent as a previously computed
infinity-side flux expansion. However, given that the horizon absorption is suppressed by 4PN, useful
results can be obtained even with an orbit as tight as this for e < 1/2. Combining the present results with
our earlier expansion of the fluxes to infinity makes the knowledge of the total dissipation known to 19PN

for eccentric-orbit nonspinning extreme-mass-ratio inspirals.
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I. INTRODUCTION

In the past eight years nearly one hundred compact-
binary mergers have been observed as gravitational-wave
events with LIGO and Virgo [1]. When the launch of
LISA occurs [2] we anticipate added gravitational-wave dis-
coveries, including extreme-mass-ratio inspirals (EMRIs).
Theoretical modeling of EMRIs is important for both source
detection and parameter estimation [3-6]. For EMRISs,
the small mass ratio € = u/M < 1 (e.g., secondary mass
u~10My and primary mass M ~ 10°My) serves as an
expansion parameter and the theoretical calculation utilizes
black hole perturbation theory (BHPT) and gravitational
self-force [7] techniques. Example calculations of full EMRI
inspirals can be found in [8—11]. In the early inspiral, when
the orbit is wide (irrespective of mass ratio), post-Newtonian
(PN) theory [12] can be applied. When both limits pertain,
self-force quantities (e.g., gravitational-wave fluxes and
conservative sector gauge invariants) can be found as
analytic PN expansions. Early examples include plucking
off [13] the apparent (later verified [14,15]) analytic coef-
ficient in the 1.5PN tail in the energy flux using a numerical
BHPT calculation and the leading few terms in the redshift
invariant for circular-orbit EMRIs [16].
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This paper addresses the horizon absorption of energy
and angular momentum in eccentric-orbit EMRIs onto a
nonspinning (Schwarzschild) primary. The horizon fluxes
are given in analytic form as a simultaneous high-order PN
expansion and expansion in powers of eccentricity e. This
work is the latest in a sequence of papers that have made
similar expansions of other physical quantities in eccentric-
orbit EMRISs in the PN limit using symbolic or extremely
high precision numerical BHPT calculations. Initially,
Forseth, Evans, and Hopper [17] used a numerical imple-
mentation of the MST (Mano-Suzuki-Takasugi) method
[18,19] in Mathematica to solve the Regge-Wheeler-Zerilli
(RWZ) equations [20,21] to extremely high numerical
precision (e.g., 200 digits). Energy fluxes at infinity were
calculated on a two-dimensional grid of orbits over
separation p and eccentricity e. These data were fit to an
understood general form of the PN expansion, generating
numerical coefficients through 7PN order. The underlying
analytic form (e.g., rational numbers or rationals times
transcendental numbers) of the coefficients were then
determined using PSLQ, an integer relation algorithm
[22]. A following paper [23] made significant improvement
to the method by fitting individual /mn modes separately,
allowing energy and angular momentum fluxes to be found
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to 9PN and high order in e. A third paper [24] extended
those results via a fully symbolic approach (originally
developed in [25-30]), reaching 19PN at ¢'° and 10PN at
€%, The depth of the expansion in e revealed closed-form
functions in eccentricity at numerous PN orders, and led to
an understanding of the form of certain logarithmic PN
sequences to arbitrarily high PN order [31,32]. Lately, we
have applied these techniques to the conservative sector,
computing the redshift invariant to 10PN and ¢?° [33] and
the spin-precession invariant to 9PN and e'® [34], with
additional PN terms found to yield closed-form functions
of e.

Our calculation of the horizon absorption applies the
same techniques but looks instead at the asymptotic
behavior of the downgoing wave at the horizon. To
understand the PN depth of our calculation, we first recall
the relative magnitudes of leading-order fluxes at infinity
and the horizon. The leading quadrupole energy flux at
infinity scales with the fifth power of the PN compactness
parameter (i.e., 1/p>). Higher multipoles, corrections, and
tail effects appear at still higher integer and half-integer PN
orders. It is typical to refer to higher-order terms by their
PN order relative to the dominant infinity-side quadrupole
flux. For example, when we say we computed the infinity-
side flux to 19PN, that would be a term scaling as 1/p>*.
On the horizon side, early work on circular orbits by
Gal’tsov [35] (for nonspinning and spinning primary),
Poisson and Sasaki [36] (nonspinning), and Tagoshi,
Mano, and Takasugi [37] (spinning), showed that the
leading flux is suppressed by 4PN relative to the infin-
ity-side flux in the Schwarzschild case and by 2.5PN
relative in the Kerr case. Our calculations in this paper
are restricted to the Schwarzschild case. With this preface,
in this paper we give the horizon fluxes in analytic form to
14PN (in an e?° eccentricity expansion) and to 22PN (in an
e'% expansion) relative to the leading infinity-side flux.
Alternatively, these results can be thought of as 10PN (in
the % expansion) and 18PN (in the ¢'? expansion) relative
to the leading horizon flux.

Most of our results come from use of the fully symbolic
approach [24], but some of the lowest-order terms were
found by Forseth by fitting [22] and then tantalizingly
resummed into closed-form expressions in e (see also
[38,39]). Earlier, Shah [40] had used high-precision fitting
to find the circular-orbit horizon flux expansion past 20PN
in a mixed numeric-analytic form. Then, Fujita [41] derived
an entirely analytic expansion for the horizon energy flux
for circular orbits about a nonrotating black hole to 22.5PN
relative order (i.e., to 18.5PN order relative to the leading
horizon term). For the case of a Kerr primary, Fujita [41]
computed the expansion to 11PN relative (8.5PN relative to
the leading Kerr horizon flux). The effects of eccentricity
and inclination were then found [42] to 4PN relative (1.5PN
past leading horizon term) and e®. This result was later
extended to SPN relative (2.5PN past leading horizon term)

and ¢! in [43,44]. Reducing our results to the circular-orbit
limit, we match Fujita [41] completely to 22PN relative to
the dominant flux to infinity. Recently, horizon fluxes (tidal
heating) have been discussed as a means to distinguish
black holes from exotic compact objects in coalescing
binaries [45]. See [46] for a calculation of tidal heating and
torquing in a generic binary encounter and [47] for the case
of a quasicircular orbit.

The depth of our calculations precludes us publishing
here the full PN expansions. Instead, we detail in this paper
the form of the eccentricity dependence of each term
through 8PN relative to the leading horizon flux (12PN
relative to the full flux). The full expansions are posted
online [48], including on the Black Hole Perturbation
Toolkit website [49]. The results displayed here are
sufficient to note similarities with the infinity-side fluxes
discussed previously [23,31,32]. Using the full expressions,
we evaluate the PN expansions numerically at a separation
of p = 10 and a set of different eccentricities and compare
those values to accurate horizon fluxes derived from a full
Teukolsky BHPT code. This is analogous to the compu-
tation done in [24] to determine the fidelity and conver-
gence of the PN expansions of the infinity-side fluxes. A set
of different resummations of the series is examined. We
find the series exhibit useful convergence at p = 10 for low
eccentricity orbits (e = 0.01 and e = 0.1) but cease to
converge for an orbit this tight beyond a few orders of
magnitude when the eccentricity reaches e ~ 1/4 and is
essentially useless at e ~ 1/2. At e = 1/4 the best frac-
tional error reaches 1072 or slightly better, which can still
be useful for inspiral simulations since at this orbital
separation the horizon flux will be suppressed by four
orders of magnitude compared to the infinity-side flux.

The structure of this paper is as follows. Section II briefly
outlines the notation and formalism used for our analytic
expansion procedure. In Sec. III we present the PN and e
expansions of the energy flux at the horizon, making note
of which terms are completely known in e dependence
(closed forms) and which are known in accurate power
series. Section IV gives the equivalent expansion of the
angular momentum flux at the horizon. Section V gives a
general discussion of both the energy and angular momen-
tum flux results. Following that, Sec. VI presents compar-
isons to numerical flux data to test the validity of the PN
expansion.

Throughout this paper we adopt units such that
¢ =G =1, though 5 = 1/c is briefly reintroduced as a
PN-expansion bookkeeping device. We use metric signa-
ture (—+ ++). Our notation for the RWZ formalism
follows that found in [17,23], which in part derives from
notational changes for tensor spherical harmonics and
perturbation amplitudes made by Martel and Poisson
[50]. For the MST formalism, we largely follow the
discussion and notation found in the review by Sasaki
and Tagoshi [51].
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II. BRIEF REVIEW OF RWZ AND MST
FORMALISMS

Our formalism for solving the first-order black hole
perturbation problem for eccentric-orbit EMRIs on a
Schwarzschild background has been detailed previously
[17,24,52], including the added requirements in obtaining
fully analytic forms for the PN expansions [24], which is
based on earlier work in [25-30]. We have used the
approach in a series of recent papers [23,24,33,34]. We
provide, therefore, only a brief overview of the method.

A. Bound orbits and PN compactness parameters

The perturbation is treated as being sourced by a point
mass u in a bound eccentric geodesic motion about a
Schwarzschild black hole of mass M, with /M < 1. We
use Schwarzschild coordinates x* = (¢, r, 6, ) with the
line element

ds* = —fdt* + f~'dr* + r*(d9* + sin? 0dg?), (2.1)
where f = 1-2M/r. The coordinates are aligned so that the
motion is in the equatorial plane, with four-velocity

dx$(z) & L
“« - = ) r7 07_ )
ot =S50 = (o)

where £ and L are the specific energy and angular
momentum, respectively. We transform from parameters
7, £, L to Darwin [53] parameters y, p, e [54,55] via

(2.2)

o (P=2)"—de ,_»m?
Cop(p-3-6Y)’ Cp-3-é
pM
= 2.3
) 1+ ecosy 23)

One radial libration corresponds to a 2z advance in the
relativistic anomaly y. The other three coordinates (and 7)
can be related to y via ordinary differential equations
(ODEs) [17,52]. The function ¢,(y) can be expressed
analytically in terms of the incomplete elliptic integral of
the first kind F(x|m) [56,57] and then PN expanded in
powers of 1/p. In contrast, the integrand for 7, (y) is first
PN expanded and then the result is integrated analytically
term by term.

This representation provides simple means to compute
the fundamental frequencies for radial libration, Q,, and
mean azimuthal motion, Q,, (per radial cycle). Explicitly,
the radial period can be derived from

> n0) (o 2 —4¢° | i

T =
" Jo M(p—2-2ecosy)|p—6—2ecosy

with Q, = 27/T,. The integrand is readily PN expanded.
The mean azimuthal frequency follows as

4 p 1/2 4e
Q=-(—) K[-— 2.4
¢ Tr(P_6_26> (p—6—26>’ @4)

where K (m) is the complete elliptic integral of the first kind
[57], which is also then PN expanded in 1/p. Finally, the
alternative compactness parameter, y = (MQq,)z/ 3, can be
obtained in terms of an expansion in 1/p and inverted for
p(y) as an expansion in y. For eccentric motion, each PN
order will itself be an added expansion in powers of
eccentricity e.

B. The RWZ master equations

In the RWZ formalism [20,21], the first-order perturba-
tion of Schwarzschild spacetime is encoded by a pair of
master equations (one for each parity) that take the
frequency-domain (FD) form

[j_ R - v,<r>]x,mn<r> = Zy(r). (25)

Here r, = r+2MIn|r/2M — 1| is the tortoise coordinate,
X, are the mode functions, and the frequencies o =
@, = m&, + nQ, form a discrete spectrum derived from
the periodicities in the geodesic motion. The FD source
term follows as a Fourier series amplitude:

_ Ti /  (Gum(13lr = 1, (1)

+ Fp,(0)8[r = r,(1)])e™ dt.

Zlmn

(2.6)

Several variants of the master equations exist, and we
utilize the Zerilli-Moncrief equation for even-parity modes
and the Cunningham-Price-Moncrief equation for odd-
parity modes [50,52]. These choices in turn give rise to
particular forms for G,,,(¢) and F,,,(t). Due to symmetries
in the equatorial source motion, for a given / and m only an
even-parity or odd-parity mode will exist depending upon
whether [ 4+ m is an even or odd integer, respectively. The
potential V,(r) is also parity dependent, being either the
Zerilli (even) or Regge-Wheeler (odd) potential.

The homogeneous form of these equations yields two
independent solutions: Xj, = X  with causal (down-
going wave) behavior at the horizon, and X, = X)P
with causal (outgoing wave) behavior at infinity. The
odd-parity homogeneous functions can be determined
directly using the MST formalism [18], which we sum-
marize next. The even-parity counterparts are derived using
the trick [17,24] of solving the Regge-Wheeler equation
for the “wrong parity” and then using those solutions to
derive the even-parity modes through use of the Detweiler-

Chandrasekhar transformation [58-61].
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C. The MST solutions to the homogeneous master equation

The MST solution [18,51] for X' ~can be expressed as

Imn

T+ izt TSN ey L =2)0(b ,
X5 =e 1(1—;) ]Z a4(=2iz) WU(EC,—LQ,

.

(2.7)

where b = j+ v+ 1 —icand ¢ = 2j + 2v + 2 (see also [29]). In this equation, U is the irregular confluent hypergeometric
function, € = 2Mawn?, z = ron, with 5 = 1/c being a reintroduced (0.5)PN parameter. To find a solution, v (the
renormalized angular momentum) and series coefficients a; are ascertained through a continued fraction method [18,51],
with the eigenvalue for v allowing the series to converge on both ends. As previously discussed in earlier applications
[24,33,34], these parameters and coefficients are (PN) expanded in powers of ¢, and the full solutions have expansions in
both z and e.

In a similar fashion the inner, or horizon, solution, X;, . is given by
(€ it e\ e = l"(g)r(h)
X, =e |- 1 —- V——"oZ F1(g,h,k, 1 — , 2.8
Imn € (Z) ( Z) j:z:_oo aj F(k) 2 l(g Z/€) ( )

where g = j+v—1—-ie,h=—j—v—2—ie and k = 1-2ie. The quantities v and a; appearing here are the same as those
that arise in the outer solution (2.7). The process of PN expanding both of these homogeneous solutions by collecting on
powers of # is fully described in [24], based on the methods presented in [29].

When the RWZ mode functions are computed in this manner, the normalization is typically set by having taken ay = 1 at
the start of the recursion calculation. The resulting amplitudes at infinity and the horizon

+ iza}r*
lmn Almn ’

(2.9)

will be such that |A7 | # 1. To simplify (at least the presentation of) the flux calculations, it is convenient to adopt unit-

normalized modes, with X it~ exp(Fiwr,) [17,52]. The initial amplitudes can be found, respectively, by taking the limit
as z in (2.7) goes to infinity and as z in (2.8) approaches the horizon. Then, we find

. iz( 2iz)v+l g €\ —ie ) I“(b_

Xt o= =L (2je)7(1—- Y(=2ig)] L
Imn Alq;lsnum ( l(:‘) z j:Z_ooaJ( lZ) F(b*+
Apem = S g I(j+v—1-ie)[(j+v+1-ie)

. "T(j+v+3+ie)l(j+v+1+ie)

j=—00
o _ J+v=1-ie)l'(=j—v—2—ie)
Ximn = lmn/Almn’ Al = j:z—ooai (1 —2ie) ) <2.10)
[
The renormalized mode functions, X . And X7 ., can be c* 1 dt G
PN expanded just as with the original modes. However, Imn = WinT» Jo d;( XinGim
while it is convenient to think of XIJr and Xj, for -
mn 2M 1 dX aX,,
purposes of introducing the flux calculations, from a + | 5= lmn mn \F,o | et dy (2.11)
symbolic computational standpoint it is more efficient to pf f p d
work with specific factorized versions of these functions, as ) )
described in the next subsection. Here, Wi, is the Wronskian
o dXf ax;
D. The horizon fluxes Winn = X l’"” - X+ o l’"”. (2.12)
Using the unit-normalized homogeneous solutions for the

mode functions to construct the Green function, integration ~ Once the Cj,, amplitudes are computed, the time

over the point-particle source yields the following set of
normalization coefficients (or asymptotic amplitudes):

domain solutions and fluxes can be obtained. In principle,
toexpand (2.11) analytically, the homogeneous solutions are
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TABLE I. Overview of the computational time needed for
expansion of various even-parity normalization constants to high
PN order. Expansions were found for specific / but general m and
n on the UNC Longleaf cluster. The third and fourth columns
indicate the time and memory, respectively, needed for the
calculation. The fifth column gives the approximate size of a
text file holding the output. In each case the comparable odd-
parity computation is simpler and faster.

Relative CPU time Text file
Coefficient order (hours) Memory size
Com 18PN/e!0 81.7 5GB 140MB
dmn 14PN/e'0 21.1 3GB 50MB
Con 10PN/ 20 33 2GB 120MB

evaluated at the location of the particle using the PN-
expanded and e-expanded geodesic motion of the secondary.
Then, expansions in y (or 1/p) and e are generated for the
remaining parts of the integrand. Integration term by term
produces a double expansion for each C, . See [24,30] for
more details.

Our concern in this paper is with the horizon-side
coefficients, Cj,,,, which can be used to obtain the rate
at which energy and angular momentum are absorbed by
the black hole according to

(%), = T rayICont
647 (1 — )' Clmn
dL (l +2)!

< dt > 647r (l 2)!

However, as discussed in [24], the straightforward
implementation of this procedure produces symbolic
expressions of unwieldy size, limiting the attainable PN
order and order in the eccentricity expansion. The com-
putational task is reduced drastically by removing certain
z-independent factors from the homogeneous solutions
prior to calculating the source integrals, and then multi-
plying those factors back in at the end. The factors for X7, .
relevant to computing the flux at infinity, are given in [24]
and exactly match the S, tail factorization (N. Johnson-
McDaniel, private communication) that generalized for
eccentric orbits the circular-orbit S, factorization explored
by Johnson-McDaniel in [62]. Not surprisingly, a simi-

lar factorization exists on the horizon side. Removing
the z-independent factors from X; ., which affects the

Imn*

c;, (2.13)

lmnl .

Imn>

dt 5

Wronskian, modifies (2.11) and leads to an altered set of
coefficients Cj,,,. The factor pulled out is seen in the
relationship

- _<2)Av (F(1+Au—ie)2

= (= Cyo.
mn =\ p) T(1+2A0)0(1 —2ie) "™

(2.14)

Here, Av = v —[. The fluxes, for each mode, are then
recovered by multiplying back in the complex square of
this factor

o 2 200 (1 + Av —ie)’T(1 + Av + ie)?
Imn| p 1"(1 + ZAy)zr(l — 21€)F(1 + 2l€)
x|C7, 2 (2.15)

Note that in the PN limit, complex values of v are never
encountered. The use of this factorization significantly
improves our ability to reach high PN order. A few
computational benchmarks using this procedure are given
in Table I.

III. PN EXPANSION OF THE HORIZON
ENERGY ABSORPTION TO 18PN

As mentioned in Sec. I, recent work by Isoyama et al. [44]
found and utilized the horizon flux for eccentric-orbit EMRIs
to 5PN, at ¢!, relative to the leading flux at infinity. Recall
that for a Kerr primary, this result is 2.5PN relative to the
leading horizon flux. For a Schwarzschild primary, it is only
1PN relative to the dominant horizon flux. Less well known
is that Forseth, in his thesis [22] (see Secs. 7.3 and 7.4; also
see the posted APS talk [38] and Capra talk [39]), found the
exact-in-e horizon absorption for nonspinning EMRIs (at
lowest order in the mass ratio) through 2PN relative to the
leading horizon flux (which we will henceforth refer to as
horizon-relative) and a couple additional exact-in-e terms
and accurate numerical coefficients to high order in e up to
7PN horizon-relative. In other words, Forseth’s work already
had mixed analytic/numerical understanding of the eccen-
tric-orbit horizon flux to 11PN.

To begin enumeration of our findings, it is useful to recall
that high-order work on circular-orbit horizon fluxes
[40,41] determines the expected form of the PN expansion.
However, individual coefficients at each PN order are now
replaced by functions of e in the eccentric-orbit case. The
leading part of the horizon energy flux is given by the
expansion

dE 32 /m,\2
<—> =— <m—?> Y [Bo + yBi + y2By + ¥} (Bs + By logy) + y*(By + By log y)
H

+ y>(Bs + Bs logy) + y11/2311/2 + y°(Bs + Ber, logy + Bgolog?y)

+ )’13/2313/2 + y'(B7 4 By logy + Bypplog?y) + - -],
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where the By, B, Biio, etc., are functions of e. The
structure of this expansion differs from that of the flux at
infinity, principally with the half-integer (tail) term not
showing up until 5.5PN horizon-relative, which is at 9.5PN
in the total flux. This contrasts with the infinity-side flux
where the tail appears at 1.5PN.

In discussing the horizon fluxes, we find it convenient to
refer to terms by their horizon-relative order. Thus, in our
labeling of the eccentricity enhancement functions, By,
By, etc., the integer or half-integer k reads out directly the
horizon-relative order. From this point on we will implicitly
refer to PN terms by their horizon-relative order. The
structure beyond what is displayed in (3.1) is clear; at
integer orders, a new power of log y shows up every 3PN in
the expansion and the first logy term at half-integer order
will appear at 8.5PN, with added powers of log at 11.5PN,
14.5PN, etc.

In 2016, Forseth [22] used the numeric-analytic fitting
procedure discussed in [17] to fit for coefficients in power
series expansions in e* of a number of these enhancement
functions. The accurate numerical results reached 7PN
order. For energy fluxes, he found closed-form expressions
for 60(6), Bl (6), 32(6), B3L(€), and B4L(€>. He then
extracted analytic coefficients for terms in truncated power
series expansions in e” for many of the remaining terms to
7PN, specifically computing B;(e) to e*, By(e) to e*,

|

Bs,(e) to €, By j(e) to ', Bgpa(e) to e'?, Byspa(e) to
e, and By, (e) to €®. No new analytic coefficients were
found in Bs(e), Bs(e), B (e), B;(e), or By, (e) beyond the
already known circular-orbit limit, but additional accurate
numeric coefficients were found.

This paper now extends the work in [22] using the
analytic expansion methods of [24,29,30]. The result is a
pair of expansions, with one derived to ¢?° through 10PN
and the other to e'” through 18PN. (These results require
doing extensive symbolic computations with Mathematica
on a cluster computer and we found it useful to press the
expansions as deeply as possible alternately in PN order
and in powers of e.) Again, because the horizon flux is
suppressed by 4PN, our calculations go to 14PN and 22PN,
respectively, relative to the leading Ly(e) and Jy(e)
quadrupole fluxes [23].

We now step through a presentation of each energy flux
eccentricity enhancement function through 8PN order. Each
function was computed through ¢, but some were found to
resum into closed-form expressions and several are truncated
here to fewer terms than e?° for brevity. The full results
through 10PN/e?® and 18PN/ e!” are posted online [48,49].
As we mentioned, a subset of these coefficients were
presented in [22]. At the lowest few orders, closed-form
expressions were found through 2PN [22]

| 31, 255, 185 . 25
B — 14220 2 4 199 6 20 8 3.2
0= (1 6)15/2<+2€+8€+16€+64€) (3.2)
147 5 799, 2635 13515 o 275
b=y <4+ BT T el ) (33)
5 181 1336 o 25097 42743 ;489245
e e e
2T 1= 24 48 768
360197 o 6025 75
_ 2 B, 3.4
T8 ¢ Ts6 ¢ ) T T2 (34)

Interestingly, the Bj(e) enhancement function has been
recently separately uncovered by Datta [63]. The 2PN
function is given here in a form that is slightly different
from what was shown in [22]. As with the 2PN flux at
infinity [23], the polynomial attached to the subdominant
singular factor can be manipulated into a term proportional
to a lower-order function, in this case By(e).

A brief reminder is in order about the enhancement
functions. In a PN expansion using y (based on azimuthal
frequency) as the compactness parameter, the enhancement
functions become infinite in the limit as e — 1. This is
because, at fixed frequency and as e — 1, the pericentric
distance goes to zero. The eccentricity singular factor—
factored out power of 1 — ¢ in each function—represents the
(leading) singular behavior of the enhancement function [64].

|

The remaining polynomial, or more generally the remain-
ing infinite series, then limits on a nonzero constantas e — 1.
In certain cases it has been possible to identify these
eccentricity singular factors separately via asymptotic analy-
sis [17] (see also discussion in [32]). Occasionally, there are
identifiable subdominant singular terms, like that found
in (3.3).

At 3PN we found that the nonlog series, already known
to ¢* [22], could be put into a closed form. Among several
steps in this reduction, we first notice that the 3PN log term
reappears in the 3PN nonlog function. The overall com-
plicated closed-form expression at 3PN is reminiscent of
the 3PN flux at infinity [31], though the present one lacks a

x(e)-like [64] (infinite series) function. The 3PN nonlog

and 3PN log functions are
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5 — 1 9530309 14041757¢> 81025787¢* 102162779¢5  188105821¢8  4984577¢10
ST (1=e)H2 | 51975 4725 8400 3600 5760 600
2917799¢!2  82525¢14 5 (4348832 4081074097¢>  29035617361e*  6084796133¢°
- - Vi-e + + -
2048 1024 14553 727650 2910600 2328480
11563334750368+230334470711610+12625e12 35 04 1—e? 5 (35)
- |— 0 , .
18627840 46569600 64 107" iviza/)l™
-1 1712 79822 , 393867 110103 100687 , 287937 3745
B. — 2 4 6 8 10 121 3.6
3L (1—e2)21/2<105 05 0 0 16 ¢ T30 ¢ T2s6 ¢ ) (3.6)

The 4PN nonlog term marks the first appearance of additional transcendental numbers, such as y and log 3. This series
has no overall closed form. However, there are parts within it proportional to 7> and yj that do terminate in finite
polynomials, which can be seen in the following expansion truncated at e'®:

1 10859497 52 , 1024 3980 6799223 14992

- - — 1 4207% -

(=B | 2050 3% 15 'ET 21 a0 Hm Ty
77324 30618 16251413749 4045 , 293664 12610811

— 2 0g(2) - 2" log(3) ) €2 - 2_ - log(2
75 108(2) ——5—log( )>e < 176400 3 75 ET a5 e

8038555537 975574y, 1006817> 2565846047log(2) 118403451 10g(3)
84151og(3) ) * - - -
+ 98415 log( )>e +< 16800 5 R 540 160

1650390625 log(5)\ 4 122640123477 1083614y 17675917 77581480669 log(2)
864 ¢ 89600 5 32 1440

8528452173 1og(3) , 3651367187510g(5)) , , (112982456593 31951717,
640 1152 ¢ 89600 40

12472278232151 log(2) 280561035495519log(3)_1830180273437510g(5)_3160616408486747log(7)> o

- 3273277

27000 1024000 73728 27648000
3835468188137 39893y, 15285977 469639312291021910g(2) 4645413320517747log(3)
( 6451200 5 32 972000 - 2048000
48583379785156251og(5) | 330478628708225893 10g(7)> 2
3981312 165888000
<1532279204891 | 1216366226761406974910g(2) _ 61257, 8312610758654209851 log(3)
4515840 254016000 64 1605632000
6592628145458984375l0g(5)  26254948020907176837710g(7) 40425;;2) U
1560674304 15925248000 512
19581861707467 84484848408106114710g(2)  195002386788591269793 log(3)
< 82575360 2381400 2569011200
13605756642412109375log(5) ~ 439388545040978324393log(7)\
B 4161798144 5096079360 )e +]

(3.7)
The 4PN log term has the previously known closed form

10

5 1 9148 11348 , 2650657 , 412167¢ , 9681067 4810141
= - - e — e — e e e
LT =B\ 105 3 105 20 160 80

| 1698271 ,, 99085 14>‘

160 ¢ 512 ¢
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At 5PN, the nonlog function is similar in form to its 4PN counterpart, though without any apparent truncation in the parts
of the series attached to 72 and y. As a result, we only present the first few powers of ¢ here. We find that the 5PN log term
can be put into a closed-form expression, with a subdominant singular term that involves the recurrence of the 3PN log
function

85:

1 {2547493 2528 780 , 42561210g(2)

(=2 | 1372 1 35 "7 77 " 2205

(1328278289 | 1281872, | 359584x° | 897249210(2) | 137781 log(3)> .
61740 45 63 735 5

(_ 1304314425913 | 2104464567, , 129456437 | 22816656827 log(2) _ 7158051 10g(3)> y

1234800 * 315 252 - 8820 20

<_ 1963383791933 " 61546622y, n 94077237 4622401802581 log(2) 485183835910g(3)
231525 15 56 158760 2240

660796484375 log(5)> 6 (_ 91961130977371 936331714y n 3816054172 n 13904921619359 1og(2)
36288 3763200 105 96 30240

349567982667 log(3) _ 1506157421875 l0g(5) 5
1792 48384 ¢ ’

(3.9)

Bs;, =

1 27212 15715351¢*  1829922349¢* 99609798296  9496143917¢8

(1 —e?)>/? ( 49 * 441 + 4410 + 5880 + 3360

3196758989¢1° n 952203067¢'2 3 2055863934 3 4047085616> n 105
1920 5376 7168 4096 21 =2

As already known from the circular-orbit limit, 5.5PN marks the first appearance of a half-integer flux term. As expected
from our experience with the infinity-side flux, the 5.5PN term appears to be an infinite series with rational number
coefficients (once an overall factor of z is pulled out)

Bsy.. (3.10)

5 m (109568 72974 , 11159458 , 2064646855 , 556894606109 ,
2= =) < 1575 9 ¢ 75 ¢ 2592 ¢ 362880
_ 1634615689436141 |, 647533375166093 ,, _614373168703875323¢'*
1451520000 2177280000 27311800320000

139393544295440923¢'° " 6810696714424201¢'8 N 261931344108584947 % " (3.11)
655483207680000 3398024948613120000 = 84950623715328000000 '

At 6PN, in the nonlog term, there is a significant increase in coefficient complexity. Only a few coefficients are listed here
for brevity, with the rest available elsewhere [48,49]. Experience leads us to believe that the 6PN log term will likely yield a
closed form, but the expansions would have to be computed beyond e*° to confirm the conjecture and to solve for the
(presumed) rational number polynomial. A key part of that belief is that we are able to simplify the appearance of the full
term by isolating the transcendental numbers. The 6PN log? term, meanwhile, is an additional closed-form function, which
reappears in the 6PN log term

5 1 278408801583211 _ 5943767,  17112988x” 256x° _ 1485396268 log(2) 27392 , 2
- - - - - T
67 (1-¢2)P2 | 48134047500 2835 33075 45 694575 315 &
146547210g>(2) _ 54784¢(3) | (_3184621738776971 2092332447, | 488155076z 309927
11025 105 96268095000 2835 33075 45

_ 29196601796 log(2) 3316144 , ( )+17741370410g2(2)_59267710g(3)_66322884(3) 2
231525 315 ¢ 8 11025 7 105
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_ 3155544818212373 534255044y 77199874377 3 195424 7* 30309834111577 log(2)
729303750 189 44100 15 2778300

20910368

1118704688l0g?(2)  3855090511og(3) 41820736¢(3
o5~ log(@)+ 3675 2 280 = 35 : )>e4
<2981094178946939 _ 93772113027, _ 285725661312 5704
466754400 315 10584
216371435533139log(2) _ 7668690 , @+ 82054983log?(2) 24002939547 log(3)
2000376 & 49 2240
~ 279012732272:93275 log(5) 460121740§(3)> o } ’ 6.12)
5 1 (_ 1265045848 69768064262¢>  1168647880507¢*  16908108709883¢°
T (1= 694575 694575 926100 1852200
286763142507587¢8  69524389377859¢10  206416658766499¢'2  417391782384293¢ 14
B 7408800 B 1008000 B 4704000 B 56448000
40129383119743¢'®  14409668299744981¢'8  192650436984624487¢20
52684800 + 22759833600 + 455196672000 B )
2
—2[%;:2 —i—log(ﬁ)]lﬁ'ﬂz, (3.13)
B, = 1 <1465472 177413704 , 1118704688 , 82054983 9729806711
(1-e2)272\ 11025 11025 3675 49 2940
995250121 ,, 5650230337 ,, = 244830339074 515205e16>
+ =, e + (3.14)
400 8400 470400 1024

Like the function at 5.5PN order, the 6.5PN enhancement function is an apparently infinite series with rational number
coefficients

B * 7239376 2576822347¢>  327802444819¢*  58650165206431¢°
13/2(1—e2)l4<33075 TT33075 T 132300 2721600
5301531761061667¢" | 5675365062629170939¢'° | 3814747001238 13839¢!2
76204800 60963840000 731566080000
2578526099214361612987¢'4  80254088065124092712893¢'6
229419122688000 T 110121178890240000
175336474661571444475081¢'®  99566880013911101100559¢% )

28543409568350208000  14271704784175104000000 (3.15)

At 7PN we see echoes of lower-order behavior. First, the 7PN log2 term is found to have a closed form. Then the 7PN log
term is found to have a structure similar to 3, (e). Finally, the 7PN nonlog function displays another increase in complexity,
which requires us to truncate its presentation here to just the first few coefficients

g | 139830180452857 _ 411225410727 | 87654473 | 19216637 _ 1638475n° _ 784r’
7T =P | 4202178750 5457375 1575 945 45 45
121809908713 log(2) 1753088 44752 7653496log?(2)  1458log(3)  40352¢(3)
_ log(2) — 2% 2 _ _
5457375 t g5 reloa(2) = e log(2) 1575 49 15
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3256393785622158277 21584177896y 22831232y% L 59402302697 n 454474 3 2987264y g1’
1058949045000 18375 225 66150 15 45

367416 121017856 loe(2 17215808 1o +5955363210g2(2) 103840639180343 log(2)
- it P -

315 reloe?) =33 e(2) 245 76403250

185822334009 log(3) 5616216 11232432 2808108log?(3)  3598720£(3)
- 134750 25 relog(d) +———log(2)log(3) + 25 Y ¢

<684888927873400705183 6024298579594y,  58826032y2  229149574331z% 5497760y

7 log(3) +

8471592360000 218295 21 132300 3
| 20642327 738690281716966310g(2) | 6925498816 ) 2030832 o
45 50935500 205 TEOS 35 %8

145436677388l0g2(2)  61967753165457 log(3) 749764836 7007148
- 1 PRS2y
2205 2156000 175 relog(d) +—5—log(3)

1499529672 37488241810g2(3) 6201171875 l0g(5)  135519152¢(3)
_ 2005 0 (2) Tog(3) — - - 4y,
75 loe(2)log(3) 175 42336 105 et
| 4017866767 | 8765447, 201767 , 105972810g(2)
(1= )" 363825 525 45 225

14891078894803 22831232y 1799360712+395990393610g(2) 8424324 10g(3)\ ,
15280650 75 63 11025 25 ¢

< 650869974249181 58826032y, 67759576x> 423623437208 log(2) 112464725410g(3)> 4
- - - e

(3.16)

B7L =

30561300 7 35 11025 175
5802998904113 | 11977322344y, 49439206z _ 1645422089422 log(2)
308700 175 35 33075
62344445777 1og(3) 882958984375 log(5)> oy }
2800 3024 ’
1 1736824  1320376576¢>  26787887416¢*  18315316581¢° 1216053833768
(122 < 1575 11025 11025 1225 392
1024840623571¢'0  5553745441¢'> 1982418157607 7256809345951¢ 23588685e18) (3.18)
58800 1200 470400 15052800 4096

1
+

(3.17)

B7L2 =

The flux function at 7.5PN order is another infinite series with rational number coefficients, similar to those at 5.5PN and
6.5PN orders

b2 284700044 7489794532 2529616180321 et 3 279099734426153¢°
s 297675 1575 113400 979776

2544038708577181267¢%  327745583650604808497¢'0  1110213896372403035881¢'2

B 1828915200 B 109734912000 B 376233984000
13562049636351151342862933¢'*  958544888235761993942724041¢'°

B 10323860520960000 B 3964362440048640000
22610106285369446938573477111e'8  69643516119521541537867215203¢2°

B 1284453430575759360000 B 28543409568350208000000 N >

Bis;, = (

l—e

(3.19)

|

Finally, the 8PN flux terms are similar in complexity to by finding a closed-form expression of exactly this type for
their 7PN counterparts. We first consider the 8PN log? the 8PN log? angular momentum absorption, Dg;, [see
term. By comparison with the infinity-side flux [23], this = Eq. (4.22)]. Doing the same for energy absorption is
term would be expected to have a closed-form expression,  unfortunately just out of reach since our symbolic com-

with polynomials multiplying dominant and subdominant  putation stopped at €. To the depth we calculated, the
eccentricity singular factors. This conjecture is supported  series is
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B 1 56356816  8698826708¢>  2649929234297¢*  34990723365323¢°
27 (1= e2)312 | 25725 15435 77175 77175
440076691742413¢8  432807788333483¢!0  42100421744609¢'2  412167960491007 14
B 205800 B 102900 h 11760 B 3292800
_ 3758717869097377¢' N 495419426564971¢'8 N 42850078990521 2 (3:20)
26342400 90316800 8028160 '

Next, the 8PN log term features numerous transcendental numbers, which even a truncated display of the function to e*
reveals. Finally, the 8PN nonlog function displays another increase in complexity, with new terms with products of
transcendental numbers

1 57784184943753058541 n 1439910584804y,  711232y% 218568222472 n 120448y z 7
(1—e2)31/2 626368360117500 496621125 1225 231525 315

369927 239862025427236log(2) | 764902475 log(2) 651545677 log(2) N 24280192102 (2)
315 10429043625 6615 6615 9261
14581og(3)  6868864¢(3) 3813515315126610126287  2350080736803092y, 30858718472
T T 733 <_ 375821016070500 | 297972675 735

787531892117% 91013152y,2%  117442727* . 1114535623974311og(2) 78444528832y log(2)
2717830 189 945 12835746 33075
6632430887% log(2)  397392460904log?(2) " 5146706320929 log(3) 19499292 log(3)
2205 231525 700700 25 VEio8
2388204 56004696 9749646log?(3 148340096¢ (3
+—— n*log(3) — Tlog(2) log(3) — 250g G) + A1 dl )>€2

12281508178808572470642587 n 568110967198223434y, 261357876236y%  3234224327*
15032840642820000 1489863375 11025 945

7066793023675972 4468412344y > 3702433771498464049l0g(2) 7848597389776y 1 log(2)
B 5556600 * 189 2528253000 B 33075
5432044814487%log(2)  120006708435844l0g?(2)  3071211711902343 log(3)

6615 B 231525 a 28028000

191738007 6245376534 191738007910g?
+%mlog(3)—80897137[210g(3)+ilog(2)log(3)+ 2 3509 0g”(3)

Bgz

175
49326171875 log(5) , 88623623464L(3) ,
54432 2205 ’

(3.21)

B 1 { 94860587410858 6486848y, 34344327% 270364544 10g(2)
8L = - -

(1 —e?)31/2 3476347875 11025 2205 + 77175

3471216185138587 25031383847/E_~_741700487r2 97943219824 log(2)
834323490 1323 1323 46305

<23616087848898761017 3174674232748y 4431181 173222 _ 28546607371664 log(2)

— 1850202 10g(3)> e

83432349000 33075 6615 77175

10573372989 log(3) 4
+ 350 e’ 4+ .

(3.22)
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IV. PN EXPANSION OF THE HORIZON ANGULAR MOMENTUM ABSORPTION TO 18PN

Prior results on the circular-orbit limit imply that the horizon angular momentum flux will have a series of the form

dt 5M
+y°(Ds + D5, logy) + ! l/22)11/2 + ¥°(Dg + Dy log y 4 Dgp,log?y)
+ yl3/27713/2 + ¥ (D7 + Dy, logy + Dypolog?y) + - -] (4.1)

dL 32 42
< > = _:“_y15/2 [Dy + yD; + y*D; + y* (D5 + D3y logy) + y*(Dy + Dy logy)
H

|

As with the absorbed energy, Forseth [22] used numeric- e*, Dy ,(e) to e*, and D;;,(e) to 5. No additional
analytic fitting to find eccentricity coefficients in these analytic coefficients were found in Ds(e), Dg(e), D;(e),
angular momentum flux functions to 7PN horizon-relative D, (e) beyond the known circular-orbit terms.

order. In particular, he found closed-form expressions for Just as with the energy flux, we have extended the
Dy(e), Di(e), Dy(e), Dsp(e), Dar(e), Dera(e). He then  apgular momentum absorption to e through 10PN and !°
extracted analytic finite-order series in e? for many of the  through 18PN horizon-relative order, displaying a subset of
remaining terms, specifically finding D3 (e) to €%, Dy(e) to  the results to 8PN here. The first three functions again yield
e®, Ds(e) to e, Dsp(e) to ¥, Dy p(e) to e, Dg(e) to  closed forms [22]:

|

1 15 45 5
Dpm 1+ 22 4 2t 2 42
0 (1—e2)6<+2e+86+16e>’ (4.2)
1 15 195
D, = a—ay <4 +42e* + Ze“ — 405 — 6468) (4.3)
1 38 7965 1175 37825 495 30
D, — —22 11972 4 6 84 ——el0) 4y ——_1D,. 4.4
2 (1-e2)8< 7 €+16e+16e+256€+326)+ =2 " (44)

The remaining flux terms exhibit the same patterns and structure as their energy flux counterparts. We find closed-form
expressions at 3PN and 3PN log, with the discussion surrounding (3.5) and (3.6) pertaining:

b1 [ 633427 1148221¢> 61667¢' 5046283¢ 2070809¢* _736891¢!’ _26905e!?
ST =2y | a1 2100 100 720 640 1536 512
L /T 7(8252956 | 333023069° | 483244816 S66970143¢° | 411843863¢" | 74250
. _
33075 132300 88200 1058400 264600 64
35, 1-¢?
|22 g — ) |D 4.
R e | @5)
~1 /1712 15622 , 9202 , 3531 , 749 , 535
Dy = 2 4 6 .8 - 10 . 4.6
3 (1—e2)9(105+356+5e+2e+2e+64e> (4.6)

The 4PN log term was known to be closed. The 4PN nonlog structure is similar to the description of (3.7):

D 1 {10859497 52 , 1024 3980
=

a2 ~ 7 og(2

(=e)® | 2200 37 15 F 7 a1 022
3562043 15296 108896 20412 )
— log(3) |e

20 | 35042 — _ log(2
soq T g rem g loe(2)

1914399217 o 109224 185561 207432
58300 d 5 TET 05 °%

log(3)> et
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<6385665030199 es0art 2065752” . 297(1);;1537 log(2) - 644166547 tog(3)
B 3302;2125 &l 5>> . (3523243 B 15226}/5 1 a52? 1088936 51og(2) 20412 510g(3)> p
<131465564381 6363y, 28273r | 818720637388710g(2) , 41897616724017 log(3)
1075200 2 16 54000 512000
3012572265625 log(5) _ 451516629783821 10g(7)> o
36864 13824000
<8149493677 805y, 26257 2551616060639357 log(2)  318863338438527 log(3)
129024 16 64 1944000 512000
359725572265625 log(5)  4314758300454931 log(7)) o
095328 8294400
(6212661 1699 1119978423832346 log(2) | 233938946375256303 og(3) _ 290951443134765625 log(5)
1505280 99225 160563200 260112384
3466444202976331129 log(7
B 884736000 . )>el4 T } (4.7)
- _182)10 (_ 911(;158 B 18340 . 352;11 . 39573 p 382323 . 30;1(9)13 o 6461‘1L5 612) 43

From this point on, the angular momentum absorption terms continue to display structures that are parallel to those found in
the horizon energy flux functions, with the descriptions surrounding equations (3.9) through (3.21) being also relevant here:

py_ L [s4493 780, o3 apselz
STa-)T | 1372 T 7 " T35 TET ;05 8

17459549369 84776 , 75928 2876344 @+ 1492,
617400 21 77T s TET T35 % 5 e )e
_ 327317515241 | 83643047, 6026457 96119453310g(2) _77711410g(3) s
- e
823200 35 28 980 5
_ 295832552489 | 67586397, 763952 _ 60714697927 log(2) | 869840613 log(3)
141120 7 2 5670 1120
, 107205390625 log(5)
18144 SREEE (49)
1 21220 10568546  105391081¢* 924809565 4933699968
Ds. = 11 + + + +
(1=eA)T\ 49 735 980 28 140
33176401¢!  22547523¢!2  254885¢!'* 45
+ - S C )+ Dy, (4.10)
448 2560 512 Vioe
» P 109568 2673716 , 10478082 , 45144231221 , 1487314873
= - - e — e’ — e’ — e
2= (=B \ " 1575 525 175 226800 6720
59287955317343 ,, 35598516307309 , 445860177201473 |, 7632479873521'°
- e — e — e —
725760000 4354560000 4551966720000 46820229120000

97059177665259263¢'®  50174510761076183¢%° > (4.11)

1699012474306560000  4045267795968000000
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D6:

1 278408801583211 594376y L 1711298872 3 25674 1485396268 log(2)
(1—e?)'2 | 48134047500 2835 33075 45 694575

27392 , log(2) + 1465472l0g?(2) 3 54784£(3) 85821442460021 6942352y n 4972805872 B 64887*
315 ¢ %8 11025 105 2917215000 189 3675 15

53846558282 l0g(2) _ 694216 | 37140556l0g2(2) 1689822 log(3) 13884325(3))62
_ _ . _ _

2
694575 105 7 log(2) 3675 35 35
5240369975829997 121960978y, 1134748367 15716z* 2913769591493 log(2)
2333772000 135 2205 3 694575

1681612
21

7*log(2)

2
| 89966242l0¢(2) | 230612589 log(3) 3363224((3)) . } ’

735 280 7 (4.12)

Do =

1 1265945848  16493890982¢>  104951231074e*  1678568830571e°
(1—e)'? 694575 231525 231525 926100
3 2140195374283¢% 3 12294919487327¢'° 3 6710991064951e'> 3116165637374

352800 1764000 3528000 * 3292800
21944030513653¢'¢  1497519760589479¢'®  3625336614440057¢° )

210739200 + 22759833600 + 75866112000

35 1-¢2
2= +1 — | | D 4.13
[10777 + 0g(1+ i 62)] 612 ( )

- 1 1465472 37140556 , 89966242 , 613632053 66484343
= e e e e
L2 7 (1=¢»)2 \ 11025 3675 735 1470 140

1002371399 |, 87664993 ,, 57245614>

8

e

4.14
5600 ¢ 4800 256 (4.14)

D bis <7239376 498843526¢>  32043307573¢*  10826350727947°
13/2 =

(1 —¢2)»/2\ 33075 + 11025 * 33075 + 1905120
605479733577979¢%  10827476512699331¢'0  256407320284306739¢!2
50803200 + 1128960000 + 91445760000
1675180844613905281¢'*  276193163158536266411¢'°
7080837120000 + 110121178890240000
196594041130209959¢'®  225861941667542473117¢%°
~10194074845839360000  1189308732014592000000 L >

(4.15)

D']:

1 139830180452857 41122541072y,  876544y%  19216637> 16384y x> 121809908713 log(2)
(1—e2)13 4202178750 5457375 1575 945 45 5457375

1753088 44752 7653496l0g2(2)  14581og(3) 784x*  40352¢(3)
log(2) — 2% 12 160(2 _ _ _
525 7e108(2) == log(2) + =g 49 45 15

6197531723738801 128020343932y, 3405510473 941404967 636544y,n® 22727
2941525125 165375 525 1225 15 15
1449289013128 log(2) 125701888 1336928 544089008l0g2(2) 64972695078 log(3)
- log(2) — 210g(2 _
12733875 s reloe(2) -5 log(2) + 3675 67375

3744144 244944 7488288 1872072l0g?(3)  4942016¢(3
I plog(3) - 24 e log(2) log(3) 4 10 20 LoE ) B

+

+ n*log(3) +
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88742914458905034991 _ 22844069195159y; | 62503236873 , 8425492576r° _ 116828487, 41806
2823864120000 1819125 525 11025 15 3
2891722861514959log(2) 131570624 1193860762 4009684155910¢2(2)
_ 1 - T %log(2
38201625 g 7loe(2) 315~ le@) 1225

39745130309019 log(3) 460529712 4304016 921059424
2156000 75— relog(3) + =77 log(3) - =5 log(2) log(3)

230264856l0g2(3) 1240234375 log(5)  37047516¢(3) .y 4.16)
175 14112 35 ¢ ’ '

1 4017866767 876544y, 20176z 1059728 log(2)
(1—e%)3 {_ 363825 | 525 45 225
(_ 596572565758 | 340551047, _2471008°  869110496l0g(2) 5616216log(3)> 2
848925 175 105 3675 25
(_ 49420103890709 | 6250323687, 61745867 69443369578 log(2) _ 690794568 10g(3)> o ]
5093550 175 35 3675 175 ’

Dy =

(4.17)

1 <1736824 310988224 , 284829399 4_'_3316579811 6 20100276671¢®
e

D7L2 = (1 _ 62)13 e’ +

1575 - 3675 ¢ * 245 735 3920

934711019¢'0  53854863467¢'>  94744327¢'*  4834795¢'° (4.18)
1400 67200 640 2048 ' '

b __*® 284700044  81036003964¢>  64841337691¢*  1310374935437849¢°
PR (1=e)P2\ " 297675 297675 7560 17146080

1420721090175533561¢%  159166848358764247¢10  2988404293284553705799¢ 2
B 5486745600 B 428652000 a 13168189440000
56478488808103952821241¢'*  18218890242335897733888553¢!6
a 1032386052096000 a 3964362440048640000
_ 13448540855624055914147635%¢'8  7880069081437385949150751441¢% ..') (4.19)
321113357643939840000 36698669445021696000000 ’ '

D 1 57784184943753058541 n 1439910584804y n 71123272 21856822247
5 (1—ex)* 626368360117500 496621125 1225 231525

120448y 7> 369927* 2398620254272361og(2) 764902475 log(2) 651545672 log(2)

T3 T35 10429043625 6615 a 6615

24280192log2(2)  14581og(3) 6868864 (3) 1793079545089570389037  2171076650206094y
9261 49 735 (_ 417578906745000 T 496621125

23480282087 , 50484091307 | ST3692875w° _ 2772704x" | 32280215575912501 log(2)
11025 17150 21 315 6952695750

230474816 107401856 73082616704l0g2(2) 3376535894406 log(3)
~ 75 reloe(?) e log(2) - 77175 875875

9255384 1347192 29848176 4627692log(3)  25289248((3
BT, ros(3) + e log(2) log(3) - *TE ) BEEEC)) o

n?log(3) -
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_ 1083282732353782898993897 | 43870606953871yp 32306192816y% B 4705049143637

3

3340631253960000 294294 3675 102900
N 327013984y;7> 10469957 | 8356953051 , o+ 8118457969737885403 log(2)
35 7 245 %8 13905391500
_ 993501840704y, log(2) _ 9485078514861 llog®(2) 2406913973811 log(3) 706033584 o)
11025 463050 52000 175 TE°%
20505312 2900101968 353016792log?(3) 55662109375 log(5)
Bt g 23| " log(2)1
7 log(3) + 75— log(2) log(3) + 175 127008
716949978¢ (3
N &( )>e4+ ] (4.20)
49
R | 94860587410858 6486848y, 34344327 | 270364544 10g(2)
LT (1= 3476347875 11025 2205 77175
| (489401285684009 _ 11555797648y, 1264462472 28608160928 log(2) 25220484 10g(3)\ ,
- - - e
257507250 11025 2205 25725 25
. (127638001836320407 27455536336yE+119491663;;2 11532637472737 log(2)
1158782625 735 49 77175
25470851761
L2 708i7;6 0g(3)>e4—% -}. (4.21)

Finally, as we mentioned in the discussion of (3.20), the 8PN log? angular momentum term did settle into a resummed

closed-form function:

1 49603088 223457938

36e%  201203215223¢*  1196416933477¢°

Dypr = -
82 (1—e2)l4< 8575 25725 10290 8575
4391775215885¢%  598457874498¢10  76198202080153¢'2  9321366120429¢'4
10976 1225 313600 219520
18037498466101¢'6  32570455¢'8 60
- - De1».- 4.22
10035200 8192 )Jr,/—]_ez oL2 (4.22)

V. DISCUSSION

The results presented in the previous two sections, and at
the online repositories [48,49], have pushed the knowledge
of the black hole horizon absorption in eccentric-orbit
nonspinning EMRIs to 10PN (in an ¢%* expansion) and to
18PN (in an ¢'® expansion) relative to the leading horizon
contribution. Between our new fully symbolic calculations
and earlier numerical high-precision fitting [22], we have
been able to discover closed-form eccentricity dependence
for a host of terms: By, By, B, Bs, Bs;, Bar. Bsi, Beros
B7L2’ DO’ Dl? DZ’ D39 D3L9 D4L? DSL’ DGLZ’ D7L29 DSLZ-
Closed forms can likely also be found for Bg;, and Dy 3,
but our present expansions stop just short of providing
confirmation that the series are finite. The other terms up
to 10PN horizon-relative order are apparent infinite
series and our eccentricity expansions go deep enough

to reveal structures resembling those seen in the infinity-
side fluxes.

Particularly of note are the log sequences that appear in
the infinity-side fluxes, which we defined and discussed
previously [23,31,32]. The leading-log (also called OPN
log) sequence, for example, starts with the Peters-Mathews
term, Loy(e), includes the first appearance of a log, at
L3 (e), and continues with each new power of log at 6PN,
9PN, etc. In other words, the terms in this sequence have
PN orders y**loghy (k > 0). There is a companion half-
integer-order leading log sequence [31] that is made up of
the terms y*+3/2 logk y (k > 0), which starts (log”) with the
1.5PN tail. There are also integer and half-integer 1PN [32],
2PN, 3PN [31], 4PN [32], log sequences.

In the horizon fluxes, the same set of integer-order
log sequences appear and half-integer-order logs show
up as well, with an important caveat (discussed below).
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Our results show that, just as was found in the fluxes at
infinity, the leading-, 1PN-, and 2PN-log series have
purely rational number coefficients, with the first appear-
ance of transcendental numbers occurring in the 3PN log
sequence. As [31,32] showed, the presence of only
rational number coefficients indicates that these terms
arise merely from low-multipole-order source moments.
Furthermore, the 2PN logarithms once again display a
dominant-subdominant eccentricity singular factor struc-
ture, with the subdominant term being proportional to the
corresponding leading-log flux [see e.g., (3.10) with the
appearance of (3.6)].

A significant difference, however, is the delay in the
appearance of half-integer-order flux terms in the horizon
absorption. On the infinity-side, the first half-integer
contribution is the tail term at 1.5PN order. In the horizon
fluxes, the first appearance of a half-integer term is at
5.5PN order (which, of course, is at 9.5PN relative to the
leading flux at infinity). The tail contribution at infinity
stems from a nonlinear interaction between the outgoing
(Newtonian) quadrupole wave and the static mass monop-
ole [64,65]. It appears that the combination of weak
backscatter toward the primary black hole and the small
cross section leads to an 8PN suppression of the tail flux at
the horizon.

The horizon flux terms at 5.5PN, 6.5PN, and 7.5PN
horizon-relative order all involve rational number series
(once an overall factor of z is pulled out). If the infinity-
side fluxes are any guide, it may be that these half-integer
leading-log, 1PN-log, and 2PN-log sequences, respec-
tively, can be linked to the OPN, 1PN, and 2PN horizon-
relative flux terms. Stated another way, we showed in [31]
and [32] that all leading logarithms (integer and half-
integer) are determined completely by certain sums over
the Newtonian mass quadrupole power spectrum g(n, e),
which completely determines the dominant Peters-
Mathews flux, Lq(e). Similarly, all terms in the 1PN-
log sequence are determined solely by the power spectra
of the 1PN multipoles (i.e., the Newtonian mass octupole,
Newtonian current quadrupole, and 1PN correction to the
mass quadrupole), which are the sole ingredients that
determine the 1PN flux, £(e). It is possible that a FD
multipole formulation of the horizon fluxes could show
similar linkage between leading integer and half-integer
logarithms. A multipole formulation might also lead to
horizon-flux analogs of the 3PN enhancement functions
x(e) and ¥(e) [32], which could aid in finding compact
forms for complicated functions like 4. On the infinity-
side, the function y(e) shows up in the 3PN nonlog flux. It
is interesting to note that a comparable infinite series does
not appear in the 3PN nonlog horizon flux, nor is there an
appearance of the Euler gamma constant, yg. Lack of these
terms greatly facilitated the process of extracting the
closed forms for B3 and D found in (3.5) and (4.5),
respectively.

VI. TESTING CONVERGENCE OF THE HORIZON
FLUX PN EXPANSIONS ON A CLOSE ORBIT

We now use the expansions laid out in the preceding
sections to make comparisons with numerical horizon flux
data to assess their accuracy and convergence. We confine
the presentation here to the energy flux case but note that
the angular momentum expansion yields similar results. To
prepare for the numerical comparison, we assemble a net
expansion by combining flux terms from three sources.
First, some of the PN terms are closed-form expressions in
e and these provide exact inputs. Second, in cases of
flux terms that are not closed-form, out to 10PN horizon-
relative order we use the full ¢?° eccentricity expansions.
Finally, beyond 10PN out to 18PN, we use the full e'°
eccentricity expansions. A separate Teukolsky code was
used (J. Castillo, private communication) and specialized
to a = 0. Horizon flux data were generated for p = 10
separation orbits with eccentricities of e = {1/100, 1/10,
1/4,1/2} to mirror the similar comparisons made in [24]
for the energy flux at infinity. The Teukolsky code is
Mathematica-based and was run with 20 digits of accuracy.
Its accuracy has been benchmarked against flux results
published earlier [66] and through comparison with a
C code written by Z. Nasipak. The comparisons between
the accurate numerical fluxes and the PN series evaluations
are given in Fig. 1.

When we compare to [24], we find that the horizon flux
expansions exhibit worse fidelity for p = 10 than their
counterpart infinity-side fluxes, particularly as e grows
large. Whereas the flux at infinity demonstrated steady
average reduced error with increasing PN order all the way
to e = 1/2, the horizon flux breaks down beyond e ~ 1/4.
At e = 1/4, the error decreases roughly monotonically
until 8PN, after which point it begins to fluctuate or grow
(typical of an asymptotic series). The evaluation at e = 1/2
is worse, disconnected from any convergent behavior at and
beyond 7PN order. At e = 1/2, the expansion only briefly
exhibits an error less than 1%. It is likely that this is due, in
part, to the fact that the eccentricity enhancement functions
in the expansion take on increasingly large numerical
values as e¢ — 1 in the expansion that uses y as the
compactness parameter. Lending support to this claim is
that the expansion in 1/p (blue curve) is better behaved.

It may be that taking the eccentricity expansions only out
to e is insufficient for generating accurate values at e >
1/2 on p = 10 orbits. One way to see this is to compare
how the frequency-domain Teukolsky code generates
accurate values for high-eccentricity orbits. In that code,
Imn modes are computed, with n being the harmonics of
the radial libration frequency. At high eccentricity, increas-
ingly large numbers of n modes are required to reach, for
example, 12 digits of accuracy in the flux. The fully
symbolic PN expansion code is similar, where the PN
expansions must be built out of MST modes and where we
are required to compute n modes with |n| up to half the
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FIG. 1.

Accuracy of the tidal heating PN expansion and several resummations for a set of close orbits. An orbital separation of p = 10

is chosen. Four different eccentricities are tested: e = 1/100, 1/10, 1/4, 1/2 (each a separate panel). The numerical values generated by
inserting the orbital parameters into our PN expansion are plotted against accurate numerical flux values obtained from a Teukolsky
code. The Teukolsky code is written in Mathematica and was run with 20 decimal places of precision during this test. Thus differences in
the comparison are completely ascribable to the PN expansion. Each plot shows the relative error as a function of stepping toward higher
PN order. The multiple curves on each plot follow from using PN expansions computed with different compactness parameters (i.e., 1/p
and y) and with and without the use of logarithmic and reciprocal resummations. (These resummations were used in [24] and inspired by
alternatives explored in [67].) The asymptotic PN series for the horizon energy flux breaks down for an orbit as tight as p = 10 when the
eccentricity is higher than e ~ 1/4. However, at e ~ 1/4 and lower, useful accuracy is available in the expansions if summed through a

number of PN orders.

desired maximum eccentricity order. To be specific, the
eccentricity expansion of each amplitude C;, begins at
el"l. Once squared, the partial fluxes, proportional to
|C: |2, each have expansions that begin with eIl (see
for example discussion in [23], Sec. 4C). In other words, if
one is content with stopping the eccentricity expansion at a
certain order e’”, there is no need to compute mode
functions with |n| > p. Conversely, to go to higher order
in eccentricity in the symbolic PN expansion, more +n
modes are required, as otherwise the coefficients on the
higher-order terms will be in error. When the Teukolsky
code is run, the algorithm judges how many modes are
necessary for a given expected accuracy based on the
chosen orbital parameters. Thus, if the Teukolsky code is
using a greater number of modes at an eccentricity of e 2
1/2 than our symbolic code is, it may indicate we need to
likewise compute more n modes and take the e expansion
to higher order. Insufficient mode representation has also

been noted as a limiting factor for small p [41,68].
Nevertheless, it is encouraging that the accuracy of the
infinity-side full-flux expansion was fairly strong even for
the p = 10, e = 1/2 orbit, owing to the use of arbitrary-
order eccentricity expansions at low PN and the use of
eccentricity resummations throughout, and for e < 1/4 our
horizon fluxes could be usefully added to produce a net
energy loss.

VII. CONCLUSIONS

This paper has described new high-PN-order results for
the tidal heating and torquing (also referred to as horizon
fluxes or horizon absorption) onto a nonspinning primary
black hole in an eccentric-orbit EMRI. The present work
extends earlier calculations [25,29,41] to orbits with
eccentricity and gives analytic expressions for the fluxes
in two expansions: one to 10PN horizon-relative order in an
€0 eccentricity expansion and the other to 18PN in an e!”
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expansion. These calculations represent a significant exten-
sion over previous work with numeric-analytic fitting,
which was available only in Forseth’s thesis [22] and
several online talks [38,39]. Taken together with high-order
expansions of the infinity-side fluxes [24], the full dis-
sipation in eccentric-orbit nonspinning EMRIs is now
known to 19PN order.

Several remarkable features exist in the form of the
horizon absorption expansions, especially the presence at
low PN order of a number of closed-form-in-e terms with
simple rational number coefficients and the delayed appear-
ance (to 5.5PN horizon-relative order) of the first half-
integer (likely tail) term. The combined structure suggests
that a focused calculation using post-Newtonian theory
might allow some of these low-order terms to be calculated
directly, rather than extracted from first-order black hole
perturbation theory, as was possible with certain PN-log
sequences in the flux to infinity [31,32]. Of course, a direct
PN calculation must deal with the fact that the primary
black hole horizon and nearby region do not naturally and
immediately fit within PN theory.

We also tested numerically the convergence (i.e., in the
sense of an asymptotic series) of the tidal heating PN
expansion when extended to close orbits with p = 10. We
found the results to be less convergent than was the case
with the infinity-side flux [24], especially for eccentricities
approaching e ~ 1/4 and higher. However, at ¢ = 1/4 and
p = 10 it is possible to achieve a calculation of the flux
with less than 1% error using the full PN expansion, and
even e = 1/2 at p = 10 can yield a 90% accurate result

with the best-case resummation of the series. When we
account for the fact that the tidal heating is suppressed
by 4PN in the nonspinning primary case, the fractional
errors in using the PN expansion for this size orbit would
be of order 107> or less in the total dissipation. Use of
the PN expansion improves rapidly with increased orbital
separations.

Our fully symbolic calculations used Mathematica in
parallel on a cluster computer. As with the expansion at
infinity [24], the bottleneck step in the procedure was the
calculation of the even-parity asymptotic amplitudes for
[ = 2. Part of the calculation is sequential and part can be
made parallel, by splitting over modes. To give a sense of
the speed of the code, our 18PN horizon-relative calcu-
lations on the UNC cluster (Longleaf) were measured in
days. The attempt to reach 19PN order failed to complete in
under 10 days.
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